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CONTRAMODULES

LEONID POSITSELSKI

Abstract. Contramodules are module-like algebraic structures endowed with infinite sum-
mation (or, occasionally, integration) operations satisfying natural axioms. Introduced orig-
inally by Eilenberg and Moore in 1965 in the case of coalgebras over commutative rings,
contramodules experience a small renaissance now after being all but forgotten for three
decades between 1970–2000. Here we present a review of various definitions and results
related to contramodules (drawing mostly from our monographs, papers, and preprints [69,
70, 81, 71, 66, 92, 78, 82])—including contramodules over corings, topological associative
rings, topological Lie algebras and topological groups, semicontramodules over semialgebras,
and a “contra version” of the Bernstein–Gelfand–Gelfand category O. Several underived
manifestations of the comodule-contramodule correspondence phenomenon are discussed.
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0. Introduction

Comodules over coalgebras or corings are familiar to many algebraists. Being
asked about the natural ways to assign an abelian category to a coalgebra over a
field, most people would probably mention the left comodules and the right co-
modules. This is indeed a good answer in the case of module categories over a
ring, where considering the left modules or the right modules exhausts the basic
possibilities. But the “left or right comodules” answer is strikingly incomplete, for
in fact there are four such abelian categories. In addition to the left and right
comodules, there are also the left and right contramodules, which are no less basic,
and very much analogous, or rather dual-analogous to (though different from) the
comodules.

Contramodules were introduced, on par with comodules, in the classical 1965
AMS Memoir of Eilenberg and Moore [34], but little attention was paid. The 2003
monograph [25], which was supposed to contain state of the art on corings and
comodules at the time, never mentioned contramodules. As it was noticed in the
presentation [23], near the end of 2000’s decade there still existed only three papers
featuring contramodules that a MathSciNet search would bring: in addition to
Eilenberg and Moore’s original memoir, there were a 1965 paper [103] by Vázquez
García (in Spanish) and a rather remarkable 1970 paper of Barr [5]. The next
mention of contramodules in any kind of mathematical literature that the present
author is aware of comes in his own letters [68], written (in transliterated Russian)
in 2000 and 2002.

The 2000–2002 letters were eventually noticed by two groups of authors [43, 24]
and one of them got interested specifically in contramodules, so the number of
relevant MathSciNet search hits grew a little by now (see, e. g., [18] and [106]). In
the meantime, the present author’s ideas about contramodules and the co-contra
correspondence materialized in a sequence of books, papers, and preprints [69, 70,
81, 71, 74, 66, 83, 78, 92, 90, 87, 82, 91, 10, 85]; there are also presentations [72, 73,
79]. Still we feel that it may be difficult for a researcher or a student to navigate
this corps of work without additional guidance. The present paper is intended to
provide such guidance, including both an accessible exposition of the basics and an
overview of some of the more advanced topics.

A coring may be informally defined as a “coalgebra over a noncommutative
ring” (or more precisely, a coalgebra object in the tensor category of bimodules
over a ring). Eilenberg and Moore’s original definition of contramodules [34] was
formulated in the generality of coalgebras over commutative rings (i. e., coalgebra
objects in the tensor category of modules), but the generalization to corings is
straightforward. So a comodule over a coring can be described as “a comodule
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along the coalgebra variables in the coring and a module along the ring variables”;
a contramodule over a coring is “a contramodule along the coalgebra variables and
a module along the ring variables”.

Another option is to consider “algebras over coalgebras” (or more precisely, al-
gebra objects in the tensor categories of bicomodules); these are what we call semi-
algebras. The corresponding module objects are called the semimodules and the
semicontramodules. Once again, a semimodule is “a module along the algebra
variables in the semialgebra and a comodule along the coalgebra variables”; a semi-
contramodule is “a module along the algebra variables and a contramodule along
the coalgebra variables”.

In the maximal natural generality achieved in the monograph [69], one considers
three-story towers of “algebras over coalgebras over rings”, or semialgebras over
corings. These still have four module categories attached to them, namely, the
left and right semimodules and the left and right semicontramodules. That is the
generality level in which the principal results of the main body of the book [69] are
obtained.

There are many more “comodule-like” abelian categories in algebra than just
comodules over corings or semimodules over semialgebras, though. Generally, just
about every class of “discrete”, “smooth”, or “torsion” modules can be viewed as
that of comodules “along a part of the variables” in one sense or another. Every
such module category is typically accompanied by a much less familiar, but no less
interesting, abelian category of contramodules. Hence one comes to the definitions
of contramodules over topological rings and topological Lie algebras.

Generally, contramodules are modules with infinite summation operations, un-
derstood algebraically as operations of infinite arity subjected to natural axioms.
Contramodules feel like being in some sense “complete”, but carry no underlying
topologies on them. Indeed, simple counterexamples [99, 110, 69, 76] show that
contramodule infinite summation operations cannot be interpreted as any kind of
limit of finite partial sums (for all the finite partial sums of a particular series can
vanish in a contramodule while the infinite sum does not).

Comodule categories typically have exact functors of filtered inductive limits
and enough injective objects, but nonexact functors of infinite product and no
projectives. Contramodule categories have exact functors of infinite product, and
typically enough projective objects, but nonexact functors of infinite direct sum
and no injectives. The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projective objects are much less common
than injective ones in “naturally appearing” abelian categories.

On the other hand, there is a remarkably simple case of contramodules over
the adic completion of a Noetherian ring, where the forgetful functor from con-
tramodules to modules is fully faithful, so the contramodule infinite summation
operation can be recovered from the conventional module structure. Moreover,
there are simple descriptions of the essential image of the fully faithful forgetful
functor and the recovery procedure. In this setting, there is a different stream of
literature, going back to the 1959 paper by Harrison [46], where contramodules
were known and studied under different names (and neither the connection with
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the Eilenberg–Moore definition, nor the existence of the infinite summation oper-
ations were apparently ever noticed). The key modern term in this connection is
the MGM (Matlis–Greenlees–May) duality [59, 32, 64, 74, 76, 80, 8].

So (what we would call) projective contramodules over the ring of l-adic integers
Zl were studied in [46] in connection with the classification of (what Harrison called)
co-torsion abelian groups. A definitive result in this direction was obtained by
Enochs in [36], where (what are since known as) flat cotorsion modules over a
Noetherian commutative ring were classified in terms of (what we call) projective
contramodules over complete Noetherian local rings (see also [71, Theorem 1.3.8]).
The argument in [36] was based on Matlis’ classification of injective modules [58].
An equivalence between the categories of (what we would call) injective discrete
modules and projective contramodules over Zl was also noticed in [46].

As to the arbitrary (not necessarily projective) contramodules over Zl, these were
studied under the name of Ext-l-complete abelian groups by Bousfield and Kan [21]
and as weakly l-complete abelian groups by Jannsen [49]. Finally, contramodules
over the adic completions of Noetherian (and certain other) rings became known
as cohomologically complete modules in the papers of Yekutieli et al. [64, 65, 111].
These names are derived from reflection over the basic fact that contramodules over
Zl and other adic completions are actually always adically complete, but not neces-
sarily adically separated (as the above-mentioned counterexamples show). Partially
extending Enochs’ result, over a Noetherian commutative ring of Krull dimension 1
all cotorsion modules can be described in terms of divisible modules and arbitrary
contramodules over the completions of the ring at its maximal ideals [76].

In the author’s own research, contramodules first appeared as a necessary in-
gredient for developing the semi-infinite cohomology theory of associative algebraic
structures [68], and were subsequently studied in connection with the phenome-
non of comodule-contramodule correspondence [72]. The latter means covariant
equivalences between appropriate categories of comodules and contramodules. The
simplest example is the natural equivalence between the additive categories of in-
jective left comodules and projective left contramodules over a coalgebra C over a
field k. Attempting to extend this equivalence to complexes of left C-comodules
and left C-contramodules using complexes of injective comodules and projective
contramodules as resolutions, one discovers that unbounded acyclic complexes of
contramodules are sometimes assigned to irreducible comodules and vice versa.

The same problem occurs in the more complicated situation of the correspon-
dence between complexes of left semimodules and left semicontramodules over a
semialgebra S over C [38, 39, 96, 69]. Hence the derived co-contra correspondence
is, generally speaking, an equivalence between exotic, rather than conventional,
derived categories. The coderived category of C-comodules is equivalent to the
homotopy category of complexes of injective comodules, and similarly, the con-
traderived category of C-contramodules is equivalent to the homotopy category of
projective contramodules [70]. So the coderived category of left C-comodules and
the contraderived category of left C-contramodules are naturally equivalent to each
other, Dco(C–comod) ' Dctr(C–contra) [69, Sections 0.2.6–7].

This phenomenon of equivalence between “derived categories of the second kind”
is reproduced in a situation not involving comodules or contramodules in the pa-
pers [50, 56, 48, 101, 75], where the homotopy categories of unbounded complexes
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of projective or injective modules over a ring are studied and an equivalence be-
tween them is sometimes obtained. An extension of this theory to quasi-coherent
sheaves on nonaffine schemes was developed in the papers [62, 61, 33]; and an
even more advanced version involving contraherent cosheaves was suggested in [71,
Section 5.7].

In the relative situation of semimodules and semicontramodules over a semialge-
bra S over a coalgebra C, the derived semimodule-semicontramodule correspondence
is an equivalence between the semi(co)derived category of left S-semimodules and
the semi(contra)derived category of left S-semicontramodules,

Dsi(S–simod) ' Dsi(S–sicntr).

The former is a “mixture of the coderived category along the variables from C

and the conventional derived category along the variables from S relative to C” ,
while the latter is a “mixture of the contraderived category in the direction of C
and the derived category in the direction of S relative to C” [69, Corollary and
Remark D.3.1]. A version of the derived semico-semicontra correspondence repro-
duced in a situation not involving contramodules can be found in [75, Section 5].

On the other hand, the coderived category of left comodules and the con-
traderived category of left contramodules over a coring C over a ring A are equiv-
alent when the ring A has finite homological dimension (so the coderived and con-
traderived categories of A-modules are indistinguishable from their derived cate-
gory). In other words, the coderived category of comodules and the contraderived
category of contramodules are equivalent in the relative situation provided that the
homological dimension “along the ring variables” is finite (when it is not, one needs
a dualizing complex along the ring variables to be chosen).

Similarly, the conventional derived categories of comodules and contramodules
may be equivalent in a relative situation mixing the ring and coalgebra variables
when the homological dimension “along the coalgebra variables” is finite. This in-
cludes, e. g., the case of quasi-compact semi-separated schemes, which are glued
from the affine pieces by “a gluing procedure of finite homological dimension” (not
exceeding the number of the pieces). The related version of derived co-contra cor-
respondence for quasi-coherent sheaves and contraherent cosheaves was developed
under the name of the “naïve co-contra correspondence” in [71, Chapter 4].

Furthermore, an affine Noetherian formal scheme is cut out from its ambient
Noetherian scheme by a “cutting out procedure of finite homological dimension” [64,
Corollaries 4.28 and 5.27]. This can be roughly explained by noticing that the formal
completion of a schemeX along its closed subscheme Z consists in “subtracting from
X the open complement U to Z in X”, and U is a quasi-compact scheme whenever,
say, X is affine and Z is defined by a finitely generated ideal. So the Matlis–
Greenlees–May duality is, in fact, an equivalence between the conventional derived
categories of torsion modules and contramodules over certain formal schemes [74].

A common feature of all or almost all kinds of contramodules is that they form
abelian categories with enough projective objects. One can define “a contramodule
category” in the most general sense of the word as a locally presentable abelian cat-
egory with enough projective objects, or equivalently, a locally presentable abelian
category with a projective generator [78]. Abelian categories with a fixed pro-
jective generator are described by additive monads on the category of sets; and
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among such categories, the locally presentable ones correspond to accessible mon-
ads [104, 66, 78]. Another name for locally presentable abelian categories with a
projective generator is the categories of models of additive κ-ary algebraic theories,
where κ stands for some regular cardinal (depending on the category) [107, 66].

The categories of comodule-like structures, on the other hand, tend to be (at
least) Grothendieck abelian categories. So one can say, very roughly, that both
the comodule and the contramodule categories are locally presentable abelian cat-
egories; but the difference is that the comodule categories have enough injectives,
while the contramodule categories have enough projectives.

Abelian categories with a projective generator are known to arise as the hearts
of tilting (and even silting) t-structures associated with “big” (infinitely gener-
ated) tilting or silting objects [94, Proposition 4.3], [3, Proposition 4.9]. Hence the
connection between contramodules and infinitely generated tilting/silting theory.
Dually, the hearts of the cotilting (and cosilting) t-structures are abelian categories
with an injective cogenerator. The n-tilting-cotilting correspondence, as developed
in [92], and even more so the ∞-tilting-cotilting correspondence of the paper [90],
are a generalization and an abstractly-categorical interpretation of the co-contra
correspondence phenomenon.

Before we finish this introduction, let as say a few words about applications of
contramodules. There are different kinds of applications. As we mentioned above,
in the work of the present author contramodules were first used in order to formu-
late a certain theory, namely, the semi-infinite homological algebra of associative
algebraic structures [68, 69]. Countramodules also found their place in the formu-
lation of the derived nonhomogeneous Koszul duality [70, 86]. Moreover, even the
classical topic of MGM duality is best formulated using contramodules [74, 85].

Applications in which contramodules are used in order to prove theorems (in
whose formulations they are not mentioned) are a different matter. In the work of
the present author, such applications started to appear relatively recently. Mostly,
these are applications to commutative algebra [7, 89, 88], among which the most
important one, in our view, is the proof of the Very Flat Conjecture (which was
formulated in the February 2014 version of the long preprint [71] and proved in the
August 2017 preprint [89]). There is also an application to noncommutative ring
theory [82] and an application to direct limits of classes of modules over noncom-
mutative rings [93].

We refrain from elaborating any further upon the various derived categories and
the derived co-contra correspondence in this paper, restricting ourselves mostly
to the short discussion above in this introduction. Indeed, it appears that the
coderived and contraderived categories have attracted already some attention in
the recent years, and a number of people have mastered the beginnings of the
related techniques in one form or another. Besides, there is the presentation [72]
discussing the philosophy of the derived co-contra correspondence.

Instead, we concentrate on the even more basic, and at the same time perhaps
presently more counterintuitive, concepts of the abelian categories of contramod-
ules. In addition, the selection of the more advanced material for inclusion into
this paper is oriented towards representation theory (rather than commutative al-
gebra or algebraic geometry). Moreover, the numerous categories of contramodules
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that are defined as full subcategories in module categories (typically, the right Ext-
perpendicular subcategories to some modules) [74, 76, 80, 78, 8, 85] are left almost
entirely outside of the scope of this overview. This excludes the major applica-
tions to commutative algebra [89, 88], which are therefore only briefly mentioned
above in this introduction. A detailed treatment of this material will be presented
elsewhere.

