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A higher-order generalization of Jacobi’s
derivative formula and its algebraic geometric

analogue

par David GRANT

Résumé. Nous généralisons la formule de la dérivée de Jacobi en écrivant,
pour un m impair, un déterminant de taille m composé de dérivées d’ordre
supérieur évaluées en 0 des fonctions thêta d’une variable avec vecteurs carac-
téristiques à coordonnées dans 1

2mZ comme une constante explicite multipliée
par une puissance de la fonction η de Dedekind. Nous déduisons ce résultat de
sa version algébro-géométrique, qui est valable si la caractéristique ne divise
pas 6m.

Abstract. We generalize Jacobi’s derivative formula for odd m by writing
an m × m determinant of higher order derivatives at 0 of theta functions
in 1 variable with characteristic vectors with entries in 1

2mZ as an explicit
constant times a power of Dedekind’s η-function. We do so by deriving it
from an algebraic geometric version that holds in characteristic not dividing
6m.

Introduction
In the vast pantheon of theta function identities, a central position is

held by Jacobi’s derivative formula. Recall that for τ ∈ h = {x+ iy | y > 0},
and a, b ∈ R, we define the theta function in one variable z ∈ C with
characteristic vector

[ a
b

]
by

(1) θ
[ a
b

]
(z, τ) =

∑
n∈Z

eπi(n+a)2τ+2πi(n+a)(z+b).

A characteristic vector
[ a
b

]
with a, b ∈ 1

2Z is called a theta characteristic,
which is called odd or even depending on whether θ

[ a
b

]
(z, τ) is an odd or

even function of z. Modulo 1 there is a unique odd theta characteristic
δ :=

[
1/2
1/2

]
, and three even ones, ε1 :=

[ 0
0
]
, ε2 :=

[
1/2
0

]
, ε3 :=

[
0

1/2

]
.
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Jacobi’s formula states that

(2) d
dz (θ[δ](z, τ))|z=0 = −π

3∏
i=1

θ[εi](0, τ) = −2πη(τ)3,

where for q = e2πiτ ,
η(τ) = q1/24 ∏

n≥1
(1− qn)

is Dedekind’s η-function ([22, p. 64 and 72]).
Jacobi’s formula has been generalized in a number of directions: see the

references in [12], [13], and [16] for information on what is known about
generalizations to theta functions in several variables. One main goal of the
paper is to prove for any oddm a generalization of (2) for higher derivatives
in z of θ

[ a
b

]
(z, τ) at z = 0 and a, b ∈ 1

2mZ.
We note that first derivatives in z of θ

[ a
b

]
(z, τ) at z = 0 for a, b ∈ Q

were studied in [5], [6], and [10], where their vanishing was related to the
existence of “singular torsion” on the elliptic curve whose complex points
are parameterized by C/(Z + Zτ), and a genus 1 analogue of the Manin–
Mumford conjecture. For higher-order derivatives we have:

Theorem I. Let m be odd. Then

det
0≤j<m

0≤k≤m−2,k=m

[( d
dz

)k (
θ

[
1
2 + j

m
1
2

]
(z,mτ)

)∣∣∣∣
z=0

]

= i(3m+1)/2(2π/m)(m2−m+2)/2m!
(
m−2∏
`=1

`!
)
η(τ)m2+2.

Note that when m = 1 we recover (2). The reason that k = m − 1 is
excluded as an index is explained in the Remark at the end of the Intro-
duction.

Theorem I takes a more attractive form if for any characteristic vector
c =

[ a
b

]
and integer j, we set fc,j(z, τ) = θ[ a+j/m

b
](mz,mτ) and let f [k]

c,j (0, τ)
denote its kth-Hasse derivative with respect to z at 0. (Recall this means
that f [k]

c,j (0, τ) is the coefficient of zk in the Taylor expansion of fc,j(z, τ) at
z = 0.) Then recalling that δ =

[
1/2
1/2

]
, Theorem I is equivalent to:

(I.1) det
0≤j<m

0≤k≤m−2,k=m

[
f

[k]
δ,j (0, τ)

]
= i(3m+1)/2(2π)(m2−m+2)/2η(τ)m2+2.

We ask in advance for the reader’s forbearance: we believe the computa-
tion of the constant in Theorem I is new, but inasmuch as the objects have
been studied for the last two centuries, we cannot provide a guarantee of
this fact. We note that using the transformation formula for theta functions
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([8, p. 81]), Lemma 13 in the next section of this paper, and ([22, p. 124,
Prop. 1.3]), one can show that the left hand side of (I.1) is a level-one mod-
ular form with character that doesn’t vanish on h, so is a constant times
a power of η(τ) (this also follows by combining the results on p. 270 and
in Remark 1.1 on p. 272 of [8], obtained with rather more work via the
heat equation and a study of Weierstrass points on modular curves). This
means one could calculate the constant via q-expansions, but it would be
unenlightening to do so.

More important perhaps then is the algebraic geometry that underlies
the statement of Theorem I, and indeed, we will prove it by deriving it from
results (Theorems II and III of the next section) that hold for any elliptic
curve E defined over a field K of any characteristic not dividing 6m.

To describe this, let Eτ be the complex elliptic curve
y2 = x3 +A(τ)x+B(τ)

whose points (x, y) are parameterized by (℘(z, τ), 1
2℘
′(z, τ)) for z ∈ C,

where ℘(z, τ) is the Weierstrass ℘-function for the lattice Lτ = Z+Zτ . Let
O denote its origin, t(z) = −x(z)/y(z) = z+ . . . be a local parameter at O,
and let L(mO) denote the m-dimensional vector space of functions on Eτ
with poles bounded by mO. Then the starting point of Mumford’s theory
of algebraic theta functions ([22, Chap. I §3, Chap. II, §1] [23, §§1–5]) is
the fact that the functions on Eτ defined by

rj(z, τ) = fδ,j(z, τ)
θ[δ](z, τ)m ,

0 ≤ j ≤ m − 1, are eigenfunctions of Heisenberg operators on L(mO)
with different eigenvalues, so they form a canonical basis for L(mO). The
eigenfunctions are only determined up to constant, and if we let

gj(z, τ) =
(
e2πij/m

2πi

)(m−1)/2

rj(z, τ),

then we will prove in Proposition 22 of Section 2 that if we also set

(3) T (τ) := det
0≤j<m

0≤k≤m−2,k=m

(zmgj)[k](0, τ),

then (I.1) is equivalent to

(I.2) T (τ) = 1/(2πη2(τ))m2−1.

In other words,

(I.3) T (τ) = ∆(τ)−(m2−1)/12,

(up to a choice of cube-root of the righthand side when 3 divides m), where
∆(τ) = −16(4A(τ)3 + 27B(τ)2) = (2π)12η(τ)24 is Dedekind’s discriminant
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modular form. Once we note using Lemma 21(c) of Section 2 that

T (τ) = det
0≤j<m

0≤k≤m−2,k=m

(tmgj)[k]t(0, τ),

where (tmgj)[k]t(z, τ) denotes the kth-Hasse derivative of tmgj(z, τ) with
respect to t, (I.3) has an algebraic meaning for elliptic curves over any
field.

Indeed, letK be any field of characteristic not dividing 6m, and E be any
elliptic curve over K given by a Weierstrass model, y2 = x3 +Ax+B over
K, with t = −x/y a local parameter at the origin O. In the next section
we will develop what we need of the theory of Heisenberg operators for E
and K. Then in Theorem II we will use this to calculate the determinant of
the 0, . . . ,m− 2, and mth-Hasse derivatives with respect to t of tm times a
basis for L(mO) of normalized eigenfunctions for the Heisenberg operators,
and then in Theorem III express this determinant as in (I.3), in terms of
the discriminant of the Weierstrass model.

Then in Section 2, we will show that when K = C and E = Eτ , this
normalized basis of eigenfunctions for L(mO) is precisely the gj(z, τ), 0 ≤
j ≤ m− 1, and derive Theorem I from Theorems II and III.

