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Quantitative Diophantine approximation with
congruence conditions

par Mahbub ALAM, Anish GHOSH et Shucheng YU

Résumé. Dans ce court article, nous prouvons une version quantitative du
théorème de Khintchine–Groshev avec des conditions de congruence. Notre
argument repose sur un argument classique de Schmidt sur le comptage de
points de réseau génériques, qui à son tour repose sur une certaine borne de
variance sur l’espace des réseaux.

Abstract. In this short paper we prove a quantitative version of the
Khintchine–Groshev Theorem with congruence conditions. Our argument re-
lies on a classical argument of Schmidt on counting generic lattice points,
which in turn relies on a certain variance bound on the space of lattices.

1. Introduction

Let ψ : [1,∞) → (0,∞) be a continuous and non-increasing function.
Let m,n, d be positive integers satisfying d = m+n and let ϑ ∈ Mm×n(R).
Consider the following system of inequalities
(1.1) ‖ϑq + p‖m < ψ(‖q‖n),
with (p, q) ∈ Zm × Zn. Here ‖·‖ denotes the supremum norm on the
corresponding Euclidean spaces. The classical Khintchine–Groshev The-
orem gives a criterion on when (1.1) has infinitely many integer solutions
in (p, q) ∈ Zm × Zn for generic (with respect to the Lebesgue measure)
ϑ ∈ Mm×n(R):

Theorem (Khintchine–Groshev). For almost every (respectively almost
no) ϑ ∈ Mm×n(R) there are infinitely many solutions (p, q) ∈ Zm × Zn
to (1.1) if and only if the series

∑∞
t=1 ψ(t) diverges (respectively converges).

Manuscrit reçu le 12 novembre 2020, accepté le 1er février 2021.
Mathematics Subject Classification. 11N56, 14G42.
A.G. gratefully acknowledges support from a grant from the Indo-French Centre for the

Promotion of Advanced Research, a Department of Science and Technology, Government of India
Swarnajayanti fellowship and a MATRICS grant from the Science and Engineering Research
Board. M.A. and A.G. acknowledge support of the Department of Atomic Energy, Government
of India, under project 12−R&D−TFR−5.01−0500. This work received support from a grant
from the Infosys foundation. S.Y. acknowledges the support of the Knut and Alice Wallenberg
Foundation and ISF grant number 871/17. S.Y. acknowledges that this project has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No. 754475).



262 Mahbub Alam, Anish Ghosh, Shucheng Yu

In [6] Nesharim–Rühr–Shi refined the Khintchine–Groshev Theorem by
requiring certain congruence conditions:
Theorem ([6, Theorem 1.2]). Let (v, N) ∈ Zd×N. Then for almost every
ϑ ∈ Mm×n(R) there are infinitely many (p, q) ∈ Zm×Zn satisfying (p, q) ≡
v mod N and (1.1) if and only if the series

∑∞
t=1 ψ(t) diverges.

Schmidt’s theorem [7] on Diophantine approximations refined the
Khintchine–Groshev Theorem in another respect, by giving an asymptotic
formula for the number of solutions to (1.1) as ‖q‖ grows:
Theorem ([7, Theorem 1]). Let ψ : [1,∞)→ (0,∞) be as above and let

Ψ(T ) :=
∑

1≤t<T
ψ(t) for T ≥ 1.

Then for almost every ϑ ∈ Rm, the number of integer solutions in
(p, q) ∈ Zm × Z satisfying (1.1) (with n = 1) and 1 ≤ |q| < T is

2dΨ(T ) +Oε
(
Ψ(T )1/2+ε

)
.(1.2)

Remark 1.1. Schmidt actually studied the more refined one-sided Diophan-
tine approximation problem by requiring all entries of the vector (ϑq+p, q)
to be positive. With this extra requirement one then needs to drop the fac-
tor 2d in the above asymptotic formula.

In this paper we refine both [6, Theorem 1.2] and [7, Theorem 1] by
proving a Schmidt-type asymptotic formula for the system of Diophantine
inequalities (1.1) with extra congruence conditions.

