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A variance for k-free numbers in arithmetic
progressions of given modulus

par Tomos PARRY

Résumé. Une formule asymptotique pour la variance des nombres entiers
sans facteur carré dans une progression arithmétique de raison donnée a été
trouvée par Nunes dans [9]. Pour l’un des termes d’erreur, nous donnons la
meilleure amélioration que l’on puisse espérer d’avoir.

Abstract. An asymptotic formula for the variance of squarefree numbers in
arithmetic progressions of given modulus was obtained by Nunes, see [9]. We
improve one of the error terms as far as one would expect to be able to go.

1. Introduction

For k ≥ 2 let

S =
{
n ∈ N

∣∣ there is no prime p with pk|n
}

be the set of k-free numbers. The k-frees are a classically studied sequence
which, for large k, resemble the natural numbers whilst, for decreasing k,
they have more and more divisibility constraints imposed on them. Conse-
quently they may be thought of as approximating to the primes, which are
of course what we are most interested in.

There is a suitable approximation, η(q, a), which will be defined precisely
soon enough, to the count of k-frees in arithmetic progressions, and the
natural question is then on the extent to which the error∑

n≤x
n∈S

n≡a mod (q)

1− xη(q, a)

is small. Just as is the case for primes, we are particularly interested in this
error since it is connected to the distribution of the zeros of the Riemann
zeta function; the particular case of the k-frees can be seen in e.g. the second
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page of [10]. In view of this, one might be inclined to conjecture that the
above error is

(1.1) ≈
(
x

q

)1/2k
.

For the case of the squarefrees (k = 2) this was conjectured by Montgomery
(see [2]), and a result of Hooley (see [4]), says the error is then

�
(
x

q

)1/2
+ q1/2+ε.

Under current knowledge of the zeros of the Riemann zeta function it is dif-
ficult to get errors better than ≈ (x/q)1/k. This is parallel to what happens
with the primes so just as in that case, we look at the average behaviour
instead and consider, for example, the quantity

q∑
a=1

 ∑
n≤x, n∈S
n≡a mod (q)

1− xη(q, a)


2

,

which is a variance for k-free numbers in arithmetic progressions when aver-
aging over a (complete) residue system modulo q. In accordance with (1.1)
one would like to establish that this is

≈ q
(
x

q

)1/k
.

This was managed a few years ago by Nunes, see [9], who found an as-
ymptotic formula for this type of variance. For the squarefree numbers one
obtains an asymptotic formula up to an error essentially

(1.2) �
(
x

q

)1/3
+ x5/3

q

by an elementary argument. Indeed Nunes obtains a better second bound
by employing the square sieve, and according to [6] an even better bound
is possible. Nunes’ result is concerned with averaging just over the reduced
residues, not a complete residue set, and we will briefly come back to this at
the end of the introduction. Before Nunes’ result only upper bound results
were recorded (see [5] and the references therein), although some of these
are stronger in the range where the above asymptotic formula doesn’t hold
and are concerned with more general sequences than the k-free numbers.

The above elementary argument alluded to is valid for general k, and we
will carry it out in this paper for completeness.
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Theorem 1. Let k ≥ 2 and denote by S the set of k-free numbers. For
q, a ∈ N and x > 0 define

η(q, a) =
∞∑
d=1

(q,dk)|a

µ(d)
[q, dk] , Ex(q, a) =

∑
n≤x
n∈S
n≡a(q)

1− xη(q, a)

and

Vx(q) =
q∑

a=1
|Ex(q, a)|2.

Define

Ck = 2ζ(1/k − 1)
1/k − 1

∏
p

(
1− pk + 2p(p− 1)

pk+2

)
and

fk(q) = Ck
∏
p|q

1− 2/pk + (q, pk)1/k−1/p

1 + 1/p− 2/pk .

For 1 ≤ q ≤ x we have for every ε > 0

Vx(q) = q

(
x

q

)1/k
fk(q) +Ok,ε

(
xε
(
q

(
x

q

)1/(k+1)
+ x1+2/(k+1)

q

))
.

However the main result of this paper is the following.

Theorem 2. Suppose we are in the setting of Theorem 1. Then for k = 2

Vx(q) = q

(
x

q

)1/2
f2(q)

+Oε

(
xε
(
q

(
x

q

)1/4
+ x7/5

q

(
q1/5 +

(
x

q

)1/5
)

+ x3/4
))

.

If q is squarefree we may replace the middle error term through x3/2/q.

The main feature is the improvement in the first error term exponent
from 1/3 to 1/4, what is most likely optimal. This may catch the attention
of any analytic number theorist, since they will of course be aware of the
state of the error term in the famous Dirichlet divisor problem. The second
feature is that the second error also improves on the second error in [9] as
well as that claimed in [6].

For x/q →∞, Theorem 1 provides an asymptotic formula once q is larger

than x
k2+2k−1

(k+1)(2k−1) . Theorem 2 provides one once q is larger than x9/13 or x2/3

in the squarefree case.
We should mention a very recent work [3] of Ofir Gorodetsky, Kaisa

Matomäki, Maksym Radziwiłł and Brad Rodgers, in which the range of
validity for the asymptotic formula extends to q as small as x5/11, which
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far surpasses what we have here. On the other hand their results are proven
only for prime q and their error term which corresponds to our first error
term, not being their prime concern but being our main concern, is far
weaker than what we have. We should in particular mention that we found
our argument for Lemma 3.6 after looking over [3].

The question of whether one averages over a complete set of residues,
as here, or over a reduced one, as in [3] and [9], is, most likely harmless
but still remains to be seen. The squarefree numbers are, in contrast to
the primes, not better understood outside the reduced residue classes, and
therefore it isn’t clear, at least to the author, neither why averaging over
a reduced system is guaranteed to be just as insightful as averaging over a
complete system, nor that averaging over a complete system is no harder.
For example, in the reduced residue case, it seems Theorem 2 holds without
the squarefree condition (see Lemma 3.8).

Our argument for Theorem 2 results in replacing the exponent 1/(k+ 1)
in the first error term in Theorem 1 with 2k/(9k − 2), and so is inferior
once k ≥ 4, but we could have stated a result for cube-free numbers with
exponent 6/25.

The paper is structured as follows. In Section 2 we carry out the neces-
sary technical work to establish Theorem 1. This is routine and is simply
repeating the outline of the argument in [9] for general k. In Section 3 we
carry out the necessary technical work to establish Theorem 2. Here our
argument is less routine and requires exploiting cancellation in the integrals
arising from applying Perron’s formula. In Section 4 we prove our theorems.

A number of helpful comments were provided by a referee to this article.

Notation. Throughout this paper we are only concerned with “power-
savings”, so that factors involving xε, where ε as usual denotes an arbitrarily
small positive quantity, and log x are of no importance. Consequently in
various proofs we will often write

f(X1, . . . , Xn)� g(X1, . . . , Xn)
where we really mean

f(X1, . . . , Xn)�ε |X1 · · ·Xn|εg(X1, . . . , Xn).
However, in the statements of lemmas we will always include these factors
explicitly if present.

2. Lemmas for Theorem 1

For α ∈ N define α̂ to be the smallest multiple of k which is ≥ α. If
n = pα1

1 · · · p
αr
r

define
rk(n) = p

α̂1/k
1 · · · pα̂r/k

r
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so that

(2.1) for d, n ∈ N, d|nk ⇐⇒ rk(d)|n

and

(2.2) rk(n)k = n
∏
p|n
pα̂1−α1

1 · · · pα̂r−αr
r .

We will use this function at various points throughout this work, as well as
the well-known convolution formula

(2.3)
∑
dk|n

µ(d) =
{

1 if n is k-free
0 if not

for the k-free numbers.
A large but necessary part of any dispersion argument is calculating

the constants associated with large terms, which in number theory often
amounts to computing Euler products. This is our first lemma.

Lemma 2.1. For N ∈ N denote by K(N) its squarefree part. For w,L ∈ C
with w 6= 0 and L 6= 1 define

Zw =
∏
p

(
1− pw

)
, Zw(N) =

∏
p|N

(
1− pw

)
,

∆w(N) = Zw(N)Z−1
2w (N), θw(N) =

∏
p|N

(
1− 2∆w(p)

pk

)−1
,

cw =
∏
p

(
1− 2

pk (1 + pw)

)
, α =

∏
p

(
1− 2

pk
+ 1
p2k

)
,

Fw(N) =
∑
st|N

µ(t)µ2k+1(st)µ (K(st))K(st)2wrk (N/s)w Z−1
2w (K(st)) ,

ZL(N) = Fk(L−1)(N)
∑

Qh=N

µ(h)
QL

and

UL(N) =
∏
p|N

(
1− pk(L−1) · 1− (N, pk)−L

1 + pk(L−1) − 2/pk

)
.

(A) For Q ∈ N and w ∈ C\{0}
∞∑

h,d,d′=1
(h,dd′)=1

(Q,hdd′)=1

µ(h)µ(d)µ(d′)∆w(hdd′)
h2kdkd′k

= cwθw(Q).
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(B) For Q a power of a prime p and L ∈ C\{1}∑
N |Q

ZL(N)θk(L−1)(N) = UL(Q).

(C) Let η(q, a) be as in Theorem 1. For any q, n ∈ N

η(q, n)�ε q
ε−1

and
q∑

a=1
η(q, a)2 = αU−1(q)

q
.