The simplest examples of the categories of contramodules over coalgebras over
fields, the l-adic integers, the Virasoro algebra, and locally compact totally dis-
connected topological groups are discussed in Section 1. The key definitions of
the categories of contramodules over topological rings, topological associative and
Lie algebras, corings and semialgebras, and the category Octr are introduced in
Section 2. Tensor and Hom-like operations on the categories of contramodules
and comodules and relations between various classes of objects adjusted to these
operations (analogues and dual versions of the classes of flat, projective, and in-
jective modules) are briefly considered in the first three subsections of Section 3.
Several underived co-contra correspondence constructions are discussed in the mid-
dle part of Section 3. Some additional topics, most notable of them concerning
full-and-faithfulness of contramodule forgetful functors, occupy the final Subsec-
tions 3.7–3.8.

1. First Examples

1.1. Contramodules over coalgebras over fields. We start with recalling the
largely familiar definitions. A coassociative coalgebra C with counit over a field k
is a k-vector space endowed with a comultiplication map µC : C → C ⊗k C and
a counit map εC : C → k satisfying the equations dual to the equations on the
multiplication and unit maps of an associative algebra with unit. Explicitly, the
two compositions of the comultiplication map µ with the two maps µ ⊗ idC and
idC ⊗ µ : C⊗k C⇒ C⊗k C⊗k C induced by the comultiplication map

C→ C⊗k C⇒ C⊗k C⊗k C

should be equal to each other, (µ⊗idC)◦µ = (idC⊗µ)◦µ, and both the compositions
of the comultiplication map with the two maps ε ⊗ idC and idC ⊗ ε : C ⊗k C ⇒ C

induced by the counit map ε

C→ C⊗k C⇒ C

should be equal to the identity map, (ε⊗ idC) ◦ µ = idC = (idC ⊗ ε) ◦ µ.
A left comodule M over a coalgebra C is a k-vector space endowed with a left

coaction map νM : M→ C⊗kM satisfying the coassociativity and counitality equa-
tions. Explicitly, the two compositions of the coaction map ν with the two maps
µ⊗ idM and idC ⊗ ν : C⊗k M⇒ C⊗k C⊗k M induced by the comultiplication and
coaction maps

M→ C⊗k M⇒ C⊗k C⊗k M
should be equal to each other, (µ ⊗ idM) ◦ ν = (idC ⊗ ν) ◦ ν, and the composition
of the coaction map with the map ε ⊗ idM : C ⊗k M → M induced by the counit
map εC

M→ C⊗k M→M
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should be equal to the identity map, (ε ⊗ idM) ◦ ν = idM. A right comodule N

over C is a k-vector space endowed with a right coaction map ν = νN : N→ N⊗k C
satisfying the similar equations, (ν ⊗ idC) ◦ ν = (idN ⊗ µ) ◦ ν

N→ N ⊗k C⇒ N ⊗k C⊗k C,
and (idN ⊗ ε) ◦ ν = idN

N→ N ⊗k C→ N.

In order to arrive to the definition of a contramodule over C, one only has to
rewrite the most familiar definition of a module over an associative algebra in
a slightly different form before quite formally dualizing it. Given an associative
algebra A over k with the multiplication map m : A ⊗k A → A and the unit map
e : k → A, one would usually define a left A-moduleM as a k-vector space endowed
with a left action map n : A ⊗k M → M satisfying the associativity and unitality
equations n ◦ (m⊗ idM ) = n ◦ (idA ⊗ n)

A⊗k A⊗kM ⇒ A⊗kM →M

and n ◦ (e⊗k idM ) = idM
M → A⊗kM →M.

However, having a map n is the same thing as having a map
p : M → Homk(A,M),

which then has to satisfy the associativity and unitality equations written in the
form Hom(m, idM ) ◦ p = Hom(idA, p) ◦ p

M → Homk(A,M)⇒ Homk(A⊗k A, M) ' Homk(A,Homk(A,M))
and Hom(e, idM ) ◦ p = idM

M → Homk(A,M)→M.

In this approach, the difference between the left and right modules lies in the
way one identifies the Hom from the tensor product Homk(A ⊗k A, M) with the
double Hom space Homk(A,Homk(A,M)): presuming the identification

Homk(U ⊗k V, W ) ' Homk(V,Homk(U,W )) (1.1)
leads to the definition of a left A-module, while identifying Homk(A⊗kA, N) with
Homk(A,Homk(A,N)) by the rule

Homk(U ⊗k V, W ) ' Homk(U,Homk(V,W )) (1.2)
and writing the same equations produces the definition of a right A-module N .

Now we can formulate our main definition. A left contramodule P over a coal-
gebra C is a k-vector space endowed with a left contraaction map

πP : Homk(C,P)→ P

satisfying the following contraassociativity and contraunitality equations. Firstly,
the two compositions of the two maps Hom(µ,P): Homk(C⊗kC, P)→ Homk(C,P)
and Hom(C, π) : Homk(C,Homk(C,P)) → Homk(C,P) induced by the comultipli-
cation map µ = µC and the contraaction map π = πP with the contraaction map π

Homk(C,Homk(C,P)) ' Homk(C⊗k C, P)⇒ Homk(C,P)→ P

should be equal to each other, π ◦ Hom(µ,P) = π ◦ Hom(C, π), presuming the
identification of Homk(C ⊗k C, P) ' Homk(C,Homk(C,P)) by the left rule (1.1).
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Secondly, the composition of the map Hom(ε,P) : P→ Homk(C,P) induced by the
counit map ε = εC with the contraaction map

P→ Homk(C,P)→ P

should be equal to the identity map, π ◦Hom(ε,P) = idP.
This definition can be found in [69, Section 0.2.4]; see also [70, Section 2.2] (the

classical source is [34, Section III.5]). Using the identification by the right rule (1.2)
instead of (1.1) produces the definition of a right contramodule over C. The way to
understand why (1.1) is the “left” rule and (1.2) is the “right” one lies in replacing
a basic field k with a noncommutative ring; see Section 2.5 below.

1.2. Basic properties of comodules and contramodules. The simplest way
to produce examples of contramodules is by applying the Hom functor to comodules
in the first argument. Specifically, let N be a right comodule over a coalgebra C

over k and V be a k-vector space. Then the vector space P = Homk(N, V ) has
a natural structure of left contramodule over C. The left contraaction map πP is
constructed by applying the functor Homk(−, V ) to the right coaction map νN

Homk(C,Homk(N, V )) ' Homk(N ⊗k C, V )→ Homk(N, V ).
Let us denote by k–vect the category of k-vector spaces, by C–comod the category

of left C-comodules, by comod–C the category of right C-comodules, and by C–contra
the category of left C-contramodules. The k-vector space of morphisms between
left C-comodules L and M will be denoted by HomC(L,M), and the vector space
of morphisms between left C-contramodules P and Q by HomC(P,Q).

The category C–comod is abelian and the forgetful functor C–comod → k–vect
is exact. To prove as much, one has to use the observation that the tensor product
functor C⊗k − is exact, or more specifically, left exact. The forgetful functor also
preserves inductive limits, so filtered inductive limits are exact functors in C–comod.
The infinite products in C–comod are not preserved by the forgetful functor (unless
C is finite-dimensional) and are not exact in C–comod in general.

In other words, the abelian category of C-comodules satisfies Grothendieck’s
axioms Ab5 and Ab3*, but not in general Ab4* [45, No 1.5]. It also admits a set
of generators (for which one can take the finite-dimensional comodules), so it has
enough injective objects [45, No 1.10]. These can be explicitly described as follows.

A cofree left C-comodule is a C-comodule of the form C ⊗k V , where V is a
k-vector space, with the left C-coaction induced by the comultiplication in C. For
any left C-comodule L, there is a natural isomorphism of k-vector spaces

HomC(L, C⊗k V ) ' Homk(L, V ),
so cofree C-comodules are injective. The coaction map ν : M → C ⊗k M embeds
any left C-comodule into a cofree one, so there are enough cofree C-comodules. It
follows that a C-comodule is injective if and only if it is a direct summand of a
cofree one [69, Sections 0.2.1, 1.1.2, and 5.1.5].

The category C–contra is abelian and the forgetful functor C–contra → k–vect
is exact (here one has to observe that the functor Homk(C,−) is exact, or more
specifically, right exact). The forgetful functor also preserves infinite products, so
infinite products are exact functors in C–contra. The infinite direct sums are not
preserved by the forgetful functor (unless C is finite-dimensional) and are not exact
in C–contra in general. (However, unlike the infinite products of C-comodules,
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the infinite direct sums of C-contramodules remain exact when the homological
dimension of the category C–contra does not exceed 1 [81, Remark 1.2.1].)

In other words, the abelian category of C-contramodules satisfies Grothendieck’s
axioms Ab3 and Ab4*, but not in general Ab4 or Ab5*. It also has enough projec-
tive objects, which can be explicitly described as follows.

A free left C-contramodule is a C-contramodule of the form Homk(C, V ), where
V is a k-vector space, with the left C-contraaction constructed as explained in
the beginning of this section. For any left C-contramodule Q, there is a natural
isomorphism of k-vector spaces

HomC(Homk(C, V ),Q) ' Homk(V,Q),

so free C-contramodules are projective. The contraaction map π : Homk(C,P)→ P
presents any C-contramodule as the quotient contramodule of a free one, so there
are enough free contramodules. It follows that a C-contramodule is projective if
and only if it is a direct summand of a free one [69, Sections 0.2.4, 3.1.2, and 5.1.5].

Notice that the class of injective C-comodules is not only closed under infinite
products in C–comod (which holds in any abelian category), but also under infinite
direct sums. Similarly, the class of projective C-contramodules is not only closed
under infinite direct sums in C–contra (as in any abelian category), but also under
infinite products. These observations are important for the theory of coderived and
contraderived categories [70, Section 4.4, cf. Sections 3.7–3.8].

The correspondence assigning the free C-contramodule Homk(C, V ) to the cofree
C-comodule C⊗k V is an equivalence between the additive categories of cofree left
C-comodules and free left C-contramodules. Hence the additive categories of injec-
tive left C-comodules and projective left C-contramodules are equivalent, too [69,
Sections 0.2.6 and 5.1.3] (see also [18] and [70, Sections 5.1–5.2]).

1.3. Contramodules over the formal power series. The linear duality functor
identifies the category opposite to the category of conventional infinite-dimensional
(otherwise known as discrete, or ind-finite-dimensional) vector spaces with the cat-
egory of linearly compact, or pro-finite-dimensional, vector spaces. In particular, a
coassociative coalgebra with counit is the same thing (up to inverting the arrows)
as a linearly compact or pro-finite-dimensional topological associative algebra with
unit. Notice that any coassociative coalgebra is the union of its finite-dimensional
subcoalgebras [102, Section 2.2], so any topological associative algebra with a pro-
finite-dimensional underlying topological vector space is a projective limit of finite-
dimensional associative algebras.

In particular, one can identify coalgebras by the names of their dual linearly
compact topological algebras. In this section we consider the simplest example of
an infinite-dimensional coassociative coalgebra—the coalgebra C for which the dual
topological algebra C∗ is isomorphic to the algebra k[[z]] of formal Taylor power
series in one variable over a field k. Explicitly, C is the k-vector space with a
countable basis consisting of the formal symbols 1∗, z∗, z2∗, . . . , zn∗, . . . , n ∈ Z>0,
with the comultiplication map given by the rule

µ(zn∗) =
∑
i+j=n

zi∗ ⊗ zj∗

and the counit map ε(1∗) = 1, ε(zn∗) = 0 for n > 0.
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Then a (left or right) C-comodule M is the same thing as a k-vector space
endowed with a locally nilpotent linear operator z : M → M. In other words,
for any vector m ∈ M there must exist an integer n > 1 such that zn(m) = 0
in M. Indeed, given a linear operator z on M one would define the coaction map
ν : M→ C⊗k M by the formula

ν(m) =
∞∑
n=0

zn∗ ⊗ zn(m),

and the local nilpotence condition is needed for the sum to be well-defined (i. e.,
finite) for every vector m ∈M.

A C-contramodule structure on a k-vector space P is, by the definition, the
datum of a k-linear map π : Homk(C,P) → P satisfying the contraassociativity
and contraunitality axioms. Having such a map is the same thing as the following
infinite summation operation being defined in P. For every sequence of vectors p0,
p1, p2 . . . ∈ P there should be given a vector denoted figuratively by

∞∑
n=0

znpn ∈ P.

This infinitary operation in P should satisfy the equations of linearity
∞∑
n=0

zn(apn + bqn) = a

∞∑
n=0

znpn + b

∞∑
n=0

znqn,

contraassociativity
∞∑
i=0

zi

 ∞∑
j=0

zjpij

 =
∞∑
n=0

zn

 ∑
i+j=n

pij

 ,

and unitality
∞∑
n=0

znpn = p0 when p1 = p2 = p3 = · · · = 0 in P

for any pn, qn, pij ∈ P and a, b ∈ k. Notice that in the main (middle) equation the
first three summation signs denote the contramodule infinite summation operation,
while the fourth one is the conventional finite sum of elements of a vector space [69,
Section A.1.1].

As we will see below in Section 1.6, the C-contramodule structure on a vector
space P is in fact determined by a single linear operator z : P→ P,

z(p) = 1 · 0 + z · p+ z2 · 0 + z3 · 0 + · · ·

However, unlike for the comodules, for contramodules over more complicated coal-
gebras the similar statement is, of course, no longer true.

1.4. Contramodules over the l-adic integers. A left module M over a topo-
logical ring R is called discrete if the action map R×M→M is continuous in the
discrete topology of M and the given topology of R. In other words, this means
that the annihilator of every element of M must be an open left ideal in R. Discrete
left R-modules form an abelian category, which we denote by R–discr.
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The discussion of topological algebras dual to coalgebras in the previous section
ignored one point which we now have to clarify. Given a coassociative coalgebra
C over k, one can define the multiplication on the dual vector space C∗ in two
approximately equally natural ways which differ by the passage to the opposite
algebra, i. e., switching the left and right arguments of the product map. Let
us make the choice of defining the multiplication on C∗ in such a way that left
C-comodules acquire natural structures of left C∗-modules and right C-comodules
become right C∗-modules. Explicitly, this means applying the formula

〈fg, c〉 = 〈f, c(2)〉〈g, c(1)〉

where 〈 , 〉 denotes the natural pairing C∗×C→ k and c 7−→ c(1)⊗c(2) is Sweedler’s
symbolic notation for the comultiplication map µ [102, Section 1.2].