We remark that some analogous but more complicated results should
hold for m even and in the case that K has characteristic 2 or 3. Also it
would be nice to know what the appropriate generalization of Theorem I is
for higher derivatives of theta functions in several variables.

Remark 1. If for any theta characteristic c, we let Wc,m(z, τ) denote the
Wronskian with respect to z of fc,0(z, τ), . . . , fc,m−1(z, τ), then Lemma 13
of the next section will show that Wδ,m(0, τ) vanishes, and we will see in
Lemma 21 of Section 2 that therefore we can rewrite Theorem I as

(I.4) d
dz (Wδ,m(z))|z=0 = i(3m+1)/2

(2π
m

)(m2−m+2)/2
m!
(
m−2∏
`=1

`!
)
η(τ)m2+2.

We note that the lefthand side of (I.4) is a “lacunary Wronskian” in the
language of Anderson [1]. See also [20].

On the other hand, recalling that {ε1, ε2, ε3} is a set representing the even
theta characteristics modulo 1, similar reasoning to that in the discussion
above shows that

3∏
i=1

Wεi,m(0, τ)

is a non-vanishing modular form of level one and weight 3m2/2 with char-
acter on h, and so is a constant times η(τ)3m2

, which gives a supplemental
generalization of (2). Presumedly the constant can be determined along the
lines of this paper but we have not tried to do so.
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1. Algebraic geometric version of Theorem I
Let m be an odd integer, K a field of characteristic not dividing 6m, and

E/K an elliptic curve over K. Let E be given by a Weierstrass model,
(4) y2 = x3 +Ax+B.

Let ω = dx/2y be a choice of invariant differential for E, and t = −x/y be a
parameter at the origin O of E. We let D be the derivation on the function
field K(E) given by D = d/ω, i.e. the unique derivation determined by
Dx = 2y. Since ω is translation-invariant, so is D.

Let L(mO) denote the m-dimensional K-vector space of functions on E
whose poles are bounded by mO (along with the zero function), where K
is an algebraic closure of K. Let E[m] denote the m-torsion in E(K). For
any R ∈ E(K) and ` ∈ Z, we let [`]R denote the image of R under the
multiplication-by-` endomorphism of E. For f ∈ K(E)∗ we let (f) denote
its divisor. For any R ∈ E(K) we let TR denote the translation-by-R map
on E, and T ∗R its pullback to K(E).

For a point R ∈ E(K), let vR denote the valuation of the local ring OR
of E at R. Let Div(E) denote the group of divisors of E over K. If f is a
non-zero function and D =

∑
R∈E nRR is a divisor on E whose support is

disjoint from the support of (f), we let f(D) =
∏
R∈E f(R)nR .

Identifying E with its jacobian, if D is a divisor of degree 0 linearly
equivalent to S −O for some S ∈ E(K), we will say that D sums to S.

For every u, v ∈ E[m], let em(u, v) denote their Weil pairing. For lack of
a suitable reference, we give a lemma expressing the Weil pairing in terms
of local contributions.
Lemma 2. For non-zero functions φ, ψ ∈ K(E) whose divisors are in
mDiv(E), we define for every R ∈ E(K),

(φ, ψ)m,R = (−1)vR(φ)vR(ψ)/m(φvR(ψ)/m/ψvR(φ)/m)(R).
Let u, v ∈ E[m]. Then if functions ρu and ρv have divisors mDu and mDv

such that Du sums to u and Dv sums to v, we have
em(u, v) =

∏
R∈E

(ρu, ρv)m,R.

Proof. If Du and Dv have distinct support, Example 3.16 in [27] gives that
em(u, v) = ρu(Dv)/ρv(Du). It is clear from the definitions that we have
ρu(Dv)/ρv(Du) =

∏
R∈E(ρu, ρv)m,R, which gives the Lemma in this case.

More generally, recall for any non-zero functions φ, ψ and point R ∈
E(K), we have the local symbol

(φ, ψ)R = (−1)vR(φ)vR(ψ)(φvR(ψ)/ψvR(φ))(R),
which is bilinear, and satisfies the product formula

∏
R∈E(φ, ψ)R = 1 ([26,

p. 34–35]). For φ, ψ which have divisors in mDiv(E), (φ, ψ)m,R is also
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bilinear, and for any function ρ, (φ, ρ)R = (φ, ρm)m,R. So if (ρu) = mDu

and (ρv) = mDv, and Du and Dv do not have disjoint support, we can find
linearly equivalent divisors D′u and D′v with disjoint support, so there are
functions ψu, ψv with divisors D′u−Du and D′v−Dv, such that φu := ρuψ

m
u

and φv := ρvψ
m
v , have divisors mD′u and mD′v. Then

em(u, v) =
∏
R∈E

(φu, φv)m,R

=
∏
R∈E

(ρu, ρv)m,R(ρu, ψv)R(ψu, ρv)R(ψu, ψv)mR =
∏
R∈E

(ρu, ρv)m,R,

which gives the Lemma. �

Following Mumford ([23, p. 43], [21, p. 289]) we now define:

Definition 3. The group H = Hm of Heisenberg linear operators on
L(mO) consists of pairs hu of the form (u, fu) where u ∈ E[m] and (fu) =
mu − mO, with the group composition of hu = (u, fu) and hv = (v, fv)
given by hu ◦ hv = (u+ v, fuT

∗
−ufv).

It is straightforward to verify that H is indeed a group with (O, 1) as its
identity, and that H acts on L(mO) by setting for any g ∈ L(mO), and
hu = (u, fu) ∈ H,

(5) hu(g) = T ∗−u(g)fu.

Definition 4.
(i) For any u ∈ E[m] there is a distinguished choice Fu for fu, given

as follows: Using that m is odd, let du be any function with divisor∑m−1
i=0 [i]u−mO. Then let Fu = du/T

∗
−udu, which is independent of

the choice of du.
(ii) We let Hu denote (u, Fu).

Lemma 5. Let u ∈ E[m].
(a) [−1]∗Fu = F−u.
(b) H−1

u = H−u.

Proof. Any choice of du is an even function, so [−1]∗du = du and we can
take d−u = du. Hence [−1]∗Fu = [−1]∗du/[−1]∗T ∗−udu = du/T

∗
udu = F−u,

which gives (a).
Likewise,

Hu ◦H−u = (O,FuT ∗−uF−u) = (O,Fu(T ∗−udu/du)) = (O, 1),

which gives (b). �

We now recall Mumford’s definition of algebraic theta functions.
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Definition 6. For any s ∈ L(mO), and u ∈ E[m], we define the algebraic
theta function

Θs(u) = tmH−1
u (s)|t=0 = tmH−u (s)|t=0 .

When s = 1, we will let Θ(u) denote Θ1(u) = tm F−u|t=0 .

Remark 7. Let L(mO) be the invertible sheaf attached to the divisor mO.
Mumford defines elements of the Heisenberg group attached to L(mO) as
pairs (u, ψ) where u ∈ E[m] and ψ : L(mO) → T ∗u (L(mO)) is an isomor-
phism of invertible sheaves, which as in [14, II, Prop. 6.13], is given by mul-
tiplication by a function whose divisor is mO−T ∗u (mO) = mO−m([−1]u).
Since we are studying functions in L(mO), we found it more natural to re-
place his elements (u, ψ) by the pair (u, T ∗−uψ) in the definition of H, since
T ∗−uψ ∈ L(mO). This gives us different formulas for the group law of H
and its action on L(mO), but the group and the action are the same that
Mumford uses.

In Mumford’s definition of algebraic theta function (see the versions
in [23, p. 76] and [21, p. 300]) we are simplifying by considering the theta
function directly as a function of torsion points of E, obviating the need to
pick a “theta structure”, and are using s→ tms|t=0 as the required choice
of linear functional on L(mO). Also it is an exercise to show that since m
is odd, our map u→ H(u) agrees with the map τ defined in [23, p. 58] that
is needed in his definition of algebraic theta function.