Proof. (A). Write Sw(Q) for the sum in question. We have

Sw(Q) =
∞∑
h=1

(h,Q)=1

µ(h)∆w(h)
h2k

∞∑
D=1

(D,hQ)=1

∆w(D)
Dk

∑
dd′=D

µ(d)µ(d′)

and the D sum here is∏
p

(
1− 2∆w(p)

pk
+ ∆w(p2)

p2k

) ∏
p|hQ

(
1− 2∆w(p)

pk
+ ∆w(p2)

p2k

)−1

=: AX(hQ),

and since
∞∑
h=1

(h,Q)=1

µ(h)∆w(h)X(h)
h2k =

∏
p

(
1− ∆w(p)X(p)

p2k

)∏
p|Q

(
1− ∆w(p)X(p)

p2k

)−1

=: BY (Q)
we therefore conclude that

Sw(Q) = ABX(Q)Y (Q)(2.4)

=
∏
p

(
1− 2∆w(p)

pk
+ ∆w(p2)

p2k

)(
1− ∆w(p)X(p)

p2k

)

×
∏
p|Q

(
1− 2∆w(p)

pk
+ ∆w(p2)

p2k

)−1 (
1− ∆w(p)X(p)

p2k

)−1
.

Since ∆w(p2) = ∆w(p) we see that(
1− 2∆w(p)

pk
+ ∆w(p2)

p2k

)(
1− ∆w(p)X(p)

p2k

)
= 1− 2∆w(p)

pk

and the claim follows from (2.4).

(B). Take N ∈ N a power of a prime p and write w = k(L− 1). Write

gw(N) = µ (K(N))K(N)2wZ−1
2w (N); note that gw(p) = p2w

p2w − 1 .
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For d2k|N we have rk(N/d2k) = d−2rk(N) so

Fw(N) = rk(N)w − gw(p)rk(N)w + gw(p)
∑
st|N

µ(t)µ2k+1(st)r (N/s)w

= rk(N)w − gw(p)rk(N)w + gw(p)r
(

N

(N, p2k)

)w
=
{
rk(N)w

(
1− gw(p)

)
+ gw(p) if N |p2k

rk(N)w
(
1− gw(p) + p−2wgw(p)

)
if p2k+1|N

= χ2k+1(N)
(
rk(N)w

(
1− gw(p)

)
+ gw(p)

)
and, since

∑
Hh=N

µ(h)
HL

=
pL
(
p−L − 1

)
NL

=: p
LaL(p)
NL

,

we see that

ZL(N) = χ2k+1(N)
NL

(
pLaL(p)rk(N)w

(
1− gw(p)

)
+ pLaL(p)gw(p)

)
=: χ2k+1(N)

NL

(
pLAL(p)rk(N)w + pLBL(p)

)
=: fL(N)

so that

(2.5)
∑
N |Q

ZL(N)θw(N) = 1 + θw(p)
∑
p|N |Q

fL(N).

Note that

AL(p) =
p−2w

(
p−L − 1

)
p−2w − 1 , BL(p) = − p−L − 1

p−2w − 1 .

Write pD = (Q, p2k). We have rk(N)w = pw for p|N |pk and rk(N)w = p2w

for pk+1|N |p2k so that, if D ≥ k + 1,
∑
p|N |Q

fL(N) = pLAL(p)
∑
p|N |pk

rk(N)w

NL
+ pLAL(p)

∑
pk+1|N |pD

rk(N)w

NL

+ pLBL(p)
∑

p|N |pD

1
NL

= pwAL(p)
k−1∑
j=0

1
pjL

+ p2w−kLAL(p)
D−k−1∑
j=0

1
pjL

+BL(p)
D−1∑
j=0

1
pjL



324 Tomos Parry

= 1
p−2w − 1

(
p−w

(
p−kL − 1

)
+ p−L(D−k) − 1

pkL
−
(
p−DL − 1

))

= −Z−kL(p)Z−w(p)
Z−2w(p) .

If D ≤ k the same argument goes through (with this time the first sum
running up to pD and no middle sum) to give

∑
p|N |Q

fL(n) = −Z−DL(p)Z−w(p)
Z−2w(p)

so we can deduce

∑
p|N |Q

fL(n) = −
Z−Lmin(D,k)(p)Z−w(p)

Z−2w(p)

= −
pwZ−Lmin(D,k)(p)Zw(p)

Z2w(p)

so that (2.5) implies

∑
N |Q

ZL(N)θw(N) = 1− pw ·
Z−Lmin(D,k)(p)Zw(p)

(1− 2∆w(p)/pk)Z2w(p)

= 1− pw ·
Z−Lmin(D,k)(p)
1 + pw − 2/pk .

(C). Arranging the d according to the value of D = (q, dk) and using (2.1)
we have

η(q, a) ≤ 1
q

∑
D|q,a

D
∞∑
d=1
D|dk

|µ(d)|
dk

� 1
q

∑
D|q,a

D

rk(D)k .
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From (2.2) we see that the summand here is ≤ 1 and the first claim follows.
We have

q∑
a=1

η(q, a)2 =
∞∑

d,d′=1

µ(d)µ(d′)
[q, dk][q, d′k]

q∑
a=1

(q,dk),(q,d′k)|a

1(2.6)

= q
∞∑

d,d′=1

µ(d)µ(d′)
[q, dk][q, d′k][(q, dk), (q, d′k)]

= 1
q

∞∑
d,d′=1

µ(d)µ(d′)(q, dk, d′k)
dkd′k

= 1
q

∞∑
N=1

1
Nk

∑
dd′=N

µ(d)µ(d′)(q, dk, d′k)

=: 1
q

∞∑
N=1

bq(N)
Nk

.

Clearly bq(N) is multiplicative and simple calculations show

bq(p) = −2,
bq(p2) = (q, pk)

and bq(pt) = 0 for t ≥ 3. Consequently

∞∑
N=1

bq(N)
Nk

=
∏
p

(
1− 2

pk
+ (q, pk)

p2k

)

=
∏
p

(
1− 2

pk
+ 1
p2k

)∏
p|q

1− 2/pk + (q, pk)/p2k

1− 2/pk + 1/p2k

= αU−1(q)

which with (2.6) is the second claim. �

We will need to evaluate precisely a sum of type Σdkn≤X(X − dkn).
One option is through the Euler–Maclaurin summation formula, which gets
us Theorem 1, and another is through Perron’s formula, which gets us
Theorem 2. The next lemma contains the main work in using the Euler–
Maclaurin summation formula.
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For X > 0 define B1(X) and B∗2(X) as in [12, (2.19)–(2.22)]. Dis-
play (6.7) of that paper says |B∗2(X)| � X so that

∞∑
d,d′=1

(dk, d′k)
(q, dk, d′k)[d, d′]k

B∗k

(
x(q, dk, d′k)
q(dk, d′k)

)
�x,q

∞∑
d,d′=1

1
[d, d′]k

=
∞∑
D=1

Dk
∞∑

d,d′=1
(d,d′)=D

1
dkd′k

� 1.

From the line preceeding (6.7) of [12] we have

(2.7) B∗2(α) =
∫ α

0
B1(β) dβ.

The function B1(X) is exactly χ(v) in display (2.2) of [9], so by Lemma 4.1
of that paper we have

(2.8)
∫ X

0

B1(X) dβ
β1/k = ζ(1/k − 1)

1/k − 1 +O
( 1
X1/k

)
.

Lemma 2.2. For X > 0 define B∗2(X) as in the discussion above. For
d, d′ ∈ N write N = (d, d′) and define

B∗q (x) =
∞∑

d,d′=1

µ(d)µ(d′)
(q,Nk)

(
N2

dd′

)k
B∗2

(
x(q,Nk)
qNk

)

and, for L ≤ 0,

BLq =
∞∑

d,d′=1

µ(d)µ(d′)
(q,Nk)L

(
NL+1

dd′

)k
,

which, by the discussion above, are both absolutely convergent. Then

B−1
q = αU−1(q),

B0
q = U0(q)

ζ(k)
and

2B∗q (X) = CkX
1/kU1−1/k(q) +Oε

(
qεX1/(k+1)

)
,

where UL(q) and α are as given in Lemma 2.1 and Ck as in Theorem 1.

Proof. Throughout this proof we will use∑
d|n

µ(d) =
{

1 if n = 1
0 if n 6= 1
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in the form ∑
a,b

(a,b)=1

=
∑
h

µ(h)
∑
a,b
h|a
h|b

as well as use the vanishing of µ on squares in the form∑
a,b

µ(ab) =
∑
a,b

(a,b)=1

µ(a)µ(b)

regularly without comment. Define rk(D) as at the start of this section and
define

(2.9) wT (D) = φ(T )
Trk(D) .

Define Zw(N) as in Lemma 2.1 so that

(2.10) wT (D) = Z−1(T )rk(D)−1

and so that (2.1) implies

(2.11)
∑
N≤Z

(N,T )=1
D|Nk

1 = ZwT (D)
{

1 if (D,T ) = 1
0 if (D,T ) > 1

}
+O (1) .

Arranging the N according to the value of Q = (q,Nk) and using (2.3), we
see that

(2.12)
∞∑
N=1

(N,T )=1

µ(N)2

(q,Nk)B
∗
2

(
x(q,Nk)
Nk

)

=
∑
Qh|q

µ(h)
Q

∞∑
d=1

(d,T )=1

µ(d)N ∗Qh/(Qh,d2k),T

(
xQ

d2k

)

where

N ∗D,T (X) =
∞∑
N=1

(N,T )=1
D|Nk

B∗2

(
X/Nk

)
,
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and

(2.13)
∞∑
N=1

(N,T )=1

µ(N)2Nk(L−1)

(q,Nk)L

=
∑
Qh|q

µ(h)
QL

∞∑
d=1

(d,T )=1

d2k(L−1)µ(d)NL
Qh/(Qh,d2k),T

where

NL
D,T =

∞∑
N=1

(N,T )=1
D|Nk

Nk(L−1).

Write

Z = ζ(1/k − 1)
1/k − 1 .

