Journées

ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Évian, 2 juin-6 juin 2008

Nicolas Lerner
Anisotropic Bose-Einstein condensates and metaplectic transformations
J. É. D. P. (2008), Exposé no VI, 12 p.
<http://jedp.cedram.org/item?id=JEDP_2008 \qquad A6_0>

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Anisotropic Bose-Einstein condensates and metaplectic transformations

Nicolas Lerner

Abstract

This conference is a report on a joint work with A. Aftalion and X. Blanc. A detailed paper is available on HAL: Fast rotating condensates in an asymmetric trap (http://hal.archives-ouvertes.fr/hal-00342278/fr/).

1. Introduction

1.1. Bose - Einstein condensates

Bose-Einstein Condensation in a gas: it is a new form of matter at the coldest temperatures in the universe... Predicted 1924... by Albert Einstein and Satyendra Nath Bose ...Created 1995 by Eric Cornell, Wolfgang Ketterle, Carl Wieman.

When the temperature is close enough to the absolute zero, (~ 1 nanokelvin), identical atoms with integer spin, trapped in a potential well are all described by the same wave function, linked to the ground state of the well. Fast rotating BEC: the rotation is triggering the creation of vortices, i.e. lines where the density $|\psi|^{2}$ is vanishing.

1.2. The Gross-Pitaevskii energy

The starting point is

$$
\begin{equation*}
E_{G P}(\psi)=\frac{1}{2}\left\langle q_{\omega, \nu, \epsilon}^{w} \psi, \psi\right\rangle_{L^{2}\left(\mathbb{R}^{2}\right)}+\frac{g}{2} \int_{\mathbb{R}^{2}}|\psi|^{4} d x \tag{1.1}
\end{equation*}
$$

where $q_{\omega, \nu, \epsilon}$ is a quadratic form depending on the real parameters ω, ν, ϵ such that

$$
\omega^{2}+\nu^{2}+\epsilon^{2}=1
$$

Here q^{w} is the operator with Weyl symbol

$$
q\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=\xi_{1}^{2}+\xi_{2}^{2}+\left(1-\nu^{2}\right) x_{1}^{2}+\left(1+\nu^{2}\right) x_{2}^{2}-2 \omega\left(x_{1} \xi_{2}-x_{2} \xi_{1}\right)
$$

Keywords: Bose-Einstein condensates; Bargmann spaces; Metaplectic transformation; Theta functions; Abrikosov lattice.
i.e. $q^{w}=D_{1}^{2}+D_{2}^{2}+\left(1-\nu^{2}\right) x_{1}^{2}+\left(1+\nu^{2}\right) x_{2}^{2}-2 \omega\left(x_{1} D_{2}-x_{2} D_{1}\right)$. We would like to minimize the energy $E_{G P}(\psi)$ under the constraint $\|\psi\|_{L^{2}}=1$ and understand what is happening when $\epsilon \rightarrow 0$.

1.3. The isotropic Lowest Landau Level

When the harmonic trap is isotropic, i.e. when $\nu=0$, it turns out that

$$
q=\left(\xi_{1}+\omega x_{2}\right)^{2}+\left(\xi_{2}-\omega x_{1}\right)^{2}+\epsilon^{2}\left(x_{1}^{2}+x_{2}^{2}\right)
$$

so that

$$
2 E_{G P}(\psi)=\left\|\left(D_{1}+\omega x_{2}\right) \psi+i\left(D_{2}-\omega x_{1}\right) \psi\right\|^{2}+\frac{\omega}{\pi}\|\psi\|^{2}+\epsilon^{2}\||x| \psi\|^{2}+g \int|\psi|^{4} d x .
$$

We note that, with $z=x_{1}+i x_{2}$,

$$
D_{1}+\omega x_{2}+i\left(D_{2}-\omega x_{1}\right)=\frac{1}{i \pi} \bar{\partial}-i \omega z=\frac{1}{i \pi}(\bar{\partial}+\pi \omega z)
$$

and defining $L L L_{\omega}=\left\{\psi \in L^{2}, \psi=f(z) e^{-\pi \omega|z|^{2}}\right\}=\operatorname{ker}(\bar{\partial}+\pi \omega z) \cap L^{2}$, we get for $\psi \in L L L,\|\psi\|_{L^{2}}=1$,

$$
E_{G P}(\psi)=\frac{1}{2}\|\underbrace{\left(D_{1}+\omega x_{2}\right) \psi+i\left(D_{2}-\omega x_{1}\right) \psi}_{(i \pi)^{-1}(\bar{\partial}+\pi \omega z) \psi=0}\|^{2}+\frac{\omega}{2 \pi}+\frac{\epsilon^{2}}{2}\||x| \psi\|^{2}+\frac{g}{2} \int|\psi|^{4} d x,
$$

and with $\psi(x)=u\left((\omega \epsilon)^{1 / 2} x\right)(\omega \epsilon)^{1 / 2}$ (unitary change in $\left.L^{2}\left(\mathbb{R}^{2}\right)\right)$,

$$
E_{G P}(\psi)=\frac{\omega}{2 \pi}+\frac{\epsilon}{2 \omega}\left(\int|y|^{2}|u(y)|^{2} d y+\omega^{2} g \int|u(y)|^{4} d y\right) .
$$

The minimization problem of $E_{G P}(\psi)$ in the $L L L_{\omega}$ is thus reduced to study

$$
E_{L L L}(u)=\||x| u\|_{L^{2}}^{2}+\omega^{2} g\|u\|_{L^{4}}^{4}, \quad u \in L L L_{\epsilon^{-1}}
$$

i.e. with $z=x_{1}+i x_{2}, u\left(x_{1}, x_{2}\right)=f(z) e^{-\pi \epsilon^{-1}|z|^{2}}, f$ entire (and $u \in L^{2}$).

$$
E_{L L L}(u)=\int|x|^{2}|u(x)|^{2} d x+\omega^{2} g \int|u(x)|^{4} d x, L^{2} \ni u=f(z) e^{-\pi \epsilon^{-1}|z|^{2}}, f \text { entire. }
$$

