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Number of points of curves over finite fields in
some relative situations from an euclidean point

of view

par Emmanuel HALLOUIN et Marc PERRET

Résumé. Nous étudions le nombre de points rationnels d’une courbe projec-
tive lisse sur un corps fini dans certaines situations relatives et dans l’esprit
d’un précédent article [4], où nous adoptions un point de vue euclidien. Nous
prouvons une borne de Weil relative, conséquence de l’application de l’inéga-
lité de Cauchy–Schwarz à des parties relatives de la diagonale et du graphe du
Frobenius dans un sous-espace euclidien du groupe des diviseurs de la surface
produit de la courbe avec elle-même, à équivalence numérique près, muni de
l’opposé de la forme d’intersection.

Abstract. We study the number of rational points of smooth projective
curves over finite fields in some relative situations in the spirit of a previous
paper [4] from an euclidean point of view. We prove some kinds of relative
Weil bounds, derived from Schwarz inequality for some “relative parts” of the
diagonal and of the graph of the Frobenius on some euclidean sub-spaces of
the numerical space of the product of the curve with itself endowed with the
opposite of the intersection product.

Introduction
Several general bounds on the number ]X(Fq) of rational points on ab-

solutely irreducible smooth projective curves X of genus gX defined over
the finite field Fq are known, the most famous being Weil bound [8]:

(0.1) |]X(Fq)− (q + 1)| ≤ 2gX
√
q.

Other bounds are known, such as asymptotic Drinfeld–Vlăduţ one [7] and
Tsfasman one [6], so as a relative bound (for instance in [1])

(0.2) |]X(Fq)− ]Y (Fq)| ≤ 2(gX − gY )√q

holding in a covering X → Y . Twisting a little bit Weil’s original proof [8]
of (0.1), the authors have given in a previous paper [4] proofs of Weil’s,
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Drinfeld–Vlăduţ’s, Tsfasman’s and some other new bounds from an eu-
clidean point of view. For instance, Weil bound (0.1) is only Schwarz in-
equality applied to two very natural vectors γ0

X and γ1
X in a convenient

euclidean space EX . To be more precise, let Num(X × X)R be the real
numerical vector space of divisors of the surface X × X up to numerical
equivalence. It is endowed with the intersection pairing, a non degenerate
bilinear form. The space EX is the orthogonal of the subspace generated by
the horizontal and vertical classes HX and VX . By Hodge index theorem [5,
Chap. V, Thm. 1.9], EX endowed with the opposite of the intersection prod-
uct turns to be an euclidean space. As for γ0

X and γ1
X , they are respectively

the orthogonal projections onto EX , for the intersection product on the
whole space Num(X × X)R, of the class of the diagonal ∆X and of the
class of the graph ΓFX

of the Frobenius morphism FX on X.
The aim of this paper is to complete this work in some relative situations,

giving for instance a similar euclidean proof for (0.2). A key point is that
a covering f : X → Y induces a pull-back linear morphism (f × f)∗ and a
push-forward linear morphism (f×f)∗ between EX and EY . Both morphisms
behave in some very pleasant way with respect to the vectors γi

X and γi
Y

for i = 0, 1, in such a way that it can be said that γi
X is the orthogonal

sum, in EX , of the pull-back of γi
Y and of some “relative part” γi

Y/X . The
Gram matrix between γ0

Y/X and γ1
Y/X can be computed, and (0.2) is only

Schwarz inequality for this pair of vectors.
This point of view can be pushed further in a commutative diagram (3.1)

below. A relative part γi
X/Y1,Y2/Z of γi

X , denoted by γi
12, can be defined, and

Schwarz inequality for i = 0, 1 gives the following Theorem 3.7. This leads
to a new bound relating the number of rational points of the four curves
involved in case the fibre product is absolutely irreducible and smooth.

Theorem. Let X,Y1, Y2 and Z be absolutely irreducible smooth projective
curves in a commutative diagram (3.1) below of finite morphisms. Suppose
that the fiber product Y1 ×Z Y2 is absolutely irreducible and smooth. Then
|]X(Fq)− ]Y1(Fq)− ]Y2(Fq) + ]Z(Fq)| ≤ 2(gX − gY1 − gY2 + gZ)√q.