From (2.7), (2.11) and (2.8) we have, for (D,T ) = 1 and a parameter
1 ≤ y ≤ X to be chosen,

∑
N>y

(N,T )=1
D|Nk

B∗2

(
X/Nk

)
=
∫ X/yk

0
B1(β)


∑

y<N≤(X/β)1/k

(N,T )=1, D|Nk

1

dβ

= wT (D)X1/k
∫ X/yk

0

B1(β)
β1/k dβ

− y wT (D)︸ ︷︷ ︸
�1

∫ X/yk

0
B1(β)dβ︸ ︷︷ ︸
�1

+O

∫ X/yk

0
|B1(β)|︸ ︷︷ ︸
�1

dβ


= ZwT (D)X1/k +O

(
y + X

yk

)
and if (D,T ) > 1 the same argument gives the same conclusion but with
no main term, so

N ∗D,T (X) = ZwT (D)X1/k
{

1 if (D,T ) = 1
0 if (D,T ) > 1

}
+O

(
y + X

yk

)
= ZZ−1(T )rk(D)−1X1/k

{
1 if (D,T ) = 1
0 if (D,T ) > 1

}
+O

(
X1/(k+1)

)
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on choosing y = X1/(k+1) and using (2.10). Recall the definitions of Zw and
Zw(N) from Lemma 2.1. From (2.1) we have

NL
D,T = rk(D)k(L−1)

∞∑
N=1

(N,T )=1

Nk(L−1)
{

1 if (D,T ) = 1
0 if (D,T ) > 1

}

= Z−1
k(L−1)Zk(L−1)(T )rk(D)k(L−1)

{
1 if (D,T ) = 1
0 if (D,T ) > 1

}
.

These expressions for N ∗D,T (X) and NL
D,T mean that (2.12) and (2.13) be-

come

(2.14)
∞∑
N=1

(N,T )=1

µ(N)2

(q,Nk)B
∗
2

(
x(q,Nk)
Nk

)

= ZZ−1(T )x1/k ∑
Qh|q

(Qh,T )=1

µ(h)
Q1−1/k

∞∑
d=1

(d,T )=1

µ(d)
d2 rk

(
Qh

(Qh, d2k)

)−1

+O

x1/(k+1) ∑
Qh|q

1
Q1−1/(k+1)

∞∑
d=1

1
d2k/(k+1)


=: ZZ−1(T )x1/k ∑

Qh|q
(Qh,T )=1

µ(h)D−1
T (Qh)

Q1−1/k +O
(
qεx1/(k+1)

)

and

(2.15)
∞∑
N=1

(N,T )=1

µ(N)2Nk(L−1)

(q,Nk)L

= Z−1
k(L−1)Zk(L−1)(T )

×
∑
Qh|q

(Qh,T )=1

µ(h)
QL

∞∑
d=1

(d,T )=1

d2k(L−1)µ(d)rk
(

Qh

(Qh, d2k)

)k(L−1)

=: Z−1
k(L−1)Zk(L−1)(T )

∑
Qh|q

(Qh,T )=1

µ(h)Dk(L−1)
T (Qh)
QL

,

where

Dw
T (N) =

∞∑
d=1

(d,T )=1

d2wµ(d)rk
(

N

(N, d2k)

)w
.
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Arranging the d according to the value of s = (N, d2k) we see that

DwT (N) =
∑
st|N

µ(t)rk (N/s)w
∞∑
d=1

(d,T )=1
st|d2k

d2wµ(d)(2.16)

=:
∑
st|N

µ(t)rk (N/s)w EwT (st).

For N ∈ N denote by K(N) the squarefree part of N . For (T,N) = 1 and
M |N we have

EwT (M) = µ2k+1(M)
∞∑
d=1

(d,T )=1
K(M)|d

d2wµ(d)(2.17)

= K(M)2wµ2k+1(M)µ (K(M))
∞∑
d=1

(d,TK(M))=1

d2wµ(d)

= Z2wZ−1
2w (T )µ2k+1(M)µ (K(M))K(M)2wZ−1

2w (K(M))

so from (2.16) we have, for (T,N) = 1,

DwT (N) = Z2wZ−1
2w (T )Fw(N),

where Fw(N) is as given in Lemma 2.1. Define ∆w(N) and ZL(N) as in
Lemma 2.1. Then the last equality means that (2.14) and (2.15) become

(2.18)
∞∑
N=1

(N,T )=1

µ(N)2

(q,Nk)B
∗
2

(
x(q,Nk)
Nk

)

= ZZ−2x
1/k∆−1(T )

∑
M |q

(M,T )=1

Z1−1/k(M) +O
(
qεx1/(k+1)

)

and

(2.19)
∞∑
N=1

(N,T )=1

µ(N)2Nk(L−1)

(q,Nk)L

= Z−1
k(L−1)Z2k(L−1)∆k(L−1)(T )

∑
M |q

(M,T )=1

ZL(M).
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Arranging the d, d′ according to the value N = (d, d′) we have

B∗q (x) =
∞∑

h,d,d′=1
(h,dd′)=1

µ(h)µ(d)µ(d′)
h2kdkd′k

∞∑
N=1

(N,dd′h)=1

µ(N)2

(q,Nk)B
∗
2

(
x(q,Nk)
qNk

)

and

BLq =
∞∑

h,d,d′=1
(h,dd′)=1

µ(h)µ(d)µ(d′)
h2kdkd′k

∞∑
N=1

(N,dd′h)=1

µ(N)2Nk(L−1)

(q,Nk)L .

Using (2.18) and (2.19) these equalities imply

B∗q (x) = ZZ−2x
1/k∑

M |q
Z1−1/k(M)

∞∑
h,d,d′=1
(h,dd′)=1

(M,dd′h)=1

µ(h)µ(d)µ(d′)∆−1 (hdd′)
h2kdkd′k

+O
(
qεx1/(k+1)

)
and

BLq = Z−1
k(L−1)Z2k(L−1)

∑
M |q

ZL(M)
∞∑

h,d,d′=1
(h,dd′)=1

(M,dd′h)=1

µ(h)µ(d)µ(d′)∆k(L−1)(hdd′)
h2kdkd′k

.

From Lemma 2.1(A) and (B) it now follows that

B∗q (x) = ZZ−2c−1x
1/kU1−1/k(q) +O

(
qεx1/(k+1)

)
and

BLq = Z−1
k(L−1)Z2k(L−1)ck(L−1)UL(q),

where cw is as given in Lemma 2.1. Since

Z−2c−1 =
∏
p

(
1− pk + 2p(p− 1)

pk+2

)

and

Z−1
w Z2wcw =

∏
p

(
1 + pw − 2

pk

)
.

we are finished. �

We will need to bound a tail end of a series. For the elementary error
term x1+2/(k+1)+ε/q in Theorem 1 the following lemma suffices.
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Lemma 2.3. For any X,Y ≥ 1 and N ∈ Z∑
[d,d′]≤Y

1�ε Y
1+ε,

∑
[d,d′]>Y

1
[dk, d′k]

�ε Y
1−k+ε

and ∑
d,d

[d,d′]>Y

∑
n≤X

n≡0(dk)
n≡N(d′k)

1�ε XY
1−k+ε +X2/(k+1)(Xε +N ε).

Proof. Since ∑
[d,d′]=n

1� nε

the first two claims are clear. Let Z > 0 be a parameter. We have with a
divisor estimate for the d′∑

d,d′

d>Z

∑
n≤X

n≡0(dk)
n≡N(d′k)

1� (Xε +N ε)
∑
dk≤X
d>Z

∑
n≤X

n≡0(dk)

1

� X(Xε +N ε)
∑
d>Z

1
dk

� XZ1−k(Xε +N ε)

and similarly for the terms with d′ > Z. On the other hand the second
claim implies

∑
d,d′≤Z

[d,d′]>Y

∑
n≤X

n≡0(dk)
n≡N(d′k)

1�
∑

d,d′≤Z
[d,d′]>Y

(
X

[dk, d′k]
+ 1

)

� XY 1−k+ε + Z2

and therefore∑
[d,d′]>Y

∑
n≤X

n≡0(dk)
n≡N(d′k)

1� XY 1−k+ε + Z2 +XZ1−k(Xε +N ε)

which gives the last claim on choosing Z = X1/(k+1). �
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3. Lemmas for Theorem 2

For this section we fix some 0 < δ < 1/2k and all O constants are allowed
to depend on this δ. For Re(s) > 1 define

F(s) =
∞∑

d,d′=1

µ(d)µ(d′)
[dk, d′k][q, (dk, d′k)]s ,

absolutely convergent since the summands are bounded by
1

[dk, d′k](dk, d′k) �
1

dkd′k
.

For Re(s) ≥ −1 + δ define

F∗(s) =
∏
p|q

1 + (q, pk)s/pk(1+s)

1 + 1/pk(1+s)

∏
p

(
1− 2

pk
(
1 + (q, pk)s/pk(1+s))

)
.

Since for Re(s) ≥ −1 + δ∣∣∣(q, pk)s/pk(1+s)
∣∣∣ ≤ {1/pk for Re(s) ≥ 0

1/pkδ for Re(s) < 0
(3.1)

� 1

and therefore
1 + (q, pk)s/pk(1+s) ≥ 1− 1/2kδ � 1

we see that each Euler factor of the infinite product in F∗(s) is of the form

1 +O
(
1/pk

)
and therefore this product converges absolutely and is � 1 for Re(s) ≥
−1 + δ, so holomorphic. Since for Re(s) ≥ −1 + δ

1
pk(1+s) ≥

1
pkδ

and therefore
1 + 1/pk(1+s) ≥ 1− 1/2kδ � 1

we see from (3.1) that each factor in the finite product in F∗(s) is � 1
for Re(s) ≥ −1 + δ, and so the whole product is � qε, and is obviously
holomorphic. We conclude that F∗(s) is holomorphic and� qε for Re(s) ≥
−1 + δ.