Let {P,Q} be an ordered basis for E[m] as a Z/mZ-module, and let
ζ = em(P,Q), which is a primitive mth−root of unity.

Definition 8. Let S =
∑m−1
i=0 ζi

2 be the quadratic Gauss sum.
(a) Set ν0 to be (−1)(m−1)/2/S times any chosen mth-root of

(m−1)/2∏
k=1

Θ([k]P )3.

(b) Let gP = ν0
∏(m−1)/2
k=1 (x− x([k]P )).

(c) For any 0 ≤ j < m, set gj = H−[j]Q (gP ) (so in particular, g0 = gP ).

The definition of ν0 is perhaps overly perspicacious: it is chosen to sim-
plify the later statement of Theorem II. Note that gP is a specific choice
for dP .

Definition 9. Identifying the completed local ring at the origin ÔO with
the power series ring K[[t]], for 0 ≤ j < m and n ≥ 0, define θj,n ∈ K as
the coefficients in the expansions

tmgj =
∑
n≥0

ϑj,nt
n.



368 David Grant

Remark 10. From Definition 6 we have

ΘgP ([j]Q) = tmH−[j]Q (gP ) |t=0 = tmgj |t=0 = ϑj,0.

Therefore it makes sense to think of the ϑj,n as analogous to Hasse deriva-
tives in t of an algebraic theta function (see also [4, §2.2]).

The goal of this section is to compute

(6) T (P,Q) = det
0≤j<m

0≤k≤m−2,k=m

[ϑj,k],

which we relate in the next section to T (τ) when K = C and E = Eτ for
a particular choice of P and Q. We will need a sequence of lemmas.

Most of the following Lemma comes directly from the definitions and is
standard (see e.g., [22, p. 2], [23, p. 44, Prop. 3.6(c)]). We provide proofs
to keep the paper self-contained.

Lemma 11. Let u, v ∈ E[m], and let em(u, v) denote their Weil pairing.
(a) Θ(−u) = −Θ(u).
(b) Hu ◦ Hv = c(u, v)Hu+v, where c(u, v) = 1 if u = O or if u = −v,

and c(u, v) = Fv(−u)Θ(u)/Θ(u+ v) otherwise.
(c) Hu ◦Hv = em(u, v)Hv ◦Hu.
(d) c(u, v) = em(u, v)(m+1)/2, i.e., c(u, v)2 = em(u, v).
(e) H[k]P (gP ) = gP for all k ≥ 1.
(f) For each 0 ≤ j < m, gj is an eigenfunction of H[k]P with eigenvalue

ζ−jk.
(g) The set gj, 0 ≤ j < m, forms a basis for L(mO).
(h) For every 1 ≤ k < m,

1
Θ([k]P ) = 2y([k]P )

∏
1≤k′≤(m−1)/2
k′ 6=k,m−k

(x([k]P )− x([k′]P )) = 1
ν0
D(gP )([k]P ).

Proof. (a). Using Lemma 5(a), Θ(−u) = tmFu|t=0 = [−1]∗(tmFu|t=0) =
(−t)mF−u|t=0 = −tmF−u|t=0 = −Θ(u).

(b). This is trivial if u = O or follows from Lemma 5(b) if u = −v, so
assume not. From (5), for any f ∈ L(mO),

Hu ◦Hv(f) = Hu
(
T ∗−v(f)Fv

)
= T ∗−u−v(f)T ∗−u (Fv)Fu

=
(
T ∗−u (Fv)Fu/Fu+v

)
Hu+v(f).

Then comparing divisors shows T ∗−u(Fv)Fu/Fu+v is a constant, which we
find by multiplying numerator and denominator by tm and evaluating at O
to be Fv(−u)Θ(−u)/Θ(−u− v), and the result follows from (a).
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(c). By (b), we need to show that c(u, v)/c(v, u) = em(u, v). This is trivial
if u = O, v = O, or v = −u, so assume not. In all other cases, by (a), and
Lemma 5(a), we get from (b) and then Definition 6 that

c(u, v)/c(v, u) = Fv(−u)Θ(u)
Fu(−v)Θ(v) = −Fv(−u)Θ(u)

F−u(v)Θ(−v)
=
∏
R∈E

(Fv, F−u)m,R = em(v,−u),

by Lemma 2, which since the Weil pairing is bilinear and antisymmetric is
em(u, v).

(d). We first claim c(u, v) = c(−u,−v). This is trivial if u = O or v = O or
v = −u, so assume not. Using Lemma 5(a), we have by (a) and (b), that

(7) c(−u,−v) = F−v(u)Θ(−u)
Θ(−u− v) = Fv(−u)Θ(u)

Θ(u+ v) = c(u, v).

Also, taking inverses of c(v, u)Hu+v = Hv ◦Hu gives by Lemma 5(b) that
c(v, u)−1H−u−v = H−u ◦H−v, so

c(−u,−v) = c(v, u)−1 = em(u, v)c(u, v)−1,

by (c). Combining this with (7) gives c(u, v)2 = em(u, v).

(e). We will show this by induction. First of all, by the definition of FP ,
HP (gP ) = T ∗−P (gP )FP = gP . Now assume H[k−1]P (gP ) = gP for some
k ≥ 2. Using (b) we get H[k]P (gP ) = c([k−1]P, P )−1H[k−1]P ◦HP (gP ) = gP
since em([k − 1]P, P ) = 1 implies c([k − 1]P, P ) = 1 by (d).

(f). Using (c) again and (e),

H[k]P (gj) = H[k]P
(
H−[j]Q(gP )

)
= em([k]P,−[j]Q)H−[j]Q

(
H[k]P (gP )

)
= ζ−jkH−[j]Q (gP ) = ζ−jkgj .

(g). The Riemann–Roch Theorem gives that the dimension of L(mO) over
K is m, and the gj , 0 ≤ j < m, are m eigenfunctions for HP with different
eigenvalues.

(h). For all k ≥ 1, (e) and Lemma 5(a) gives F−[k]P = gP /T
∗
[k]P gP . So since

gP = ν0
∏(m−1)/2
k′=1 (x− x([k′]P )), we have for 1 ≤ k ≤ m− 1,

1/Θ([k]P ) = t−m F−1
[−k]P

∣∣∣
t=0

=
(T ∗[k]P gP )/t
tm−1gP

∣∣∣∣∣
t=0

=
T ∗[k]P (x− x([k]P ))

t

∣∣∣∣∣
t=0

∏
1≤k′≤(m−1)/2,
k′ 6=k,m−k

(x([k]P )− x([k′]P )).
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Now since D is translation-invariant and dt/ω is 1 at the origin, we have
by L’Hôpital’s rule,

T ∗[k]P (x− x([k]P ))
t

∣∣∣∣∣
t=0

=
D
(
T ∗[k]P (x− x([k]P ))

)
Dt

∣∣∣∣∣
t=0

= T ∗[k]P D(x− x([k]P ))|t=0 = 2y([k]P ).
This also shows 1/Θ([k]P ) = D(gP )([k]P )/ν0. �

Definition 12. For any function f ∈ L(mO) we write the expansion of
tmf in terms of t over K as

∑
n≥0 af,nt

n.
(a) We define a linear transformation φ : L(mO) → Km by φ(f) =

(af,0, . . . , af,(m−2), af,m).
(b) If B = {b1, . . . , bm} is any ordered basis for L(mO), we let

det(φ(B)) denote the determinant of the matrix whose rows are
φ(b1), . . . , φ(bm).

By Definition 9, φ(gj) = (ϑj,0, . . . , ϑj,m−2, ϑj.m), for 0 ≤ j ≤ m− 1. Note
that in (6) we have already defined T (P,Q) = det(φ(G)), where G is the
ordered basis {g0, . . . , gm−1}.
Lemma 13. Let B = {b1, . . . , bm} be an ordered basis for L(mO), thought
of as a column vector in K(E)m.