Then the category of left C-comodules can be described as the full subcategory
in the category of left C∗-modules C∗–mod consisting precisely of those C∗-modules
that are discrete with respect to the topology of C∗. Similarly, a right C-comodule
is the same thing as a discrete right C∗-module [102, Section 2.1].

Now the explicit description of contramodules over the coalgebra C with C∗ =
k[[t]] given in the previous section raises the question about defining contramodules
over topological rings other than pro-finite-dimensional algebras over fields. The
most close analogues of the rings k[[t]] being the rings of l-adic integers Zl, they
are the natural starting point of the desired generalization (whose full development
we postpone until Sections 2.1–2.3).

So let l be a prime number. Let us start with mentioning that a discrete module
over the topological ring of l-adic integers Zl is the same thing as an l-primary
abelian group, i. e., an abelian group where the order of every element is a power
of l. The category Zl–discr is abelian with exact functors of filtered inductive
limits, which are also preserved by the embedding functor Zl–discr → Ab into the
category of abelian groups. The infinite products in Zl–discr are not preserved by
the forgetful functor and not exact. In other words, the category Zl–discr satisfies
Ab5 and Ab3*, but not Ab4*. It has enough injective objects, but no nonzero
projectives. The injective discrete Zl-modules are precisely the direct sums of copies
of the group Ql/Zl.

A Zl-contramodule P is an abelian group endowed with the following infinite
summation operation. For any sequence of elements p0, p1, p2 . . . ∈ P an element
denoted symbolically by

∞∑
n=0

lnpn ∈ P

should be defined. This infinitary operation should satisfy the equations of addi-
tivity

∞∑
n=0

ln(pn + qn) =
∞∑
n=0

lnpn +
∞∑
n=0

lnqn,

contraassociativity

∞∑
i=0

li

 ∞∑
j=0

ljpij

 =
∞∑
n=0

ln

 ∑
i+j=n

pij

 ,
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and unitality + compatibility with the abelian group structure
∞∑
n=0

lnpn = p0 + p1 + · · ·+ p1 (l summands p1) when p2 = p2 = p3 = · · · = 0

for any elements pn, qn, and pij ∈ P.
For any l-primary abelian group M and abelian group V , the abelian group

HomZ(M, V ) has a natural Zl-contramodule structure provided by the rule( ∞∑
n=0

lnpn

)
(m) =

∞∑
n=0

pn(lnm)

for any pn ∈ HomZ(M, V ) andm ∈M. The category Zl–contra of Zl-contramodules
is abelian and the forgetful functor Zl–contra → Ab is exact. As we will see in
Section 1.6, the forgetful functor is fully faithful. It preserves infinite products,
but not infinite direct sums. Both the infinite direct sums and infinite products
are exact functors in Zl–contra. In other words, the category Zl–contra satisfies
Ab4 and Ab4* (but not Ab5 or Ab5*). It has enough projective objects, but no
injectives.

The free Zl-contramodule generated by a set X is the set Zl[[X]] of all infi-
nite formal linear combinations

∑
x∈X axx of elements of X with the coefficients

ax ∈ Zl such that for every n > 1 all but a finite number of ax are divisible by
ln in Zl. Notice that any formal linear combination satisfying this condition is,
in fact, supported in an at most countable subset in X. As we will see below
in Sections 2.1–2.2, for any Zl-contramodule P the group of all Zl-contramodule
morphisms Zl[[X]] → P is isomorphic to the group PX of arbitrary maps of sets
X → P. The classes of free and projective Zl-contramodules coincide.

The additive categories of injective discrete Zl-modules and projective Zl-con-
tramodules are equivalent; the equivalence is provided by the functors M 7−→
HomZ(Ql/Zl,M) and P 7−→ Ql/Zl ⊗Z P [46, Proposition 2.1]. In particular, one
has

HomZ(Ql/Zl,
⊕

X Ql/Zl) ' Zl[[X]] and Ql/Zl ⊗Z Zl[[X]] '
⊕

X Ql/Zl.

1.5. Counterexamples. For any topological ring R, one can compute infinite
products in the abelian category R–discr in the following way. Let Mα be a family
of discrete left R-modules; denote by M their product in the abelian category of
arbitrary R-modules. Then the product of the family of objects Mα in the category
R–discr can be obtained as an R-submodule M ⊂M consisting precisely of all the
elements m ∈M whose annihilators in R are open left ideals.

In particular, this provides a rule for computing infinite products in the abelian
categories C–comod of comodules over coalgebras over fields. Another way to for-
mulate such a rule is as follows. In any abelian category, infinite products are
left exact functors; in other words, they preserve kernels of morphisms. Since any
C-comodule can be presented as the kernel of a morphism of cofree C-comodules,
it suffices to know what the products of families of cofree C-comodules are. The
latter are easily seen to be given by the formula

∏
α C⊗k Vα = C⊗k

∏
α Vα.

Similarly, in order to compute the infinite direct sum of a family of objects in
C–contra, one can present these as the cokernels of morphisms of free C-contramod-
ules. Since any C-contramodule can be obtained as such a cokernel and the infinite
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direct sums preserve cokernels, it remains to use the formula
⊕

α Homk(C, Vα) =
Homk(C,

⊕
α Vα) for the direct sum of a family of free C-contramodules.

Let us return to the example of the coalgebra C dual to the topological algebra
of formal power series k[[z]] considered in Section 1.3. Viewed as a discrete module
over the algebra C∗ = k[[z]], the coalgebra C can be identified with the quotient
module k((z))/k[[z]] of the k[[z]]-module of Laurent series k((z)) by its submod-
ule k[[z]]. Consider the family of discrete k[[z]]-modules z−nk[[z]]/k[[z]], n = 1,
2, . . . They can be included into short exact sequences of discrete k[[z]]-modules

0 −−→ z−nk[[z]]/k[[z]] −−→ k((z))/k[[z]] −−→ k((z))/z−nk[[z]] −−→ 0.
Passing to the infinite product of these short exact sequences in the category
C–comod over all n > 1, one discovers that the map k((z))/k[[z]] ⊗k

∏
n k =∏

n k((z))/k[[z]] →
∏
n k((z))/z−nk[[z]] = k((z))/k[[z]] ⊗k

∏
n kz

−n is not sur-
jective, as, e. g., the vector (z−n−1)n ∈

∏
n k((z))/z−nk[[z]] does not belong to

its image. One also computes the infinite product
∏
n z
−nk[[z]]/k[[z]] in the cate-

gory C–comod as isomorphic to the inductive limit lim−→m

(∏m
n=1 z

−nk[[z]]/k[[z]] ×∏∞
n=m+1 z

−mk[[z]]/k[[z]]
)
.

Now consider the family of C-contramodules k[[z]]/znk[[z]], n = 1, 2 . . . They
can be viewed as parts of the short exact sequences of C-contramodules

0 −−→ znk[[z]] −−→ k[[z]] −−→ k[[z]/znk[[z]] −−→ 0.
Passing to the infinite direct sum of these short exact sequences in the category
C–contra over all n > 1, one finds out that the map Homk(C,

⊕
n kz

n) =
⊕

n z
nk[[z]]

→
⊕

n k[[z]] = Homk(C,
⊕

n k) is injective. Its cokernel P =
⊕

n k[[z]]/znk[[z]] ∈
C–contra is the C-contramodule that we are interested in.

Let us start with introducing a more careful notation. Let E denote the free
C-contramodule generated by a k-vector space E with a countable basis e1, e2,
e3, . . . Explicitly, E is the set of all formal linear combinations

∑∞
n=1 an(z)en,

where the sequence of formal power series an(z) ∈ k[[z]] converges to zero in the
topology of k[[z]]. The k[[z]]-contramodule infinite summation operations on E are
defined in the obvious way. Let F be the similar free C-contramodule generated by a
k-vector space F with a basis f1, f2, f3, . . . Define a morphism of C-contramodules
F → E by the rule

∑∞
n=1 bn(z)fn 7−→

∑∞
n=1 z

nbn(z)en. Clearly, this morphism is
injective; denote its cokernel by P = E/F.

Set pn ∈ P to be the images of the elements en ∈ E under the surjective mor-
phism E→ P. Then the infinite sum p =

∑∞
n=1 z

npn is a nonzero vector in P, since
the element

∑∞
n=1 z

nen does not belong to F ⊂ E (there being no element
∑∞
n=1 fn

in F). On the other hand, every finite partial sum zp1 + z2p2 + · · · + znpn =
zp1 + · · · + znpn + zn+1 · 0 + · · · vanishes in P, the finite sum ze1 + · · · + znen
being the image of the vector f1 + · · · + fn ∈ F in E. It follows that our vector
p = zn(pn + zpn+1 + · · · ) belongs to znP for every n > 1, so the z-adic topology
on P is not separated. This counterexample can be found in [69, Section A.1.1]; it
also occured, under slightly different guises, in [99, Example 2.5] and [110, Exam-
ple 3.20].

Among other things, P provides an example of a C-contramodule that does
not have the form Homk(N, V ) for any C-comodule N. An example of a finite-
dimensional contramodule not of this form (over a more complicated coalgebra C)
can be found in [69, Section A.1.2]. Concerning the above coalgebra C with
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C∗ = k[[z]], let us point out that the natural map Q → lim←−nQ/z
nQ, though not

necessarily injective, is always surjective for a C-contramoduleQ [69, Lemma A.2.3].
Indeed, let qn ∈ Q be a sequence of vectors such that qn+1 − qn ∈ znQ for every
n = 1, 2, . . . Suppose qn+1− qn = znpn; then the infinite sum q = q1 +

∑∞
n=1 z

npn
provides an element q ∈ Q for which q − qn ∈ znQ for every n > 1.

Similarly, consider the family of l-primary abelian groups l−nZ/Z, n = 1, 2, . . .
They can be included into short exact sequences of l-primary abelian groups

0 −−→ l−nZ/Z −−→ Ql/Zl −−→ Ql/l−nZl −−→ 0.

Passing to the infinite product of these short exact sequences in the category
Zl–discr over all n > 1, one discovers that the map

∏
nQl/Zl →

∏
nQl/l−nZl is

not surjective, as, e. g., the element (l−n−1)n ∈
∏
nQl/l−nZl does not belong to its

image. One also computes the infinite product
∏
n l
−nZ/Z in the category Zl–discr

as isomorphic to the inductive limit lim−→m

(∏m
n=1 l

−nZ/Z×
∏∞
n=m+1 l

−mZ/Z
)
.

Consider the family of Zl-contramodules Z/lnZ, n = 1, 2, . . . They can be
viewed as parts of the short exact sequences of Zl-contramodules

0 −−→ lnZl −−→ Zl −−→ Z/lnZ −−→ 0.

Passing to the infinite direct sum of these short exact sequences in the category
Zl–contra over all n > 1, one finds out that the map

⊕
n l
nZl →

⊕
n Zl is injective.

Its cokernel P =
⊕

n Z/lnZ ∈ C–contra can be described as follows.
Let E denote the free Zl-contramodule generated by a sequence of symbols e1,

e2, e3, . . . Explicitly, E is the set of all formal linear combinations
∑∞
n=1 anen,

where the sequence of l-adic integers an ∈ Zl converges to zero in the topology
of Zl. Let F be the similar Zl-contramodule generated by a sequence of sym-
bols f1, f2, f3, . . . Define a morphism of C-contramodules F → E by the rule∑∞
n=1 bnfn 7−→

∑∞
n=1 l

nbnen. Clearly, this morphism is injective; its cokernel E/F
is our Zl-contramodule P.

Set pn = en mod F ∈ P. Then the infinite sum p =
∑∞
n=1 l

npn is a nonzero
element in P, since the element

∑∞
n=1 l

nen does not belong to F ⊂ E. On the
other hand, every summand lnpn vanishes in P, the element lnen being the image
of the element fn ∈ F in E. It follows that the element p belongs to lnP for
every n > 1, so the l-adic topology on P is not separated. Notice that the natural
map Q → lim←−nQ/l

nQ, though not necessarily injective, is always surjective for a
Zl-contramodule P [71, Lemma D.1.1]. The proof is similar to the above argument
for k[[z]]-contramodules.

1.6. Recovering the contramodule structure. We have seen in the previous
section that a k[[z]]-contramodule can contain infinitely z-divisible vectors, i. e.,
vectors p ∈ P for which there exists a sequence of vectors pn ∈ P such that
p = znpn for every n > 1. Let us now show that no k[[z]]-contramodule can
contain infinitely z-divisible k[z]-submodules. In other words, one can never choose
the sequence of vectors pn ∈ P in a compatible way, i. e., any sequence of vectors
pn ∈ P such that pn = zpn+1 for all n > 0 is the sequence of zero vectors.

Indeed, consider the expression q =
∑∞
n=0 z

npn ∈ P. By assumption, we have
∞∑
n=0

znpn =
∞∑
n=0

zn · zpn+1 =
∞∑
n=0

zn+1pn+1 =
∞∑
n=1

znpn,
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that is q = q − p0 and p0 = 0. Here the last two equations conceal the use of the
contraassociativity axiom from Section 1.3, which is being applied to the double
sequence of vectors pij = pi+1 when j = 1 and pij = 0 otherwise. The assertion we
have proven is essentially a particular case of Nakayama’s lemma for contramodules
(see Section 2.1 below).

Now we are in the position to show that the forgetful functor k[[z]]–contra →
k[z]–mod (where we denote by k[[z]]–contra the category C–contra of contramodules
over the coalgebra C with C∗ = k[[z]]) is fully faithful, i. e., the C-contramodule
structure on a k-vector space P can be uniquely recovered from the single linear
operator z : P → P. Indeed, suppose that we want to “compute” the value of the
infinite sum

∑∞
n=0 z

npn in P. Consider the infinite system of linear equations

qn = pn + zqn+1, n = 0, 1, 2, . . . (1.3)

in the indeterminates qn ∈ P. We have just shown that the related system of
homogeneous linear equations qn = zqn+1 has no nonzero solutions in P. Hence
a solution of the system (1.3) is unique if it exists. Given a k[[z]]-contramodule
structure in P, one produces such a solution by setting

qn =
∞∑
i=0

zipn+i.