Notice that if (0.2) can be proved using the Tate modules of the jacobians
of the involved curves (see e.g. [1]), Proposition 3.2 and Theorem 3.7, up
to our knowledge, cannot.

1. Known absolute results [4]

In this first section, we gather the notations and results of our previous
work [4] that are needed in this paper.

Let X be an absolutely irreducible smooth projective curve of genus g
defined over the finite field Fq with q elements. Weil’s proof of Rieman
hypothesis in this context rests on intersection theory on the numerical
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space Num(X × X)R of the algebraic surface X × X. The key point is
the Hodge Index Theorem stating that the intersection pairing is definite
negative on the orthogonal complement of the class of an ample divisor [5,
Chap. V, Thm. 1.9 & Rk. 1.9.1]. In particular the opposite of the intersec-
tion pairing defines a scalar product on the orthogonal complement of the
plane generated by the classes of the horizontal and the vertical divisors
since their sum is ample. This motivates the following definition.

Definition 1.1. Let HX and VX be the horizontal and vertical classes
inside Num(X ×X)R. We put:

EX = Vect(HX , VX)⊥

and we endow this vector space with the scalar product defined by 〈D1, D2〉 =
−D1 ·D2, the opposite of the intersection pairing D1 ·D2 on X ×X.

It is useful to introduce the orthogonal projection of Num(X × X)R
onto EX for the intersection pairing bilinear form:

(1.1) pX : Num(X ×X)R −→ EX

D 7−→ D − (D · VX)HX − (D ·HX)VX .

In this context, the family of (orthogonal projections of) graphs of iterates
of the q-Frobenius morphism play a crucial role.

Definition 1.2. Let FX : X → X be the q-Frobenius morphism on the
curve X. For i ≥ 0, let Γi

FX
be the class in Num(X ×X)R of the graph of

the i-th iterate of FX (the 0-th iterate being identity). We denote:

γi
X = pX

(
Γi

FX

)
∈ EX ,

where pX : Num(X ×X)→ EX is the orthogonal projection onto EX given
by (1.1).

Remark. We delete here the normalization of the vectors γi
X introduced in

our previous work [4, Def. 4], necessary therein for some intersection matrix
to be Toeplitz [4, Proposition 5]. This particular shape of the intersection
matrix is irrelevant in the present work.

The computation of the norms and the scalar products of the γi
X ’s is well

known and can be found in our previous work [4, Prop. 5] in which another
normalization is used.

Lemma 1.3. The norms and the scalar products of the γi
X ’s are given by∥∥γi

X

∥∥
X

=
√

2gXqi and
〈
γi

X , γ
i+j
X

〉
X

= qi((qj + 1)− ]X(Fqj )
)

(1.2)

for any i ≥ 0 and j ≥ 1.
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2. The relative case
We concentrate in this Section on the simplest relative situation. The

data is a finite morphism f : X → Y of degree d, where X and Y are ab-
solutely irreducible smooth projective curves defined over Fq, whose genus
are denoted by gX and gY .

2.1. The pull-back and push-forward morphisms. All results of this
Subsection hold over any field k. The morphism f×f from X×X to Y ×Y
induces a push forward morphism

(f × f)∗ : Num(X ×X)R −→ Num(Y × Y )R
and a pull back morphism

(f × f)∗ : Num(Y × Y )R −→ Num(X ×X)R.
For normalization purpose, it is convenient to define ϕ∗X/Y and ϕ∗,X/Y

(or ϕ∗ and ϕ∗ for short) by

(2.1) ϕ∗ = ϕX/Y ∗ = 1
d

(f × f)∗ and ϕ∗ = ϕ∗X/Y = 1
d

(f × f)∗.

In the next proposition, it is shown that ϕ∗ sends the euclidean space EY

to EX and that ϕ∗ sends the euclidean space EX to EY with some special
features. In the sequel we denote the same way the maps ϕ∗ and ϕ∗ and
their restrictions to either EX or EY .

Proposition 2.1. The morphisms ϕ∗ and ϕ∗ satisfy the following.
(1) Vertical and horizontal divisors are preserved:

ϕ∗(HY ) = HX , ϕ∗(HX) = HY , ϕ∗(VY ) = VX , ϕ∗(VX) = VY ,(2.2)
so as the orthogonal complements of the horizontal and vertical
parts:

(2.3) ϕ∗(EY ) ⊂ EX , ϕ∗(EX) ⊂ EY .