We first obtain an analytic continuation for F(s).

Lemma 3.1. Let F(s) and F∗(s) be as above. If Re(s) > 1 then

F(s) = ζ (k(s+ 1))F∗(s)
qsζ (2k(s+ 1)) .
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Proof. We have

(3.2)
∑
d,d′

µ(d)µ(d′)(dk, d′k)1−s(q, dk, d′k)s

dkd′k

=
∞∑
N=1

1
Nk

∑
dd′=N

µ(d)µ(d′)(dk, d′k)1−s(q, dk, d′k)s

=:
∞∑
N=1

aq(N)
Nk

.

Clearly aq(N) is multiplcative and simple calculations show
aq(p) = −2,

aq(p2) = pk(1−s)(q, pk)s

and aq(pt) = 0 for t ≥ 3. Consequently ((3.1) ensuring no problems with
zeros of denominators)

∞∑
N=1

aq(N)
Nk

=
∏
p

(
1− 2

pk
+ (q, pk)s

pk(1+s)

)
(3.3)

=
∏
p

(
1 + (q, pk)s

pk(1+s)

)∏
p

(
1− 2

pk
(
1 + (q, pk)s/pk(1+s))

)

=
∏
p

(
1 + 1

pk(1+s)

)∏
p|q

1 + (q, pk)s/pk(1+s)

1 + 1/pk(1+s)

×
∏
p

(
1− 2

pk
(
1 + (q, pk)s/pk(1+s))

)

= ζ (k(1 + s))F∗(s)
ζ (2k(1 + s))

so that (3.2) becomes∑
d,d′

µ(d)µ(d′)(dk, d′k)1−s(q, dk, d′k)s

dkd′k
= ζ (k(1 + s))F∗(s)

ζ (2k(1 + s))

and the claim follows. �

To exploit cancellation when integrating F∗(s) we need to write F∗(s)
as a Dirichlet series.
Lemma 3.2. Suppose q has ω distinct prime factors p1, . . . , pω and let
F∗(s) be as given at the start of this section. Then:

for each n ∈ N and each l1, . . . , lω, l′1, . . . , l′ω ≥ 0
there are λn,Wn, Cl,l′ , Zl,l′ ∈ R with Wn, Zl,l′ > 0
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such that

F∗(s) =
∑

l1,...,lω≥0
l′1,...,l

′
ω≥0

∞∑
n=1

Cl,l′Z
s
l,l′λnW

1+s
n

for Re(s) ≥ −1 + δ. Moreover for these s∑
l1,...,lω≥0
l′1,...,l

′
ω≥0

∞∑
n=1

∣∣∣Cl,l′Z
s
l,l′λnW

1+s
n

∣∣∣� log(q + 1).

Proof. From (3.1) we have |(q, pk)s/pk(1+s)| < 1 and therefore

∏
p

(
1− 2

pk
(
1+(q, pk)s/pk(1+s))

)
=
∏
p

1− 2
pk

∑
t≥1

(
−(q, pk)s

pk(1+s)

)t−1
(3.4)

=
∞∑
n=1

f∗s (n)

where f∗s (n) is the multiplicative function given on prime powers by

f∗s (pt) = − 2
pk

(
−(q, pk)s

pk(1+s)

)t−1

.

For any n ∈ N and prime p|n define t = t(p) through pt||n. Then

f∗s (n) =
∏
p|n

(
− 2
pk

)(−(q, pk)s

pk(1+s)

)t−1

(3.5)

=

∏
p|n

(−1)t−1

∏
p|n

−2
pk


×

∏
p|n

(q, pk)−(t−1)

∏
p|n

(q, pk)(t−1)(1+s)

p(t−1)k(1+s)

 .
If we now define

λn =

∏
p|n

(−1)t−1

∏
p|n

−2
pk

∏
p|n

(q, pk)1−t


and

Wn =
∏
p|n

(q, pk)t−1

p(t−1)k

then (3.5) becomes
f∗(n) = λnW

1+s
n
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so (3.4) becomes

(3.6)
∏
p

(
1− 2

pk
(
1 + (q, pk)s/pk(1+s))

)
=
∞∑
n=1

λnW
1+s
n .

Just as (3.4) is true so is

(3.7)
∞∑
n=1
|f∗s (n)| =

∏
p

1− 2
pk

∑
t≥1

∣∣∣∣∣∣
(
−(q, pk)s

pk(1+s)

)t−1
∣∣∣∣∣∣
 .

The t sum here is from (3.1)

�
∑
t≥1

( 1
pkδ

)t−1
= 1

1− 1/pkδ � 1

so the Euler product in (3.7) is � 1 and therefore

(3.8)
∞∑
n=1
|f∗(n)| � 1, for − 1 + δ ≤ Re(s) ≤ 0.

We have for Re(s) ≥ −1 + δ

(3.9) 1
1 + 1/pk(1+s) =

∑
l≥0

( −1
pk(1+s)

)l
=
∑
l≥0

Cp(l)
pk(1+s)l

for some Cp(l) with

(3.10)
∑
l≥0

∣∣∣∣ Cp(l)pk(1+s)l

∣∣∣∣�∑
l≥0

( 1
pkδ

)l
� 1

as well as

(3.11) 1 + (q, pk)s

pk(1+s) =
∑
l′≥0

C ′p(l′)(q, pk)sl
′

pk(1+s)l′

for some C ′p(l′) with

(3.12)
∑
l′≥0

∣∣∣∣∣C ′p(l′)(q, pk)sl
′

pk(1+s)l′

∣∣∣∣∣� 1 + 1

from (3.1). From (3.9), (3.10), (3.11) and (3.12) there are for each prime p
and l, l′ ∈ N some Cp(l), C ′p(l′) for which

1 + (q, pk)s/pk(1+s)

1 + 1/pk(1+s) =
∑
l,l′≥0

Cp(l)C ′p(l′)(q, pk)sl
′

pk(1+s)(l+l′)

and ∑
l,l′≥0

∣∣∣∣∣Cp(l)C ′p(l′)(q, pk)sl
′

pk(1+s)(l+l′)

∣∣∣∣∣� 1.
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Consequently∏
p|q

1 + (q, pk)s/pk(1+s)

1 + 1/pk(1+s)

=
∑

l1,...,lω≥0
l′1,...,l

′
ω≥0

Cp1(l1)C ′p1(l′1) · · · Cpω (lω)C ′pω
(l′ω)(q, pk1)sl′1 · · · (q, pkω)sl′ω

p
k(1+s)(l1+l′1)
1 · · · pk(1+s)(lω+l′ω)

ω

and, for some A > 0,

∑
l1,...,lω≥0
l′1,...,l

′
ω≥0

∣∣∣∣∣∣Cp1(l1)C ′p1(l′1) · · · Cpω (lω)C ′pω
(l′ω)(q, pk1)sl′1 · · · (q, pkω)sl′ω

p
k(1+s)(l1+l′1)
1 · · · pk(1+s)(lω+l′ω)

ω

∣∣∣∣∣∣
≤ Aω � log(q + 1).

If we now define

C∗l,l′ =
ω∏
i=1

Cpi(li)C ′pi
(l′i), Wl,l′ =

(
ω∏
i=1

p
li+l′i
i

)k
, Cl,l′ =

C∗l,l′

Wl,l′
,

Dl′ =
ω∏
i=1

(q, pki )l
′
i , and Zl,l′ = Dl′

Wl,l′

then

(3.13)
∏
p|q

1 + (q, pk)s/pk(1+s)

1 + 1/pk(1+s) =
∑

l1,...,lω≥0
l′1,...,l

′
ω≥0

Cl,l′Z
s
l,l′

with
(3.14)

∑
l1,...,lω≥0
l′1,...,l

′
ω≥0

|Cl,l′Z
s
l,l′ | � log(q + 1).

The first claim now follows from (3.6) and (3.13), and the boundedness
claim from (3.8) and (3.14). �

As mentioned before Lemma 2.2, we will have to evaluate precisely a sum
of type Σdkn≤X(X−dkn). That lemma contained the work necessary for the
elementary argument and consequently Theorem 1, whilst for Theorem 2
we use Perron’s formula. We weren’t able to find a quantative version for
Perron’s formula with Cesáro weights in the literature so we produce one
here.
Lemma 3.3. Let c > 1, let

A(s) =
∞∑
n=1

an
ns
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be absolutely convergent for Re(s) > c, and let

A(Q) = max
Q/2≤n≤3Q/2

|an|.

Then for T ≥ 1 and non-integer Q > 0

∑
n≤Q

an
(
Q− n

)
= 1

2πi

∫
c±iT

A(s)Qs+1

s(s+ 1) ds

+O
(
QA(Q)2c

T

(
1 + Q (logQ+ 1)

T

)
+ Qc+1

T 2

∞∑
n=1

|an|
nc

)
.

In particular if c = 1 +O (1/ logQ) then

∑
n≤Q

(
Q− n

)
= 1

2πi

∫
c±iT

ζ(s)Qs+1

s(s+ 1) ds+O
(
Qε
(
Q

T
+ Q2

T 2

))
.

Proof. Take X > 0 and define

δ(X) =
{

0 if 0 < X < 1
X − 1 if X > 1

and

IX(T ) = 1
2πi

∫
c±iT

Xs+1

s(s+ 1) ds.

We first prove

(3.15) |IX(T )− δ(X)| � Xc+1

T
min

{
1, 1
T | logX|

}
.