The value of
∑∞
n=0 z

npn can be recovered as the vector q0 ∈ P.
We have essentially shown that a k[z]-module P admits an (always unique)

k[[z]]-contramodule structure if and only if the system of nonhomogeneous linear
equations (1.3) has a unique solution in qn for every sequence of vectors pn ∈
P . The latter condition is equivalent to the vanishing of the two Ext spaces
Ext∗k[z](k[z, z−1], P ) (see [69, Remark A.1.1] and [81, Lemmas B.5.1 and B.7.1]).

Similarly, we have seen that a Zl-contramoduleP can contain infinitely l-divisible
elements, i. e., there can be nonzero elements p ∈ P for which there exists a sequence
of elements pn ∈ P such that p = lnpn for every n > 1. Let us show that no
Zl-contramodule can contain infinitely l-divisible subgroups. In other words, one
can never choose the sequence pn ∈ P in a compatible way, i. e., any sequence of
elements pn ∈ P such that pn = lpn+1 for all n > 0 is the zero sequence.

Indeed, consider the expression
∑∞
n=0 l

npn ∈ P. By assumption, we have
∞∑
n=0

lnpn =
∞∑
n=0

ln · lpn+1 =
∞∑
n=0

ln+1pn+1 =
∞∑
n=1

lnpn,

that is q = q − p0 and p0 = 0. Here the first equation signifies the use of the
“compatibility with the abelian group structure” axiom from Section 1.4, while the
last two equations presume an application of the contraassociativity axiom.

Let us show that the forgetful functor Zl–contra → Ab is fully faithful, i. e., a
Zl-contramodule structure on an abelian group P is uniquely determined by the
abelian group structure. Suppose that we want to “compute” the value of the
infinite sum

∑∞
n=0 l

npn in P. Consider the infinite system of linear equations

qn = pn + lqn+1, n = 0, 1, 2 . . . (1.4)

in the indeterminates qn ∈ P. We have just shown that the related system of
homogeneous linear equations qn = lqn+1 has no nonzero solutions in P. Hence
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a solution of the system (1.4) is unique if it exists. Assuming a Zl-contramodule
structure in P, one produces such a solution by setting

qn =
∞∑
i=0

lipn+i.

The value of
∑∞
n=0 l

npn can be recovered as the vector q0 ∈ P.
We have essentially shown that an abelian group P admits an (always unique)

Zl-contramodule structure if and only if the system of nonhomogeneous linear equa-
tions (1.4) has a unique solution in qn for every sequence of elements pn ∈ P . The
latter condition is equivalent to the vanishing of the two Ext groups Ext∗Z(Z[l−1], P )
(see [69, Remark A.3] and [81, Theorem B.1.1 and Lemma B.7.1]; cf. [21, Sec-
tions VI.3–4] and [49, Definition 4.6 and Remark 4.7]).

1.7. Contramodules over the Virasoro algebra. The definition of contramod-
ules over the formal power series algebra in terms of infinite summation operations,
as stated in Section 1.3, opens the door to generalizations of the notion of a contra-
module to various topological algebraic structures, including not only associative
rings, but also topological Lie algebras. In this section we demonstrate the possi-
bility of such a definition in the simple example of the Virasoro Lie algebra.

The punctured formal disk, otherwise known as the formal circle over a field k is
defined as a “space” such that the ring of functions on it is the ring of formal Laurent
power series k((z)). The Lie algebra of vector fields on the formal circle k[[z]]d/dz
is the set of all expressions of the form f(z)d/dz with f(z) ∈ k((z)), endowed
with the obvious k-vector space structure and the Lie bracket [f d/dz, g d/dz] =
(f dg/dz− g df/dz) d/dz. The vector fields Li = zi+1 d/dz form a topological basis
in the vector space k((z))d/dz, in which the Lie bracket takes the form [Li, Lj ] =
(j − i)Li+j .

The Virasoro algebra Vir is a central extension of the Lie algebra k((z))d/dz
with a one-dimensional kernel spanned by an element denoted by C. The k-vector
space Vir = k((z))d/dz ⊕ kC has a topological basis formed by the vectors Li,
i ∈ Z, and C, in which the Lie bracket is given by the rules

[Li, C] = 0, [Li, Lj ] = (j − i)Li+j + δi+j,0
i3 − i

12 C,

where δ is the Kronecker symbol, for all i, j ∈ Z [39, 96, 51].
A discrete module M over the Virasoro algebra is a module over the Lie algebra

Vir for which the action map Vir×M→M is continuous in the z-adic topology of
Vir and the discrete topology of M. In other words, M is a vector space endowed
with linear operators Li and C : M→M satisfying the above commutation relations
and the discreteness condition, according to which for any vector x ∈ M there
should exist an integer n such that Lix = 0 for all i > n.

Remark 1.1. — The terminology related to what we call “discrete modules over
the Virasoro algebra” is not consistent in the literature. On the one hand, an
analogous class of modules over locally compact totally disconnected topological
groups (such as p-adic Lie groups) is known under the name of “smooth modules”
(see the next Section 1.8 and Example 2.13, or the paper [83] and the references
therein).
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Still, in the particular case of profinite groups, such modules are called “discrete”
in the Galois theory [98] and class field theory [27, Chapter V] context, as well as
in the abstract theory of profinite groups [95]. On the other hand, an analogous
class of modules over topological associative rings is usually called “discrete mod-
ules” [100, Section VI.4], [11, end of Section 1.4], [40, Section 19.1], or even “torsion
modules” [100, Section VI.5].

A class of modules over affine Kac–Moody Lie algebras very similar to the above-
defined class of modules over the Virasoro is called “smooth modules” in such
references as [108, 109, 41]. (This terminology in application to the Kac–Moody
algebras may go back to [52, Section 1.9]; notice, however, that the terminology
in [52] is actually different, in that what are called “smooth modules” in [52] are
called “strictly smooth modules” in [109].) The same class of modules over the
Kac–Moody algebras is called “discrete modules” in [40, Sections 5.1 and 19.1].
The latter reference includes a more general context of topological Lie algebras on
par with the particular case of the affine Kac–Moody algebras.

In this paper, we will discuss topological Lie algebras generally in Sections 2.4
and 2.8 below (see also Example 3.25 at the very end of the paper). For consistency
with the exposition in the author’s monograph [69, Section D.2.5], which is one of
our main reference sources, we prefer the “discrete modules” terminology in con-
nection with topological Lie algebras. The terminology in [69] was largely inspired
by the one in [11].

A contramodule P over the Virasoro algebra Vir is a k-vector space endowed
with a linear operator C : P → P and an infinite summation operation assigning
to every sequence of vectors p−n, p−n+1, p−n+2 . . . ∈ P, n ∈ Z, a vector denoted
symbolically by

∑∞
i=−n Lipi ∈ P. This infinitary operation, or rather, sequence

of infinitary operations indexed by the integers n, should satisfy the equations of
agreement

∞∑
i=−n

Lipi =
∞∑

i=−m
Lipi when −n < −m and p−n = · · · = p−m−1 = 0,

linearity
∞∑

i=−n
Li(api + bqi) = a

∞∑
i=−n

Lipi + b

∞∑
i=−n

Liqi,

and the contra-Jacobi identity
∞∑

i=−n
Li(Cpi) = C

∞∑
i=−n

Lipi

and

∞∑
i=−n

Li

 ∞∑
j=−m

Ljpij

− ∞∑
j=−m

Lj

( ∞∑
i=−n

Lipij

)

=
∞∑

h=−n−m
Lh

i>−n, j>−m∑
i+j=h

(j − i)pij

+ C

i>−n, j>−m∑
i+j=0

i3 − i
12 pij .
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for any pi, qi, pij ∈ P and a, b ∈ k. This definition (for the Lie algebra k((z))d/dz
without the central extension) can be found in [69, Section D.2.7].

For any discrete module M over the Virasoro algebra and any k-vector space V ,
the vector space P = Homk(M, V ) has a natural structure of Vir-contramodule.
The central element C acts in P by the usual formula (Cp)(x) = −p(Cx) for p ∈ P
and x ∈M, while the infinite summation operations are provided by the rule( ∞∑

i=−n
Lipi

)
(x) = −

∞∑
i=−n

pi(Lix),

for pi ∈ P and x ∈M, where the second summation sign stands for the conventional
sum of an eventually vanishing sequence of vectors in V .

The category Vir–discr of discrete modules over the Virasoro algebra is abelian
and the forgetful functor Vir–discr→ k–vect is exact. Both the infinite direct sums
and infinite products exist in Vir–discr. The forgetful functor preserves infinite
direct sums (but not infinite products), so filtered inductive limits are exact in
Vir–discr. In other words, the abelian category Vir–discr satisfies the axioms Ab5
and Ab3*. It also admits a set of generators, so it has enough injectives.

The category Vir–contra of contramodules over the Virasoro algebra is abelian
and the forgetful functor Vir–contra → k–vect is exact. Both the infinite direct
sums and the infinite products exist in Vir–contra. The forgetful functor preserves
infinite products, which are therefore exact functors in Vir–contra; so this category
satisfies Ab3 and Ab4*. There are also enough projective objects in Vir–contra.
We will explain their construction in Section 2.4 below.

1.8. Contramodules over topological groups. The aim of this section is to
demonstrate the definition of contramodules over a locally compact, totally discon-
nected topological group. A typical example of such a group is the group GLn(Ql)
of invertible square matrices over the rational l-adic numbers (endowed with the
topology induced by the topology of Ql).

In this section, all the topological spaces are presumed to be Hausdorff, locally
compact, and totally disconnected. Open-closed subsets in such a topological space
X form a topology base [19, Corollaire II.4.4]. A topological group is a topological
space with a group structure given by continuous multiplication and inverse element
maps. Open subgroups in such a topological group G form a base of neighborhoods
of zero [19, Corollaire III.4.6.1]. When G is compact, the same can be said about
its open normal subgroups; so G is profinite.

A discrete module M over a topological group G is an abelian group endowed
with an action of G provided by a continuous map G × M → M in the given
topology of G and the discrete topology of M. In other words, an action of G in
M is discrete if and only if the stabilizer of any element of M is an open subgroup
in G. A discrete action can be also viewed as a map M → M{G}, where for
any topological space X and abelian group A we denote by A{X} the group of
all locally constant A-valued functions X → A on X. Denoting by G–mod the
category of nontopological G-modules, i. e., abelian groups M endowed with an
arbitrary action of G viewed as an abstract group, and by G–discr the category of
discrete G-modules, there is a natural fully faithful functor G–discr→ G–mod.

Let us introduce a bit more notation. Given a topological spaceX and an abelian
group A, we denote by A(X) the group of all locally constant compactly supported
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A-valued functions on X. For any topological spaces X and Y , there is a natural
isomorphism A(X × Y ) ' A(X)(Y ). Furthermore, denote by A[[X]] the abelian
group of finitely additive compactly supported A-valued measures defined on the
open-closed subsets of X. For any continuous map of topological spaces X → Y ,
the push-forward map A[[X]]→ A[[Y ]] is defined [69, Section E.1.1].

For any topological spaces X, Y and an abelian group A, there is a natural map
A[[X×Y ]]→ A[[X]][[Y ]] assigning to an A-valued measure ν on X×Y the measure
taking an open-closed subset V ⊂ Y to the measure taking an open-closed subset
U ⊂ X to the element ν(U × V ) ∈ A. This map is an isomorphism when both the
spaces X and Y are discrete or both of them are compact, but not otherwise.

A contramodule over a topological group G is an abelian group P endowed
with a G-contraaction map π : P[[G]]→ P, which can be viewed as an integration
operation and denoted symbolically by

π(µ) =
∫
G

g−1(dµg),

where dµg ∈ P denotes the value of a measure µ ∈ P[[G]] on a small piece of the
group G containing an element g ∈ G, while g−1(dµg) ∈ P is a small element in P
obtained by applying to dµg the presumed generalized action of g−1 ∈ G in P.

The map π must satisfy the following contraassociativity and contraunital-
ity equations. Firstly, the composition P[[G × G]] → P[[G]][[G]] → P of the
above-described map P[[G×G]]→ P[[G]][[G]] with the iterated contraaction map
P[[G]][[G]] → P[[G]] → P should be equal to the composition P[[G × G]] →
P[[G]] → P of the push-forward map P[[G × G]] → P[[G]] with respect to the
multiplication map G×G→ G with the contraaction map P[[G]]→ P,

P[[G×G]]⇒ P[[G]]→ P.

Secondly, the point measure supported at the unit element e ∈ G and taking a
prescribed value p ∈ P on the neighborhoods of e should be taken to the element p
by the contraaction map,

P→ P[[G]]→ P.

Given a point g ∈ G and an element p ∈ P, denote by g−1(p) ∈ P the element
one obtains by applying the contraaction map to the point measure supported at g
and taking the value p on its neighborhoods. This rule defines a natural action of
G (as an abstract, nontopological group) on any G-contramodule P, providing a
forgetful functor G–contra→ G–mod [69, Section E.1.3], [83, Sections 2.6 and 3.1].

For a discrete G-module M and abelian group V , the abelian group HomZ(M, V )
has a naturalG-contramodule structure. The contraaction map HomZ(M,V )[[G]]→
HomZ(M, V ) assigns to a measure µ the additive map taking an element m ∈M to
the value of the integral

π(µ)(m) =
∫
G

dµg(gm) ∈ V.

The M-valued function g 7−→ gm being locally constant on G and the HomZ(M, V )-
valued measure µ being compactly supported in G, the integral is well-defined
(cf. [69, Section E.1.4]).

The category of discreteG-modules is abelian and the forgetful functorG–discr→
Ab is exact. Filtered inductive limits are exact functors in G–discr; they are also
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preserved by the forgetful functor. In other words, the category G–discr satisfies
the axioms Ab5 and Ab3*. It also admits a set of generators, so it has enough
injective objects. The category of G-contramodules is abelian and the forgetful
functor G–contra → Ab is exact. Infinite products are exact functors in G–contra;
they are also preserved by the forgetful functor. So the category G–contra satisfies
the axioms Ab3 and Ab4*. It has enough projective objects.

The embedding functor G–discr→ G–mod and the forgetful functor G–contra→
G–mod have the similar properies, as the forgetful functor G–mod→ Ab preserves
the inductive and projective limits of any diagrams. We will see below in Section 2.6
how discrete G-modules and G-contramodules can be interpreted as semimodules
and semicontramodules over a certain semialgebra S, opening the way to explicit
constructions of injective and projective objects in G–discr and G–contra.

2. Comodule and Contramodule Categories

2.1. Contramodules over topological rings. As we discussed in Sections 1.3–
1.4, one would like to extend the definition of a contramodule from the topological
algebras dual to coalgebras over fields to topological rings of more general nature.
Before proceeding to present the desired definition, let us start with reintroducing
the conventional modules over a ring.