This program has been successively carried out in a paper by A. Aftalion, X. Blanc, F. Nier. A key point is the fact that, in this isotropic case, the diagonalisation of the quadratic hamiltonian is rather simple:

$$
q=\overbrace{\left(\frac{1-\omega}{2}\right)\left(\xi_{1}-x_{2}\right)^{2}}^{\eta_{1}^{2}}+\overbrace{\left(\frac{1-\omega}{2}\right)\left(\xi_{2}+x_{1}\right)^{2}}^{\mu_{1}^{2} y_{1}^{2}}+\underbrace{\left(\frac{1+\omega}{2}\right)\left(\xi_{1}+x_{2}\right)^{2}}_{\eta_{2}^{2}}+\underbrace{\left(\frac{1+\omega}{2}\right)\left(\xi_{2}-x_{1}\right)^{2}}_{\mu_{2}^{2} y_{2}^{2}}
$$

Since we want to tackle the non-isotropic case where $\nu \neq 0$ in

$$
q=\xi_{1}^{2}+\xi_{2}^{2}+\left(1-\nu^{2}\right) x_{1}^{2}+\left(1+\nu^{2}\right) x_{2}^{2}-2 \omega\left(x_{1} \xi_{2}-x_{2} \xi_{1}\right),
$$

one would like to determine the anisotropic $L L L$. The symplectic diagonalization of q requires some particular attention.

2. Quadratic Hamiltonians

2.1. On positive definite quadratic forms on symplectic spaces

If Q is a positive definite quadratic form on the symplectic $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$, one can find some symplectic linear coordinates (y, η) such that

$$
Q=\sum_{1 \leq j \leq n} \mu_{j}\left(\eta_{j}^{2}+y_{j}^{2}\right), \quad \mu_{j}>0 .
$$

The $2 n$ eigenvalues of the fundamental matrix

$$
F=\sigma Q, \quad \sigma=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

(σ is the matrix of the symplectic form) are the $\left\{ \pm i \mu_{j}\right\}_{1 \leq j \leq n}$, related to the $2 n$ eigenvectors $\left\{e_{j} \pm i \epsilon_{j}\right\}_{1 \leq j \leq n}$. The $\left\{e_{j}, \epsilon_{j}\right\}_{1 \leq j \leq n}$ make a symplectic basis of $\mathbb{R}^{2 n}$:

$$
\sigma\left(\epsilon_{j}, e_{k}\right)=\delta_{j, k}, \quad \sigma\left(\epsilon_{j}, \epsilon_{k}\right)=\sigma\left(e_{j}, e_{k}\right)=0,
$$

and the symplectic planes $\Pi_{j}=\mathbb{R} e_{j} \oplus \mathbb{R} \epsilon_{j}$ are orthogonal for Q.
A one-line-proof of these classical facts: on $\mathbb{C}^{2 n}$ equipped with the dot-product Q, diagonalize the sesquilinear Hermitian form $i \sigma$. The symplectic group $S p(n)$ (a subgroup of $S l(2 n, \mathbb{R})$), is defined by the equation

$$
\chi^{*} \sigma \chi=\sigma, \quad \text { i.e. } \forall X, Y \in \mathbb{R}^{2 n},\langle\sigma \chi X, \chi Y\rangle=\langle\sigma X, Y\rangle .
$$

Lemma. Let $B \in G L(n, \mathbb{R})$ and let A, C be $n \times n$ real symmetric matrices. Then the matrix Ξ, given by $n \times n$ blocks

$$
\Xi_{A, B, C}=\left(\begin{array}{cc}
B^{-1} & -B^{-1} C \\
A B^{-1} & B^{*}-A B^{-1} C
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
A & I
\end{array}\right)\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & B^{*}
\end{array}\right)\left(\begin{array}{cc}
I & -C \\
0 & I
\end{array}\right)
$$

belongs to $S p(n)$. Any element of $S p(n)$ can be written as a product $\Xi_{A_{1}, B_{1}, C_{1}} \Xi_{A_{2}, B_{2}, C_{2}}$.
We shall use that lemma to diagonalize our Hamiltonian.

2.2. Effective diagonalization and the symplectic group

We want $q=\eta_{1}^{2}+\mu_{1}^{2} y_{1}^{2}+\eta_{2}^{2}+\mu_{2}^{2} y_{2}^{2}$. We find (easily) the eigenvalues

$$
0 \leq \mu_{1}^{2}=1+\omega^{2}-\alpha \leq \mu_{2}^{2}=1+\omega^{2}+\alpha, \quad \alpha=\sqrt{\nu^{4}+4 \omega^{2}} .
$$

We want to determine the symplectic mapping reducing q. It gets more complicated: we introduce the parameters

$$
\begin{aligned}
& \beta_{1}=\frac{2 \omega \mu_{1}}{\alpha-2 \omega^{2}+\nu^{2}}=\frac{\alpha-2 \omega^{2}-\nu^{2}}{2 \omega \mu_{1}} \text { since }\left(\alpha-2 \omega^{2}\right)^{2}-\nu^{4}=4 \omega^{2}+4 \omega^{4}-4 \omega^{2} \alpha=4 \omega^{2} \mu_{1}^{2}, \\
& \beta_{2}=\frac{2 \omega \mu_{2}}{\alpha+2 \omega^{2}+\nu^{2}}=\frac{\alpha+2 \omega^{2}-\nu^{2}}{2 \omega \mu_{2}} \text { since }\left(\alpha+2 \omega^{2}\right)^{2}-\nu^{4}=4 \omega^{2}+4 \omega^{4}+4 \omega^{2} \alpha=4 \omega^{2} \mu_{2}^{2}, \\
& \gamma=\frac{2 \alpha}{\omega}, \\
& \lambda_{1}^{2}=\frac{\mu_{1}}{\mu_{1}+\beta_{1} \beta_{2} \mu_{2}}=\frac{1}{1+\frac{\beta_{1} \beta_{2} \mu_{2}}{\mu_{1}}}=\frac{1}{1+\frac{\alpha+2 \omega^{2}-\nu^{2}}{\alpha-2 \omega^{2}+\nu^{2}}}=\frac{\alpha-2 \omega^{2}+\nu^{2}}{2 \alpha}, \\
& \lambda_{2}^{2}=\frac{\mu_{2}}{\mu_{2}+\beta_{1} \beta_{2} \mu_{1}}=\frac{1}{1+\frac{\beta_{1} \beta_{2} \mu_{1}}{\mu_{2}}}=\frac{1}{1+\frac{\alpha-2 \omega^{2}-\nu^{2}}{\alpha+2 \omega^{2}+\nu^{2}}}=\frac{\alpha+2 \omega^{2}+\nu^{2}}{2 \alpha}, \\
& \text { and we have } \quad \lambda_{1}^{2}+\lambda_{2}^{2}=1+\frac{\nu^{2}}{\alpha}, \quad \lambda_{1}^{2} \lambda_{2}^{2}=\frac{\left(\alpha+\nu^{2}\right)^{2}-4 \omega^{4}}{4 \alpha^{2}}, \\
& d=\frac{\gamma \lambda_{1} \lambda_{2}}{2}, \quad c=\frac{\lambda_{1}^{2}+\lambda_{2}^{2}}{2 \lambda_{1} \lambda_{2}} \quad \text { which gives } \quad c d=\frac{2 \alpha\left(1+\nu^{2} / \alpha\right)}{4 \omega}=\frac{\alpha+\nu^{2}}{2 \omega} .
\end{aligned}
$$