For the remaining of this paper we fix d,m, n ∈ N with d = m + n
and we assume d ≥ 3. We also fix ψ : [1,∞) → (0,∞) a continuous and
non-increasing function satisfying that

∑∞
t=1 ψ(t) =∞.

We now state our main result.
Theorem 1.2. Let d,m, n ∈ N and ψ be fixed as above. Let (v, N) ∈ Zd×N.
Let ν1 and ν2 be two norms on Rm and Rn respectively, with ν2 normalized
such that

min
w∈Znr{0}

ν2(w) = 1.(1.3)

For any ϑ ∈ Mm×n(R) and for any T > 1, let N (ϑ, T ) denote the number
of integer solutions in (p, q) ∈ Zm × Zn satisfying

(1.4) ν1(ϑq + p)m < ψ(ν2 (q)n),
(p, q) ≡ v mod N, 1 ≤ ν2(q)n < T.

Then for almost every ϑ ∈ Mm×n(R),

N (ϑ, T ) ∼ N−dcν1cν2

∑
1≤t<T

ψ(t) as T →∞,(1.5)
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where for i = 1, 2, cνi is the volume of the unit ball with respect to νi.

Remark 1.3. Let ν be a norm on R` for some ` ∈ N. If ν is the Lp-norm
for some p ≥ 1, then cν = 2`Γ(1+1/p)`

Γ(1+`/p) ; if ν is the supremum norm, then
cν = 2`. In particular, if N = n = 1 and both ν1 and ν2 are the supremum
norms, then Theorem 1.2 recovers the main term in Schmidt’s asymptotic
formula (1.2) when m ≥ 2.

Our proof of Theorem 1.2 consists of two steps: first we prove a counting
result regarding the number of points of a generic lattice in an increasing
family of Borel sets determined by the inequality system (1.4). The second
step is then an argument reducing the counting result on generic lattices
in the space of lattices to generic lattices in a much smaller sub-manifold
of positive co-dimension. We note that this was also the strategy used
in [1, 2, 3] where similar quantitative results were proved in various settings
for the special approximating function ψ0(t) = c

t with c > 0. The arguments
used in [1, 2, 3] for the counting result in step one use ergodic theory and are
special to ψ0. Here, instead of using this ergodic argument, we use a more
soft counting argument of Schmidt [8] which only relies on a variance bound
and works for arbitrary increasing family of Borel sets. To incorporate the
congruence condition, we use a recently proved variance bound [4] on a
certain congruence cover of the space of lattices.

Remark 1.4. We note that the assumption that d ≥ 3 in Theorem 1.2 is due
to the lack of such variance bounds on congruence covers of the space of
rank two lattices. However, when d = 2 (so thatm = n = 1), ψ = ψ0 and ν1
and ν2 are both supremum norms, one can still use the ergodic argument to
prove the desired counting result in step one and hence deduce an analogous
asymptotic formula in this setting. For simplicity of the presentation, we
omit the details here.

Notation and conventions. Throughout the paper, f(T ) ∼ g(T ) means
that f(T )

g(T ) → 1 as T →∞. For two positive quantities A and B, we will use
the notation A � B or A = O(B) to mean that there is a constant c > 0
such that A ≤ cB, and we will use subscripts to indicate the dependence
of the constant on parameters. We will write A � B for A � B � A. For
any Borel subset S in a Euclidean space, we use the notation |S| to mean
its volume with respect to the usual Lebesgue measure. All vectors in this
paper are column vectors even though we will write them as row vectors.