Moreover, the restrictions of ϕ∗ to EY and of ϕ∗ to EX satisfy:
(2) (projection formula) for all γ ∈ EX and all δ ∈ EY ,

〈
γ, ϕ∗ (δ)

〉
X

=〈
ϕ∗(γ), δ

〉
Y
;

(3) ϕ∗ ◦ ϕ∗ = IdEY
, the identity map on EY ;

(4) (isometric embeding) the morphism ϕ∗ is an isometric embedding
of EY into EX ;

(5) (orthogonal projection) the map ϕ∗ ◦ ϕ∗ (restricted to EX) is the
orthogonal projection of EX onto the subspace ϕ∗(EY ).

Proof. For Formulas (2.2) of item (1) and item (3), we first consider the
maps ϕ∗ = 1

d(f ×f)∗ and ϕ∗ = 1
d(f ×f)∗ with their domain and co-domain

equal to the total spaces Num(X × X)R and Num(Y × Y )R. Since the
morphism f : X → Y is finite, it is proper [5, Chap. II, Ex. 4.1]; since Y is
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a smooth curve, the morphism f is also flat [5, Chap. III, Prop. 9.7]. Then
so is the morphism f × f [2, §1.10, Prop. 1.10]. Now, from the definition
of the push-forward map for proper morphisms [2, §1.4, p. 11], we have
(f × f)∗(HX) = deg(HX/HY )HY = dHY . From the definition of the pull-
back map for flat morphism [2, §1.7, p. 18], the support of (f × f)∗(HY ) is
HX . Since moreover (f×f)∗ ◦(f×f)∗ = d2 IdNum(Y×Y )R [2, §1.7, Ex. 1.7.4]
(from which item (3) follows), we have (f×f)∗(HY ) = dHX . Formulas (2.2)
of item (1) for horizontal parts follow, and those for vertical parts work in
the same way.

Next, the projection formula [5, App. A, A4] asserts that

∀ D ∈ Num(X ×X)R, ∀ C ∈ Num(Y × Y )R,
(f × f)∗(D) · C = D · (f × f)∗(C)

where the first (resp. second) intersection product is intersection in the
surface X ×X (resp. Y ×Y ). Going back to ϕ, these proves that ϕ∗ ◦ϕ∗ =
IdNum(Y×Y )R and that ϕ∗(D) · C = D · ϕ∗(C). Using formulas (2.2), we
deduce thatHX ·ϕ∗(D) = HY ·D (the same with VX , VY ) and thus ϕ∗(EY ) ⊂
EX . In the same way ϕ∗(EX) ⊂ EY , so that item (1) is proved.

From now on, we restrict the maps ϕ∗ and ϕx to the subspaces EY and EX

without changing the notations. Item (2) is only a restatement of the pro-
jection formula above. Item (4) is an easy consequence of items (2) and (3).
Last, the morphism ϕ∗ ◦ ϕ∗ is by item (3) a projector whose image is the
space ϕ∗(EY ). For γ ∈ EX , by items (2) and (3), one has

〈ϕ∗ ◦ ϕ∗(γ), γ − ϕ∗ ◦ ϕ∗(γ)〉X
=
〈
ϕ∗(γ), ϕ∗(γ)

〉
Y
−
〈
ϕ∗(γ), ϕ∗ ◦ ϕ∗ ◦ ϕ∗(γ)

〉
Y

= 0

and thus, writing γ = ϕ∗ ◦ ϕ∗(γ) + (γ − ϕ∗ ◦ ϕ∗(γ)), we see that this is
the sum of two orthogonal elements, the first one lying in ϕ∗(EY ) and the
second one in ϕ∗(EY )⊥. This proves item (5). �

Remark. Since the pull-back map ϕ∗X/Y is an isometry (and thus is injec-
tive), we could have identified the space EY with its embedding ϕ∗X/Y (EY )
inside EX . With this point of view, the push-forward map ϕX/Y ∗ is truly
the orthogonal projection of EX onto EY . In every proofs in the sequel,
the reader may feels more comfortable by skipping all the ϕ∗_/_ maps and
thinking to the ϕ_/_∗ maps as orthogonal projections.

