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1. Introduction/Statement of the Main Result

Let p = 2 be a prime integer, k a p-adic local field (i.e., k/Q, is a finite extension), with ring of
integers Oy, uniformiser 7, and residue field F. Thus, F is a finite field of characteristic p.

Let X — SpecOy. be a flat, proper, relative Oy -curve, with X normal, and Xj d:efX X Speco; Speck
geometrically connected. Assume X (F) # @. Let x € X°'(F) be a closed point, @y, the local ring
at x, @X,x its completion, and E def @X,x ®p, k= @X,x [}I] Write & def Spec E, which we assume to
be geometrically connected. We shall refer to & as the formal germ of X at x.

Let 1 be a geometric point of & with values in its generic point. Thus, n determines an
algebraic closure kofk,anda geometric point 7 of X}, dzef% XSpec kSPeC k. There exists a canonical
exact sequence of profinite groups (cf. [3, Exposé IX, Théoreme 6.1])

1 —m (X)) — m(&,n) — G — L (1)
Here, 71 (%, 1) denotes the arithmetic étale fundamental group of & with base point n, 1 (%, 7)

the étale fundamental group of & with base point 7, and G & Gal(k/k) the absolute Galois
group of k.

The sequence (1) splits if Z (k) # @. This is for example the case if the morphism X — SpecO
is smooth at x. If Z (k) = @; for instance if X is stable and regular, and x is an ordinary F-rational
double point of Xr def xspeco, F, the existence of sections s : Gy — m1(%¥,7) of the projection
m1(Z,n) — Gy would provide examples of sections of the projection 7 (Xg,n) = Gy which are
non-geometric (n induces a geometric point of X, denoted also 7, via the morphism Zj — Xi),
i.e., which do not arise from rational points. These in turn will provide counter-examples to
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the p-adic version of the Grothendieck anabelian section conjecture. This prompts the following
question.

Question 1. With the above notations, assume & (k) = @. Does the exact sequence (1) split?

In this note we investigate the case where & is a p-adic open annulus. Let

AL G, BY Asg k=4
7[

p% Spf A is the formal standard open disc, and 2 = def Dy = Spec B its “generic fibre” which is
the standard open disc centred at the point “S = 0”. Let Al = Speckl[S], Yy = I]J’1 its smooth
compactification with function field k(S), and Y = P} the smooth compactlﬁcatlon of Al =
SpecO[S]. We shall identify A with the completion olf the local ring of Y at the closed poklnt
“S =0". We have a natural morphism 2 — P, which induces an identification between the set of
closed points of 2 and the set

{xeP}:1S(x)| <1}.
For an integer n = 1, let

def OklS, T1 def
n = m, By = Ay ®@kk and cgn = SpeCBn

The natural embedding €6, — 2 induces an identification between the set of closed points of €,
and the open annulus

{xe@:m% <18l < 1}.

Further, let P def A be the localisation of A at the ideal (), and P the completion of P, which
is a complete discrete valuation ring isomorphic to

@knsu{S‘l}d:ef{ Y S a0, — limlailzo},
i=—00 l=—c0

where | -| is a normalised absolute value of Oy (cf. [2, §2, 5]). Let L def Fr(P) be the fraction field of
P, and €5 def Spec L. We shall refer to 6 as a formal boundary of the formal germs 2, and €;
for i = 1. We have natural scheme morphisms

Coo — = Cni1 — Cp— - — € — D — Py

Let ) be a geometric point of 6, which induces a geometric point (denoted also 1) of 6, for
n = 1. For i e NU {oo}, we have an exact sequence of arithmetic fundamental groups

1 —m (€ p,m) — m(€i,n) — Gy — 1, )

where 71(%;,1m) denotes the arithmetic étale fundamental group of ¢; with base point 7,
m1(€; ;1) the étale fundamental group of €; ;. def Ci Xspeck Speck with base point 7j; which is

induced by 1, and Gy def Gal(k/k) the absolute Galois group of k. Here k is the algebraic closure
of k determined by 7.
Our main result in this note is the following.

Theorem 2. We use notations as above. There exists an integer N = 1, such that for every integer
n= N, the projection nt1(€,,,n) — Gy doesn't split.

The author ignores, for the time being, if the projection 7, (61,1) — Gy splits or not.
As a corollary of Theorem 2, we obtain the following.

Theorem 3. The projection i1 (60,1 — Gi doesn't split.
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One of the consequences of Theorems 2 and 3 is that one can not produce examples of
sections of hyperbolic curves over p-adic local fields, which arise from sections of arithmetic
fundamental groups of boundaries of formal fibres, or open annuli with small radii. Those
sections would be non-geometric, hence would provide counter-examples to the p-adic version
of the Grothendieck anabelian section conjecture.