2. Preliminaries

2.1. Siegel transforms and variance estimates. Let d ≥ 3 be an in-
teger. Let G = SLd(R) and Γ = SLd(Z). It is well known that the homoge-
neous space G/Γ parameterizes X, the space of unimodular lattices in Rd
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via gΓ↔ gZd. More generally, let (v, N) ∈ Zd×N such that gcd(v, N) = 1.
Let XN,v be the space of affine lattices of the form g(Zn + v

N ) with g ∈ G.
Similar as for X, the space XN,v can be identified with the homogeneous
space G/ΓN,v via gΓN,v ↔ g(Zd + v

N ), see e.g. [4, Lemma 3.1]. Here
ΓN,v := {γ ∈ Γ : γv ≡ v mod N}

is the stabilizer in Γ of the affine lattice Zd + v
N . Note that ΓN,v is a

congruence subgroup (since it contains the principal congruence subgroup
Γ(N)) and ΓN,v = Γ if N = 1. Let µ be the Haar measure on G so that the
induced G-invariant measure on G/ΓN,v ∼= XN,v is a probability measure.
By abuse of notations, we denote this induced probability measure on XN,v

by µ as well. Generalizing the classical Siegel transform defined on X, for
any bounded and compactly supported function f : Rd → C we define its
Siegel transform on XN,v

∼= G/ΓN,v by

f̂ (g) :=
∑

w∈(Zd+ v
N )r{0}

f(gw).

It was shown in [5, Proposition 7.1] that for any bounded and compactly
supported f ,

(2.1)
∫
XN,v

f̂(g) dµ(g) =
∫
Rd
f(x) dx.

Note that when f = χA is the indicator function of some bounded Borel
subset A ⊂ Rd not containing 0, then

f̂(g) = #
(
g

(
Zd + v

N

)
∩A

)
counts the number of points of the affine lattice g(Zd + v

N ) inside A. Hence
the integration formula (2.1) implies that on average, the counting function
#(g(Zd + v

N ) ∩ A) is |A|, the volume of A. Using (2.1) together with a
second moment formula [4, Equation (3.1)] the following variance bound
was proved in [4, Corollary 3.4]: for any bounded Borel set A ⊂ Rd r {0}

(2.2)
∫
XN,v

∣∣∣∣#(
g

(
Zd + v

N

)
∩A

)
− |A|

∣∣∣∣2 dµ(g)�d,N |A|.

2.2. Schmidt’s counting results for generic lattices. It is a classical
result by Schmidt [8, Theorem 1] that given any increasing family of finite-
volume Borel sets {AT }T>0 ⊂ Rdr{0}, (i.e., AT1 ⊂ AT2 whenever T1 < T2),
for µ-a.e. unimodular lattice Λ ∈ X,
(2.3) #

(
Λ ∩AT

)
= |AT |+Oε(|AT |1/2+ε).

The main technical tool for Schmidt’s arguments is a variance bound in the
setting of unimodular lattices, more precisely, the estimate (2.2) whenN=1.
In particular, applying Schmidt’s arguments and the variance bound (2.2)
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one can get the following counting result for generic lattices in XN,v, anal-
ogous to (2.3).

Proposition 2.1. Let (v, N) ∈ Zd × N satisfying that gcd(v, N) = 1. Let
{AT }T>0 ⊂ Rdr{0} be an increasing family of bounded finite-volume Borel
subsets. Then for any ε > 0 and for µ-a.e. g ∈ G, there exists some Tg > 0
such that for all T > Tg

#
(
g

(
Zd + v

N

)
∩AT

)
= |AT |+Oε

(
|AT |1/2+ε

)
.

Using a simple scaling argument we have the following counting result
which we will use later.

Corollary 2.2. Let (v, N) ∈ Zd × N and let {AT }T>0 be as in Proposi-
tion 2.1. We further assume that limT→∞ |AT | =∞. Then for µ-a.e. g ∈ G,

#
(
g
(
NZd + v

)
∩AT

)
∼ N−d|AT | as T →∞.

Proof. Let l = gcd(v, N) and let v′ = v/l and N ′ = N/l so that v
N = v′

N ′

and gcd(v′, N ′) = 1. Applying Proposition 2.1 to the space XN ′,v′ and the
family

{
N−1AT

}
T>0 (here we can apply Proposition 2.1 since {N−1AT }T>0

is still increasing), and noting that limT→∞ |N−1AT | = limT→∞N
−d|AT | =

∞ we get for µ-a.e. g ∈ G,

#
(
g

(
Zd + v′

N ′

)
∩N−1AT

)
∼ |N−1AT | = N−d|AT | as T →∞.