Suppose first 0 < X < 1 so that for R > c we have XR � Xc � 1. The
integrand is holomorphic to the right of 0 so for R > c

2πiIX(T ) = −
(∫ R+iT

c+iT
+
∫ R−iT

R+iT
+
∫ c−iT

R−iT

)
Xs+1

s(s+ 1) ds

� 1
T 2

∫ R

c
Xσ+1dσ + XR+1

R2

∫
±T

dt

� Xc+1 +XR+1

T 2| logX| + XR+1T

R2 � Xc+1

T 2| logX|

with R→∞. Suppose now that X > 1 so that for R < −1 we have XR � 1
we have Xs+1 � 1. The integrand is holomorphic except for at two places,
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so for R < −1

2πiIX(T ) = Ress=0

(
Xs+1

s(s+ 1)

)
+ Ress=−1

(
Xs+1

s(s+ 1)

)

−
(∫ R+iT

c+iT
+
∫ R−iT

R+iT
+
∫ c−iT

R−iT

)
Xs+1

s(s+ 1) ds

= X − 1 +O
(

1
T 2

∫ R

c
Xσ+1dσ + XR+1

R2

∫
±T

dt
)

= X − 1 +O
(

1
T 2

∫ ∞
c

Xσ+1dσ + XR+1T

|R|2

)

= X − 1 +O
(
Xc+1 +XR+1

T 2| logX| + XR+1T

|R|2

)

= X − 1 +O
(

Xc+1

T 2| logX|

)

so we can conclude that for all X > 0 the second bound in (3.15) is clear;
now for the first bound. If 0 < X < 1 and if C is the arc of the circle going
clockwise from c+ iT to c− iT (so a circle of radius

√
T 2 + c2 > T ) then on

C we have Xs � Xc on C). Noting again that the integrand is holomorphic
to the right of 0 we have

2πiIX(T ) = −
∫
C

Xs+1

s(s+ 1) ds

� Xc+1
∫
C

1
|s| · |s+ 1| ds�

Xc+1

T
.

If X > 1 the remaining part of the circle should be taken as the contour
so that Xs � Xc holds on the contour, and this gives a similar result. We
conclude that the first bound in (3.15) also holds for any value of X > 0
and so the proof of (3.15) is complete.

By (3.15) (and absolute convergence)

(3.16)
∫
c±iT

A(s)Qs+1

s(s+ 1) ds

=
∞∑
n=1

ann

∫
c±iT

1
s(s+ 1)

(
Q

n

)s+1
ds

=
∞∑
n=1

annδ(Q/n) +O
(
Qc+1

T

∞∑
n=1

|an|
nc

min
{

1, 1
T | log(Q/n)|

})
.
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For Q/2 ≤ n ≤ 3Q/2

|log(Q/n)| =
∣∣∣∣log

(
1 + n−Q

Q

)∣∣∣∣� |n−Q|n
≥
⌊
|n−Q|

⌋/
n.

Therefore∑
Q/2≤n≤3Q/2

|an|
nc

min
{

1, 1
T | log(Q/n)|

}

≤ A(Q)

 1
(Q/2)c + 2 (Q/2)1−c

T

∑
h≤Q/2+1

1
h


� Q−cA(Q)2c

(
1 + Q (logQ+ 1)

T

)
and if n is not in this range then |log(Q/n)| � 1 so we deduce

Qc+1

T

∞∑
n=1

|an|
nc

min
{

1, 1
T |log(Q/n)|

}

� QA(Q)2c

T

(
1 + Q (logQ+ 1)

T

)
+ Qc+1

T 2

∞∑
n=1

|an|
nc

.

Therefore the error term in (3.16) is of the right order of magnitude and of
course the main term is ∑

n≤Q
an
(
Q− n

)
so the main claim is proven. For the “in particular claim” the main claim
implies an error term

Qε
(
Q

T
+ Q2

T 2 + Qc+1ζ(c)
T 2

)
;

now use ζ(c)� 1/(c− 1)� logQ and Qc � Q. �

We need bounds for the integrals arising from Perron’s formula that go
beyond taking absolute values.

Lemma 3.4. Take Q > 0, L ≥ 2 and ∆ ∈ [1/2k, 1/k). Let

R1 = −1 + ∆ and R2 = ∆k.

Then ∫ L

1

ζ(R1 + it)ζ(R2 + itk)Qit

t2
dt� L1/4−1/2k logL.
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Proof. Take s = σ + it ∈ C with t ≥ 1 and take two parameters N,M � 1
with NM = t/2π. Let

χ(s) = 2s−1πs sec(sπ/2)
Γ(s) .

By formula (4.12.3) of [11] (the definition of χ(s) comes just before) we
have for −1 ≤ σ ≤ 1

χ(s) =
(
t

2π

)1/2−σ−it
ei(t+π/4)

(
1 +O

(1
t

))
(3.17)

=
(
t

2π

)1/2−σ−it
ei(t+π/4) +O

( 1
t1/2+σ

)
so that

χ(R2 + itk)
∑
n≤M

1
n1−R2−itk

=
(
t

2π

)1/2−R2−itk
ei(tk+π/4) ∑

n≤M

1
n1−R2−itk +O

(
MR2

t1/2+R2

)

so by the approximate functional equation [11, (4.12.4)]

ζ(R2 + itk) =
∑
n≤N

1
nR2+itk + χ(R2 + itk)

∑
n≤M

1
n1−R2−itk(3.18)

+O
(
N−R2 + t1/2−R2MR2−1

)
=
∑
n≤N

1
nR2+itk +

(
t

2π

)1/2−R2−itk
ei(tk+π/4) ∑

n≤M

1
n1−R2−it

+O
((

M

t

)R2
(

1 + t1/2

M

))
.

From the functional equation (this just preceeds formula (4.12.1) of [11])
and (3.17) we have

ζ(R1 + it) =
((

t

2π

)1/2−R1−it
ei(t+π/4) +O

( 1
t1/2+R1

))
ζ(1−R1 − it)

=
(
t

2π

)1/2−R1−it
ei(t+π/4)ζ(1−R1 − it) +O

( 1
t1/2+R1

)
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so that with (3.18) we get

ζ(R1 + it)ζ(R2 + itk)

=
(
t

2π

)1/2−R1−it
ei(t+π/4)ζ(1−R1 − it)

∑
n≤N

1
nR2+itk

+
(
t

2π

)1−R1−R2−it(k+1)
ei(t(k+1)+π/4)ζ(1−R1 − it)

∑
n≤M

1
n1−R2−itk

+O
(
t1/2−R1 |ζ(1−R1 − it)|

(
M

t

)R2
(

1 + t1/2

M

)

+ (t/M)1−R2 + t1/2−R2MR2

t1/2+R1
+ 1
t1/2+R1

(
M

t

)R2
(

1 + t1/2

M

))

=: M1(t) +M2(t) +O
(
t1/2−R1

(
M

t

)R2
(

1 + t1/2

M

))
.

Write N = t1/A and M = t1/B so the above reads

(3.19) ζ(R1 + it)ζ(R2 + itk)

= M1(t) +M2(t) +O
(
t1/2−R1+R2/B−R2

(
1 + t1/2−1/B

))
.

For some constant C

M1(t)Qit = Ct1/2−R1
∑
n≤N

∞∑
m=1

eit(− log t+1−lognk+logm+logQ)

nR2m1−R1

= Ct1/2−R1
∑
nA≤t

2πnM≤t

∞∑
m=1

e
(
fmQ/nk(t)

)
nR2m1−R1

where
fX(t) = t(− log t+ 1 + logX)

2π
and the two summation conditions on n are equivalent. So for any T ≥ 1
(and absolute convergence)

(3.20)
∫ 2T

T

M1(t)Qit

t2
dt

= C
∞∑
m=1

1
m1−R1

∑
nA≤2T

1
nR2

∫ 2T

max(2πnM,T )

e
(
fmQ/nk(t)

)
t3/2+R1

dt.

We now bound this oscillatory integral. We have

(3.21) 2πf ′X(t) = − log t+ logX.
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Suppose first that T is large and 0 < X � 1. For max(2πnM, T ) < t < 2T
we have from (3.21)

f ′X(t)� 1

and

t3/2+R1 � T 3/2+R1

so from Lemma 4.3 of [11]

(3.22)
∫ 2T

max(2πnM,T )

e (fX(t))
t3/2+R1

dt� 1
T 3/2+R1

, if 0 < X � 1.

Suppose now that X is large. Since from (3.21)

f ′X(t)� |log(t/X)|
= |log (1 + (t−X)/X)|

�
{
|t−X|/X if t ∈ (X/2, 3X/2)
1 if not

�
{

1/
√
X if t ∈ (X/2, X −

√
X) ∪ (X +

√
X, 3X/2)

1 if t 6∈ (X/2, 3X/2)

and since for t > T

(3.23) t3/2+R1 � T 3/2+R1

we have from Lemma 4.3 of [11]

∫ 2T

max(2πnM,T )

e (fX(t))
t3/2+R1

dt

=
∫ 2T

max(2πnM,T )
t6∈(X−

√
X,X+

√
X)

+
∫ 2T

max(2πnM,T )
t∈(X−

√
X,X+

√
X)

�
{√

X/T 3/2+R1 if (T, 2T ) ∩ (X/2, 3X/2) 6= ∅
1/T 3/2+R1 if (T, 2T ) ⊆ (1,∞)\(X/2, 3X/2)

� 1
T 1+R1

,

where we have used a trivial bound for the second integral. Therefore
from (3.22) ∫ 2T

max(2πnM,T )

e(fX(t))
t3/2+R1

dt� 1
T 1+R1
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holds in fact for all X > 0, and indeed all T > 0, being trivial for T not
large. We deduce from (3.20) that for any T > 0∫ 2T

T

M1(t)Qit

t2
dt� 1

T 1+R1

∞∑
m=1

1
m1−R1

∑
nA≤T

1
nR2

(3.24)

� 1
T 1+R1

(
T 1/A

)1−R2

� T 1/A−1−R1−R2/A.