Given a (nontopological) associative ring R with unit, one can define left R-
modules in the following fancy way. For any set X, denote by R[X] the set of formal
linear combinations of elements of X with coefficients in R (i. e., the underlying set
of the free R-module generated by X). The assignment X 7−→ R[X] is a covariant
functor from the category of sets to itself. The key observation is that this functor
has a natural structure of a monad [57, Chapter VI] on the category of sets.

In other words, for any set X there is a natural map of “opening the parentheses”
φX : R[R[X]] → R[X], assigning a formal linear combination of elements of X to
a formal linear combination of formal linear combinations. There is also a natural
map εX : X → R[X] defined in terms of the zero and unit elements of the ring R.
The associativity and unitality axioms of a monad [57, Section VI.1] are satisfied
by these two natural transformations.

Given the endofunctor R[−] : Sets → Sets endowed with the natural transfor-
mations φ and ε, one can define a left R-module as an algebra/module over this
monad on the category of sets. In other words, a left R-module M is a set endowed
with a map of sets m : R[M ]→M satisfying the associativity and unitality axioms
from [57, Section VI.2]. Specifically, the two maps φM and R[m] : R[R[M ]]→ R[M ]
should have equal compositions with the map m,

R[R[M ]]⇒ R[M ]→M,

while the composition of the map εM : M → R[M ] with the map m should be equal
to the identity map idM ,

M → R[M ]→M.

Now let R be an associative topological ring with unit. We will have to assume
that R is complete and separated, and open right ideals form a base of neighbor-
hoods of zero in R. In other words, the natural map R → lim←−R/J, where J runs
over all the open right ideals, must be a topological isomorphism.
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Notice that these are precisely the assumptions under which the discrete right
R-modules are a good category to be assigned toR (see the beginning of Section 1.4;
cf. [11, Section 1.4]). Even though the notion of a discrete R-module is well-defined
for any topological ring R, one observes that the annihilator of an element in a
right R-module is a right ideal in R. So, if we are interested in discrete right
R-modules, then the collection of all the open right ideals in R is the only aspect of
the topology of R that is relevant for the definition of such modules. Hence there is
no loss of generality involved in assuming thatR has a base of neighborhoods of zero
consisting of open right ideals when working with discrete right R-modules (and
of course, similarly for the discrete left modules and open left ideals). Otherwise,
a discrete right R-module is the same thing as a discrete right module over the
completion of R in the new topology with a base of neighborhoods of zero consisting
of the open right ideals in the original one.

For any set X, denote by R[[X]] the set of all infinite formal linear combinations∑
x rxx of elements ofX with the coefficients inR for which the family of coefficients

rx ∈ R converges to zero in the topology of R. The latter condition means that
for any neighborhood of zero U ⊂ R the set of all x ∈ X for which rx /∈ U must
be finite. We will endow the functor R[[−]] : Sets → Sets with the structure of a
monad on the category of sets by defining an “opening of infinite parentheses” map
φX : R[[R[[X]]]]→ R[[X]] and a unit map εX : X → R[[X]].

In order to define the map φX , one essentially has to show that the infinite sums
of products in R that one obtains after opening the parentheses converge in the
topology of R. That is where our assumptions about the topological ring R have
to be used. Indeed, one has R[[X]] = lim←−J

R/J[X], where J runs over all the open
right ideals in R (and the notation A[X] for a set X and an abelian group A stands
for the group of all finite formal linear combinations of the elements of X with
coefficients in A).

Defining the “opening of parentheses” map R/J[R[[X]]] → R/J[X] does not
involve any actual infinite summation, since J ⊂ R is an open right ideal. It
remains to consider the composition R[[R[[X]]]] → R/J[R[[X]]] → R/J[X] and
pass to the projective limit over J. The unit map εX is easy to define; one can say
that it is the composition X → R[X]→ R[[X]]. Checking the monad equations for
the natural transformations φ and ε is straightforward.

A left R-contramodule P is an algebra/module over this monad on the cat-
egory of sets. In other words, it is a set endowed with an R-contraaction map
π : R[[P]]→ P satisfying the (contra)associativity and unitality equations together
with the natural transformations φ and ε. Specifically, the two maps φP and
R[[π]] : R[[R[[P]]]] → R[[P]] should have equal compositions with the contraac-
tion map π,

R[[R[[P]]]]⇒ R[[P]]→ P,

while the composition of the map εP : P → R[[P]] with the contraaction map
should be equal to the identity map idP,

P→ R[[P]]→ P.

This definition can be found in [69, Remark A.3] and [81, Section 1.2].
Notice that a systematic study of a class of monads on the category of sets,

called the algebraic monads and viewed as “generalized rings”, was undertaken by
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Durov in [31]. The definition above was in part inspired by Durov’s work. However,
the monad X 7−→ R[[X]] is not algebraic, as the functor R[[−]] does not preserve
filtered inductive limits of sets.

For any set X, the “opening of parentheses” map π = φX : R[[R[[X]]]] →
R[[X]] provides the set R[[X]] with a natural left R-contramodule structure. The
R-contramodules R[[X]] are called the free R-contramodules. For the reasons com-
mon to all monads [57, Section VI.5], for any set X and any left R-contramodule
Q there is a natural bijection/isomorphism of abelian groups HomR(R[[X]],Q) '
HomSets(X,Q), where we denote by HomR(P,Q) the group of morphisms from an
object P to an object Q in the category of R-contramodules.

Equivalently, an R-contramodule can be defined as a set endowed with the fol-
lowing infinite summation operations. For any set of indices {α}, any family of
elements pα ∈ Pα, and any family of coefficients rα ∈ R converging to zero in the
topology of R, the element denoted symbolically by

∑
α rαpα ∈ P must be de-

fined. This series of infinitary operations in the set P should satisfy the equations
of contraassociativity∑

α

rα
∑
β

rαβpαβ =
∑
α,β

(rαrαβ)pαβ if rα → 0 and ∀α rαβ → 0 in R,

unitality∑
α

rαpα = pα0 if the set {α} consists of one element α0 and rα0 = 1,

and distributivity

∑
α,β

rαβpα =
∑
α

∑
β

rαβ

 pα if rαβ → 0 in R.

Here the summation over double indices α, β presumes a set of pairs {(α, β)} map-
ping into another set {α} by a map denoted symbolically by (α, β) 7−→ α (i. e.,
the range of possible β’s may depend on a chosen α). The summation sign in
the parentheses in the third equation denotes the convergent sum in R, while all
the other summation signs stand for the infinite summation operation in P. Our
conditions on the topology of R guarantee that the family rαrαβ converges to zero
whenever both the family rα does and the families rαβ do for every fixed α.

Restricting the summation operations to finite sets of indices {α}, one discovers
that every left R-contramodule has an underlying left R-module structure. Equiva-
lently, one composes the contraaction map R[[P]]→ P with the natural embedding
R[P]→ R[[P]] in order to endow the underlying set of an R-contramodule P with
the structure of an R-module. We have constructed the forgetful functor R–contra
→ R–mod from the category of left R-contramodules R–contra to the category
R–mod of left modules over the ring R viewed as an abstract (nontopological) ring.

For any discrete right R-module N and any abelian group V , the group of all
additive maps HomAb(N, V ) has a natural left R-contramodule structure with the
infinite summation operations defined by the rule(∑

α

rαpα

)
(x) =

∑
α

pα(xrα)
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for any pα ∈ P, x ∈ N, and a family of coefficients rα converging to zero in the
topology of R. Here the summation sign in the right-hand side denotes the sum of
a family of elements in V all but a finite subfamily of which vanish, as xrα = 0 for
all but a finite subset of indices α.

For any topological ring R the category R–discr of discrete left R-modules is
abelian and the forgetful functor R–discr → Ab is exact. Filtered inductive limits
are exact functors in R–discr; they are also preserved by the forgetful functor. In
other words, the category R–discr satisfies the axioms Ab5 and Ab3* (but not in
general Ab4*). It also admits a set of generators, so it has enough injectives.

For any complete and separated topological ring R with a base of neighborhoods
of zero formed by the open right ideals the category of left R-contramodules is
abelian and the forgetful functor R–contra→ Ab is exact. To convince oneself that
this is so, one uses the definition of R-contramodules in terms of infinite summation
operations in order to define the R-contramodule structures on the kernel and
cokernel of any morphism of R-contramodules taken in the category of abelian
groups. It helps to start from writing down the equations of compatibility of the
contramodule infinite summation operations with the conventional finite operations
in an abelian group or an R-module [81, Section 1.2].

Infinite products are exact functors in R–contra; they are also preserved by the
forgetful functor. There are enough projective objects in R–contra; an R-contra-
module is projective if and only if it is a direct summand of a free one. Infinite direct
sums of free R-contramodules are computed by the rule

⊕
αR[[Xα]] = R[[

∐
αXα]];

to compute the infinite direct sum of a family of arbitrary R-contramodules, one
can present them as the cokernels of morphisms of free contramodules and use the
fact that infinite direct sums commute with cokernels. Hence the category R–contra
satisfies the axioms Ab3 and Ab4* (but not in general Ab4).

The infinite products of discrete R-modules and the infinite direct sums of
R-contramodules are not preserved by the respective forgetful functors in general.
The embedding functor R–discr → R–mod and the forgetful functor R–contra →
R–mod have the similar properties, as the forgetful functor R–mod→ Ab preserves
the inductive and projective limits of any diagrams.

The following version of Nakayama’s lemma for discrete modules and contra-
modules over a topological ring is one of their most important properties.

Lemma 2.1. — (a) Let R be a topological ring and m ⊂ R be a topologi-
cally nilpotent ideal, i. e., for any neighborhood of zero U ⊂ R there exists
an integer n > 1 such that mn ⊂ U . Then for any nonzero discrete left
R-module M the submodule mM ⊂ M of elements annihilated by m is
nonzero.

(b) Let R be a complete, separated topological ring with a base of neighbor-
hoods of zero formed by the open right ideals, and let m ⊂ R be a topo-
logically nilpotent closed ideal. Then for any nonzero left R-contramodule
P the quotient contramodule P/mP of P by the image mP of the contra-
action map m[[P]]→ P is nonzero.

Here the map m[[P]] → P is simply the restriction of the contraaction map
π : R[[P]]→ P to the subset m[[P]] ⊂ R[[P]] of all formal linear combinations with
(converging families of) coefficients in m. Notice that this version of Nakayama’s
lemma presumes no finite generatedness condition on either the discrete module or
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the contramodule; on the other hand, it requires a rather strong global topological
nilpotency condition on the ideal m.

Proof. — Part (a): let x ∈M be a nonzero element and U ⊂ R be its annihilator
in R. The R-module M being discrete, U is an open neighborhood of zero in R;
hence there exists an integer n > 1 such that mn ⊂ U , so mnx = 0. It remains to
consider the maximal integer i > 0 for whichmix 6= 0; thenmix ⊂ mM. The proof of
part (b) is a bit more complicated; see [69, Lemma A.2.1] and [81, Lemma 1.3.1]. �

For a generalization of Lemma 2.1 to topologicaly T-nilpotent ideals, see [87,
Lemmas 6.1 and 6.2]. For another version of contramodule Nakayama lemma,
see [71, Lemma D.1.2], [66, Lemma 6.14], and/or Lemma 3.22 in Section 3.8 below.

2.2. Contramodules over the adic completions of Noetherian rings. Let
R be a right Noetherian associative ring, and let I ⊂ R be an ideal generated by
central elements in R. Denote by R = lim←−nR/I

n the I-adic completion of the
ring R. In this section we explain how to describe the abelian category R–contra
of left contramodules over the complete ring R viewed as a topological ring in the
projective limit topology (or, which is the same, the I-adic topology) in terms of
conventional modules over the original ring R.

Theorem 2.2. — The composition of forgetful functors R–contra→ R–mod→
R–mod provides a fully faithful embedding of abelian categories R–contra→R–mod.
A left R-module P belongs to the full subcategory R–contra ⊂ R–mod if and only
if any one of the following equivalent conditions holds:

(a) for any element s ∈ I belonging to the center of the ring R and any
R[s−1]-module L one has ExtiR(L,P ) = 0 for all i > 0;

(b) for any element s ∈ I belonging to the center of the ring R one has
ExtiR(R[s−1], P ) = 0 for all i > 0;

(c) for any element s ∈ I one has Ext∗Z[t](Z[t, t−1], P ) = 0, where Z[t] denotes
the ring of polynomials in one variable with integral coefficients, Z[t, t−1]
is the ring of Laurent polynomials, and t acts in P by the multiplication
with s;

(d) for any j = 1, . . . , n and any i = 0 or 1 one has ExtiR(R[s−1
j ], P ) = 0,

where s1, . . . , sj is a fixed set of central generators of the ideal I ⊂ R;
(e) for any j = 1, . . . , n and any i = 0 or 1 one has ExtiZ[t](Z[t, t−1], P ) = 0,

where t acts in P by the multiplication with sj .

In other words, an R-contramodule structure on a given left R-module is al-
ways unique, and the theorem lists equivalent conditions telling when it exists. Of
course, for contramodules over topological rings more complicated then the adic
completions no such description is in general possible.

In the case of a commutative ring R, Theorem 2.2 essentially says that a con-
tramodule over the I-adic completion of R is the same thing as a cohomologically
I-adically complete R-module of Porta–Shaul–Yekutieli [64, 65, 111]. A very brief
sketch of the proof of Theorem 2.2 is presented below; a detailed exposition can be
found in [81, Appendix B] and [71, Section C.5] (see also [69, Remark A.1.1]).

Sketch of proof. — First let us explain why any left R-module P admitting a
left R-contramodule structure satisfies the conditions (a) and (c). The choice of an
element s ∈ I defines a continuous homomorphism of topological rings Z[[t]]→ R,
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thus endowing any left R-contramodule P with a left Z[[t]]-contramodule structure.
One checks that this structure is inherited by the groups ExtiZ[t](L,P) for any
Z[t]-module L and, when s is central in R, by the groups ExtiR(L,P) for any
R-module L. Now when t or s acts invertibly in L, the Ext groups in question turn
out to be Z[[t]]-contramodules with an invertible action of t, which have to vanish
by the Nakayama Lemma 2.1(b) above (cf. [81, Section B.2]).

Furthermore, for any central element s ∈ R and any left R-module P one has
ExtiR(R[s−1], P ) ' ExtiZ[t](Z[t, t−1], P ) and, of course, both groups always vanish
for i > 1 [81, Lemma B.7.1]. It remains to show that any left R-module P satisfying
the condition (e) can be endowed with a left R-contramodule structure in a unique
way. This is accomplished by the following sequence of lemmas.