(a) The map φ is an isomorphism. Hence det(ϕ(B)) is non-vanishing.
(b) If M is an invertible m × m matrix with entries in K, so B′ =

MB is another ordered basis for L(mO), then det(φ(B′)) =
det(M) det(φ(B)).

(c) If for f ∈ L(mO) we set ρ(f) = (af,0, . . . , af,m−2, af,m−1), then
we have det(ρ(B)) = 0, where ρ(B) is the matrix whose rows are
ρ(b1), . . . , ρ(bm).

Proof. (a). If af,i = 0 for all 0 ≤ i ≤ m− 2, then f has a pole of at worst
order 1 at the origin, so is constant. Then af,m = 0 means that this constant
is 0. Hence φ is injective, and the Riemann–Roch Theorem gives that the
dimension of L(mO) over K is m, so φ is an isomorphism.

(b). This is clear.

(c). It is enough to note that 1 ∈ L(mO) and ρ(1) = 0. �

We have one ordered basis for L(mO), namely G. We will compute
T (P,Q) by writing down another ordered basis, and comparing the two.
Definition 14.

(a) Set w0 = 1, and for 2 ≤ j ≤ m set wj = xj/2 if j is even, and
wj = x(j−3)/2(−y) if j is odd. Let W = {w0, w2, . . . , wm}, which is
an ordered basis for L(mO).
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(b) Let L denote the change of basis matrix with entries inK expressing
G in terms of W , so G = LW .

(c) For 0 ≤ k < m, applying operations entry-by-entry to elements of
a vector, let Gk = H[k]P (G), and Wk = H[k]P (W ).

(d) Let Γ and Ω be the matrices which respectively have k-th column
Gk and Wk, so Γ = LΩ.

We note that since x = 1
t2 + . . . , y = −1

t3 + . . . , by design the Laurent
expansion of wj at the origin in t has lead term 1/tj . Hence the first non-
zero entry of φ(wj) is a 1 in the (m + 1 − j)th entry for 2 ≤ j ≤ m,
and the first non-zero entry of φ(w0) is a 1 in the mth entry. Therefore
det(φ(W )) = (−1)(m−1)/2 since reversing the columns of φ(W ) yields an
upper-triangular matrix with 1s on the diagonal.

Hence by Lemma 13(b),
(8) T (P,Q) = det(φ(G)) = (−1)(m−1)/2 det(L).

So we concentrate now on computing det(L), which by Definition 14(d)
satisfies
(9) det Γ = detLdet Ω.

Proposition 15. Let Z = det0≤j,k<m
[
ζjk
]
, ν0 be as in Definition 8, and

Γ and Ω be as in Definition 14.
(a) tm2−1 det Γ|t=0

= (−1)(m−1)/2Zνm0

m−1∏
j=1

Θ([j]Q)
(m−1)/2∏
j,k=1

(x([j]Q)− x([k]P ))2.

(b) tm2−1 det Ω|t=0 = (−1)(m2−1)/8m
∏(m−1)/2
k=1 Θ([k]P ).

Proof. (a). Note that Γjk = H[k]P (gj) = ζ−jkgj by Lemma 11(f), so det Γ =
(−1)(m−1)/2

(∏m−1
j=0 gj

)
Z, since reversing the 2nd through the mth rows of

[ζ−jk]0≤j,k<m yields [ζjk]0≤j,k<m. Hence det Γ has a pole of order m2− 1 at
the origin, and letting m denote the maximal ideal of ÔO, we have

tm
2−1 det Γ ≡ (−1)(m−1)/2Z

m−1∏
j=0

νj mod m,

where for 1 ≤ j ≤ m−1, we set νj = gjt
m|t=0, using from Definition 8 that

ν0 = g0t
m−1|t=0. So for 1 ≤ j ≤ m − 1, using (5) and Definitions 6 and 8

we have

νj = H−[j]Q(gP )tm|t=0 = T ∗[j]Q (gP )F−[j]Q t
m|t=0

= ν0Θ([j]Q)
(m−1)/2∏
k=1

(x([j]Q)− x([k]P )).



372 David Grant

Hence

tm
2−1 det Γ

≡ (−1)(m−1)/2Zνm0

m−1∏
j=1

Θ([j]Q)
(m−1)/2∏
j,k=1

(x([j]Q)− x([k]P ))2 mod m,

since x is an even function.

(b). Since Ωjk = H[k]P (wj) =
(
T ∗[−k]Pwj

)
F[k]P , we have that

det Ω = det
j=0,2≤j≤m

0≤k<m

[
T ∗[−k]Pwj

]m−1∏
k=0

F[k]P ,

so since F[0]P = 1 and F[k]P has a pole of order m at O for 1 ≤ k < m, we
see from (a) and (9) that det[T ∗[−k]Pwj ] has a pole of order m − 1 at the
origin. Hence if we let Cj denote the cofactor of wj in [T ∗[−k]Pwj ], we have
that Cm vanishes at O. Therefore since det [T ∗[−k]Pwj ] = w0C0+

∑m
j=2wjCj ,

we have from wj = 1
tj

+ . . . , that

tm
2−1 det Ω|t=0 =

(
m−1∏
k=1

Θ(−[k]P )
)

(D(Cm) + Cm−1)|t=0 .

Applying a derivation to a determinant yields a sum of the determinants
of the derivation applied to each column. Since for j = 0 and 2 ≤ j ≤
m−2,D(wj) is in the span of {w0, . . . , wj−1, wj+1}, all summands inD(Cm)
vanish except for the one with the derivation applied to the last column.
Then since Dwm−1 = Dx(m−1)/2 = m−1

2 x(m−3)/2(2y) = −(m − 1)wm, and
D is translation invariant, accounting for the signs attached to the two
cofactors we have that

D(Cm) = (m− 1)Cm−1.

Hence by Lemma 11(a),

(10) tm
2−1 det Ω|t=0 =

(
m−1∏
k=1

Θ([k]P )
)
mCm−1|t=0 .

Now
(11) Cm−1|t=0 = (−1)m−1+1 det

j=0,2,3,...,m−2,m
1≤k≤m−1

[wj([−k]P )] .

Applying
∑(m−5)/2
i=1 i = (m− 5)(m− 3)/8 transpositions to the rows of the

matrix in the righthand side of (11) gives the matrix
Ω′ = [wj([−k]P )]j=0,2,4,...,m−3,3,5,...,m

1≤k≤m−1
,
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so if ε = (−1)(m−3)(m−5)/8, since m is odd, (11) can be rewritten as

(12) Cm−1|t=0 = −εdet Ω′.

Subtracting the jth-column of Ω′ from the (m − j)th-column for j =
1, . . . , (m−1)/2, yields a block lower-diagonal matrix, whose upper-lefthand
block is the Vandermonde matrix

V =
[
x([k]P )j

]
0≤j≤(m−3)/2
k=1,...,(m−1)/2

,

and whose lower-righthand-block is

V ′ =
[
2y([k]P )x([k]P )j

]
0≤j≤(m−3)/2
k=(m+1)/2,...,m

,

since −y([−k]P ) = y([k]P ). Note that detV ′ is
∏m
k=(m+1)/2 2y([k]P ) times

the determinant of
[
x([k]P )j

]
0≤j≤(m−3)/2;k=(m+1)/2,...,m, which is the deter-

minant of the matrix V with its columns reversed. Hence

(13) det
(
Ω′
)

= detV detV ′

= (−1)(m−1)/2
(m−1)/2∏
k=1

2y([k]P )
∏

1≤k 6=k′≤(m−1)/2

(
x([k]P )− x

(
[k′]P

))

= (−1)(m−1)/2
(m−1)/2∏
k=1

Θ([k]P )−1,

by Lemma 11(h), using that y is odd. Putting together (10), (12), and (13)
gives

tm
2−1 det Ω|t=0 =

(
m−1∏
k=1

Θ([k]P )
)
m(−ε)(−1)(m−1)/2

(m−1)/2∏
k=1

Θ([k]P )−1,

and the result follows from Lemma 5(a) since −ε = (−1)(m2−1)/8. �

Corollary 16. With notation as in Proposition 15,

T (P,Q) = (−1)(m2−1)/8 Z

m
νm0

(m−1)/2∏
j,k=1

(x([j]Q)−x([k]P ))2
∏m−1
j=1 Θ([j]Q)∏(m−1)/2

k=1 Θ([k]P )
.