Similarly we have (for a slightly different f)∫ 2T

T

M2(t)Qit

t2
dt = C

∞∑
m=1

1
m1−R1

∑
nB≤T

1
n1−R2

∫ 2T

max(nN,T )

e (f(t))
t1+R1+R2

dt

where the oscillatroy integral is

� 1
T 1/2+R1+R2

so that ∫ 2T

T

M2(t)Qit

t2
dt� 1

T 1/2+R1+R2

∞∑
m=1

1
m1−R1

∑
nB≤T

1
n1−R2

(3.25)

� 1
T 1/2+R1+R2

(
T 1/B

)R2

� TR2/B−1/2−R1−R2 .

Note that

(3.26) − 1/2−R1 −R2/2 = 1/2−∆−∆k/2 ≤ 1/2−∆− 1/4

so taking A = B = 2 we see from (3.24) and (3.25)∫ 2T

T

(M1(t) +M2(t))Qit

t2
dt� T−1/2−R1−R2/2 � T 1/4−∆

for any T > 0 and so we conclude∫ L

1

(M1(t) +M2(t))Qit

t2
dt� L1/4−∆ logL

and so from (3.19) and (3.26)∫ L

1

ζ(R1 + it)ζ(R2 + itk)Qit

t2
dt� L1/4−∆ logL+

∫ L

1
t−3/2−R1−R2/2 dt

� L1/4−∆ logL. �

We summarise the result of the last two lemmas.
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Lemma 3.5. Let F∗(s) be given as at the start of this section. For X,T ≥ 1
and c > 1 we have, for some α, β, γ ∈ C,

1
2πi

∫
c±iT

ζ(s)ζ (k(s+ 1))F∗(s)Xs+1

s(s+ 1)ζ (2k(s+ 1)) ds

= αX2 + βX + γX1/k +O
(

(qXT )ε
(
T 1/4

(
X

T

)1/2k
+ Xc+1

T 2 + 1
))

.

Proof. For s ∈ C write always s = σ + it for σ, t ∈ R and let

(3.27) I(s) = ζ(s)ζ (k(s+ 1))F∗(s)
ζ (2k(s+ 1)) .

Let R1 = −1 + 1/2k + τ for some 0 < τ < 1/k, and remember that we
have fixed at the very beginning a small δ ∈ (0, 1/2k). We have already
established (just before Lemma 3.1) that F∗(s) � qε for σ ≥ −1 + δ,
therefore

(3.28) I(s)� qε|ζ(s)ζ (k(s+ 1)) |
|ζ (2k(s+ 1)) | for σ ≥ R1.

On Re(s) ≥ −1 + δ we know by the comments before Lemma 3.1 that I(s)
is holomorphic except for simple poles at s = 1 and s = −1 + 1/k so by the
Residue Theorem∫

c±iT

I(s)Xs+1

s(s+ 1) ds = 2πi
(
αX2 + βX + γX1/k

)
(3.29)

−
(∫ R1+iT

c+iT
+
∫ R1−iT

R1+iT
+
∫ c−iT

R1−iT

)
I(s)Xs+1

s(s+ 1) ds

for some α, β, γ ∈ C. It is standard that for t ≥ 1

ζ(s)� tε


t1/2−σ for σ ≤ 0
max{1, t1/2−σ/2} for σ ≥ 0
t1/4 for σ ≥ 1/2

and

ζ(σ)�
{

1 for σ ≥ 2k
1/|σ − 1| for 1 ≤ σ ≤ 2;

we will now use these bounds freely without comment. If 0 ≤ σ ≤ 2 and
t ≥ 1 we have

ζ(s)� tε max
{

1, t1/2−σ/2
}
, ζ (k(s+ 1))� 1

and
1

ζ (2k(s+ 1)) � ζ (2k(σ + 1))� 1,
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so from (3.28)
I(s)� qεtε max

{
1, t1/2−σ/2

}
and therefore

(3.30)
∫ c+iT

iT

I(s)Xs+1

s(s+ 1) ds� qεT ε
(

X

T 3/2 + Xc+1

T 2

)
.

If R1 ≤ σ ≤ 0 then for t ≥ 1

ζ(s)� t1/2−σ+ε,

ζ (k(s+ 1))� t1/4+ε

and
1

ζ (2k(s+ 1)) � ζ (2k(σ + 1))� 1
|2k(σ + 1)− 1| �

1
τ
,

so from (3.28)

(3.31) I(s)� qεt1−σ

τ

and therefore

(3.32)
∫ iT

R1+iT

I(s)Xs+1

s(s+ 1) ds� qε

τ

(
XR1+1

T 1+R1
+ X

T

)
� qε

τ

(
1 + X

T

)
.

From (3.30) and (3.32) we have

(3.33)
(∫ R1+iT

c+iT
+
∫ c−iT

R1−iT

)
I(s)Xs+1

s(s+ 1) ds� qεT ε

τ

(
1 + Xc+1

T 2

)
a similar argument for the second integral obviously valid. We now turn
to the vertical contribution in (3.29). Denote by ω the number of prime
factors of q. For given integers n, l1, . . . , lω, l′1, . . . , l′ω write n = (n, l1, . . . , lω,
l′1, . . . , l

′
ω). Denote by N the set of all n for which all the n, li, l′i are ≥ 0. Let

Wn, Zl,l′ be as in Lemma 3.2. Then that lemma says that for given n ∈ N
there are an = an(σ) ∈ R such that for σ ≥ −1 + δ

F∗(s) =
∑

n∈N
an
(
WnZl,l′

)it
and

(3.34)
∑

n∈N
|an| � qε.

Therefore
F∗(R1 + it)Xit

ζ (2k(R1 + it+ 1)) =
∞∑
m=1

∑
n∈N

µ(m)an
m2k(R1+1)

(
XWnZl,l′

m2k

)it
,
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so from (3.27), Lemma 3.4 and (3.34)∫ T

1

I(R1 + it)Xit

t2
dt� T 1/4−1/2k log T

∞∑
m=1

∑
n∈N

∣∣∣∣ µ(m)an
m2k(R1+1)

∣∣∣∣(3.35)

� T 1/4−1/2k(log T )ζ(1 + 2kτ)

� T 1/4−1/2k log T
τ

.

We clearly have for σ ≥ −1 + δ

I(s)� qε
{

1 for 0 ≤ t ≤ 1
t7/4 for t ≥ 1

and for t ≥ 1 we have
1

s(s+ 1) = 1
t2

+O
( 1
t3

)
,

therefore from (3.35)∫ R1+iT

R1

I(s)Xs+1

s(s+ 1) ds

= XR1+1
∫ T

1

I(R1 + it)Xit

t2
ds

+O

XR1+1
∫ R1+i∞

R1
t≥1

|I(s)|
t3

ds+XR1+1
∫ R1+i

R1

|I(s)|
|s(s+ 1)| ds


� XR1+1T 1/4−1/2k log T

τ
+ qεXR1+1

= XτT 1/4+ε

τ

(
X

T

)1/2k
qε.

A similar bound obviously holding for t negative we conclude

(3.36)
∫ R1−iT

R1+iT

I(s)Xs+1

s(s+ 1) ds� XτT 1/4+ε

τ

(
X

T

)1/2k
qε.

Putting this, (3.33) and (3.36) into (3.29) gives the claim but with error

� qεT ε

τ

(
XτT 1/4

(
X

T

)1/2k
+ 1 + Xc+1

T 2

)

� logXqεT ε
(
T 1/4

(
X

T

)1/2k
+ 1 + Xc+1

T 2

)
on taking τ = 1/ logX, so long as X is large. This is the claim for large
X. If X is not large then the claim is trivial, the integrand being trivially
� tε−2 for σ = c. �
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Obtaining a good second error in Theorem 2 amounts to counting so-
lutions to dkn ≡ d′kn′(q) with dkn, d′kn′ ≤ x and D < d ≤ 2D and
D′ < d′ ≤ 2D′. If D,D′ have some size the following lemma is useful.

Lemma 3.6. For x,D,D′ > 0 and q ∈ N

∑
d2n, d′2n′≤x
d2n≡d′2n′(q)
d<D≤2D
d′<D′≤2D′

1�ε
x

q1−ε(DD′)1/2

(
q + x

D

)1/2 (
q + x

D′

)1/2
.

Proof. Let k ≥ 2 until told otherwise. We will denote the conditions dkn,
d′kn′ ≤ x by dkn ≤ x and the conditions D < d ≤ 2D and D′ < d′ ≤ 2D′
by d ∼ D. Arranging the sum in question according to the value of h =
(dkn, q) = (d′kn′, q) and using

logX ≥
{

1 for X > e

0 for X > 1

we have∑
dkn≤x

dkn≡d′kn′(q)
d∼D

1 ≤
∑
h|q

∑
dkn≤xe

dkn/h≡d′kn′/h (q/h)
d∼D

h|dkn,d′kn′

(dkn/h,q/h)=(d′kn′/h,q/h)=1

log
(
xe

dkn

)
log

(
xe

d′kn

)
.

Denote by Σχ a sum running over the Dirichet characters modulo q/h. From
orthogonality and then the Cauchy–Schwarz Inequality the inner sum is

≤ 1
φ(q/h)

∑
χ

∣∣∣∣∣∣∣∣∣
∑

dkn≤ex
d∼D,h|dkn

χ(dkn/h) log
(
xe

dkn

)∣∣∣∣∣∣∣∣∣
2

1/2

×

∑
χ

∣∣∣∣∣∣∣∣∣
∑

dkn≤ex
d∼D′, h|dkn

χ(dkn/h) log
(
xe

dkn

)∣∣∣∣∣∣∣∣∣
2

1/2

=: 1
φ(q/h)

(∑
χ

|XD(χ)|2
)1/2(∑

χ

|XD′(χ)|2
)1/2
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and so to prove the lemma it is enough to prove, for any h|q,

(3.37)
∑
χ

|XD(χ)|2 � xqε

hD

(
q + x

D

)
.