We can thus finish the proof by noting that

#
(
g

(
Zd + v′

N ′

)
∩N−1AT

)
= #

(
g

(
Zd + v

N

)
∩N−1AT

)
= #

(
g
(
NZd + v

)
∩AT

)
. �

2.3. Relating to counting lattice points. Let U := u(Mm×n(R)) < G,
where u : Mm×n(R)→ G is defined as

u(ϑ) :=
(

1m ϑ
0 1n

)
.

Here 1` denotes the ` × ` identity matrix and 0 is the zero matrix in
Mn×m(R). Note that

NZd + v = {(p, q) ∈ Zm × Zn : (p, q) ≡ v mod N}

and any lattice point of u(ϑ)
(
NZd + v

)
is of the form

u(ϑ)(p, q) = (ϑq + p, q)
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for some (p, q) ∈ NZd + v. This, together with the normalization (1.3)
implies that

N (ϑ, T ) = #
(
u(ϑ)

(
NZd + v

)
∩ ET

)
,(2.4)

where for any T > 1

(2.5) ET =Eψ,ν1,ν2,T :=
{

(x,y)∈Rm×Rn :
ν1(x)m<ψ (ν2(y)n)

1 ≤ ν2(y)n < T

}
.

2.4. Volume calculation. In this subsection we give a quick computation
for the volume of the sets ET defined in (2.5). We first record a simple
volume formula for balls with respect to a norm ν on R`. For all r > 0 let
Bν(r) := {x ∈ R` : ν(x) < r} be the open radius r-ball with respect to ν,
centered at the origin. Since ν is positive homogeneous, i.e., ν(rx) = rν(x)
for any r > 0 and x ∈ R`, we have

|Bν(r)| = |rBν(1)| = |Bν(1)|r` = cνr
`.(2.6)

Now using the identity (2.6) we have

|ET | =
∫
{y∈Rn:1≤ν2(y)n<T}

∫
{x∈Rm:ν1(x)m<ψ(ν2(y)n)}

dxdy

= cν1

∫
{y∈Rn:1≤ν2(y)n<T}

ψ(ν2(y)n) dy =: cν1F (T ).

It is not hard to check that (again using (2.6)) for any T > 1, F ′(T ) =
cν2ψ(T ). This, together with the fact that F (1) = 0, implies that F (T ) =
cν2

∫ T
1 ψ(r)dr. Hence

|ET | = cν1cν2

∫ T

1
ψ(r) dr = cν1cν2

∑
1≤t<T

ψ(t) +Oψ(1).(2.7)

2.5. Decomposition of the Haar measure. Let H < G be the para-
bolic subgroup such that

H :=
{
h =

(
α 0
β γ

)
∈ G : α ∈ GLm(R), γ ∈ GLn(R), β ∈ Mn×m(R)

}
.

Here 0 denotes the zero matrix in Mm×n(R). We note that there is a Zariski
dense subset of G such that any g in this subset can be written uniquely
as the product g = hu(ϑ) with h ∈ H and u(ϑ) ∈ U . We note that under
this decomposition, the Haar measure µ decomposes as (up to scalars)
dµ(g) = dhdϑ, where dh is a left H-invariant Haar measure of H and dϑ
is the usual Lebesgue measure on U(∼= Mm×n(R) ∼= Rmn). In view of this
measure decomposition and Fubini’s theorem we can restate Corollary 2.2:
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Proposition 2.3. Keep the assumptions as in Corollary 2.2. Then for a.e.
h ∈ H (with respect to dh), there is a full measure (with respect to dϑ)
subset Uh ⊂ U(∼= Mm×n(R)) (which may depend on h) such that for all
u(ϑ) ∈ Uh

#
(
hu(ϑ)

(
NZd + v

)
∩AT

)
∼ N−d|AT | as T →∞.

3. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2. The following lemma is
the key step for our reduction argument. It says that the sets ET are stable
under small perturbations of elements in H close to the identity matrix.