Proof. By (9), detL = det Γ/det Ω, which by Proposition 15 is

(−1)
m2−1

8 + m−1
2
Z

m
νm0

∏
1≤j,k≤(m−1)/2

(x([j]Q)− x([k]P ))2
∏m−1
j=1 Θ([j]Q)∏(m−1)/2

k=1 Θ([k]P )
.

The result follows from (8). �
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Theorem II. Recall S =
∑m−1
i=0 ζi

2 is the quadratic Gauss sum and that
we set ν0 to be (−1)(m−1)/2/S times any mth-root of

∏(m−1)/2
k=1 Θ([k]P )3.

Then
T (P,Q) = λ(P,Q)/m,

where λ(P,Q) =

(−1)(m−1)/2 ∏
1≤j,k≤(m−1)/2

(x([j]Q)− x([k]P ))2
m−1∏
j=1

Θ([j]Q)
m−1∏
k=1

Θ([k]P ).

Proof. It follows from work of Schur ([24], see also [27, Chap. 6, App. §2]),
that (−1)(m2−1)/8+(m−1)/2Z = Sm (to show this holds in any K, it suffices
to show it holds in Z[ζ], and for that it suffices to show it holds in any
complex embedding of Z[ζ], which is what Schur does). Hence with this
choice of ν0, Corollary 16 can be rewritten as T (P,Q) = λ(P,Q)/m, where
λ(P,Q) =

∏
1≤j,k≤(m−1)/2

(x([j]Q)− x([k]P ))2
m−1∏
j=1

Θ([j]Q)
(m−1)/2∏
k=1

Θ([k]P )2.

The result now follows from Lemma 5(a). �

Theorem II gives the formula for T (P,Q) we will use in the next section
to derive (I.2). We will finish the section by relating λ(P,Q) to the discrim-
inant of the curve as we do in (I.3), though the best we can do when 3|m
is to determine λ(P,Q) up to a third root of unity.
Lemma 17. Let m be odd and K be of characteristic not dividing 6m. Let
n be any non-zero integer not divisible by the characteristic of K, and let
ψn be the n-division polynomial with divisor

∑
u∈E[n] u − n2O normalized

by t(n2−1)ψn|t=0 = n ([19, App. 1]), and let E[n]∗ denote E[n]−O.
(a) Suppose n+m, and n−m are not divisible by the characteristic of

K. Then [n]∗x− [m]∗x = ψm+nψm−n

ψ2
mψ

2
n

.

(b) For independent generic points α and β of E,
x([n]α)− x([n]β)
(x(α)− x(β))n2 = ψn(β + α)ψn(β − α)

ψn(α)2ψn(β)2 .

(c) For a generic point α of E,

(−1)(n2−1) 2y([n]α)
(2y(α))n2 = ψn([2]α)

ψn(α)4 .

(d) Let ∆ = −16
(
4A3 + 27B2) be the discriminant of the Weierstrass

model (4) for E. Let φn = ([n]∗x) · ψ2
n. Then∏

u∈E[n]∗
φn(u) = n−2n2∆n2(n2−1)/6.
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(e) We have

m3 ∏
u∈E[m]∗

ψ2(u) = 2m2−1 ∏
e∈E[2]∗

ψm(e) = (−1)(m−1)/2∆(m2−1)/4.

(f) If n is not a multiple of 3, then

n8 ∏
u∈E[n]∗

ψ3(u) = 3n2−1 ∏
e∈E[3]∗

ψn(e) = (−1)(n2−1)/3∆2(n2−1)/3.

Proof. (a). This is a special case of Proposition 1 of [19, App. I].

(b). Both sides are functions on E × E, with divisor
[n]∗(D +D′ − 2(E ×O +O × E))− n2(D +D′ − 2(E ×O +O × E)),

where D and D′ are respectively the diagonal and antidiagonal on E×E. So
the formula holds up to a multiplicative constant. Now let tα = t(α). Then
the lead term in the Laurent expansion of both sides in the neighborhood
of α = O is 1

n2 t
2n2−2
α , so the constant is 1.

(c). By the chain rule for division polynomials, Proposition 2 of [19, App. I],
[n]∗ψ2 = ψ2n/ψ

4
n = ([2]∗ψn)ψn2

2 /ψ4
n. The result follows since ψ2 = −2y.

(d). We will only need this for n = 2 and n = 3 for which it can be verified
by direct computation. More generally, since φn is a monic polynomial in x
of degree n2, for n odd this follows from standard properties of resultants
using any of a number of people’s proof that the resultant in x of φn and
ψ2
n is ∆n2(n2−1)/6 (see [15], [7, Lem. 1.7.11(b)], [2, Lem. 2]). For n even, this

same result is stated without proof in [3, (1.3)], and proven in [9].

(e). The first equality comes from the product formula for local symbols
as in the proof of Lemma 2. The second equality comes from induction on
m. Clearly when m = −1 and m = 1 the value of εm :=

∏
e∈E[2]∗ ψm(e)

is respectively −1 and 1. Now take m ≥ 3 to be odd. From (a) we have
ψm+2ψm−2/ψ

2
m = ψ2

2([2]∗x − [m]∗x), which is φ2 minus a function that
vanishes at 2-torsion points. From (d) we have

∏
e∈E[2]∗ φ2(e) = 2−8∆2,

and hence εm+2 = 2−8∆2ε2m/εm−2, and the result follows inductively for
m > 0. That suffices since ψ−m = −ψm.

(f). Again, the first equality comes from the product formula for local sym-
bols as in the proof Lemma 2. The second inequality comes by induction
on n. Now let εn :=

∏
e∈E[3]∗ ψn(e). We have trivially that ε−1 = ε1 = 1,

and from (e), that ε−2 = ε2 = (−1/27)∆2. As in (e), from (a) we have
ψn+3ψn−3/ψ

2
n is φ3 minus a function that vanishes at 3-torsion points. So

from (d), we have for n not a multiple of 3, that εn+3 = 3−18∆12ε2n/εn−3.
The result follows by a two-step induction for n > 0, which as in (e) suffices
for the result. �
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Theorem III. Let T (P,Q) be as in (6) and ∆ be the discriminant of the
Weierstrass model (4). Then for all odd m we have

T (P,Q)3 = ∆−(m2−1)/4.

If in addition m is not a multiple of 3, then

T (P,Q) = ∆−(m2−1)/12.

Proof. Theorem II gives T (P,Q) = λ(P,Q)/m, and we will get the result
by applying Lemma 17 to each factor in λ(P,Q) Let ` > 0 be not divisible
by the characteristic of K and prime to m. Lemma 11(h) with Q playing
the role of P gives

(14)
m−1∏
j=1

Θ([j]Q) =
∏

1≤j′ 6=j≤(m−1)/2

1
(x([j]Q)− x([j′]Q))2

m−1∏
j=1

1
2y([j]Q) ,

which for ` prime to m is also
∏m−1
j=1 Θ([j`]Q). Hence

∏m−1
j=1 Θ([j]Q)`2−1 =∏m−1

j=1 Θ([j]Q)`2/Θ([j`]Q), which by (14) and Lemma 17(b) and (c) taking
n = ` is

m−1∏
j=1

(−1)`2−1ψ`([2j]Q)
ψ`([j]Q)4

∏
1≤j′ 6=j≤(m−1)/2

ψ`([j′ + j]Q)2ψ`([j′ − j]Q)2

ψ`([j′]Q)4ψ`([j]Q)4

=
m−1∏
j=1

ψ`([j]Q)−m,

since ψ2
` is an even function, and (−1)(`2−1)(m−1) = 1. By the same reason-

ing,
∏m−1
k=1 Θ([k]P )`2−1 =

∏m−1
k=1 ψ`([k]P )−m.