Finally we observe the following. For i € N U {oo}, let m(‘giv,-c,ﬁ)ab be the maximal abelian
quotient of 7, (€ ;,7), and consider the push-out diagram

1 —— mi(€; 71 (€i,m) Gk 1
l | || ®
1 M, o P ——— m1(6;,m) @) G 1

Thus, 7 (€}, n)(ab) is the geometrically abelian quotient of 7, (%;,n).
Proposition 4. The projection m1(€;,7)@ — G splits, Vi € N.

The author ignores, for the time being, if the projection 7 (€x, )@ — Gy splits or not.

2. Proof of Theorem 2

In this section we shall prove Theorem 2. We use the notations used in Section 1. We argue by
contradiction, and assume that the projection (6,1 — Gy splits, Vn=1.

Proposition 5. There exists a relative curve X — Spec Oy with the following properties.

(i) The morphism X — SpecOy is flat, proper, stable, and X} ey « Speca, Speck is geometri-
cally connected.
(ii) X isregular.
(iii) The set of singular points XSlrlg of the special fibre Xp def ¥ Xspeco, SPECF of X consists of
F-rational ordinary double points, U XF \ XSlng is F-smooth, and U(F) = ¢ holds.

(iv) X(k) =@ holds.

Proof. First, assume p # 2. Let C def P}, with function field k(C). Thus, Card(C(F)) = CardF + 1
is even. Arrange the set C(F) in pairs of F-rational points: C(F) = {(xi, yidb < Card 1 - One can

identify in C the points x; and y;; 1 <i < M , to construct a stable proper F- curve C which

is geometrically connected and geometrlcally reduced with normalisation C — C. Moreover, the

set of singular points C¥"8 = {¢;}, _, _ cadrs1 Cargre1 CODSists of F-rational ordinary double points, and the

pre-image of c; in C consists of the two F-rational pomts {xi,i}. In particular, C(F) = C5"8 =

{Ci}1<i<fardF+l.M0re precisely, for 1 < i < CardF” ,le t@ = @Cx m@’cy c k(O), N d—efmx no;,

and A, §f my, N O;, where my, (resp. my,) is the maximal ideal of O¢,y, (resp. Og ). Define

O, dffF N Ny © @ Then O, is alocal ring (with maximal ideal A%, .#),, and residue field F)

whose 1ntegral closure is O, (cf. [1, Proposition 3.1, Theorem 3.4, and the references therein] for
the properties of 0,, as well as the existence of C with the required properties).

In case p = 2. Consider the affine F-curve Spec(F([st)t]) and 5 its smooth compactification.
Thus, C consists of two F-smooth irreducible components Cy =  and Cy= IP , which intersect
at the F-rational ordinary double point ¢ = (s, t) € Spec( F([Sst)t ] ).On each 1rredu01ble component C;
of C; 1 < i <2, the set of F-rational points of C; \ {c} is non-empty and comes into pairs of rational
points {(x; j, yi,j)}, < j< CardF - As above we can identify each of those pairs of F-rational points
(xi,j, yi,j) into an F-rational ordinary double point ¢; ; to construct a reducible and geometrically

connected stable curve F-curve C such that the set of singular points C*"8 consists of F-rational
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ordinary double points, a double point ¢; ; lies on a unique irreducible component of C, and
CS'M8 = C(F) (the local ring at ¢; is defined as above; the case p # 2. See [7, §4], for a discussion of
this procedure and the existence of such a curve C in the case of reducible curves).

Now the stable F-curve C can be deformed to a semi-stable O -curve X — Spec 0. with special
fibre Xr = C satisfying (i) and (ii) (cf. [9, Proposition 7.10, Corollary 7.11 and its proof]). By our
construction (iii) holds also. If x € X(k), then X specialises in a point X € C(F) which is a regular
point of C and lies on a unique irreducible component of C (cf. [5, Corollary 9.1.32]). Thus, (iv)
follows from (iii). O

Let X — SpecOx be a regular, proper, flat, and stable Oj-curve as in Proposition 5. Let
¥y € Xp(F) be an F-rational point, which is an ordinary double point and a regular point of X
(cf. Proposition 5 (ii) and (iii)). We fix an isomorphism p : Ox,, — R[S, T]/(ST — 7), and identify

k= RISTL

def ~ . . . . =~
x = Spec(Ox,y ®g, k) with 61 via the isomorphism py : O,y ®g, ST

Thus, we have scheme morphisms

®p, k induced by p.

Goo — +++ — Gl — Gy — - — G — X

For n =1, write
T X\ L) S lm (X \ S,
SnCXi\Cy
where the projective limit is over all finite sets of closed points S, € X; \ 6, and 71 (X \ S,, 1) is
the arithmetic fundamental group of the affine curve Xy \ S,, with base point n. (Here, we identify
the set of closed points of 6,,; n = 1, with a subset of the set of closed points of X which specialise
in y.) There is a natural projection 7 (Xi \ .#,,1) — G, and we have a commutative diagram

71 (€n,m) Gg
| | @
71 (Xi \ S, 1) Gi

where the left vertical map is induced by the morphism €6, — X.
Further, we have a natural map

llnﬂl(cgn,rl) - linnl(xk \ yﬂ)n);
n=1 n=1

and lim sl m1 (X \ F,m) is naturally identified with the absolute Galois group Gy x) def

Gal (k (X)Sep/k(X)) where k(X)*% is the separable closure of the function field k(X) of X deter-
mined by the geometric point 7.