Lemma 3.1. There exists 0 < c0 <
1
2 such that for any ε ∈ (0, c0) there

exists an open neighborhood Hε ⊂ H of the identity element such that for
all h ∈ Hε

E−T,ε ⊂ hET ⊂ E
+
T,ε, ∀ T > 10,

where ET is as given in (2.5) and

E−T,ε :=

(x,y) ∈ Rm × Rn :
ν1(x)m < (1 + ε)−1ψ((1 + ε)ν2(y)n)

3
2 ≤ ν2(y)n < (1 + ε)−1T

,
and E+

T,ε := E′T,ε ∪ C0 with

E′T,ε :=

(x,y) ∈ Rm × Rn :
ν1(x)m < (1 + ε)ψ((1 + ε)−1ν2(y)n)

3
2 ≤ ν2(y)n < (1 + ε)T

,
and

C0 :=
{

(x,y) ∈ Rm × Rn : ν1(x)m < 2ψ(1), 1
2 < ν2(y)n ≤ 3

2

}
.

Proof. View (Rm, ν1) and (Rn, ν2) as two normed spaces, and for any α ∈
GLm(R), β ∈ Mm×n(R) and γ ∈ GLn(R), we denote by ‖α‖ν1 , ‖β‖ν1,ν2 and
‖γ‖ν2 their corresponding operator norms. For each ε > 0 let

H̃ε :=

h =
(
α 0
β γ

)
∈ G :

max{‖α‖mν1 , ‖γ‖
n
ν2} < 1 + ε

2 ,

‖β‖ν1,ν2 <
ε

4nψ(1)1/m

 ,
and define Hε := H̃ε ∩ H̃−1

ε . Then clearly Hε ⊂ H is an open neighborhood
of the identity element. We need to prove the above inclusion relations for
all h ∈ Hε.

Fix h =
( α 0
β γ

)
∈ Hε and T > 10. We first prove the relation hET ⊂

E+
T,ε = E′T,ε ∪ C0. Let (x,y) ∈ ET . First note that ν1(x)m <
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ψ(ν2(y)n) ≤ ψ(1), where for the second inequality we used the assump-
tion that ν2(y) ≥ 1 and that ψ is non-increasing. Now using the definition
of H̃ε and the fact that h ∈ Hε ⊂ H̃ε we have

h(x,y) = (αx, βx + γy)

with

ν1(αx)m ≤
(

1 + ε

2

)
ν1 (x)m

and (using the triangle inequality and the inequalities that ν1(x)m < ψ(1)
and ν2(y) > 1)

ν2(βx + γy) ≤ ν2(γy) + ν2(βx)

≤
(

1 + ε

2

)1/n
ν2(y) + ε

4nψ(1)1/m ν1(x)

< (1 + ε)1/nν2(y).

Here for the last inequality we used the inequality that
(
1 + ε

2
)1/n + ε

4n <

(1 + ε)1/n which can be guaranteed for all ε ∈ (0, c0) by taking c0 > 0
sufficiently small.

Now if ν2(βx + γy)n > 3
2 , then

ν2(βx + γy)n < (1 + ε)ν2(y)n < (1 + ε)T,

and

ν1(αx)m ≤
(

1 + ε

2

)
ν1(x)m

<

(
1 + ε

2

)
ψ (ν2(y)n)

< (1 + ε)ψ
(
(1 + ε)−1 ν2 (βx + γy)n

)
.