Finally, again since ` is prime to m,
∏

1≤j,k≤(m−1)/2(x([j]Q)− x([k]P ))2

to the `2 − 1 power is by Lemma 17(b),
(m−1)/2∏
j,k=1

ψ`([k]P )4ψ`([j]Q)4

ψ`([k]P + [j]Q)2ψ`([k]P − [j]Q)2 =
(
∏m−1
j=1 ψ`([j]P )ψ`([j]Q))m∏

u∈E[m]∗ ψ`(u) ,

since ψ` is even or odd.
Hence

(15) λ(P,Q)`2−1 = (−1)
m−1

2 (`2−1) ∏
u∈E[m]∗

ψ`(u)−1.

When ` = 2, by Lemma 17(e), (15) gives us

λ(P,Q)3 = m3∆−(m2−1)/4,
which when m is a multiple of 3 is the best we can do, and determines
λ(P,Q) up to a third-root of unity. Hence by Theorem II,

T (P,Q)3 = ∆−(m2−1)/4.
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When m is not a multiple of 3, we can also take ` = 3 in (15), and now
by Lemma 17(f) with n = m,

λ(P,Q)8 = m8∆−2(m2−1)/3,

since when m is odd, (−1)(m2−1)/3 = 1. Combining this with the above
gives

λ(P,Q) = m∆−(m2−1)/12, T (P,Q) = ∆−(m2−1)/12,

which we note is independent of the choice of P and Q. �

Remark 18. The obstruction to calculating T (P,Q) when 3|m is that it
depends on the choice of P and Q and not just upon their Weil pairing
(or, from another point of view, ∆1/3 is a modular form of level one with a
non-trivial character). When m = 3, Theorem III gives that λ(P,Q)∆/3 is
a cube root of ∆. We note that it is well-known that a cube root of ∆ can
be expressed in terms of coordinates of E[3]: see e.g. [25, p. 305].

2. Theorem I from Theorems II and III
Our discussion of the complex theta function will be aided by gathering

some of the basic properties that follow directly from its definition (1). For
any τ ∈ h, let Lτ = Z + Zτ .

Lemma 19. Let z ∈ C and τ ∈ h. For any a, b, c, d ∈ R and p, q ∈ Z we
have:

(a) θ
[ a+p
b+q

]
(z, τ) = (−1)2πiaqθ

[ a
b

]
(z, τ).

(b) θ
[ a
b

]
(z + cτ, τ) = e−πic

2τ−2πic(z+b)θ
[
a+c
b

]
(z, τ).

(c) θ
[ a
b

]
(z + d, τ) = θ[ a

b+d ](z, τ).
(d) For any λ ∈ Lτ , define the factor of automorphy ρ[ a

b

]
,z,τ

(λ) by

θ
[ a
b

]
(z + λ, τ) = ρ[ a

b

]
,z,τ

(λ)θ
[ a
b

]
(z, τ).

Then ρ[ a
b

]
,z,τ

(pτ + q) = e−πip
2τ−2πip(z+b)+2πiaq.

(e) θ
[−a
−b
]
(−z, τ) = θ

[ a
b

]
(z, τ).

Proof. Proofs of (a), (b), and (c) can be found in [22, p. 5–11]. Then (d)
follows from (a)–(c). Note (e) follows by replacing a, b, z, and n by their
negatives in (1). �

Let Eτ : y2 = x3 + A(τ)x + B(τ) be the complex elliptic curve whose
complex points can be parameterized by x = ℘(z, τ), y = 1

2℘
′(z, τ), for

z ∈ C, where ℘(z, τ) is the Weierstrass ℘-function attached to Lτ , and
℘′(z, τ) denotes its derivative with respect to z. Note that since t(z) =
−2℘(z, τ)/℘′(z, τ), we have
(16) t(z) = z + . . .
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for the beginning of its Taylor expansion at z = 0.
The first goal of this section is to specialize the quantities discussed in

the last section for general E over general fields to the case of Eτ over C.
As in Section 1, let m denote an odd integer. Now define characteristic

vectors topj =
[

1/2+j/m
1/2

]
, and botj =

[
1/2

1/2+j/m

]
, for any j ∈ Z, and set

δ = top0 = bot0. One sees readily from Lemma 19(d) that ρtopj ,mz,mτ (λ) =
ρbotj ,z,τ/m(λ) = ρδ,z,τ (λ)m, for all λ ∈ Lτ . Therefore since θ[δ](z, τ) is ana-
lytic in z and its zeroes consist of just a simple zero at points of Lτ ([22, p. 1
and 11]), for 0 ≤ j < m the functions rj(z, τ) = θ[topj ](mz,mτ)/θ[δ](z, τ)m
and sj(z, τ) = θ[botj ](z, τ/m)/θ[δ](z, τ)m are functions on Eτ and are in
L(mO). Note that our definition here of rj(z, τ) agrees with the one given
in the Introduction.

From now on let us fix P = 1
m mod Lτ , Q = τ

m mod Lτ , and ζm = e2πi/m.
Note unlike the last section, we have the luxury of fixing choices for P and
Q with representatives in C and not just E(C) (which is why Mumford’s
full theory of algebraic theta functions is an adelic one.) It is standard that
em(P,Q) = ζm ([27, p. 352]).

Let us now take the Fu, Θ([k]P ), Θ([j]Q), ν0, gj , and T (P,Q) from
Definitions 4, 6, 8 and equation (6) defined in the last section for a general
elliptic curve over a general field, and specify these for the elliptic curve Eτ
over C and our choices of P and Q, and denote these by writing them as a
function of τ ∈ h, or where appropriate, z ∈ C and τ ∈ h.

Proposition 20. Given our choices for P and Q on Eτ , we have:

(a) For 1 ≤ k ≤ m− 1, F[k]P (z, τ) = (−1)k
θ
[

1/2
1/2−k/m

]
(z, τ)m

θ
[

1/2
1/2

]
(z, τ)m

.

(b) For 1 ≤ k ≤ m− 1, Θ([k]P )(τ) = (−1)k
θ
[

1/2
1/2+k/m

]
(0, τ)m

θ
[

1/2
1/2

]′
(0, τ)m

.

(c) For 1 ≤ j ≤ m− 1, F[j]Q(z, τ) =
θ
[

1/2−j/m
1/2

]
(z, τ)m

θ
[

1/2
1/2

]
(z, τ)m

.

(d) For 1 ≤ j ≤ m− 1, Θ([j]Q)(τ) =
θ
[

1/2+j/m
1/2

]
(0, τ)m

θ
[

1/2
1/2

]′
(0, τ)m

.

(e) We can take ν0(τ) to be i(1−m)/2mη(mτ)3

(2π)3(m−1)/2η(τ)3m .
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(f) With ν0(τ) as in (e), gP (z, τ) = (2πi)−(m−1)/2
θ
[

1/2
1/2

]
(mz,mτ)

θ
[

1/2
1/2

]
(z, τ)m

.

(g) With ν0(τ) as in (e), for 0 ≤ j ≤ m− 1,

gj(z, τ) = (2πiζ−jm )−(m−1)/2
θ
[

1/2+j/m
1/2

]
(mz,mτ)

θ
[

1/2
1/2

]
(z, τ)m

= (2πiζ−jm )−(m−1)/2rj(z, τ),

which agrees with the definition given in the Introduction.

Proof. (a). It is easy to check that the divisor of r0(z, τ) is
∑m−1
k=0 [k]P−mO,

so in the notation of Definition 4, we can take dP (z, τ) = r0(z, τ). It follows
from Lemma 11(e) that

F[k]P (z, τ) = dP (z, τ)
T ∗−[k]PdP (z, τ) =

(
θ
[

1/2
1/2

]
(z − k/m, τ)/θ

[
1/2
1/2

]
(z, τ)

)m
θ
[

1/2
1/2

]
(mz − k,mτ)/θ

[
1/2
1/2

]
(mz,mτ)

= (−1)k
θ
[

1/2
1/2−k/m

]
(z, τ)m

θ
[

1/2
1/2

]
(z, τ)m

,

by Lemma 19(a) and (c).