We define the symplectic mapping χ :

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\xi_{1} \\
\xi_{2}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & -\frac{\lambda_{1}}{d} \\
0 & \lambda_{2} & -\frac{\lambda_{2}}{d} & 0 \\
0 & \frac{d}{\lambda_{1}}-\lambda_{2} c d & c \lambda_{2} & 0 \\
\frac{d}{\lambda_{2}}-\lambda_{1} c d & 0 & 0 & c \lambda_{1}
\end{array}\right)}_{=\chi}\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\eta_{1} \\
\eta_{2}
\end{array}\right)
$$

and we have

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\eta_{1} \\
\eta_{2}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
c \lambda_{2} & 0 & 0 & \frac{\lambda_{2}}{d} \\
0 & c \lambda_{1} & \frac{\lambda_{1}}{d} & 0 \\
0 & -\frac{d}{\lambda_{2}}+\lambda_{1} c d & \lambda_{1} & 0 \\
-\frac{d}{\lambda_{1}}+\lambda_{2} c d & 0 & 0 & \lambda_{2}
\end{array}\right)}_{=\chi^{-1}}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\xi_{1} \\
\xi_{2}
\end{array}\right) .
$$

The matrix $\chi=\Xi_{A, B, C}=\left(\begin{array}{cc}I & 0 \\ A & I\end{array}\right)\left(\begin{array}{cc}B^{-1} & 0 \\ 0 & B^{*}\end{array}\right)\left(\begin{array}{cc}I & -C \\ 0 & I\end{array}\right)$ with

$$
B=\left(\begin{array}{cc}
\lambda_{1}^{-1} & 0 \\
0 & \lambda_{2}^{-1}
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & d^{-1} \\
d^{-1} & 0
\end{array}\right), \quad A=\left(\begin{array}{cc}
0 & \frac{d}{\lambda_{1} \lambda_{2}}-c d \\
\frac{d}{\lambda_{1} \lambda_{2}}-c d & 0
\end{array}\right) .
$$

Anyhow, is is possible to find explicitly a symplectic transformation diagonalizing our quadratic form.

$$
\begin{aligned}
q(x, \xi) & =\xi_{1}^{2}+\xi_{2}^{2}+\left(1-\nu^{2}\right) x_{1}^{2}+\left(1+\nu^{2}\right) x_{2}^{2}-2 \omega\left(x_{1} \xi_{2}-x_{2} \xi_{1}\right) \\
& =(q \circ \chi)(y, \eta)=\eta_{1}^{2}+\mu_{1}^{2} y_{1}^{2}+\eta_{2}^{2}+\mu_{2}^{2} y_{2}^{2} .
\end{aligned}
$$

Moreover the particular form $\Xi_{A, B, C}$ above is quite helpful.

2.3. Generating functions

We define on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ the generating function S of the symplectic mapping

$$
\Xi_{A, B, C}=\left(\begin{array}{cc}
B^{-1} & -B^{-1} C \\
A B^{-1} & B^{*}-A B^{-1} C
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
A & I
\end{array}\right)\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & B^{*}
\end{array}\right)\left(\begin{array}{cc}
I & -C \\
0 & I
\end{array}\right)
$$

by the identity

$$
S(x, \eta)=\frac{1}{2}(\langle A x, x\rangle+2\langle B x, \eta\rangle+\langle C \eta, \eta\rangle) \text { so that } \quad \Xi\left(\frac{\partial S}{\partial \eta} \oplus \eta\right)=x \oplus \frac{\partial S}{\partial x} .
$$

Note: for a symplectic mapping Ξ, to be of the form above is equivalent to the assumption that the mapping $x \mapsto p r_{1} \Xi(x \oplus 0)$ is invertible from \mathbb{R}^{n} to \mathbb{R}^{n}; moreover, if this mapping is not invertible, the symplectic mapping Ξ is the product of two mappings of the type $\Xi_{A, B, C}$. The (symplectic) mapping $\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$ has no generating function but is the product

$$
2^{-1 / 2}\left(\begin{array}{cc}
I & I \\
-I & I
\end{array}\right) 2^{-1 / 2}\left(\begin{array}{cc}
I & I \\
-I & I
\end{array}\right) .
$$

3. Quantization

3.1. Irving E. Segal formula

Let a be defined on $\mathbb{R}_{x}^{n} \times \mathbb{R}_{\xi}^{n}$. Its Weyl quantization is the operator

$$
\left(a^{w} u\right)(x)=\iint e^{2 i \pi\left(x-x^{\prime}\right) \xi} a\left(\frac{x+x^{\prime}}{2}, \xi\right) u\left(x^{\prime}\right) d x^{\prime} d \xi .
$$