The “bottom” space EY embeds into the “top” space EX via the pull-
back morphism ϕ∗X/Y , and the orthogonal complement of this embedding
ϕ∗X/Y (EY ) into EX plays a crucial role in the whole paper.
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Definition 2.2. The orthogonal complement ϕ∗X/Y (EY )⊥ of ϕ∗X/Y (EY ) in-
side EX is denoted by EX/Y and is called the relative space for the covering
X → Y .

We emphasize for future need the fact that this space EX/Y is contained
in the kernel of the push-forward morphism.

Lemma 2.3. The push-forward morphism ϕX/Y ∗ is zero on the relative
space EX/Y for X → Y .

Proof. Let γ ∈ EX/Y = ϕ∗(EY )⊥. Then, ϕ∗ ◦ ϕ∗(γ) = 0 by Proposition 2.1
item (5), so that ϕ∗(γ) = 0 by item (4). �

2.2. The relative part of the γiX ’s in a covering. In this section,
we look at the image of the iterated Frobenius graphs and their orthogonal
projection into the spaces EX and EY (see Definition 1.2) under the maps ϕ∗
and ϕ∗.

We begin by stating a Lemma.

Lemma 2.4. For any i ≥ 0, one has ϕX/Y ∗(γ
i
X) = γi

Y .

Proof. From Definition 1.2 together with Formula (1.1), we have

γi
X = pX(Γi

X) = Γi
X −HX − qiVX

and
γi

Y = pY (Γi
Y ) = Γi

Y −HY − qiVY .

Since (f×f)(Γi
X) = Γi

Y and deg(Γi
X/Γi

Y ) = d for any i ≤ 0, we get from the
definition of the push-forward map [2, §1.4, p. 11] that (f×f)∗(Γi

X) = dΓi
Y .

The Lemma follows using item (1) of Proposition 2.1. �

In the other direction, it turns out that we do not have equality
ϕ∗X/Y (γi

Y ) = γi
X , but rather the very fruitful following orthogonal decom-

position. In view of definition 2.2, we have the orthogonal sum

(2.4) EX = ϕ∗(EY )⊕ EX/Y .

For i ≥ 0, the corresponding decomposition of γi
X is

(2.5) γi
X = ϕ∗(γi

Y )︸ ︷︷ ︸
∈ϕ∗(EY )

+
(
γi

X − ϕ∗(γi
Y )
)︸ ︷︷ ︸

∈ϕ∗(EY )⊥

,

since by Proposition 2.1 item (2) together with Lemma (2.4), the orthogonal
projection of γi

X is ϕ∗(γi
Y ). The orthogonal components γi

X −ϕ∗(γi
Y ) inside

EX/Y = ϕ∗(EY )⊥ turning to be of greatest importance in the sequel, we
give them a name in the following Definition.
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Definition 2.5. For i ≥ 0, the component
γi

X/Y = γi
X − ϕ∗(γi

Y ) ∈ EX/Y ,

of γi
X inside EX/Y is called the i-th relative part of the Frobenius.

We can relate in the following Lemma the scalar products between the
relative parts of γi

X and γi+j
X , for any i, j ≥ 0, to standard geometrical and

arithmetical invariants of both curves X and Y .

Lemma 2.6. For any i ≥ 0 and j > 0, we have∥∥γi
X/Y

∥∥
X

=
√

2(gX − gY )qi

and 〈
γi

X/Y , γ
i+j
X/Y

〉
X

= qi(]Y (Fqj )− ]X(Fqj )
)
.

Proof. Since γi
X/Y ⊥ ϕ

∗(γi
Y ), the first norm calculation is just Pythagorean

Theorem. Indeed, we have for any i ≥ 0∥∥γi
X

∥∥2
X

=
∥∥ϕ∗(γi

Y )
∥∥2

X
+
∥∥γi

X/Y

∥∥2
X

by Def. 2.5 and Pythagore

=
∥∥γi

Y

∥∥2
Y

+
∥∥γi

X/Y

∥∥2
X
, since ϕ∗ isometric (Prop. 2.1, item (4))

from which we deduce using (1.2) that 2gXq
i = 2gY q

i + ‖γi
X/Y ‖

2
X .

Taking again into account orthogonality, we also easily compute the
scalar product〈
γi