(b). From (a), using (16) and Definition 6 we have

Θ([k]P )(τ) = zm F−[k]P (z, τ)
∣∣∣
z=0

= (−1)k
θ
[

1/2
1/2+k/m

]
(0, τ)m

θ
[

1/2
1/2

]′
(0, τ)m

.

(c). Similar to (a), one can check that we can take dQ(z, τ) = s0(z, τ).
Hence applying Lemma 11(e) with P replaced by Q, we have

F[j]Q(z, τ) = dQ(z, τ)
T ∗−[j]QdQ(z, τ) =

(
θ
[

1/2
1/2

]
(z − jτ/m, τ)/θ

[
1/2
1/2

]
(z, τ)

)m
θ
[

1/2
1/2

]
(z − jτ/m, τ/m)/θ

[
1/2
1/2

]
(z, τ/m)

=
θ
[

1/2−j/m
1/2

]
(z, τ)m

θ
[

1/2
1/2

]
(z, τ)m

,

by Lemma 19(a) and (b).
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(d). From (c), as in (b),

Θ([j]Q)(τ) = zm F−[j]Q(z, τ)
∣∣∣
z=0

=
θ
[

1/2+j/m
1/2

]
(0, τ)m

θ
[

1/2
1/2

]′
(0, τ)m

.

(e). Recall that S =
∑m−1
i=0 ζi

2
m, the quadratic Gauss sum, and Definition 8

defines ν0(τ) to be (−1)(m−1)/2/S times anymth root of
∏(m−1)/2
k=1 Θ([k]P )3.

From (b) and (2), one choice of m-th-root is

(−1)(m2−1)/8κ(τ)3/(−2πη(τ)3)3(m−1)/2,

where

κ(τ) =
(m−1)/2∏
k=1

θ

[
1
2

1
2 + k

m

]
(0, τ).

Now from Lemma 19 one gets that:

θ

[
1
2

1
2 + m−k

m

]
(0, τ) = θ

[
1
2

− 1
2−

k
m

]
(0, τ) = θ

[
− 1

2
1
2 + k

m

]
(0, τ) = θ

[
1
2

1
2 + k

m

]
(0, τ).

Hence we also have

κ(τ) =
(m−1)/2∏
k=1

θ
[

1/2
1/2+2k/m

]
(0, τ).

Now taking the coefficient of u in both sides of formula (7) of [28, p. 84]
and accounting for the fact that Weber’s definition of θ11(z) is the negative
of our θ

[
1/2
1/2

]
(z, τ), κ(τ)3 is seen to be1

(−1)(m−1)/2√m3
η(τ)3(m−3)/2η(mτ)3.

Hence ν0(τ) = (−1)(m2−1)/8+(m−1)/2η(mτ)3√m3
/S(2π)3(m−1)/2η(τ)3m.

The proof of (e) now follows the standard fact (see e.g., [17, Chap. 6,
Appendix]) that S = i(1−m)/2(−1)(m2−1)/8√m.

(f). By Definition 8 we have gP (z, τ) = ν0(τ)
∏(m−1)/2
k=1 (℘(z, τ)−℘([k]P, τ)),

which has a Laurent expansion at the origin whose lead term is ν0(τ)/zm−1.
Hence comparing divisors as in (a), and expansions at the origin, we also
have that gP (z, τ) is

ν0(τ)
θ
[

1/2
1/2

]
(mz,mτ)/θ

[
1/2
1/2

]
(z, τ)m

mθ
[

1/2
1/2

]′
(0,mτ)/θ

[
1/2
1/2

]′
(0, τ)m

.

1One can also derive this expression for κ(τ) from the product expansion for theta functions:
one plugs in z = 0, a = 1/2, and b = 1/2 + k/m into (2.53) of [8, p. 141] and takes the product
over 1 ≤ k ≤ (m− 1)/2 to verify the formula.
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So by (e) and (2),

gP (z, τ) = (2πi)−(m−1)/2
θ
[

1/2
1/2

]
(mz,mτ)

θ
[

1/2
1/2

]
(z, τ)m

.

(g). From (f) and Definition 8, we can now calculate

gj(z, τ) = H−[j]Q (gP (z, τ)) = T ∗[j]Q (gP )F−[j]Q(z, τ)

= (2πi)−(m−1)/2
θ
[

1/2
1/2

]
(mz + jτ,mτ)

θ
[

1/2
1/2

]
(z + jτ/m, τ)m

θ[ 1/2+j/m
1/2 ](z, τ)m

θ
[

1/2
1/2

]
(z, τ)m

= (2πi)−(m−1)/2ζj(m−1)/2
m

θ[ 1/2+j/m
1/2 ](mz,mτ)

θ
[

1/2
1/2

]
(z, τ)m

,

by (c) and Lemma 19(b). �

We will need a lemma in Proposition 22 to verify the claim in the Intro-
duction that the version in (I.1) of Theorem I is equivalent to the version
in (I.2).

Lemma 21. Let f, f0, . . . , fm−1 be any functions analytic at the origin,
and let Wz(f0, . . . , fm−1)(z) denote the Wronskian

det
0≤j,k<m

( d
dz

)k
fj(z).

(a) d
dzWz(f0, . . . , fm−1)(z) = det

0≤j<m
0≤k≤m−2,k=m

( d
dz

)k
fj(z).

(b) If Wz(f0, . . . , fm−1)(0) = 0 then

det
0≤j<m

0≤k≤m−2,k=m

( d
dz

)k
f(z)fj(z)|z=0 = det

0≤j<m
0≤k≤m−2,k=m

( d
dz

)k
fj(z)|z=0f(0)m.

(c) If Wz(f0, . . . , fm−1)(0) = 0 and t is a local parameter at the origin,
then

det
0≤j<m

0≤k≤m−2,k=m

( d
dt

)k
fj(z)|t=0 = det

0≤j<m
0≤k≤m−2,k=m

( d
dz

)k
fj(z)|z=0

dz
dt (0)

m2−m+2
2 .

Proof. (a). The derivative with respect to z of det0≤j,k<m( d
dz )kfj(z) is the

sum over 1 ≤ ` ≤ m of det0≤j,k<m( d
dz )k+δ(`,k)fj(z), where δ(`, k) is the

Kronecker delta. These summands all vanish unless ` = m.
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(b). Using the product formula for derivatives and properties of determi-
nants, it is elementary that

Wz(ff0, . . . , ffm−1)(z) = Wz(f0, . . . , fm−1)(z)f(z)m,
in a neighborhood of the origin. Suppose thatWz(f0, . . . , fm−1)(z) vanishes
at the origin. Then differentiating with respect to z gives

d
dzWz(ff0, . . . , ffm−1)(0) = d

dzWz(f0, . . . , fm−1)(0)f(0)m.

The result now follows from (a).

(c). Using the chain rule for derivatives and properties of determinants, it
is elementary that

Wt(f0, . . . , fm−1)(z) = Wz(f0, . . . , fm−1)(z)
(dz

dt

)m(m−1)/2
,

in a neighborhood of the origin. Suppose that Wz(f0, . . . , fm−1)(z) (and
henceWt(f0, . . . , fm−1)(z)) vanishes at the origin. Then differentiating with
respect to t gives

d
dtWt(f0, . . . , fm−1)(0) = d

dzWz(f0, . . . , fm−1)(0)dz
dt (0)

m2−m+2
2 .

The result now follows from two applications of (a). �

Using this we now get:

Proposition 22.
(a) Given our choices for P and Q on Eτ , we have

T (τ) = T (P,Q).
(b) The version of Theorem I in (I.1) is equivalent to the version in (I.2).
(c) If m is not a multiple of 3, Theorem I follows from Theorem III,

and if 3|m, we have established Theorem I up to a third root of
unity.