Note that $\xi_{j}^{w} u=\frac{1}{2 i \pi} \frac{\partial u}{\partial x_{j}}=D_{j} u, \quad x_{j}^{w} u=x_{j} u, \quad\left(x_{j} \xi_{j}\right)^{w}=\frac{1}{2}\left(x_{j} D_{j}+D_{j} x_{j}\right)$. Let χ be a linear symplectic transformation $\chi(y, \eta)=(x, \xi)$. Segal's formula : there exists a unitary transformation M of $L^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
(a \circ \chi)^{w}=M^{*} a^{w} M, \quad \text { i.e. } \quad\left\langle(a \circ \chi)^{w} v_{1}, v_{2}\right\rangle_{L^{2}\left(\mathbb{R}_{y}^{n}\right)}=\left\langle a^{w} M v_{1}, M v_{2}\right\rangle_{L^{2}\left(\mathbb{R}_{x}^{n}\right)} .
$$

3.2. The metaplectic group and the generating functions

For a given χ, how can we determine M ? Of course M is not unique, since it can be multiplied by a complex number with modulus 1 (we shall see that it is the only latitude). We shall not need here the rich algebraic structure of the two-fold covering $M p(n)$ (the metaplectic group in which live the transformations M) of the symplectic group $S p(n)$. We are glad to know a generating function for χ since, in that case

$$
(M v)(x)=\int e^{2 i \pi S(x, \eta)} \hat{v}(\eta) d \eta|\operatorname{det} B|^{1 / 2}
$$

with $S(x, \eta)=\frac{1}{2}(\langle A x, x\rangle+2\langle B x, \eta\rangle+\langle C \eta, \eta\rangle)$.

3.3. Explicit expression for M

We have

$$
\begin{aligned}
q(x, \xi) & =\xi_{1}^{2}+\xi_{2}^{2}+\left(1-\nu^{2}\right) x_{1}^{2}+\left(1+\nu^{2}\right) x_{2}^{2}-2 \omega\left(x_{1} \xi_{2}-x_{2} \xi_{1}\right) \\
& =(q \circ \chi)(y, \eta)=\eta_{1}^{2}+\mu_{1}^{2} y_{1}^{2}+\eta_{2}^{2}+\mu_{2}^{2} y_{2}^{2}, \\
(q \circ \chi)^{w} & =M^{*} q^{w} M, \quad(M v)(x)=\int e^{2 i \pi S(x, \eta)} \hat{v}(\eta) d \eta|\operatorname{det} B|^{1 / 2}, \\
S(x, \eta) & =\frac{1}{2}(\langle A x, x\rangle+2\langle B x, \eta\rangle+\langle C \eta, \eta\rangle .
\end{aligned}
$$

We get readily

$$
\begin{aligned}
(M v)\left(x_{1}, x_{2}\right)= & \left(\lambda_{1} \lambda_{2}\right)^{-1 / 2} e^{2 i \pi d\left(\left(\lambda_{1} \lambda_{2}\right)^{-1}-c\right) x_{1} x_{2}} \\
& \times \iint e^{2 i \pi d^{-1} \eta_{1} \eta_{2}} \hat{v}\left(\eta_{1}, \eta_{2}\right) e^{2 i \pi\left(\lambda_{1}^{-1} x_{1} \eta_{1}+\lambda_{2}^{-1} x_{2} \eta_{2}\right)} d \eta_{1} d \eta_{2} \\
(M v)\left(x_{1}, x_{2}\right)= & \left(\lambda_{1} \lambda_{2}\right)^{-1 / 2} e^{2 i \pi d\left(\left(\lambda_{1} \lambda_{2}\right)^{-1}-c\right) x_{1} x_{2}}\left(e^{2 i \pi d^{-1} D_{1} D_{2}} v\right)\left(\lambda_{1}^{-1} x_{1}, \lambda_{2}^{-1} x_{2}\right) .
\end{aligned}
$$

After some algebraic complications, χ and M are known explicitely in terms of ν, ω. Because of this complexity, it does not seem possible to avoid using some algebraic structure as a compass in the computations in the anisotropic case.

4. The Fock-Bargmann space and the anisotropic $L L L$

4.1. Nonnegative quantization and entire functions

The isotropic lowest Landau level was defined earlier as

$$
L L L=\left\{u \in L^{2}, u=f(z) e^{-\pi|z|^{2}}, \quad \text { with } f \text { entire }\right\}=\operatorname{ker}(\bar{\partial}+\pi z) \cap L^{2} .
$$

That space plays an important rôle in our problem of minimisation, since it is the space in which we minimize the Gross-Pitaevskii energy, leading to the problem, for $L^{2}\left(\mathbb{R}^{2}\right) \ni u=f(z) e^{-\pi \epsilon^{-1}|z|^{2}}, f$ entire, $\|u\|_{L^{2}}=1$,

$$
E_{L L L}(u)=\int|x|^{2}|u(x)|^{2} d x+\omega^{2} g \int|u(x)|^{4} d x, \quad \omega^{2}+\epsilon^{2}=1
$$

As already said, we wish to determine the anisotropic analogue of that space and that energy, and we notice that it has many links with well-known objects and notions, such as the Coherent States Method, anti-Wick symbols...

For $X, Y \in \mathbb{R}^{2 n}$ we set

$$
\Pi_{H}(X, Y)=e^{-\frac{\pi}{2}|X-Y|^{2}} e^{-i \pi[X, Y]}
$$

where $[X, Y]$ is the symplectic form (if $X=(x, \xi), Y=(y, \eta),[X, Y]=\xi \cdot y-\eta \cdot x)$. The operator Π_{H} with kernel $\Pi_{H}(X, Y)$ is the orthogonal projection in $L^{2}\left(\mathbb{R}^{2 n}\right)$ on a proper closed subspace H, canonically isomorphic to $L^{2}\left(\mathbb{R}^{n}\right)$. In fact, one may define $W: L^{2}\left(\mathbb{R}^{n}\right) \longrightarrow L^{2}\left(\mathbb{R}^{2 n}\right)$ by the formula

$$
(W u)(y, \eta)=\left\langle u, \varphi_{y, \eta}\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}, \quad \varphi_{y, \eta}(x)=2^{n / 4} e^{-\pi(x-y)^{2}} e^{2 i \pi\left(x-\frac{y}{2}\right) \eta}
$$