X/Y , γ
i+j
X/Y

〉
X

=
〈
γi

X , γ
i+j
X

〉
X
−
〈
ϕ∗
(
γi

Y

)
, ϕ∗

(
γi+j

Y

)〉
X

by Def. 2.5 and
orthogonality

=
〈
γi

X , γ
i+j
X

〉
X
−
〈
γi

Y , γ
i+j
Y

〉
Y

since ϕ∗ isometric

= qi
(
(qj + 1)− ]X(Fqj )

)
− qi

(
(qj + 1)− ]Y (Fqj )

)
, by (1.2)

as requested. �

We end this Section with a Lemma giving a useful result on the push-
forward of the relative part of the γi’s.

Lemma 2.7. In a tower X → Y → Z, we have for any i ≥ 0
ϕX/Y ∗(γ

i
X/Z) = γi

Y/Z .

Proof. Applying ϕX/Y ∗ to the identity γi
X = ϕ∗X/Z(γi

Z) + γi
X/Z , we obtain

thanks to Lemma (2.4)

γi
Y = ϕX/Y ∗ ◦ ϕ

∗
X/Y ◦ ϕ

∗
Y/Z(γi

Z) + ϕX/Y ∗(γ
i
X/Z),
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that is γi
Y = ϕ∗Y/Z(γi

Z) +ϕX/Y ∗(γ
i
X/Z) by Proposition 2.1 item (3), proving

the Lemma using Definition 2.5. �

3. Applications to relative bounds on numbers of rational points
of curves

We prove Propositions 3.1 and 3.2 in the first Subsection, so as Theo-
rem 3.7 in the second one, in the very same spirit as in our previous work [4,
Thm. 11 and Prop. 12, pp. 5420-5421].

3.1. First application: number of points in a covering X → Y . As
told in the introduction, Propositions 3.1 below is well known. We think it
is interesting to show how it is neat using the euclidean framework.

Proposition 3.1. Suppose that there exists a finite morphism X → Y .
Then we have

|]X(Fq)− ]Y (Fq)| ≤ 2(gX − gY )√q.

Proof. We apply Schwarz inequality to the relative vectors γ0
X/Y and γ1

X/Y .
We obtain from Lemma 2.6∣∣∣q0 (]X(Fq)− ]Y (Fq))

∣∣∣2 =
∣∣∣〈γ0

X/Y , γ
1
X/Y

〉∣∣∣2
≤ ‖γ0

X/Y ‖
2
X × ‖γ1

X‖2X
= 2(gX − gY )q0 × 2(gX − gY )q1,

hence the Proposition. �

The following Proposition 3.2 is the relative form of a previous absolute
bound [4, Prop. 12]. Of course, although less nice, such upper bounds can
be given for ]X(Fqn)− ]Y (Fqn), for any n ≥ 2.

Proposition 3.2. For any finite morphism X → Y with gX 6= gY , we have

]X(Fq2)− ]Y (Fq2) ≤ 2(gX − gY )q −

(
]X(Fq)− ]Y (Fq)

)2

gX − gY
.

Proof. The idea is to write down the matrix Gram(γ0
X/Y , γ

1
X/Y , γ

2
X/Y ) using

Lemma 2.6, and then to use that it has a non-negative determinant. In fact,
as noted in our previous work [4], it is more convenient to write down

Gram
(
qγ0

X/Y + γ2
X/Y , γ

1
X/Y

)
=
(

4(gX − gY )q2 + 2qδ2 2qδ1
2qδ1 2(gX − gY )q

)
where we put δi = ]Y (Fqi) − ]X(Fqi), i = 1, 2 for short. The result to be
proved is just the fact that this matrix has a non-negative determinant. �
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3.2. Second application: number of points in some commutative
diagram (3.1). We focus in this Subection on the situation of a commu-
tative diagram

(3.1)

X

Y1 Y2

Z

p1 p2

f1 f2

of finite covers of absolutely irreducible smooth projective curves defined
over Fq. In order to give a relationship between the number of rational
points of the involved curves, we need a decomposition of γi

X , for i = 1, 2,
much sharper than the one given by (2.5), taking into account the whole
diagram.