Consider the topological ring of formal power series T = R[[t1, . . . , tn]] in the
central variables t1, . . . , tn with coefficients in R; then there is a natural continuous
ring homomorphism T→ R taking tj to sj . Consider also the ring of polynomials
T = R[t1, . . . , tn] and the similar ring homomorphism T → R.

Lemma 2.3. — The ring homomorphism T→ R is surjective, and its kernel J is
generated by the central elements sj− tj as an ideal in an abstract (nontopological)
ring T. Moreover, any family of elements converging to zero in R can be lifted
to a family of elements converging to zero in T, and any family of elements in J
converging to zero in the topology of T can be presented as a linear combination of
n families of elements in T, each of them converging to zero, with the coefficients
sj − tj .

Proof. — This is where the Noetherianness condition on the ring R is being used;
see [81, Sections B.3–B.4] and [71, Lemma C.5.2]. �

Lemma 2.4. — The (contra)restriction of scalars functor R–contra→ T–contra
identifies the category of leftR-contramodules with the full subcategory in T–contra
consisting of those left T-contramodules in which the elements sj − tj ∈ T act by
zero.

Proof. — Follows from Lemma 2.3; see [81, Lemma B.4.1]. �

It is easy to interpret left T-contramodules as left R-modules endowed with
infinite summation operations with the coefficients tm1

1 · · · tmn
n (see [81, proof of

Lemma B.5.1]; cf. Section 1.3 above). Hence it follows from Lemma 2.4 that the
definition of contramodules over the l-adic integers given in Section 1.4 is equivalent
to the general definition from Section 2.1 specialized to the case of R = Zl.

Lemma 2.5. — The forgetful functor T–contra→ T–mod identifies the category
of left T-contramodules with the full subcategory in the category of left T -modules
consisting of all those modules Q for which Ext∗T (T [t−1

j ], Q) = 0 for every j =
1, . . . , n.

Proof. — The “unique recovering” argument here is just a more elaborated ver-
sion of the reasoning from Section 1.6 above. See [81, Sections B.5–B.7] and [71,
Lemma C.5.3] for the details. �

To finish the proof of Theorem 2.2, it remains to combine together the results of
Lemmas 2.4 and 2.5. �
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Denote by I = lim←−n I/I
n ⊂ R the extension of the ideal I in the ring R.

The following result explains the term “cohomologically complete module” for left
R-modules satisfying the equivalent conditions of Theorem 2.2.

Proposition 2.6. — For any left R-contramodule P, the natural map P →
lim←−nP/I

nP = lim←−nP/I
nP is surjective.

Proof. — See [69, Lemma A.2.3] or [71, Lemma D.1.1]. �

Notice that the natural functor R–discr→ R–mod is fully faithful for any topo-
logical ring R with a base of neighborhoods of zero consisting of open left ideals
J and its completion R = lim←−J R/J . Moreover, when R = lim←−nR/I

n is the com-
pletion of the ring R in the adic topology of an ideal I ⊂ R generated by a fi-
nite set of central elements sj , an R-module M belongs to the full subcategory
R–discr ⊂ R–mod if and only if it is I-torsion, i. e., one has R[s−1

j ] ⊗RM = 0 for
all j or, which is the same, TorR∗ (R[s−1

j ],M) = 0 for all j.
Let us point out that the class of I-adically complete and separated left R-

modules, i. e., left R-modules P for which the map P → lim←−n P/I
nP is an isomor-

phism, does not have good homological properties. Indeed, it is not preserved not
only by the passages to the cokernels of injective morphisms (see Section 1.5), but
also by extensions in R–mod or R–contra [99, Example 2.5]. The full subcategory
of left R-contramodules R–contra ⊂ R–mod, on the other hand, not only contains
all the I-adically complete and separated left R-modules, but is also closed under
the kernels, cokernels, extensions, and projective limits in R–mod.

Example 2.7. — Let R be a complete Noetherian commutative local ring with
the maximal ideal m. Let E be an injective envelope of the residue field R/m
in the abelian category of R-modules. Then the Matlis duality (see [58, Corol-
lary 4.3] or [60, Theorem 18.6]) is an anti-equivalence between the abelian cate-
gories of Artinian and Noetherian R-modules provided by the contravariant functor
HomR(−, E).

Endow the ring R with the m-adic topology. Then any Artinian R-module is dis-
crete (or equivalently, m-torsion), while any Noetherian R-module is an R-contra-
module. It was essentially explained in Section 2.1 that, for any discrete R-module
N and any R-module V the R-module HomR(N, V ) has a natural R-contramodule
structure. Thus the construction of the R-contramodule structure on the dual
abelian group or module to a discrete R-module can be viewed as an extension of
the Matlis duality to modules with no finiteness conditions imposed.

In the respective assumptions on a topological ring R, denote by Ext∗R(L,M) the
Ext groups in the abelian category R–discr and by ExtR,∗(P,Q) the Ext groups
in the abelian category R–contra. The next proposition shows that the embed-
dings of abelian categories R–discr → R–mod and R–contra → R–mod have good
homological properties.

Proposition 2.8. — (a) Let R be a left Noetherian ring, I ⊂ R be an
ideal generated by central elements, and R = lim←−nR/I

n be the I-adic
completion of R. Then the embedding functor R–discr → R–mod induces
isomorphisms on all the Ext groups, ExtiR(L,M) ' ExtiR(L,M) for all L,
M ∈ R–discr and all i > 0.
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(b) Let R be a right Noetherian ring, I ⊂ R be an ideal generated by central
elements, and R be the I-adic completion of R. Then the embedding
functor R–contra → R–mod induces isomorphisms on all the Ext groups,
ExtR,i(P,Q) ' ExtiR(P,Q) for all P, Q ∈ R–contra and all i > 0.

Proof. — Part (a): it follows from the Artin–Rees lemma (see [60, Theorem 8.5]
and [44, Theorems 1.9 and 13.3]) that the functor R–discr → R–mod preserves
injectivity of objects (cf. [33, Section A.3]), which is clearly sufficient.

Part (b): one shows that the functor R–contra → R–mod takes free R-contra-
modules to flat R-modules and all R-contramodules to relatively cotorsion R-
modules (see [81, Sections B.8–B.10] and [71, Propositions C.5.4–C.5.5]). �

Remark 2.9. — In fact, the first assertion of Theorem 2.2 (about the functor
R–contra→ R–mod being fully faithful) holds without the Noetherianity assump-
tion on the ring R. It suffices to assume that I ⊂ R is an ideal generated by a
finite number of central elements, or even just a two-sided ideal which, viewed as
a right ideal, is finitely generated. Cf. the discussion of fully faithful contramodule
forgetful functors in Section 3.8 below.

On the other hand, the second assertion of the theorem (providing a description
of the essential image of this forgetful functor) holds for a finitely centrally gener-
ated ideal I ⊂ R satisfying a weak version of the weak proregularity condition [78,
Examples 2.2 (3) and 2.3 (3)], [85, Remark 3.8]. But generally speaking, this de-
scription of the essential image of the functor R–contra→ R–mod does not hold for
arbitrary finitely generated ideals I in commutative rings R [78, Example 5.2 (8)],
[85, Examples 1.8].

Furthermore, the assertions of Proposition 2.8 hold, without the Noetherianity
assumption, for any ideal I ⊂ R generated by a weakly proregular finite sequence of
central elements. Moreover, the natural functors between the unbounded derived
categories D(R–discr)→ D(R–mod) and D(R–contra)→ D(R–mod) are fully faith-
ful under these assumptions [74, Sections 1–2], [78, Example 5.3 (2)], [85, Section 4].

2.3. Contramodules over topological algebras over fields. The “set-theoret-
ical” definition of R-contramodules given in Section 2.1 is intended to incorporate
“arithmetical” examples such as that of the ring R = Zl of l-adic integers. In
the case of a topological algebra R over a field k, the definition can be simplified,
facilitating the comparision with the notion of a contramodule over a coalgebra C

over k.
A topological vector space V over a field k is said to have a linear topology if

its open vector subspaces form a base of neighborhoods of zero in it. In the sequel,
we presume all our topological vector spaces to have linear topologies and, unless
otherwise mentioned, to be complete and separated. In other words, the natural
map V → lim←−U V/U , where U runs over all the open vector subspaces in V , should
be a topological isomorphism (see [11] or [69, Section D.1]). Given a topological
vector space V and an abstract (nontopological) vector space P over a field k, we
denote by V ⊗̂P the projective limit lim←−U V/U⊗kP taken over all the open vector
subspaces U ⊂ V , viewed as an abstract (nontopological) vector space.

For any associative algebraR over a field k, one can define leftR-modules as mod-
ules over the monadM 7−→ R⊗kM on the category of k-vector spacesM ∈ k–vect.
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We would like to extend this definition of R-modules to the case of topological al-
gebras over k. Let R be a complete and separated topological associative algebra
over a field k where open right ideal form a base of neighborhoods of zero. Then
the functor P 7−→ R ⊗̂P has a natural structure of a monad on the category of
(nontopological) k-vector spaces P ∈ k–vect. Indeed, let us construct the natural
transformations of multiplication and unit in this monad.

For any open right ideal J ⊂ R the multiplication map R/J×R→ R/J, being
continuous in the discrete topology of R/J and the given topology of R, defines a
structure of discrete right R-module on the quotient space R/J, so the annihilator
of every element of R/J is an open right ideal in R. Hence the multiplication map
R/J ⊗k R → R/J induces a natural linear map R/J ⊗k (R ⊗̂ P ) → R/J ⊗k P .
Composing this map with the projection R⊗̂ (R⊗̂P )→ R/J⊗k (R⊗̂P ) and
passing to the projective limit over open right ideals J, we obtain the desired monad
multiplication map φP : R⊗̂ (R⊗̂P )→ R⊗̂P .

The unit map εP : P → R⊗̂P of our monad is obtained as the composition of
the map P → R⊗k P induced by the unit element in R with the completion map
R⊗k P → R⊗̂P . Verifying the associativity and unitality axioms of a monad for
the functor R⊗̂− : k–vect→ k–vect endowed with the natural transformations φ
and ε is straightforward.

A left R-contramodule P is an algebra/module over this monad on the category
of k-vector spaces. In other words, it is a k-vector space endowed with a contraac-
tion map π : R ⊗̂P → P satisfying the following contraassociativity and contra-
unitality equations. Firstly, the two maps φP and R⊗̂π : R⊗̂(R⊗̂P)→ R⊗̂P
should have equal compositions with the contraaction map π,

R⊗̂ (R⊗̂P)⇒ R⊗̂P→ P.

Secondly, the composition of the map εP : P→ R⊗̂P with the contraaction map
should be equal to the identity map idP,

P→ R⊗̂P→ P.

A free R-contramodule is an R-contramodule of the form P = R ⊗̂P , where P
is a k-vector space, with the contraaction map π = φP : R⊗̂ (R⊗̂P )→ R⊗̂P .
This definition of R-contramodules can be found in [69, Section D.5.2].

For any discrete right R-module N and any (nontopological) k-vector space E,
the vector space P = Homk(N, E) has a natural left R-contramodule structure
provided by the contraaction map π : R ⊗̂ Homk(N, E) → Homk(N, E) defined
symbolically by the formula

π(r ⊗̂ f)(n) = f(nr),

where r ∈ R, n ∈ N, f ∈ Homk(N, E), and the expression in the right-hand side
makes sense, since the right action map N⊗kR⊗kHomk(N, E)→ N⊗kHomk(N, E)
restricted to n⊗R⊗P ⊂ N⊗kR⊗kP factorizes through the surjection n⊗R⊗P→
n⊗R/J⊗P for a certain open right ideal J ⊂ R.

Let us show that our new definition of R-contramodules is equivalent to the one
from Section 2.1 in the case of a topological algebra R over a field k. The following
argument can be found in [81, Section 1.10].

Recall that the category of k-vector spaces can be defined as the category of
algebras/modules over the monad X 7−→ k[X] on the category of sets. Hence for
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any k-vector space P there is a natural action map p : k[P ] → P . Moreover, this
map is the coequalizer of the pair of maps k[[P ]] ⇒ k[P ], one of which is the
“opening of parentheses” map φP , while the other one is the map k[p] induced by
the map p. Indeed, applying the forgetful functor k–vect → Sets makes this even
a split coequalizer with an explicit splitting defined in terms of the unit map of
our monad [57, Sections VI.6–7]. Subtracting one of the maps in the pair from the
other one, we obtain an exact sequence in the category k–vect

k[k[P ]]→ k[P ]→ P → 0 (2.1)

for any k-vector space P .
Notice the natural isomorphism R⊗̂k[X] ' R[[X]] for any set X. Furthermore,

any additive functor on the category of k-vector spaces is exact. Thus applying the
functor R⊗̂− to the exact sequence (2.1), we obtain an exact sequence

R[[k[P ]]] −−→ R[[P ]] −−→ R⊗̂P −−→ 0 (2.2)

for any k-vector space P . In particular, we have obtained a natural surjective map
R[[P]] → R ⊗̂P for any k-vector space P; composing it with the contraaction
map R⊗̂P→ P of a contramodule P over the topological k-algebra R, we obtain
a contraaction map R[[P]]→ P defining the structure of a contramodule over the
topological ring R on the set P.

Conversely, starting from the contraaction map R[[P]] → P of a contramodule
P over the topological ring R, one can first of all compose it with the natural
embedding k[P] → R[[P]], defining a k-vector space structure k[P] → P on the
set P. Furthermore, restricting the contraassociativity equation R[[R[[P]]]] ⇒
R[[P]]→ P to the subset R[[k[P]]] ⊂ R[[R[[P]]]], one discovers that the two maps
R[[k[P]]] ⇒ R[[P]] have equal compositions with the contraaction map R[[P]] →
P. So we see from the exact sequence (2.2) that the contraaction map R[[P]] →
P factorizes through the surjective map R[[P]] → R ⊗̂P, providing P with a
contraaction map R⊗̂P→ P of a contramodule over the topological k-algebra R.

Of course, one still has to check that the map R ⊗̂P → P satisfies the con-
traassociativity and contraunitality equations if and only if the corresponding map
R[[P]]→ P does. Here it helps to notice that the natural map

R[[R[[P]]]] −−→ R⊗̂ (R⊗̂P) (2.3)

is surjective, so any two maps R⊗̂(R⊗̂P)→ P are equal to each other whenever
their compositions with the map (2.3) are. We have also seen that the class of free
R-contramodules as defined in this section coincides with the one introduced in
Section 2.1 when R is a topological algebra over a field.