We will avoid writing qε factors and assume they are included in the �
notation. The Dirichet series of the sequence

f(N) :=

 ∑
dkn=N
d∼D

1

χ (N/h) ·
{

1 if h|N
0 if not

is absolutely convergent for σ > 1 and is there equal to
∞∑

d,n=1
d∼D
h|dkn

χ(dkn/h)
(dkn)s =

∑
d∼D

1
dks

∞∑
n=1

h/(dk,h)|n

χ(dkn/h)
ns

= L(s, χ)
hs

∑
d∼D

(dk, h)sχ(dk/(dk, h))
dks

=: T (s, χ)L(s, χ).

Therefore by (5.20) and (5.22) of [8]

(3.38) XD(χ) =
∫

2±i∞

T (s, χ)L(s, χ) (ex)s

s2 ds.

Define rk(N) as at the start of Section 2. From (2.1) and from (2.2), which
says that rk(H)k/H is an integer,

T (s, χ) = 1
hs

∑
H|h

Hs
∑
d∼D

(dk,h)=H

χ(dk/H)
dks

= 1
hs

∑
H|h

(rk(H)k/H,h/H)=1

Hsχ(rk(H)k/H)
rk(H)ks

∑
d∼D/rk(H)
(dk,h/H)=1

χ(dk)
dks

.

In particular

T (1, χ0) ≤ 1
h

∑
H|h

H

rk(H)k
∑

d∼D/rk(H)

1
dk

(3.39)

� D1−k

h

∑
H|h

H

rk(H)
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and for any t ∈ R

T (1/2 + it, χ)� 1
h1/2

∑
H|h

H1/2

rk(H)k/2

∣∣∣∣∣∣∣∣∣
∑

d∼D/rk(H)
(dk,h/H)=1

χ(dk)
dk/2dkit

∣∣∣∣∣∣∣∣∣
=: 1

h1/2

∑
H|h

H1/2 |SH(it, χ)|
rk(H)k/2

so that, from the Cauchy–Schwarz Inequality,

(3.40) |T (s, χ)|2 � 1
h

∑
H|h

H |SH(it, χ)|2

rk(H)k for s = 1/2 + it, t ∈ R.

If χ = χ0 then the integrand in (3.38) has a simple pole at s = 1 with
residue

exT (1, χ) Ress=1 L(s, χ0)� xD1−k

h

∑
H|h

H

rk(H)

but is otherwise homorphic for σ > 0; if χ 6= χ0 the integrand is holomorphic
throughout σ > 0. Therefore by absolute convergence of the integral and
by the Residue Theorem

XD(χ) =
∫

1/2±i∞

T (s, χ)L(s, χ) (ex)s

s2 ds(3.41)

+O

xD1−k

h

∑
H|h

H

rk(H)

{
1 if χ = χ0
0 if χ 6= χ0

}
=: Y (χ) +O (Z(χ)) .

It follows from classical results that∫
1/2±∞

|L(s, χ)|2

|s|2
ds is absolutely convergent and � 1

so from (3.40) and the Cauchy–Schwarz Inequality

(3.42)
∑
χ

|Y (χ)|2 � x

h

∑
H|h

H

rk(H)k
∑
χ

∫
1/2±i∞

|SH(it, χ)|2

|s|2
ds.

If we put

an =
{

1/n1/2 if n is a k-th power, n1/k ∼ D/rk(H) and (n, h/H) = 1
0 if not
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then Theorem 6.4 of [7] says that for any interval I of length T > 0 on the
vertical line 1/2± i∞ we have∑

χ

∫
I
|SH(it, χ)|2 ds�

(
qT

h
+ D

rk(H)

) ∑
d∼D/rk(H)

1
dk

� D1−krk(H)k
(
qT

h
+ D

rk(H)2

)
so (3.42) becomes∑

χ

|Y (χ)|2 � xD1−k

h

∑
H|h

H

(
q

h
+ D

rk(H)2

)
.

From (3.41) ∑
χ

|Z(χ)|2 � x2D2−2k

h2

∑
H,H′|h

HH ′

rk(H)rk(H ′)
.

From now on suppose that k = 2. In that case (2.2) says that rk(H)/H1/2 ≥
1 so the last two equations with (3.41) imply∑

χ

|XD(χ)|2 � xD1−k

h

(
q +D + xD1−k

)
.

which is (3.37) since we can assume w.l.o.g. that Dk ≤ x. �

We will also need to count solutions to dkn ≡ a(q) with dkn ≤ x, for
fixed a and q.

Lemma 3.7. Take a, q ∈ N and x,R > 0. Then∑
d2n≤x
d2n≡a(q)
d>R

1�ε q
ε
(
x(a, q)
qR2 +

√
x

q
+√q

)
.

Proof. In [1, p. 283] our lemma is proven under the assumption that (a, q) =
1; we will deduce the case of general (q, a) from this. Write D = (q, a),
a′ = a/D and q′ = q/D. Then∑

d2n≤x
d2n≡a(q)
d>R

1 =
∑
d>R

∑
n≤x/d2

d2n/D≡a′(q′)
D|d2n

1(3.43)

=
∑
h|D

∑
d>R

(d2,D)=h

∑
n≤xh/d2D
d2n/h≡a′(q′)

1.
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For N ∈ N define rk(N) as at the start of Section 2, recall (2.1) and note
that (2.2) says that H := r2(h)2/h is an integer. Then∑

d>R
(d2,D)=h

∑
n≤xh/d2D
d2n/h≡a′(q′)

1 ≤
∑

d>R/r2(h)

∑
n≤x/Hd2D
Hd2n≡a′(q′)

1

so from (3.43) ∑
d2n≤x
d2n≡a(q)
d>R

1 ≤
∑
h|D

(H,Q′)=1

∑
d2n≤x/HD
d2n≡Ha′(q′)
d>R/r2(h)

1.

Using the known version of the lemma this is

�
∑
h|D

(
xr2(h)2

HDq′R2 +
√

x

HDq′
+
√
q′

)

and the result follows. �

Now we deal with the case that one of the D,D′ is small.

Lemma 3.8. For x,D,D′ > 0 and q ∈ N

∑
d2n,d′2n′≤x
d2n≡d′2n′(q)
d<D≤2D
d′<D′≤2D′

1�ε x
ε

(
x2

qD2D′

{
1 if q is squarefree√
q otherwise

}

+ x3/2

q
+ xD′2

q
+ x

max{D,D′}

)

and similarly with D and D′ switched on the RHS.

Proof. We will denote the conditions d2n, d′2n′ ≤ x by d2n ≤ x and the
conditions D < d ≤ 2D and D′ < d′ ≤ 2D′ by d ∼ D. Again we will let xε
factors be absorbed in the � notation; note that then for any n ∈ N and
X > 0 with X,n� xO(1) ∑

0≤|l|≤X
(l, n)� X.

We can of course assume w.l.o.g. that D2 ≤ x, but we can also assume that
q ≤ x, since otherwise the sum in question is

� xε
∑
dn2≤x
d>D

1� x

D
.
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From Lemma 3.7 and the last sentence∑
d2n≤x

d2n≡d′2n′(q)
d∼D

1 ≤
∑

0≤|l|≤x/q

∑
d′∼D′

∑
d2n≤x

d2n≡ql(d′2)
d>D

1(3.44)

�
∑

0≤|l|≤x/q

∑
d′∼D′

(
x(ql, d′2)
d′2D2 +

√
x

d′
+ d′

)

� x2

qD2

∑
d′∼D′

(q, d′2)
d′2

+ x3/2

q
+ xD′2

q
.

Define r2(N) as the start of Section 2. Note that (2.2) says that r2(d)2 ≥ d
in general whilst r2(d) = d for squarefree d. From (2.1)

∑
n>D′

(q, n2)
n2 ≤

∑
d|q

d
∑
n>D′

d|n2

1
n2 �

1
D′

∑
d|q

d

r2(d) �
1
D′

{
1 if q is squarefree√
q otherwise

}

and now the lemma follows from (3.44). �

4. Proofs of Theorems 1 and 2

Let 1 ≤ q ≤ x be given, and let η(q, a), Vx(q) and S be as in Theorem 1.
For the rest of the paper, xε bounds will be contained in the�,O notation.
Opening the square we have

Vx(q) =
∑

n,n′≤x
n,n′∈S
n≡n′(q)

1− 2x
∑
n≤x
n∈S

η(q, n) + x2
q∑

a=1
η(q, a)2(4.1)

=: Ax(q)− 2xBx(q) + x2
q∑

a=1
η(q, a)2.

From Lemma 2.1(C) we have η(q, d) � 1/q and of course η(q, n) =
η(q, (q, n)). Therefore from Lemma 2.2(ii) of [12] we have for some con-
stants cdh, cq and a new parameter X ≥ 1

BX(q) =
∑
d|q

η(q, d)
∑
n≤X
n∈S

(n,q)=d

1(4.2)

=
∑
d|q

η(q, d)
∑
h|q/d

µ(h)
∑
n≤X
n∈S
dh|n

1
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= X
∑
d|q
η(q, d)

∑
h|q/d

µ(h)cdh+O

X1/k+ε∑
d|q
|η(q, d)|

∑
h|q/d
|µ(h)|


= Xcq +O

(
X1/k+ε

q

)
∼ Xcq, with X →∞.