3.2.1. Pull-back and push-forward morphisms in a commutative
diagram. Applying results of §2, we have ten relative linear maps that fit
into a diagram of four Euclidean spaces:

(3.2)

EX

EY1

EZ

EY2

ϕ ∗
Y
1 /Z

ϕ
∗X

/
Z

ϕ
∗

Y 2
/Z

ϕ
∗

X
/

Y 1
ϕ ∗
X

/
Y
2

ϕ
X

/
Z

∗

ϕ
Y

1 /Z
∗ ϕ Y 2

/Z
∗

ϕ X
/

Y 1 ∗
ϕ

X
/

Y
2

∗

As noted in the proof of Proposition 2.1, all the involved morphisms fi×fi

and pi × pi from a square surface to another are proper and flat. As a
consequence, the push-forward and pull-back operations are functorial [2,
§1.4, p 11 & §1.7, p 18], that is we have ϕX/Z∗ = ϕYi/Z∗◦ϕX/Yi∗ and ϕ

∗
X/Z =

ϕ∗X/Yi
◦ϕ∗Yi/Z for i = 1, 2. We also recall that all the ϕ∗_/_ maps are isometric

embeddings by Proposition 2.1.
In order to understand better the relationships between these euclidean

vector spaces and linear maps, we need a new hypothesis in the following
Lemma.
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Lemma 3.3. Consider a commutative diagram of curves like in (3.1). Sup-
pose that the fiber product Y1 ×Z Y2 is absolutely irreducible and smooth.
Then, we have:

(1) ϕX/Y2∗ ◦ ϕ
∗
X/Y1

= ϕ∗Y2/Z ◦ ϕY1/Z∗ on EY1;
(2) inside EX , the subspaces ϕ∗X/Y1

(EY1/Z) and ϕ∗X/Y2
(EY2/Z) are orthog-

onal, and lie into ϕ∗X/Z(EZ)⊥ = EX/Z .

Proof. Let us prove the first item. By the universal property of the fiber
product, the two top morphisms in the commutative starting diagram (3.1)
factor through

g : X −→ Y1 ×Z Y2 ⊂ Y1 × Y2
x 7−→ (p1(x), p2(x)),

yielding to the diagram

Y1 ×Z Y2

X

Y1

Z

Y2

f1 f2

π1 π
2

g

p 1
p

2

,

where πi is the projection of the fiber product Y1×ZY2 ⊂ Y1×Y2 on the i-th
factor Yi and pi = πi ◦ g. This last diagram induces a similar one between
the five squared curves, related by the seven squared morphisms. As already
noted, all these squared morphisms are proper and flat, the flatness of g×g
following from the smoothness assumption on Y1 ×Z Y2.

Since the bottom square involving the nodes (Y1 ×Z Y2)2, Y 2
i i = 1, 2,

and Z2 is itself a fiber square, we know that [2, Prop. 1.7 p. 18],

(3.3) (π2 × π2)∗ ◦ (π1 × π1)∗ = (f2 × f2)∗ ◦ (f1 × f1)∗

on Num(Y1 × Y1)R. Since g × g is also finite and flat, we also know that
(g × g)∗ ◦ (g × g)∗ = (deg g)2 IdNum(Y1×Y1)R [2, Ex 1.7.4 p. 20]. Taking into
account normalizations (2.1), item (1) follows now by direct calculation
from (3.3) and the multiplicativity of the degree in towers of finite mor-
phisms.

For the second item, we first prove that

ϕ∗X/Yi
(EYi/Z) ⊂ EX/Z =

(
ϕ∗X/Z(EZ)

)⊥
.
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Let γZ ∈ EZ and γi ∈ EYi/Z for i = 1 or 2. We have〈
ϕ∗X/Z(γZ), ϕ∗X/Yi

(γi)
〉

X

=
〈
ϕ∗X/Yi

◦ ϕ∗Yi/Z(γZ), ϕ∗X/Yi
(γi)

〉
X

=
〈
ϕ∗Yi/Z(γZ), γi

〉
Yi

since ϕ∗X/Yi
is an isometry

= 0
since ϕ∗Yi/Z(γZ) ∈ ϕ∗Yi/Z(EZ)
and γi ∈ EYi/Z = (ϕ∗Yi/Z(EZ))⊥.