Proof. (a). We get from part (g) of Proposition 20 that gj for Eτ matches
with gj(z, τ) as given in the Introduction. The only difference then in the
definitions in (3) and (6) of T (τ) and T (P,Q) is that the expansions of the
gj in the former are taken with respect to z and the latter are taken with
respect to t. Because of Lemma 13(c), we can apply Lemma 21(c) and then
(16) to see that we get T (τ) = T (P,Q).

(b). By the definition of gj(z, τ) in the Introduction,

zmgj(z, τ) =
(
e2πij/m

2πi

)(m−1)/2

fδ,j(z, τ)
(

z

θ[δ](z, τ)

)m
.
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Hence because of Lemma 13(c), it follows from Lemma 21(b) that

T (τ) = det
0≤j<m

0≤k≤m−2,k=m

(zmgj)[k](0, τ)

=
(
∏m−1
j=1 e2πij/m)(m−1)/2

(2πi)m(m−1)/2(θ[δ](0, τ)′)m2 det
0≤j<m

0≤k≤m−2,k=m

[f [k]
δ,j (0, τ)].

Since m is odd,
∏m−1
j=1 e2πij/m = 1, i−m(m−1)/2 = i3m(m−1)/2 = i(3−3m)/2,

and (−1)m2 = −1, so using Jacobi’s formula (2), we get that

T (τ) =
i(−1−3m)/2 det 0≤j<m

0≤k≤m−2,k=m
[f [k]
δ,j (0, τ)]

(2π)(3m2−m)/2η(τ)3m2 ,

so (I.1) is equivalent to (I.2).

(c). This follows from (a), (I.2), and (I.3). �

If 3 divides m, we will now determine the ambiguous (or better, trigu-
ous2) cube root of 1 in Theorem III by applying Theorem II to Eτ .
Proposition 23. For Eτ , and our choices of P and Q,

T (τ) = T (P,Q) = 1/(2πη(τ)2)m2−1.

Hence Theorem II implies Theorem I.
Proof. We start by specializing the formula for λ(P,Q) given in Theorem II
to Eτ .

Let σ(z, τ) denote the Weierstrass sigma-function (see e.g., [18, p. 239]),
which is an odd function of z, whose second logarithmic derivative with
respect to z is the negative of the Weierstrass ℘(z, τ)-function, and is nor-
malized by σ′(0, τ) = 1. It is well-known (see e.g., the argument on [22,
p.25] coupled with the fact that θ

[
1/2
1/2

]
(z, τ) is an odd functions of z) that

σ(z, τ) = ec(τ)z2
θ
[

1/2
1/2

]
(z, τ)/θ

[
1/2
1/2

]′
(0, τ),

for a well-studied function c(τ) we needn’t specify here3. We get immedi-
ately from this that the well-known analytic statement of the Theorem of
the Square (see e.g., [18, p. 243])

℘(v, τ)− ℘(u, τ) = σ(u+ v, τ)σ(u− v, τ)
σ2(u, τ)σ2(v, τ) ,

2Coined by Sydney Lamb for when something can be interpreted three ways: Linguistic Data
Processing, in The use of computers in anthropology, de Gruyter (2011), 159–188.

3The argument in Theorem 3 in [18, p. 246] shows that c(τ) is −1/2 times a quasi-period of
the Weierstrass ζ-function. [28] also shows on p. 95 that c(τ) is −θ

[ 1/2
1/2

]′′′
(0, τ)/6θ

[ 1/2
1/2

]′
(0, τ).

For its life as a quasimodular form, see [29].
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can be rewritten as

℘(v, τ)− ℘(u, τ) = θ
[

1/2
1/2

]′
(0, τ)2

θ
[

1/2
1/2

]
(u+ v, τ)θ

[
1/2
1/2

]
(u− v, τ)

θ
[

1/2
1/2

]2
(u, τ)θ

[
1/2
1/2

]2
(v, τ)

.

If we now write u = u1τ + u2, v = v1τ + v2 for arbitrary u1, u2, v1, v2 ∈ R,
then by Lemma 19(b) and (c), using that θ

[
1/2
1/2

]
(−z, τ) = −θ

[
1/2
1/2

]
(z, τ)

we have

℘(v, τ)− ℘(u, τ) = −
θ
[

1/2
1/2

]′
(0, τ)2θ

[
1/2+u1+v1
1/2+u2+v2

]
(0, τ)θ

[
1/2+u1−v1
1/2+u2−v2

]
(0, τ)

θ
[

1/2+u1
1/2+u2

]
(0, τ)2θ

[
1/2+v1
1/2+v2

]
(0, τ)θ

[
1/2−v1
1/2−v2

]
(0, τ)

.

Using this we get

(m−1)/2∏
k=1

m−1∏
j=1

(℘([j]Q, τ)− ℘([k]P, τ))

=
(m−1)/2∏
k=1

m−1∏
j=1

θ
[

1/2
1/2

]′
(0, τ)2θ

[
1/2+j/m
1/2+k/m

]
(0, τ)θ

[
1/2−j/m
1/2+k/m

]
(0, τ)

θ
[

1/2
1/2+k/m

]
(0, τ)2θ

[
1/2+j/m

1/2

]
(0, τ)θ

[
1/2−j/m

1/2

]
(0, τ)

.

From Lemma 19 we get

(17) θ
[

1/2−j/m
1/2+k/m

]
(0, τ) = θ

[
−1/2+j/m
−1/2−k/m

]
(0, τ) = θ

[
1/2+j/m
−1/2−k/m

]
(0, τ)

= e2πi(1/2+j/m)(2)θ
[

1/2+j/m
1/2+(m−k)/m

]
(0, τ) = ζ2j

m θ
[

1/2+j/m
1/2+(m−k)/m

]
(0, τ).

Hence applying (17) three times (once as is, once with j = 0, and once with
k = 0), we get

(18)
(m−1)/2∏
k=1

m−1∏
j=1

(℘([j]Q, τ)− ℘([k]P, τ))

=
θ
[

1/2
1/2

]′
(0, τ)(m−1)2∏m−1

j,k=1 θ
[

1/2+j/m
1/2+k/m

]
(0, τ)∏m−1

k=1 θ
[

1/2
1/2+k/m

]
(0,τ)m−1

(∏m−1
j=1 θ

[
1/2+j/m

1/2

]
(0,τ)θ

[
1/2+j/m

3/2

]
(0,τ)

)(m−1)/2 .

=
θ
[

1/2
1/2

]′
(0, τ)(m−1)2∏m−1

j,k=0,(j,k)6=(0,0) θ
[

1/2+j/m
1/2+k/m

]
(0, τ)∏m−1

k=1 θ
[

1/2
1/2+k/m

]
(0, τ)m

∏m−1
j=1 θ

[
1/2+j/m

1/2

]
(0, τ)m

,

using Lemma 19(a).
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Hence, using the result from [11] that
m−1∏

j,k=0,(j,k) 6=(0,0)
θ
[

1/2+j/m
1/2+k/m

]
(0, τ) = mηm

2−1(τ),

Theorem II, Proposition 20(b) and (d), and (18), we get λ(P,Q) =

(−1)
m−1

2

m−1
2∏

k=1

m−1∏
j=1

(℘([j]Q, τ)− ℘([k]P, τ))
m−1∏
k=1

Θ([k]P, τ)
m−1∏
j=1

Θ([j]Q, τ)

= θ
[

1/2
1/2

]′
(0, τ)(m−1)2

mη(τ)m2−1/θ
[

1/2
1/2

]′
(0, τ)2m(m−1)

= m

(
η(τ)/θ

[
1/2
1/2

]′
(0, τ)

)m2−1
= m/(2πη(τ)2)m2−1,

by (2). Hence by Theorem II,

T (P,Q) = λ(P,Q)/m = 1/(2πη(τ)2)m2−1.

By Proposition 22(a) this gives (I.2) and then Proposition 22(b) gives
Theorem I. �
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