But it is easy to establish∑
n≤X
n∈S
n≡a(q)

1 ∼ Xη(q, a), with X →∞,

so that

BX(q) =
q∑

a=1
η(q, a)

∑
n≤X
n∈S
n≡a(q)

1 ∼ X
q∑

a=1
η(q, a)2, with X →∞,

so (4.2) implies

cq =
q∑

a=1
η(q, a)2

and therefore the last but one line of (4.2) says

(4.3) Bx(q) = x
q∑

a=1
η(q, a)2 +O

(
x1/k

q

)
.

It is well known that ∑
n≤x
n∈S

1 = x

ζ(k) +O
(
x1/k

)

therefore

Ax(q) = 2
∑

n<n′≤x
n,n′∈S
n≡n′(q)

1 +
∑
n≤x
n∈S

1(4.4)

= 2
∑
l≤x/q

∑
n,n′≤x
n,n′∈S
n′−n=ql

1 + x

ζ(k) +O
(
x1/k

)

=: 2Cx(q) + x

ζ(k) +O
(
x1/k

)
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so we deduce from (4.1) and (4.3)

(4.5) Vx(q) = 2Cx(q) + x

ζ(k) − x
2

q∑
a=1

η(q, a)2 +O
(
x1+1/k

q

)
.

Using (2.3) we see that for some parameter 1 ≤ y ≤ x to be chosen∑
n,n′≤x
n,n′∈S
n′−n=ql

1 =
∑
d,d′≤x

µ(d)µ(d′)
∑

n,n′≤x
n≡0(dk)
n′≡0(d′k)
n′−n=ql

1(4.6)

=
∑
d,d′≤x

µ(d)µ(d′)
∑

n≤x−ql
n≡0(dk)

n≡−ql(d′k)

1

=
∑

[d,d′]≤y
(dk,d′k)|ql

µ(d)µ(d′)
(
x− ql

[dk, d′k] +O(1)
)

+O


∑
dd′>y

∑
n≤x

n≡0(dk)
n≡−ql(d′k)

1


= (x− ql)

∞∑
d,d′=1

(dk,d′k)|ql

µ(d)µ(d′)
[dk, d′k] +O

 ∑
[d,d′]≤y

1



+O

(x− ql)
∑

[d,d′]>y

1
[dk, d′k]

+O


∑
dd′>y

∑
n≤x

n≡0(dk)
n≡−ql(d′k)

1

.

From Lemma 2.3 the first two error terms here
� y + xy1−k

so that, writing N = (d, d′),

Cx(q) =
∞∑

d,d′=1

µ(d)µ(d′)
[dk, d′k]

∑
l≤x/q
Nk|ql

(
x− ql

)
(4.7)

+O


(
y + xy1−k

) ∑
l≤x/q

1 +
∑
l≤x/q

∑
dd′>y

∑
n≤x

n≡0(dk)
n≡−ql(d′k)

1


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= q
∞∑

d,d′=1

µ(d)µ(d′)N2k

dkd′k(q,Nk)
∑

l≤x/[q,Nk]

(
x

[q,Nk] − l
)

+O


x
(
y + xy1/k−1)

q
+

∑
dkn,d′kn′≤x
dkn≡d′kn′(q)

dd′>y

1


=: qJq(x) +O

(
x
(
y + xy1−k)

q
+ Eq(x)

)
,

and so from (4.5)

(4.8) Vx(q) = 2qJq(x)+ x

ζ(k) −x
2

q∑
a=1

η(q, a)2 +O
(
x
(
y+xy1−k)

q
+Eq(x)

)
.

Define B∗2(X) as in the discussion before Lemma 2.2; that is, define it as
in [12]. From Lemma 2.16 of that paper∑

n≤X
(X − n) = X2

2 −
X

2 −B
∗
2(X)

so from Lemma 2.2

2Jq(x) =
(
x

q

)2 ∞∑
d,d′=1

µ(d)µ(d′)
(
q,Nk

)( 1
dd′

)k
− x

q

∞∑
d,d′=1

µ(d)µ(d′)
(
N

dd′

)k

− 2
∞∑

d,d′=1

µ(d)µ(d′)
(q,Nk)

(
N2

dd′

)k
B∗2

(
x

[q,Nk]

)

= αU−1(q)
(
x

q

)2
− xU0(q)

ζ(k)q − CkU1−1/k(q)
(
x

q

)1/k
+O

((
x

q

)1/(k+1)
)
,

where UL(q) are as given in Lemma 2.1, and so from (4.8) we deduce

Vx(q) =
(
αU−1(q)

q
−

q∑
a=1

η(q, a)2
)
x2

+
(
1− U0(q)

) x

ζ(k)q + CkU1−1/k(q)
(
x

q

)1/k

+O
(
q

(
x

q

)1/(k+1)
+
x
(
y + xy1−k)

q
+ Eq(x)

)
.

Lemma 2.1 shows the x2 terms cancel, so does the x term, and Lem-
ma 2.3(C) shows the error term to be � x1+2/(k+1)/q if we take y ≤ x1/k.
This proves Theorem 1, and we now turn to Theorem 2.
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Assuming as we can that x is not an integer, write Q = x/[q, (dk, d′k)]
and let c = 1 + 1/ logQ. From Lemma 3.3 the inner sum in Jq(x) is for any
T ≥ 1

1
2πi

∫
c±iT

ζ(s)
s(s+ 1)

(
x

[q, (dk, d′k)]

)s+1
ds

+O
(

x

[q, (dk, d′k)]T +
(

x

[q, (dk, d′k)]T

)2
)

so from Lemma 3.1 (and absolute convergence)

Jq(x) = 1
2πi

∫
c±iT

ζ(s)xs+1

s(s+ 1)

∑
d,d′

µ(d)µ(d′)
[dk, d′k][q, (dk, d′k)]s

 ds(4.9)

+O

∑
d,d′

[q, (dk, d′k)]
[dk, d′k]

(
x

[q, (dk, d′k)]T + x2

[q, (dk, d′k)]2T 2

)
= q

2πi

∫
c±iT

ζ(s)ζ (k(s+ 1))F∗(s)
s(s+ 1)ζ (2k(s+ 1))

(
x

q

)s+1
ds

+O

 x
T

∞∑
d,d′=1

(dk, d′k)
dkd′k

+ x2

qT 2

∞∑
d,d′=1

(q, dk, d′k)
dkd′k

 .
Suppose

(4.10) T ≤ x

q
.

It is straightforward to establish that for any N ∈ N

∞∑
d,d′=1

(N, dk, d′k)
dkd′k

� N ε

so that the error term in (4.9) is

� x

T
+ x2

qT 2 �
x2

qT 2 ,

and from Lemma 3.5 the main term in (4.9) is

q

(
α

(
x

q

)2
+ βx+ γ

(
x

q

)1/k
)

+O
(
q

(
T 1/4

(
x

qT

)1/2k
+ xc+1

q2T 2

))
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for some α, β, γ ∈ C, and so we can conclude (remembering that xc+1 � x2)

(4.11) Jq(x) = αx2

q
+ βx+ γq1−1/kx1/k

+O
(
q

(
T 1/4

(
x

qT

)1/2k
+
(
x

qT

)2
))

.

Setting

T =
(
x

q

)V
where

V = 2− 1/2k
9/4− 1/2k (which is ≤ 1 in accordance with (4.10))

then (4.11) becomes

Jq(x) = αx2

q
+ βx+ γq1−1/kx1/k +O

(
q

(
x

q

)2/(9−2/k)
)

and so from (4.8)

(4.12) Vx(q) =
(
α

q
−

q∑
a=1

η(q, a)2
)
x2 +

( 1
ζ(k) + β

)
x+ γq1−1/kx1/k

+O
(
q

(
x

q

)2/(9−2/k)
+
x
(
y + xy1−k)

q
+ Eq(x)

)
.

Suppose from now on that k = 2. From Theorem 1

Vx(q) = f2(q)q1/2x1/2 + o(q1/2x1/2)

once q is significantly larger than x7/9, so the x2 and x coefficient in (4.12)
must vanish and the third must be f2(q), and therefore

(4.13) Vx(q) = f2(q)q1/2x1/2 +O
(
q

(
x

q

)1/4
+
x
(
y + x/y

)
q

+ Eq(x)
)
.

We have (recall Eq(x) is given in (4.7))

(4.14) Eq(x)� max
D,D′≤x
DD′>y


∑

d2n,d′2n′≤x, d2n≡d′2n′(q)
D<d≤2D, D′<d′≤2D′

1

 =: max
D,D′≤x
DD′>y

{
F (D,D′)

}
.

If one of the D,D′ is ≤ √y then the other is ≥ √y and so Lemma 3.8 says

F (D,D′)� x2

qy3/2

{
1 if q is squarefree√
q otherwise

}
+ xy

q
+ x
√
y
,
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whilst if both are ≥ √y then Lemma 3.6 says that

F (D,D′)� x

q
√
y

(
q + x
√
y

)1/2(
q + x
√
y

)1/2

� x
√
y

+ x2

qy
.

Consequently (4.14) says that

Eq(x)� x2

qy3/2

{
1 if q is squarefree√
q otherwise

}
+ xy

q
+ x
√
y

+ x2

qy

so the error term in (4.13) is

� q

(
x

q

)1/4
+ xy

q
+ x2

qy
+ x2

qy3/2

{
1 if q is squarefree√
q otherwise

}
+ x
√
y
.

Recall y was the parameter introduced before the display (4.6). If q is
squarefree we set y =

√
x to deduce that the last error is

� q

(
x

q

)1/4
+ x3/2

q
+ x3/4

whilst if q is not squarefree we set y = x2/5q1/5 for an error (assume w.l.o.g
that q ≥

√
x so that y ≥

√
x)

q

(
x

q

)1/4
+ x7/5

q

(
q1/5 +

(
x

q

)1/5
)

+ x3/4.

and we have Theorem 2.
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