This implies that h(x,y) ∈ E′T,ε ⊂ E
+
T,ε. If ν2(βx + γy) ≤ 3

2 , then

ν1(αx)m ≤
(

1 + ε

2

)
ν1(x)m < 2ψ(1),

and (since h−1 =
(

α−1 0
−γ−1βα−1 γ−1

)
∈ H̃ε)

ν2(βx + γy) ≥ ν2(γy)− ν2(βx)

≥
(

1 + ε

2

)−1/n
ν2(y)− ε

4n

≥
(

1 + ε

2

)−1/n
− ε

4n >
1

21/n ,
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where the last inequality again can be guaranteed by taking c0 sufficiently
small. Thus in this case we have h(x,y) ∈ C0 ⊂ E+

T,ε. This finishes the proof
of the relation hET ⊂ E+

T,ε. Similarly, using the fact that h−1, h ∈ H̃ε, one
can show h−1E−T,ε ⊂ ET , or equivalently, E

−
T,ε ⊂ hET . �

Remark 3.2. Using similar volume calculations as in Section 2.4 one can
easily see that for all T > 10 and ε ∈ (0, c0)

|E±T,ε| = (1 + ε)±1cν1cν2

∫ (1+ε)±1T

3
2

ψ((1 + ε)∓1r) dr +O(1)

= (1 + ε)±2cν1cν2

∫ T

1
ψ(r) dr +Oψ,ν1,ν2(1).(3.1)

Proof of Theorem 1.2. For simplicity of notation, let us denote Λ0 :=NZd+
v. Fix a sequence of positive numbers {ε`}`∈N ⊂ (0, c0) with ε` → 0 as
` → ∞. Here c0 is the constant as in Lemma 3.1. Note that for each
` ∈ N, both {E±T,ε`}T>10 are increasing families of bounded Borel subsets not
containing 0. Moreover, using the volume formulas (2.7) and (3.1) we have

(3.2)
|E+

T,ε`
|

|ET |
≤ (1 + ε`)2 +Oψ,ν1,ν2(|ET |−1)

and
|E−T,ε` |
|ET |

≥ (1 + ε`)−2 +Oψ,ν1,ν2(|ET |−1).

In particular, the above second estimate, together with the relation ET ⊂
E+
T,ε`

and the fact that

|ET | �
∑

1≤t<T
ψ(t)→∞ as T →∞,

implies that limT→∞ |E±T,ε` | =∞. Thus we can apply Proposition 2.3 for the
two families {E±T,ε`}T>10. In fact, combining Proposition 2.3 and Lemma 3.1
and using the fact that a finite intersection of full measure sets is still of
full measure (hence intersecting any nonempty open set nontrivially) we
can find, for each ` ∈ N, h` ∈ H such that

E−T,ε` ⊂ h`ET ⊂ E
+
T,ε`

, ∀ T > 10,(3.3)

and that there exists a full measure subset U` ⊂ U such that for all u(ϑ) ∈
U`

#
(
h`u(ϑ)Λ0 ∩ E±T,ε`

)
∼ N−d|E±T,ε` | as T →∞.(3.4)

Now let U∞ = ∩`∈NU` which is still of full measure. In view of the rela-
tion (2.4) and the volume calculation (2.7), it suffices to show that for all
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u(ϑ) ∈ U∞

#
(
u(ϑ)Λ0 ∩ ET

)
∼ N−d|ET | as T →∞.

Now for any u(ϑ) ∈ U∞ using the relation (3.3) we have for each ` ∈ N

#
(
h`u(ϑ)Λ0 ∩ E−T,ε`

)
≤ #

(
h`u(ϑ)Λ0 ∩ h`ET

)
≤ #

(
h`u(ϑ)Λ0 ∩ E+

T,ε`

)
,

or equivalently,

#
(
h`u(ϑ)Λ0 ∩ E−T,ε`

)
N−d|ET |

≤
#
(
u(ϑ)Λ0 ∩ ET

)
N−d|ET |

≤
#
(
h`u(ϑ)Λ0 ∩ E+

T,ε`

)
N−d|ET |

.

Now applying (3.4) and (3.2) we get

lim
T→∞

#
(
u(ϑ)Λ0 ∩ ET

)
N−d|ET |

≤ lim
T→∞

|E+
T,ε`
|

|ET |
≤ (1 + ε`)2,

and

lim
T→∞

#
(
u(ϑ)Λ0 ∩ ET

)
N−d|ET |

≥ lim
T→∞

|E−T,ε` |
|ET |

≥ (1 + ε`)−2.

Finally taking `→∞ finishes the proof. �
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