It is standard and easy to see that

$$
\begin{aligned}
W^{*} W & =\operatorname{Id}_{L^{2}\left(\mathbb{R}^{n}\right)} \quad\left(\text { reconstruction formula } u(x)=\int_{\mathbb{R}^{2 n}} W u(Y) \varphi_{Y}(x) d Y\right), \\
W W^{*} & =\Pi_{H}, \quad W \text { is an isomorphism from } L^{2}\left(\mathbb{R}^{n}\right) \text { onto } H, \\
H & =\left\{u \in L^{2}\left(\mathbb{R}_{y, \eta}^{2 n}\right) \text { such that } u=f(z) e^{-\frac{\pi}{2}|z|^{2}}, z=\eta+i y, f \text { entire }\right\} \\
& \text { which is the isotropic } L L L, \text { up to some normalization constant. }
\end{aligned}
$$

For a Hamiltonian a, we define $a^{\text {Wick }}=W^{*} a W$:

Note that $a(x, \xi) \geq 0 \Longrightarrow a^{\text {Wick }}=W^{*} a W \geq 0, \quad$ as an operator. The relationship between the Weyl quantization and that Wick formula is interesting, but for our problem here it is enough to note that, if q is a quadratic form,

$$
q^{\text {Wick }}=q^{w}+\frac{1}{4 \pi} \operatorname{trace} q
$$

in such a way that, up to some unimportant shift in the value of the energy, we may choose whatever quantization. A consequence of the above formula is also that, for $\Phi=W u \in H,\|\Phi\|_{L^{2}\left(\mathbb{R}^{2 n}\right)}=1=\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}$,
$\iint y_{j}^{2}|\Phi(y, \eta)|^{2} d y d \eta=\left\langle y_{j}^{2} W u, W u\right\rangle_{L^{2}\left(\mathbb{R}^{2 n}\right)}=\left\langle y_{j}^{2} u, u\right\rangle_{L^{2}\left(\mathbb{R}^{n}\right)}+\frac{1}{4 \pi}\|u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \geq 1 /(4 \pi)$.
In other words: the lowerbound of the multiplication by x_{1}^{2} in the $L L L$ is bounded below by a positive constant.

4.2. The anisotropic $L L L$

We recall:

$$
\begin{aligned}
q(x, \xi) & =\xi_{1}^{2}+\xi_{2}^{2}+\left(1-\nu^{2}\right) x_{1}^{2}+\left(1+\nu^{2}\right) x_{2}^{2}-2 \omega\left(x_{1} \xi_{2}-x_{2} \xi_{1}\right) \\
& =(q \circ \chi)(y, \eta)=\eta_{1}^{2}+\mu_{1}^{2} y_{1}^{2}+\eta_{2}^{2}+\mu_{2}^{2} y_{2}^{2} . \\
(q \circ \chi)^{w} & =M^{*} q^{w} M, \quad(M v)(x)=\int e^{2 i \pi S(x, \eta)} \hat{v}(\eta) d \eta|\operatorname{det} B|^{1 / 2},
\end{aligned}
$$

S is a generating function of $\chi, \mu_{2} \sim 1, \mu_{1} \sim \nu \epsilon$,

$$
\begin{aligned}
q^{w}=\overbrace{\left(\left(\lambda_{1} c d-d \lambda_{2}^{-1}\right) x_{2}+\lambda_{1} D_{x_{1}}\right)^{2}}^{\eta_{1}^{2}}+\overbrace{\mu_{1}^{2}\left(\lambda_{2} d^{-1} D_{x_{2}}+c \lambda_{2} x_{1}\right)^{2}}^{\mu_{1}^{2} y_{1}^{2}} \\
+\underbrace{\left(\left(\lambda_{2} c d-d \lambda_{1}^{-1}\right) x_{1}+\lambda_{2} D_{x_{2}}\right)^{2}}_{\eta_{2}^{2}}+\underbrace{\mu_{2}^{2}\left(\lambda_{1} d^{-1} D_{x_{1}}+c \lambda_{1} x_{2}\right)^{2}}_{\mu_{2}^{2} y_{2}^{2}}
\end{aligned}
$$

In the (y, η) coordinates, we want to consider the orthogonal projection onto the space of the $v_{1}\left(y_{1}\right) \otimes 2^{1 / 4} \mu_{2}^{1 / 4} e^{-\pi \mu_{2} y_{2}^{2}}$, where $v_{1} \in L^{2}(\mathbb{R})$. In fact we examine

$$
q_{0}^{w}=\left(\mu_{2} \lambda_{1} d^{-1} D_{x_{1}}+\mu_{2} c \lambda_{1} x_{2}\right)^{2}+\left(\lambda_{2} D_{x_{2}}-\left(d \lambda_{1}^{-1}-\lambda_{2} c d\right) x_{1}\right)^{2}
$$

and we note that

$$
\left\langle q_{0}^{w} u, u\right\rangle=\left\|\left(\mu_{2} \lambda_{1} d^{-1} D_{x_{1}}+\mu_{2} c \lambda_{1} x_{2}\right) u+i\left(\lambda_{2} D_{x_{2}}-\left(d \lambda_{1}^{-1}-\lambda_{2} c d\right) x_{1}\right) u\right\|^{2}+\frac{\mu_{2}}{2 \pi}\|u\|^{2} .
$$

The equation defining the $L L L$ is

$$
\begin{aligned}
& \overbrace{\left(\mu_{2} \lambda_{1} d^{-1} D_{x_{1}}+\mu_{2} c \lambda_{1} x_{2}\right)}^{\mu_{2} y_{2}}+i \overbrace{\left(\lambda_{2} D_{x_{2}}-\left(d \lambda_{1}^{-1}-\lambda_{2} c d\right) x_{1}\right)}^{\eta_{2}} \\
& =\frac{1}{2 i \pi}\left(\mu_{2} \lambda_{1} d^{-1} \partial_{1}+i \lambda_{2} \partial_{2}+2 i \pi \mu_{2} c \lambda_{1} x_{2}+2 \pi\left(d \lambda_{1}^{-1}-\lambda_{2} c d\right) x_{1}\right) \\
& \quad=\frac{1}{i \pi}\left(\frac{1}{2} \mu_{2} \lambda_{1} d^{-1} \partial_{1}+i \frac{1}{2} \lambda_{2} \partial_{2}+i \pi \mu_{2} c \lambda_{1} x_{2}+\pi\left(d \lambda_{1}^{-1}-\lambda_{2} c d\right) x_{1}\right) .
\end{aligned}
$$