Last, let γ1 ∈ EY1/Z . Then, we have by item (1) together with Lemma 2.3

ϕX/Y2∗ ◦ ϕ
∗
X/Y1

(γ1) = ϕ∗Y2/Z ◦ ϕY1/Z∗(γ1) = 0.

It follows by adjunction that, for any γ2 ∈ EY2 , we have〈
ϕ∗X/Y1

(γ1), ϕ∗X/Y2
(γ2)

〉
X

=
〈
ϕX/Y2∗ ◦ ϕ

∗
X/Y1

(γ1), γ2
〉

Y2

=
〈
0, γ2

〉
Y2

= 0,

so that ϕ∗X/Y1
(EY1/Z) ⊂ (ϕ∗X/Y2

(EY2))⊥ ⊂ (ϕ∗X/Y 2(EY2/Z))⊥, and the proof
is complete. �

3.2.2. The relative part of the γiX’s in a commutative diagram.
We are now ready to introduce some orthogonal decompositions of the γi

X ’s
inside EX sharper than the one

(3.4) γi
X = ϕ∗X/Z(γi

Z)︸ ︷︷ ︸
∈ϕ∗

X/Z
(EZ)

+ γi
X/Z︸ ︷︷ ︸
∈EX/Z

given in Section 2 for the covering X → Z, that takes into account the
whole diagram (3.1) below X.

There is, from item (2) of Lemma 3.3, an orthogonal decomposition of
EX/Z of the form

EX/Z = ϕ∗X/Y1
(EY1/Z)⊕ ϕ∗X/Y2

(EY2/Z)⊕ E12(3.5)

for some uniquely defined subspace EX/Y1,Y2/Z = E12 for simplicity. To study
the corresponding decomposition of the relative vectors γi

X/Z ∈ EX/Z for
X → Z, we need another definition.

Definition 3.4. For i ≥ 0, denote

(3.6) γi
12 = γi

X/Z − ϕ
∗
X/Y1

(
γi

Y1/Z

)
− ϕ∗X/Y2

(
γi

Y2/Z

)
,

and we call it the i-th “square diagram” part of the Frobenius.
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Lemma 3.5. Consider the situation of diagram (3.1) in which Y1 ×Z Y2
is assumed to be absolutely irreduible and smooth. Let i ≥ 0. Then the
decomposition of γi

X/Z as an orthogonal sum accordingly to (3.5) is given by

(3.7) γi
X/Z = ϕ∗X/Y1

(
γi

Y1/Z

)︸ ︷︷ ︸
∈ϕ∗

X/Y1
(EY1/Z)

+ϕ∗X/Y2

(
γi

Y2/Z

)︸ ︷︷ ︸
∈ϕ∗

X/Y2
(EY2/Z)

+ γi
12︸︷︷︸
∈E12

.

Proof. Given Definition 3.4, formula (3.7) clearly holds true. Since the vec-
tors ϕ∗X/Y1

(γi
Y1/Z) and ϕ∗X/Y2

(γi
Y2/Z) are orthogonal thanks to Lemma 3.3,

item (2), it suffices to prove that γi
12 ⊥ ϕ∗X/Yk

(γi
Yk/Z) for k = 1, 2. Let for

instance take k = 1. Then, we have〈
γi

12, ϕ
∗
X/Y1

(γi
Y1/Z)

〉
X

=
〈
γi

X/Z , ϕ
∗
X/Y1

(γi
Y1/Z)

〉
X

−
〈
ϕ∗X/Y1

(γi
Y1/Z), ϕ∗X/Y1

(γi
Y1/Z)

〉
X

−
〈
ϕ∗X/Y2

(γi
Y2/Z), ϕ∗X/Y1

(γi
Y1/Z)

〉
X

=
〈
ϕX/Y1∗(γ

i
X/Z), γi

Y1/Z

〉
X

by adjunction

−
〈
γi

Y1/Z , γ
i
Y1/Z

〉
X

since ϕ∗X/Y1
is isometric

− 0 by Lemma 3.3, item (2)
=
〈
γi

Y1/Z , γ
i
Y1/Z

〉
X

by Lemma 2.7

−
〈
γi

Y1/Z , γ
i
Y1/Z

〉
X

= 0,
and the proof is complete. �

Next, we can compute the norms and scalar products of the γi
12’s.