Now we can finally compare our notion of a contramodule over a topological
ring/topological algebra over a field k with the definition of a contramodule over
a (coassociative) coalgebra C over k given in Section 1.1. Let R = C∗ be the dual
vector space to the coalgebra C endowed with its pro-finite-dimensional topological
algebra structure (see Sections 1.3–1.4). Then there is a natural isomorphism R⊗̂
P ' Homk(C, P ) for any k-vector space P , making an R-contraaction map R ⊗̂
P→ P the same thing as a C-contraaction map Homk(C,P)→ P.

The vector spaces R⊗̂ (R⊗̂P) and Homk(C,Homk(C,P)) parametrizing the
systems of contraassociativity equations on the two kinds of contraaction maps
being also naturally isomorphic, one easily checks that a map R⊗̂P→ P defines a
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leftR-contramodule structure on a k-vector spaceP if and only if the corresponding
map Homk(C,P)→ P defines a left C-contramodule structure on P.

2.4. Contramodules over topological Lie algebras. The definition of the cat-
egory of contramodules over the Virasoro algebra given in Section 1.7 calls for a
generalization to a reasonably large class of topological Lie algebras.

There are some naïve approaches: for example, it is easy to define comodules
and contramodules over Lie coalgebras in the way analogous to the definitions for
coassociative coalgebras explained in Section 1.1. This provides the notion of a
contramodule over a linearly compact topological Lie algebra. Notice that the class
of all Lie coalgebras is in some sense not as narrow as that of coassociative coalgebras
over fields: unlike in the coassociative case (see Section 1.3), a Lie coalgebra does
not have to be the union of its finite-dimensional subcoalgebras.

Indeed, it suffices to consider the case of the Lie coalgebra L dual to the linearly
compact Lie algebra k[[z]]d/dz over a field k of zero characteristic, that is the
Lie subalgebra topologically spanned by the generators L−1, L0, L1, L2 . . . in
the algebra k((z))d/dz. The Lie algebra k[[z]]d/dz having no nonzero proper closed
ideals, the Lie coalgebra L has no nonzero proper subcoalgebras at all. Nevertheless,
the class of linearly compact Lie algebras does not even contain the Virasoro algebra.

So let us start with the class of locally linearly compact, or Tate Lie algebras.
A topological vector space V is said to be locally linearly compact, or a Tate
vector space if it has a linearly compact open subspace, or equivalently, if (linearly)
compact open subspaces form a base of neighborhoods of zero in V . In other words,
a topological vector space is a Tate vector space if it is topologically isomorphic
to the direct sum of a compact vector space and a discrete vector space (see [11,
Sections 1.1–1.2 and the references therein] and [69, Section D.1.1]).

A Tate Lie algebra g is a Tate vector space endowed with a continuous Lie
algebra structure, i. e., a Lie bracket g× g→ g that is continuous as a function of
two variables. Any Tate Lie algebra has a base of neighborhoods of zero consisting
of open Lie subalgebras (see footnotes in [14, Section 3.8.17] or [11, Section 1.4], or
a paragraph in [69, Section D.1.8]). For example, the “Laurent totalization” g =⊕

n<0 gn ⊕
∏
n>0 gn of any Z-graded Lie algebra

⊕
n∈Z gn with finite-dimensional

components gn is a Tate Lie algebra with compact open subalgebras
∏
i>n gi ⊂

g, n > 0, forming a base of neighborhoods of zero. This includes such classical
examples as the Virasoro and Kac–Moody Lie algebras.

A contramodule P over a Tate Lie algebra g over a field k is a k-vector space
endowed with a contraaction map g ⊗̂P → P satisfying the following (system
of) contra-Jacobi equation(s). Given a compact vector space V , denote by V ∨ the
discrete vector space to dual to V , so that V ∨∗ is isomorphic to V as a topological
vector space. For any abstract (nontopological) vector space P , there is then a
natural isomorphism of (nontopological) vector spaces V ⊗̂ P ' Homk(V ∨, P ).
So in particular we have g ⊗̂P ' lim−→V

Homk(V ∨,P), where V runs over all the
compact vector subspaces V ⊂ g.

Now let U , V , and W ⊂ g be three compact vector subspaces for which [U, V ] ⊂
W ; then there is a natural cobracket map W∨ → V ∨ ⊗k U∨. It required that the
composition

Homk(V ⊗k U, P) −−→ Homk(W,P) −−→ g⊗̂P −−→ P
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of the map induced by the cobracket map with the contraaction map should be
equal to the difference of the interated contraaction maps

Homk(V ⊗k U, P) ' Homk(U,Homk(V,P)) −−→ Homk(U,P) −−→ P

and

Homk(V ⊗k U, P) ' Homk(V,Homk(U,P)) −−→ Homk(V,P) −−→ P.

This definition can be found in [69, Section D.2.7]. Contramodules over Tate Lie
algebras serve as the coefficients for the theory of semi-infinite cohomology of Lie
algebras (as opposed to the semi-infinite homology [37], [14, Section 3.8]); see [69,
Section D.5.6] for the definition and Section 2.8 below for a brief overview.

In order to extend the definition of a g-contramodule to topological Lie algebras g
of more general nature, we need to introduce a bit more topological linear algebra
background. The following three topological tensor product operations were defined
in [11, Section 1.1] (see also [69, Section D.1.3] and [84, Section 12]).

For any topological vector spaces V and W , the !-tensor product V ⊗! W is the
completion of the tensor product V ⊗kW with respect to the topology with a base
of neighborhoods of zero formed by the subspaces V ′ ⊗W + V ⊗W ′ ⊂ V ⊗k W ,
where V ′ ⊂ V and W ′ ⊂ W are open vector subspaces. In other words, one has
V ⊗! W = lim←−V ′,W ′ V/V

′ ⊗k W/W ′, with the projective limit topology.
Furthermore, the ∗-tensor product V⊗∗W is the completion of the tensor product

V ⊗k W with respect to the topology in which a vector subspace T ⊂ V ⊗k W is
open if and only if it satisfies the following three conditions:

(i) there exist open vector subspaces V ′ ⊂ V , W ′ ⊂W such that V ′⊗kW ′ ⊂
T ;

(ii) for any vector v ∈ V there exists an open subspace W ′′ ⊂ W such that
v ⊗W ′′ ⊂ T ;

(iii) for any vector w ∈ W there exists an open subspace V ′′ ⊂ V such that
V ′′ ⊗ w ⊂ T .

For any topological vector space U , a bilinear map V ×W → U is continuous (as
a function of two variables) if and only if it can be (always uniquely) extended to
a continuous linear map V ⊗∗W → U .

Finally, the ←-tensor product V ←⊗ W is the completion of the tensor product
V ⊗k W with respect to the topology in which a vector subspace T ⊂ V ⊗k W is
open if and only if it satisfies the following two conditions:

(i) there exists an open vector subspace V ′ ⊂ V such that V ′ ⊗k W ⊂ T ;
(ii) for any vector v ∈ V there exists an open subspace W ′′ ⊂ W such that

v ⊗W ′′ ⊂ T .
The underlying abstract (nontopological) vector space of the topological tensor
product V←⊗W does not depend on the topology onW and is naturally isomorphic to
the completed tensor product V ⊗̂W introduced in Section 2.3. The multiplication
map R ×R → R of a (complete and separated) topological associative algebra R

can be (uniquely) extended to a continuous linear map R
←⊗R → R if and only if

open right ideals form a base of neighborhoods of zero in R [11, Section 1.4].
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Each of the three tensor product operations ⊗!, ⊗∗, and ←⊗ defines an associative
tensor/monoidal structure on the category of topological vector spaces; the for-
mer two tensor products are also commutative. In particular, given a topological
associative algebra R and a k-vector space P , there is a natural isomorphism of
(nontopological) vector spaces R ⊗̂ (R ⊗̂P ) ' (R←⊗R) ⊗̂P ; hence the monad
multiplication map φP : R⊗̂(R⊗̂P )→ R⊗̂P from Section 2.3 defined whenever
open right ideals form a base of neighborhoods of zero in R [69, Section D.5.2].

For any topological vector space V , denote by
∧2,∗(V ) the completion of the

nontopological exterior square
∧2(V ) with respect to the topology in which a vector

subspace T ⊂
∧2(V ) is open if and only if there exists an open subspace V ′ ⊂ V

such that
∧2(V ′) ⊂ T and for any vector v ∈ V there exists an open subspace V ′′ ⊂

V such that v ∧ V ′′ ⊂ T . For any topological vector space U , a skew-commutative
bilinear map V × V → U is continuous if and only if it can be (uniquely) extended
to a continuous linear map

∧2,∗(V ) → U . The topological vector space
∧2,∗(V )

can be also viewed as a closed vector subspace in V ⊗∗ V .
A contramodule P over a topological Lie algebra g over a field k is a k-vector

space endowed with a contraaction map π : g ⊗̂P → P satisfying the following
contra-Jacobi equation. The composition∧2,∗(g)⊗̂P −−→ g⊗̂P −−→ P

of the map induced by the Lie bracket
∧2,∗(g)→ g of g with the contraaction map

should be equal to the composition of the map induced by the natural maps of
topological vector spaces

∧2(V )→ V ⊗∗ V → V
←⊗ V considered in the case V = g

with the iterated contraaction map∧2,∗(g)⊗̂P −−→ (g⊗∗ g)⊗̂P −−→ (g←⊗ g)⊗̂P
' g⊗̂ (g⊗̂P) −−→ g⊗̂P −−→ P.

This definition can be found in [69, Section D.2.6].
A discrete module M over a topological Lie algebra g is a g-module for which

the action map g × M → M is continuous in the given topology of g and the
discrete topology of M. In other words, this means that the annihilator of any
element of M is an open subalgebra in g. So one can say that discrete g-modules
are a good category to be assigned to g when open subalgebras form a base of
neighborhoods of zero in g (cf. [11, Sections 1.4 and 2.4]); otherwise, a discrete
g-module is the same thing as a discrete module over the completion of g in the
new topology with a base consisting of the open subalgebras in the original one.
For any discrete g-module M and any (nontopological) k-vector space E, the vector
space P = Homk(M, E) has a natural g-contramodule structure provided by the
contraaction map π : g⊗̂Homk(M, E) defined symbolically by the formula

π(x⊗̂ f)(m) = −f(xm),
where x ∈ g, m ∈M, f ∈ Homk(M, E), and the expression in the right-hand side
makes sense due to the definition of the completed tensor product g⊗̂P and the
discreteness condition on the g-module M [69, Section D.2.6].

The category g–discr of discrete g-modules is abelian and the embedding/for-
getful functors g–discr → g–mod → k–vect from it to the categories of arbitrary
g-modules and k-vector spaces are exact. Both infinite direct sums and infinite
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products exist in g–discr; the infinite direct sums are also preserved by the forgetful
functors. It follows that filtered inductive limits are exact in g–discr. In other
words, the category g–discr satisfies the axioms Ab5 and Ab3*, but not in general
Ab4*. It also admits a set of generators, so it has enough injective objects.

Any g-contramodule P has an underlying structure of a module over the Lie
algebra g viewed as an abstract (nontopological) Lie algebra; it is provided by the
composition of maps g⊗P→ g⊗̂P→ P. The category g–contra is abelian and the
forgetful functors g–contra → g–mod → k–vect are exact. Infinite products exist
in the category g–contra and are preserved by the forgetful functors. The theorem
below, when it is applicable, allows one to say more (cf. Sections 1.7 and 2.1).

The enveloping algebra U(g) of a topological Lie algebra g can be endowed with
a natural topology in two opposite ways. Let us denote by Ul̂ (g) the completion of
U(g) in the topology where the left ideals in U(g) generated by open subspaces in g
form a base of neighborhoods of zero, and by Ur̂ (g) the completion of U(g) in the
similar topology with a base formed by the right ideals generated by open subspaces
in g. Using the assumption of continuity of the bracket in g, one can easily check
that the multiplication in U(g) can be extended to continuous multiplications in
Ul̂ (g) and Ur̂ (g). This construction was considered in [14, Section 3.8.17], [11,
Section 2.4], and [69, Section D.5.1].

Theorem 2.10. — (a) For any topological Lie algebra g, the category of
discrete g-modules is naturally isomorphic to the category of discrete left
Ul̂ (g)-modules, g–discr ' Ul̂ (g)–discr. The datum of a discrete g-module
structure on a vector space M is equivalent to the datum of a discrete left
Ul̂ (g)-module structure on M.

(b) For any topological Lie algebra g admitting a countable base of neigh-
borhoods of zero consisting of open Lie subalgebras in g, the category of
g-contramodules is naturally isomorphic to the category of left Ur̂ (g)-con-
tramodules, g–contra ' Ur̂ (g)–contra. The datum of a g-contramodule
structure on a vector space P is equivalent to the datum of a left Ur̂ (g)-
contramodule structure on P.

Proof. — Part (a): any g-module can be viewed as an U(g)-module and vice
versa; it is obvious from the definitions that a g-module is discrete if and only if its
U(g)-module structure extends to a structure of discrete left module over Ul̂ (g).

The proof of part (b) is more complicated; see [69, Section D.5.3]. �

Remark 2.11. — General topology and topological algebra are known to be
treacherous ground, and caution is advisable when working with topological vector
spaces with linear topologies, as many assertions which appear to be natural at first
glance turn out to be problematic at a closer look. In particular, the exposition in
the paper [11], while correcting several mistakes or unfortunate definitions found
in the previous book [14], is still too optimistic on a few points.

For example, the quotient space V/U of a topological vector space V by a closed
vector subspace U is not always complete in the quotient topology [97, Propo-
sition 11.1], [4, Theorem 4.1.48], [87, Section 2.11], [84, Theorem 2.5]. (Cf. [20,
Exercice IV.4.10.b.α], where a related counterexample in the setting of topological
vector spaces with nonlinear topologies compatible with the topology of the basic
field of real numbers is considered.) Even if the quotient space V/U is complete,
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it does not follow (generally speaking) that the induced map of topological tensor
products V ⊗!W → (V/U)⊗!W or complete tensor products V ⊗̂P → (V/U)⊗̂P
is surjective [84, Corollary 13.9]. In all these cases, the question is how to show
that a map between projective limits of vector spaces is surjective.

The problem does not arise for topological vector spaces with countable bases
of neighborhoods of zero, as countable projective limits are better behaved, and
indeed, any closed subspace U that has a countable base of neighborhoods of zero
is a topological direct summand in V . However, the ∗-tensor product operation
leads outside of the class of topological vector spaces with countable topologies [84,
Conclusion 13.11].