Lemma 6. The projection Gyx) — G splits.

Proof. First, our assumption that the projection 7, (6,,1n) — Gk splits, implies that the projection
71 (Xi \ S, 1) — Gy splits, Vn = 1 (cf. diagram (4)).

Let (H;)ie1 be a projective system of quotients Gx) — H;, where H; sits in an exact sequence
1— F; — H; — G — 1 with Fi~ﬁnite, and Gf(x) =lim,_ H;. [More precisely, wri‘E? Girix) as a
projective limit of finite groups {H;};c;. Then H; fits in an exact sequence 1 - F; — H; — G; — 1,
where G; is a quotient of G, and F; a quotient of Gal(k(X)%P/k(X)k). Let 1 — Fi—H; - G,—1
be the pull-back of the group extension 1 — F; — H - G — 1 by Gx — G;. Then Ggx) =
hm e H;]. The set Sect(Gg, Gk(x)) of group-theoretic sections of the projection Gyx) — Gy is
naturally identified with the projective limit llml€ Sect(Gy, H;) of the sets Sect(Gy, H;) of group-
theoretic sections of the projection H; — G. For each i € I, the set Sect(Gy, H;) is non-empty.
Indeed, H; (being a quotient of Gix)) is a quotient of m1(Xy \ #,,n) for some n = 1, this
quotient 1 (X3 \.%,,n) — H; commutes with the projections onto G, and we know the projection
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71 (X \ S, 1) — G splits. Hence the projection H; — Gy splits. Moreover, the set Sect(Gy, H;) is,
up to conjugation by the elements of F;, a torsor under the group H' (G, F;) which is finite since
k is a p-adic local field (cf. [6, (7.1.8) Theorem (iii)]). Thus, Sect(Gg, H;) is a nonempty finite set.
Hence the set Sect(Gy, Gi(x)) is nonempty being the projective limit of nonempty finite sets. This
finishes the proof of Lemma 6. (See also [8, the proof of Proposition 1.5] for similar arguments in
a slightly different context.) g

Let s: G — G x) be a section of the projection Gy x) — G (cf. Lemma 6).

Lemma 7. The section s is geometric, i.e., s(Gi) € Dy, where Dy c Gy(x) is a decomposition group
associated to a (unique) rational point x € X (k). In particular, X (k) # @.

Proof. This follows from [4, Proposition 2.4 (2)]. O

Now the conclusion of Lemma 7 that X (k) # @ contradicts the assertion (iv) in Proposition 5
that X (k) = ¢. This is a contradiction. Thus, our assumption that the projection 7, (6,,1n) — Gk
splits, Vn = 1, can not hold. Let N = 1 be such that the projection 7, (€n,n) — Gy doesn’t splits.
Then the projection w1 (6,,1) — Gy doesn't splits, Vi = N as required. Indeed, this follows from
the fact that for n = N we have a natural homomorphism 71 (65,,1n) — 71 (6N, n) which commutes
with the projections onto Gy. Hence if the projection 71(%6,,1n) — Gy splits then the projection
71 (€N, 1) — Gy

This finishes the proof of Theorem 2. U

3. Proof of Theorem 3

Next, we explain how Theorem 3 can be derived from Theorem 2. We have, Vn = 1, a commutative
diagram

71 (6o, 1) Gy
| 1|
71 (€n,m) Gg

where the horizontal maps are the natural projections, and the left vertical map is induced by the
morphism 6o, — 6.

Now assume that the projection 7, (6x,n) — G splits. Then the projection m,(6,,1n) — Gi
splits, Vn = 1, by the above diagram. But this contradicts Theorem 2.

This finishes the proof of Theorem 3. 0

4. Proof of Proposition 4

Let n = 1 be an integer, and ¢, ¢,, distinct prime integers such that ¢, = 2n, and ¢, = 2n. Let 0},
and @, be totally ramified extensions of Oy of degree ¢1, and ¢, with fraction fields L, = Fr(0)),
and Ly = Fr(0»); respectively. Thus, the extensions L;/k and L,/k, are disjoint and 6, (L;) # @,
for i € {1,2}. A restriction-corestriction argument shows that the class [, (€}, n)(ab)] of the group
extension 71(%,,n)@ in H? (G, m1(6,, i) is trivial. Thus the group extension 7, (€, 1)@
splits.

This finishes the proof of Proposition 4. d
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