We set $t_{1}=\mu_{2}^{-1} \lambda_{1}^{-1} d x_{1}, \quad t_{2}=\lambda_{2}^{-1} x_{2}$ and we get for $z=t_{1}+i t_{2}$

$$
\begin{aligned}
& \frac{\partial}{\partial \bar{z}}+i \pi \mu_{2} c \lambda_{1} \lambda_{2} t_{2}+\pi\left(d \lambda_{1}^{-1}-\lambda_{2} c d\right) \mu_{2} \lambda_{1} d^{-1} t_{1} \\
& =\frac{\partial}{\partial \bar{z}}+i \pi \mu_{2} c \lambda_{1} \lambda_{2} \frac{z-\bar{z}}{2 i}+\pi\left(d \lambda_{1}^{-1}-\lambda_{2} c d\right) \mu_{2} \lambda_{1} d^{-1} \frac{z+\bar{z}}{2} \\
& =\frac{\partial}{\partial \bar{z}}+z \pi \frac{\mu_{2}}{2}+\bar{z} \pi \frac{\mu_{2}}{2}\left(1-2 \lambda_{1} \lambda_{2} c\right)=\frac{\partial}{\partial \bar{z}}+z \pi \frac{\mu_{2}}{2}-\bar{z} \pi \frac{\mu_{2}}{2} \nu^{2} \alpha^{-1} \\
& =e^{-\pi \frac{\mu_{2}}{2} z \bar{z}} e^{\pi \frac{\nu^{2} \mu_{2}}{4 \alpha}(\bar{z})^{2}} \frac{\partial}{\partial \bar{z}} e^{\pi \frac{\mu_{2}}{2} z \bar{z}} e^{-\pi \frac{\nu^{2} \mu_{2}}{4 \alpha}(\bar{z})^{2}}
\end{aligned}
$$

Going back to the original coordinates, the anisotropic $L L L$ is thus the subspace of the functions u of $L^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
f\left(x_{1}+i \beta_{2} x_{2}\right) \exp \left(-\frac{\gamma \pi}{4 \beta_{2}}\left[x_{1}^{2}\left(1-\frac{\nu^{2}}{2 \alpha}\right)+\left(\beta_{2} x_{2}\right)^{2}\left(1+\frac{\nu^{2}}{2 \alpha}\right)\right]\right) \exp \left(-i \frac{\pi \nu^{2} \gamma}{4 \alpha} x_{1} x_{2}\right)
$$

where f is entire. The parameters β_{2}, \ldots were defined earlier and are explicitely known in terms of ω, ν.

Two remarks.

- First, it seems difficult to guess the above definition without going through the explicit computations on the diagonalization of q.
- The operator M can be used to give an explicit expression for the isomorphism between $L^{2}(\mathbb{R})$ and the anisotropic $L L L$ and also to express the GrossPitaevskii energy in the new coordinates.

4.3. From a Lagrangean plane to a symplectic plane for the LLL

The Fock-Bargmann space has a particular structure: it is a proper closed subspace of $L^{2}\left(\mathbb{R}^{2}\right)$, canonically isomorphic to $L^{2}(\mathbb{R})$; we have seen in the isotropic case that

$$
L L L=W\left(L^{2}(\mathbb{R})\right)
$$

with some explicit isometric transformation W. The same properties can be carried out in similar terms for the anisotropic case, with a different W, say \widetilde{W}; since we know that, for quadratic forms, the Wick and the Weyl quantizations are the same, up to some shift, we may decide to choose the quantization given by \widetilde{W} to quantize q, that is to consider the operator

$$
(\widetilde{W})^{*} q \widetilde{W}
$$

The outcome of these computations lead directly to a one-dimensional problem on which we will give some details in the conclusion. The Lagrangean plane $\left\{\xi_{1}=\xi_{2}=\right.$ $0\}$ of \mathbb{R}^{4} on which the function u is defined, has also a symplectic structure.

5. The various regimes for the energy

5.1. The energy in the anisotropic $L L L$

In the $L L L$, one can simplify the energy. We define
$A_{2}=M\left(\eta_{2}-i \mu_{2} y_{2}\right)^{w} M^{*}=\mu_{2}\left(\lambda_{1} d^{-1} D_{x_{1}}+c \lambda_{1} x_{2}\right)+i\left(\lambda_{2} D_{x_{2}}-\left(d \lambda_{1}^{-1}-\lambda_{2} c d\right) x_{1}\right)$,
$A_{1}=M\left(\eta_{1}-i \mu_{1} y_{1}\right)^{w} M^{*}=\mu_{1}\left(\lambda_{2} d^{-1} D_{x_{2}}+c \lambda_{2} x_{1}\right)+i\left(\left(\lambda_{1} c d-d \lambda_{2}^{-1}\right) x_{2}+\lambda_{1} D_{x_{1}}\right)$.
We have proven

$$
q^{w}=A_{1}^{*} A_{1}+A_{2}^{*} A_{2}+\frac{\mu_{1}+\mu_{2}}{2 \pi}=\left(\operatorname{Re} A_{1}\right)^{2}+\left(\operatorname{Im} A_{1}\right)^{2}+\left(\operatorname{Re} A_{2}\right)^{2}+\left(\operatorname{Im} A_{2}\right)^{2}
$$

and the $L L L$ is defined by the equation $A_{2} u=0$. On the other hand, we have

$$
d \mu_{1}^{-1} \operatorname{Re} A_{1}-\operatorname{Im} A_{2}=d \lambda_{1}^{-1} x_{1}, \quad d \mu_{2}^{-1} \operatorname{Re} A_{2}-\operatorname{Im} A_{1}=d \lambda_{2}^{-1} x_{2},
$$

and thus for $u \in L L L$, since $A_{2} u=0$, using the commutation relations of the A_{j} 's, one gets