Lemma 3.6. Consider a commutative diagram of curves like in (3.1). Sup-
pose that Y1×Z Y2 is absolutely irreducible and smooth. Then for any i ≥ 0,
j > 0, we have

‖γi
12‖X =

√
2(gX − gY1 − gY2 + gZ)qi

and 〈
γi

12, γ
i+j
12
〉

X
= qi(]Y1(Fqj ) + ]Y2(Fqj )− ]X(Fqj )− ]Z(Fqj )

)
.

Proof. From the orthogonal sum
γi

X/Z = ϕ∗X/Y1

(
γi

Y1/Z

)
+ ϕ∗X/Y2

(
γi

Y2/Z

)
+ γi

12,

we get using Pythagorean theorem∥∥γi
X/Z

∥∥2
X

=
∥∥ϕ∗X/Y1

(
γi

Y1/Z

)∣∣2
X

+
∥∥ϕ∗X/Y2

(
γi

Y2/Z

)∥∥2
X

+
∥∥γi

12
∥∥2

X
,
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and also 〈
γi

X/Z , γ
i+j
X/Z

〉
X

=
〈
ϕ∗X/Y1

(
γi

Y1/Z

)
, ϕ∗X/Y1

(
γi+j

Y1/Z

)〉
X

+
〈
ϕ∗X/Y2

(
γi

Y2/Z

)
, ϕ∗X/Y2

(
γi+j

Y2/Z

)〉
X

+
〈
γi

12, γ
i+j
12
〉

X
.

This allows to conclude using Lemma 2.6 and the fact that all the maps
ϕ∗_/_ are isometries. �

3.2.3. Number of rational points in a commutative diagram. We
can now prove the following result.

Theorem 3.7. Let X,Y1, Y2 and Z be absolutely irreducible smooth projec-
tive curves in a commutative diagram (3.1) of finite morphisms. Suppose
that the fiber product Y1 ×Z Y2 is absolutely irreducible and smooth. Then

|]X(Fq)− ]Y1(Fq)− ]Y2(Fq) + ]Z(Fq)| ≤ 2(gX − gY1 − gY2 + gZ)√q.

Proof. In the same way than for the proof of Proposition 3.1, this is Schwarz
inequality for γ0

12 and γ1
12 together with Lemma 3.6. �

For Y1×ZY2 to be irreducible, it suffices that the two function fields Fq(Y1)
and Fq(Y2) are linearly disjoint over Fq(Z) inside Fq(X) ; it is moreover
absolutely irreducible if Fq is algebraically closed inside the compositum
of Fq(Y1) and Fq(Y2). For Y1 ×Z Y2 to be smooth at a point (Q1, Q2), it
is necessary and sufficient that at least one of the morphisms Yi → Z is
unramified at Qi. Thus it is smooth if and only if the “branch loci” of the
covers Yi → Z are disjoint.

It worth noticing that Theorem 3.7 cannot hold without any hypoth-
esis. For instance, if gZ ≥ 2 and if X = Y1 = Y2 and if the (non con-
stant) morphisms Yi → Z are the same, then the right hand side equals
2(gX − 2gX + gZ)√q = −2(gX − gZ)√q, a negative number! In this case,
the Theorem 3.7 does not apply since Y1 ×Z Y2 is not irreducible.

Theorem 3.7 is a refinement of Proposition 3.1 since one can recover the
latter by taking Z = Y1 = Y2. In the special case where X = Y1 ×Z Y2, one
can compute its genus using intersection theory:

gX = d1gY2 + d2gY1 + (d1 − 1)(d2 − 1)− d1d2gZ

or
gX − 1 = d1 (gY2 − 1) + d2 (gY1 − 1)− d1d2 (gZ − 1)

where we put di = deg(Yi → Z) (see [3, Lem. 3]). Hence

|]Y1 ×Z Y2(Fq)− ]Y1(Fq)− ]Y2(Fq) + ]Z(Fq)|
≤ 2 [(d1 − 1) (gY2 − 1) + (d2 − 1) (gY1 − 1)− (d1d2 − 1) (gZ − 1)]√q.
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