$$
\begin{aligned}
d^{2} \lambda_{1}^{-2} x_{1}^{2} & =d^{2} \mu_{1}^{-2}\left(\operatorname{Re} A_{1}\right)^{2}+\left(\left(A_{2}-A_{2}^{*}\right) / 2 i\right)^{2}+2 d \mu_{1}^{-1}\left(\operatorname{Re} A_{1}\right)\left(A_{2}-A_{2}^{*}\right) / 2 i \\
& =d^{2} \mu_{1}^{-2}\left(\operatorname{Re} A_{1}\right)^{2}+\frac{\mu_{2}}{4 \pi}
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
d^{2} \lambda_{2}^{-2} x_{2}^{2} & =d^{2} \mu_{2}^{-2}\left(\left(A_{2}+A_{2}^{*}\right) / 2\right)^{2}+\left(\operatorname{Im} A_{1}\right)^{2} \\
& =\left(\operatorname{Im} A_{1}\right)^{2}+\frac{d^{2}}{4 \pi \mu_{2}}
\end{aligned}
$$

As a result, we get on the $L L L$,

$$
\mu_{1}^{2} \lambda_{1}^{-2} x_{1}^{2}+d^{2} \lambda_{2}^{-2} x_{2}^{2}=\left(\operatorname{Re} A_{1}\right)^{2}+\left(\operatorname{Im} A_{1}\right)^{2}+\frac{d^{2}}{4 \pi \mu_{2}}+\frac{\mu_{2} \mu_{1}^{2}}{4 \pi d^{2}}
$$

and $q^{w}=\mu_{1}^{2} \lambda_{1}^{-2} x_{1}^{2}+d^{2} \lambda_{2}^{-2} x_{2}^{2}-\frac{d^{2}}{4 \pi \mu_{2}}-\frac{\mu_{2} \mu_{1}^{2}}{4 \pi d^{2}}+\frac{\mu_{2}}{2 \pi}$, so that

$$
\begin{array}{r}
2 E_{L L L}(u)=\frac{\gamma}{2} \int_{\mathbb{R}^{2}}\left(\mu_{1} \beta_{1} x_{1}^{2}+\frac{\mu_{1}}{\beta_{1}} x_{2}^{2}\right)\left|u\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2}+g \int_{\mathbb{R}^{2}}\left|u\left(x_{1}, x_{2}\right)\right|^{4} d x_{1} d x_{2} \\
+ \\
+\frac{\mu_{2}}{2 \pi}-\frac{\mu_{1}}{4 \pi}\left(\beta_{1} \beta_{2}+\frac{1}{\beta_{1} \beta_{2}}\right) .
\end{array}
$$

We note that
$\frac{\gamma \mu_{1} \beta_{1}}{2}=\frac{2 \alpha}{\alpha+2 \omega^{2}+\nu^{2}} \epsilon^{2},\left(\right.$ coefficient of $\left.x_{1}^{2}\right), \quad \frac{\gamma \mu_{1}}{2 \beta_{1}}=\frac{2 \alpha\left(2 \nu^{2}+\epsilon^{2}\right)}{\alpha-\nu^{2}+2 \omega^{2}},\left(\right.$ coefficient of $\left.x_{2}^{2}\right)$.
A function in the $L L L$ is in $L^{2}\left(\mathbb{R}^{2}\right)$ and can be written as

$$
f\left(x_{1}+i \beta_{2} x_{2}\right) \exp \left(-\frac{\gamma \pi}{4 \beta_{2}}\left[x_{1}^{2}\left(1-\frac{\nu^{2}}{2 \alpha}\right)+\left(\beta_{2} x_{2}\right)^{2}\left(1+\frac{\nu^{2}}{2 \alpha}\right)\right]\right) \exp \left(-i \frac{\pi \nu^{2} \gamma}{4 \alpha} x_{1} x_{2}\right)
$$

with f entire. We have to deal with

$$
\mathcal{E}_{L L L}(u)=\int_{\mathbb{R}^{2}}\left(\frac{1}{2}\left(\epsilon^{2} x_{1}^{2}+\kappa^{2} x_{2}^{2}\right)\left|u\left(x_{1}, x_{2}\right)\right|^{2}+\frac{g}{2}\left|u\left(x_{1}, x_{2}\right)\right|^{4}\right) d x
$$

with $\kappa^{2} \sim \frac{\left(\nu^{2}+\epsilon^{2} / 2\right)\left(2-\nu^{2}\right)}{1-\nu^{2}}, \quad \nu^{2}+\omega^{2}+\epsilon^{2}=1$. The Euler-Lagrange equation without the holomorphic constraint is

$$
\left(\epsilon^{2} x_{1}^{2}+\kappa^{2} x_{2}^{2}\right) u+2 g|u|^{2} u=\lambda u
$$

so that the Thomas - Fermi profile for the density is

$$
\rho=|u|^{2}=\frac{2}{\pi R_{1} R_{2}}\left(1-\frac{x_{1}^{2}}{R_{1}^{2}}-\frac{x_{2}^{2}}{R_{2}^{2}}\right), \quad R_{1}^{4}=4 g \kappa \pi^{-1} \epsilon^{-3}, \quad R_{2}^{4}=4 g \epsilon \pi^{-1} \kappa^{-3} .
$$

In the isotropic case: $\nu=0, \kappa=\epsilon, R_{1}=R_{2}$, circular shape.

5.2. The weakly anisotropic case

With

$$
\rho=|u|^{2}=\frac{2}{\pi R_{1} R_{2}}\left(1-\frac{x_{1}^{2}}{R_{1}^{2}}-\frac{x_{2}^{2}}{R_{2}^{2}}\right), \quad R_{1}^{4}=4 g \kappa \pi^{-1} \epsilon^{-3}, \quad R_{2}^{4}=4 g \epsilon \pi^{-1} \kappa^{-3}
$$

R_{2} is large when $\epsilon \gg \kappa^{3}$, i.e. $\nu \ll \epsilon^{1 / 3}$. We are interested first in this regime, that we call the weakly anisotropic regime. In that case, a truly anisotropic effect is visible since we may have

$$
R_{1}^{4} \sim \kappa \epsilon^{-3} \gg R_{2}^{4} \sim \epsilon \kappa^{-3}
$$

when $\kappa \gg \epsilon$, i.e. $\epsilon \ll \nu\left(\ll \epsilon^{1 / 3}\right)$. The true isotropy $\left(R_{1} \sim R_{2}\right)$ is lasting until ν reaches the order ϵ, then for $\epsilon \ll \nu \ll \epsilon^{1 / 3}$, the profile is truly anisotropic with $R_{1} \gg R_{2}$. The projected $G P$ equation is

$$
\Pi_{L L L}\left[\left(\frac{\epsilon^{2}}{2} x_{1}^{2}+\frac{\kappa^{2}}{2} x_{2}^{2} g|u|^{2}-\mu\right) u\right]=0
$$

and in the weakly anisotropic regime, we can look at the equation of the Abrikosov problem

$$
\Pi_{L L L}\left[\left(g|u|^{2}-\mu\right) u\right]=0
$$

whose solution is given by a Theta function, $u(x, \zeta)=e^{\frac{\gamma}{8 \beta}\left(z^{2}-|z|^{2}\right)} \Theta\left(z \sqrt{\frac{\gamma \operatorname{Im} \tau}{4 \pi \beta}}, \tau\right), \quad z=x_{1}+i \beta x_{2}, \tau$ is the lattice parameter.
The zeroes of the function u lie on the lattice

$$
\sqrt{\frac{4 \pi \beta}{\gamma \operatorname{Im} \tau}}(\mathbb{Z}+\tau \mathbb{Z})
$$

and $|u|$ is periodic. The optimal lattice minimizing $f|u|^{4} /\left(f|u|^{2}\right)^{2}$ (integrals taken on one period) is the hexagonal one ($\tau=e^{2 i \pi / 3}$). As in the isotropic case, we can construct an approximate ground state by multiplying the Theta function by a profile ρ as above. To have a solution in the $L L L$, we define

$$
v=\Pi_{L L L}\left(\rho u_{\Theta}\right) .
$$

We prove then that

$$
\mathcal{E}_{L L L}(v)=\int \frac{1}{2}\left(\epsilon^{2} x_{1}^{2}+\kappa^{2} x_{2}^{2}\right) \rho d x+\frac{g \mu(\tau)}{2} \int \rho^{2} d x+O\left((\kappa \epsilon)^{1 / 2}\left(\kappa^{3} / \epsilon\right)^{1 / 8}=\kappa^{7 / 8} \epsilon^{3 / 8}\right) .
$$

5.3. The strongly anisotropic case

This is the case $\epsilon^{1 / 3} \ll \kappa$. In that case, the limit of the projected $G P$ equation is

$$
\Pi_{L L L}\left[\left(\frac{\kappa^{2}}{2} x_{2}^{2}+g|u|^{2}\right) u\right]=\mu u
$$

The Θ function is no longer a solution, but a particular solution is given by the Gaussian

$$
\left(\frac{\gamma \beta}{2 \pi}\right)^{1 / 4} e^{-\frac{\gamma \beta}{4} x_{2}^{2}+i \frac{\gamma}{4} x_{1} x_{2}}
$$

In this regime, the ground state behaves like this Gaussian in the x_{2} direction, and an inverted parabola in the x_{1} direction, without visible vortices. Indeed with

$$
p\left(x_{1}\right)=\left(\frac{3}{4 R}\right)^{1 / 2}\left(1-\frac{x_{1}^{2}}{R^{2}}\right)_{+}^{1 / 2}, \quad R=\left(\frac{3 g}{4 \epsilon^{2}}\left(\frac{\gamma \beta}{\pi}\right)^{1 / 2}\right)^{1 / 3}, \quad R \sim \epsilon^{-2 / 3} .
$$

The ground state is approximated by

$$
A e^{-\frac{\gamma \beta}{8} x_{2}^{2}} \int_{\mathbb{R}} e^{-\frac{\gamma}{8 \beta}\left((x-t)^{2}-2 i t \beta x_{2}\right)} p(t) d t .
$$

6. Conclusions and perspectives

6.1. The critical case

This is the regime $\nu=\epsilon^{1 / 3}$. Open. Both methods (weakly isotropic and strongly anisotropic) break down.

6.2. The full GP energy

We may consider

$$
\widetilde{E}_{G P}(v)=\left\langle(q \circ \chi)^{w} v, v\right\rangle+\frac{g}{\lambda_{1} \lambda_{2}}\|N v\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}, \text { with }\|v\|_{L^{2}\left(\mathbb{R}^{2}\right)}=1,
$$

with the Euler-Lagrange equation

$$
\begin{gathered}
\left(D_{1}^{2}+\mu_{1}^{2} y_{1}^{2}+D_{2}^{2}+\mu_{2}^{2} y_{2}^{2}\right) v+\frac{2 g}{\lambda_{1} \lambda_{2}} N^{*}\left(|N v|^{2} N v\right)=\lambda v, \\
N=\exp 2 i \pi d^{-1} D_{1} D_{2}, \quad \mu_{2} \sim 1, \quad \mu_{1} \sim \nu^{2} \epsilon^{2} .
\end{gathered}
$$

6.3. A quasi-ODE

Since the $L L L=W\left(L^{2}(\mathbb{R})\right)$, we are in fact reduced to a one-dimensional problem

$$
\left(D_{t}^{2}+\mu_{1}^{2} t^{2}\right) \varphi+\frac{2 g}{\lambda_{1} \lambda_{2}} W^{*}\left(|W \varphi|^{2} W \varphi\right)=\lambda \varphi
$$

where φ is a function of $L^{2}(\mathbb{R})$. The non-linear term is close to be a local one.

- Is it interesting to use the simplicity of the quadratic terms?
- Is it possible to handle that quasi-ODE, since W is rather explicit?
- Maybe find some particular special functions solutions?

Nicolas Lerner, Projet analyse fonctionnelle, Institut de
Mathématiques de Jussieu, Université Pierre-et-Marie-Curie (Paris 6), 175 rue du Chevaleret, 75013 Paris, France.
lerner@math.jussieu.fr
http://www.math.jussieu.fr/~lerner/