In particular, we formulate our system of contra-Jacobi equations as being in-
dexed by the complete tensor product

∧2,∗(g) ⊗̂P, while the somewhat simpler
alternative of having it indexed by the complete tensor product (g⊗∗ g)⊗̂P would
work just as well when the characteristic of the field k is different from 2. Indeed,
the natural map (g⊗∗g)⊗̂P→ ∧2,∗(g)⊗̂P is surjective in this case, the topolog-
ical vector space

∧2,∗(g) being a direct summand in g⊗∗ g. Then the contra-Jacobi
equation could be written in the familiar form of the difference between the two
compositions (g⊗∗ g)⊗̂P⇒ g⊗̂(g⊗̂P)→ g⊗̂P→ P being equal to the com-
position (g⊗∗g)⊗̂P→ g⊗̂P→ P. The desire to incorporate the characteristic 2
case leads to the somewhat more complicated definition above.

2.5. Contramodules over corings. The following scheme of categorical buildup
is discussed in the introduction to the book [69]. Let K be a category endowed
with an (associative, noncommutative) monoidal (tensor) category structure, M be
a left module category over it, N be a right module category, and V be a category
for which there is a pairing between the module categories N and M over K taking
values in V.

This means that, in addition to the multiplication functor ⊗ : K×K→ K, there
are also action functors

⊗ : N× K→ N and ⊗ : K×M→ M

and a pairing functor ⊗ : N × M → V. Furthermore, there are associativity con-
straints for the ternary multiplications

K× K× K→ K, N× K× K→ K, K× K×M→ M, N× K×M→ V

satisfying the pentagonal diagram equations for products of four factors.
Let A be an associative ring object in K. Then one can consider the category

AKA of A-A-bimodule objects in K, the category AM of left A-module objects in
M, and the category NA of right A-module objects in N. When the categories
K, M, N, and V are abelian (or additive categories with cokernels, or, at least,
admit coequalizers), there are the functors ⊗A of tensor product over A, making
AKA a tensor category, AM a left module category over it, NA a right module
category, and providing a pairing NA × AM → V. The new tensor structures ⊗A
are associative whenever the original tensor product functors ⊗ were right exact
(preserved coequalizers).

Inverting the arrows in all the four categories, one comes to considering the situ-
ation of a coring object C ∈ K. Then there is the category CKC of C-C-bicomodule
objects in K, the category CM of left C-comodule objects in M, and the category NC
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of right C-comodule objects in N. When the categories K, M, N, and V are abelian
(or, at least, admit equalizers), there are the functors �C of cotensor product over
C, making CKC a tensor category, CM a left module category over it, NC a right
module category, and providing a pairing NC×CM→ V. The new tensor structures
�C are associative whenever the functors ⊗ were left exact (preserved equalizers).

Now one may wish to iterate this construction, considering a coring object C in
the category of A-A-bimodules AKA, the categories of C-comodules in the categories
of A-modules AM and NA, the category of C-C-bicomodules in AKA, etc. Then one
encounters the typical phenomenon of progressive relaxation/worsening of algebraic
properties at every step of a buildup.

The functor ⊗A of tensor product over a ring object A is in most cases not left
exact (being defined as a certain coequalizer, it does not preserve equalizers). Hence
the cotensor product over a coring object C ∈ AKA will be only associative under
certain (co)flatness conditions imposed on the objects involved. But the associativ-
ity is necessary to even define tensor products over ring objects. So when one makes
the next step and considers a ring object S in the category of C-C-bicomodules in
AKA, one discovers that the functors of tensor product over S are only partially
defined.

In this section, we consider coring objects C in the category of bimodules over
a conventional ring A (i. e., a ring object in the tensor category of abelian groups
K = Ab). So let A be an associative ring (with unit).

A coring C over a ring A is an A-A-bimodule endowed with a comultiplication
map µ : C→ C⊗A C and a counit map ε : C→ A satisfying the following linearity,
coassociativity, and counitality equations. First of all, both maps µ and ε must be
A-A-bimodule morphisms. Secondly, the two compositions of the comultiplication
map µ with the two maps µ ⊗ id and id ⊗ µ : C ⊗A C ⇒ C ⊗A C ⊗A C induced by
the comultiplication map should be equal to each other,

C→ C⊗A C⇒ C⊗A C⊗A C.

Thirdly, both the compositions of the comultiplication map with the two maps
ε⊗ id and id⊗ ε : C⊗A C⇒ C induced by the counit map ε should be equal to the
identity map idC,

C→ C⊗A C⇒ C.

A left comodule M over a coring C over a ring A is a comodule object in the
left module category of left A-modules over the coring object C in the tensor cate-
gory of A-A-bimodules. In other words, it is a left A-module endowed with a left
C-coaction map νM : M→ C⊗AM satisfying the following linearity, coassociativity,
and counitality equations. First of all, the map ν = νM must be a left A-module
morphism. Secondly, the compositions of the coaction map ν with the two maps
µ ⊗ id and id ⊗ ν : C ⊗A M ⇒ C ⊗A C ⊗A M induced by the comultiplication and
coaction maps should be equal to each other,

M→ C⊗A M⇒ C⊗A C⊗A M.

Thirdly, the composition of the coaction map with the map ε ⊗ id : C ⊗A M → M

induced by the counit map should be equal to the identity map idM,

M→ C⊗A M→M.
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Similarly, a right comodule N over C is a right A-module endowed with a right
C-coaction map νN : N → N ⊗A C, which must be a right A-module morphism
satisfying the coassociativity and counitality equations

N→ N ⊗A C⇒ N ⊗A C⊗A C,

N→ N ⊗A C→ N.

These definitions can be found in [25, Sections 17.1 and 18.1] or [69, Section 1.1.1].
Corings and comodules also appear in noncommutative geometry, or more specifi-
cally, in connection with noncommutative semi-separated stacks [55, 54].

Before introducing C-contramodules, let us discuss a bit more abstract nonsense.
The conventional tensor calculus over a ring A includes, in addition to the tensor
product functor ⊗A, the functor HomA of homomorphisms of (say, left) A-modules.
Applying the functor HomA to an A-A-bimodule E and a left A-module P produces
a left A-module HomA(E,P ). In fact, the functor HomA endows the category
A–modop opposite to the category of left A-modules with a right module category
structure over the tensor category of A-A-bimodules A–mod–A. Indeed, for any
A-A-bimodules K and L and a left A-module P one has

HomA(L,HomA(K,P )) ' HomA(K ⊗A L, P ),

or, denoting temporarily P op ∗A K = HomA(K,P )op,

(P op ∗A K) ∗A L ' P op ∗A (K ⊗A L)

(cf. the discussion of Hom space identification rules (1.1) and (1.2) in Section 1.1).
In other words, one can say that the functor HomA makes the category of left
A-modules a left Hom category over the tensor category of A-A-bimodules. The
same functor HomA(−,−) provides a pairing between the left module category
A–mod and the right module category A–modop over the tensor category A–mod–A
taking values in the opposite category of abelian groups Abop.

A left contramodule P over a coring C over a ring A is an object of the opposite
category to the category of module objects in the right module category A–modop

over the coring object C in the tensor category A–mod–A. In other words, it is a left
A-module endowed with a left C-contraaction map πP : HomA(C,P)→ P satisfy-
ing the following linearity, contraassociativity, and contraunitality equations. First
of all, the map π = πP must be a left A-module morphism. Secondly, the composi-
tions of the maps Hom(µ,P) : HomA(C⊗A C, P)→ HomA(C,P) and Hom(C, π) :
HomA(C,HomA(C,P)) → HomA(C,P) induced by the comultiplication and con-
traaction maps with the contraaction map should be equal to each other,

HomA(C,HomA(C,P)) ' HomA(C⊗A C, P)⇒ HomA(C,P)→ P.

Thirdly, the composition of the map P→ HomA(C,P) induced by the counit map ε
with the contraaction map should be equal to the identity map,

P→ HomA(C,P)→ P.

This definition can be found in [69, Section 3.1.1]. In a slightly lesser generality of
coassociative coalgebras over commutative rings, it was first given, together with
the definition of a comodule, in the memoir [34, Section III.5].

For any right C-comodule N endowed with a left action of a ring B by right
C-comodule endomorphisms, and left B-module V , the abelian group HomB(N, V )
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has a natural left C-contramodule structure, were the left action ofA in HomB(N, V )
is induced by the right action of A in N, and the left C-contraaction morphism
π : HomA(C,HomB(N, V ))→ HomB(N, V ) is obtained by applying the contravari-
ant functor HomB(−, V ) to the right C-coaction morphism ν : N→ N ⊗A C,

HomA(C,HomB(N, V )) ' HomB(N ⊗A C, V )→ HomB(N, V ).

The left C-comodule C⊗AV , where V is a left A-module, is called the C-comodule
coinduced from an A-module V . For any left C-comodule L there is a natural
isomorphism of abelian groups

HomC(L, C⊗A V ) ' HomA(L, V ),

where HomC(L,M) denotes the group of morphisms from a C-comodule L to a
C-comodule M in the category C–comod of left C-comodules [69, Section 1.1.2].

The left C-contramodule HomA(C, V ), where V is a left A-module, is called the
C-contramodule induced from an A-module V . For any left C-contramoduleQ there
is a natural isomorphism of abelian groups

HomC(HomA(C, V ),Q) ' HomA(V,Q),

where HomC(P,Q) denotes the group of morphisms from a C-contramodule P to
a C-contramodule Q in the category C–contra of left C-contramodules [69, Sec-
tion 3.1.2].

Proposition 2.12. — (a) The following two conditions on a coring C are
equivalent:
• the category of left C-comodules is abelian and the forgetful functor
C–comod→ A–mod is exact;

• the coring C is a flat right A-module.
(b) The following two conditions on a coring C are equivalent:

• the category of left C-contramodules is abelian and the forgetful func-
tor C–contra→ A–mod is exact;

• the coring C is a projective left A-module.

Proof. — One defines a C-comodule or C-contramodule structure on the kernel
and cokernel of any morphism of left C-comodules or left C-contramodules com-
puted in the category of abelian groups/left A-modules, assuming respectively that
the functor C ⊗A − : A–mod → A–mod is exact (preserves kernels) or the functor
HomA(C,−) : A–mod→ A–mod is exact (preserves cokernels). This allows to show
that the second condition implies the first one in either part (a) or (b).

To prove the converse implication in part (a), notice that the functor C⊗A − :
A–mod→ A–mod is the composition of the coinduction functor A–mod→ C–comod
and the forgetful functor C–comod → A–mod, the former of which is right adjoint
to the latter one. Since any right adjoint functor between abelian categories is left
exact, one concludes that the functor C ⊗A − is left exact whenever the forgetful
functor is exact. Similarly, in part (b) the functor HomA(C,−) : A–mod→ A–mod
is the composition of the induction functor A–mod → C–contra and the forgetful
functor C–contra → A–mod, the former of which is left adjoint to the latter one.
Since any left adjoint functor is right exact, the functor HomA(C,−) is right exact
whenever the forgetful functor is exact. �
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Generally speaking, the cokernels of arbitrary morphisms exist in C–comod and
are preserved by the forgetful functor C–comod → A–mod, but the kernels in
C–comod may be problematic when C is not a flat right A-module. Similarly,
the kernels of arbitrary morphisms exist in C–contra and are preserved by the
forgeftul functor C–contra → A–mod, but the cokernels in C–contra may be prob-
lematic when C is not a projective left A-module. Counterexamples showing that
the categories C–comod and C–contra are not abelian in general can be found in [71,
Example B.1.1].

Assume that the coring C is a flat right A-module; then, according to Proposi-
tion 2.12, the category C–comod is abelian and the forgetful functor C–comod →
A–mod is exact. Both the infinite direct sums and infinite products exist in
C–comod; the infinite direct sums are exact and are preserved by the forgetful
functor. Filtered inductive limits are exact in the category of left C-comodules;
so it satisfies the axioms Ab5 and Ab3*, but not in general Ab4*. The category
C–comod also has a set of generators [25, Sections 3.13 and 18.14]; moreover, when
A is a left Noetherian ring or C is a projective right A-module, every left C-comodule
is the union of its subcomodules that are finitely generated as A-modules [25, Sec-
tions 18.16 and 19.12].

When C is a projective right A-module (and also under some weaker assump-
tions), the A-A-bimodule A = HomAop(C, A) can be endowed with a topological
ring structure (with a base of neighborhoods of zero formed by open left ideals)
such that the category of left C-comodules is isomorphic to the category of dis-
crete left A-modules, C–comod ' A–discr [92, Proposition 10.5 and Remark 10.6].
This provides another point of view on the categorical properties of the category
C–comod.

The coaction map ν : M → C ⊗A M embeds every left C-comodule M as a sub-
comodule into the coinduced C-comodule C ⊗A M. Infinite products of coinduced
C-comodules are computed by the rule

∏
α C⊗AVα = C⊗A

∏
α Vα [25, Section 18.13];

to compute the product of an arbitrary family of left C-comodules, one can present
them as the kernels of morphisms of coinduced C-comodules and use the fact that
infinite products always commute with the kernels [69, Section 1.1.2]. There are
enough injective objects in the category C–comod; a left C-comodule is injective if
and only if it is isomorphic to a direct summand of a C-comodule C⊗A J coinduced
from an injective left A-module J (see [25, Section 18.19] or [69, Section 5.1.5]).

Assume that the coring C is a projective left A-module; then, according to Propo-
sition 2.12, the category C–contra is abelian and the forgetful functor C–contra →
A–mod is exact. Both the infinite direct sums and infinite products exist in
C–contra; the infinite products are exact and are preserved by the forgetful functor.
So the category of left C-contramodules satisfies the axioms Ab3 and Ab4*, but not
in general Ab4 or Ab5*.

The contraaction map π : HomA(C,P)→ P presents every left C-contramodule
as a quotient contramodule of the induced C-contramodule HomA(C,P). Infinite di-
rect sums of induced C-contramodules are computed by the rule

⊕
α HomA(C, Vα)

= HomA(C,
⊕

α Vα); to compute the direct sum of an arbitrary family of left
C-contramodules, one can present them as the cokernels of morphisms of induced
C-contramodules and use the fact that infinite direct sums always commute with
the cokernels [69, Section 3.1.2]. There are enough projective objects in C–contra;
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a left C-contramodule is projective if and only if it is a direct summand of a
C-contramodule HomA(C, F ) induced from a projective left A-module F [69, Sec-
tion 5.1.5].

Furthermore, under the same assumption of C being a projective left A-module,
the A-A-bimodule R = HomA(C, A) can be endowed with a topological ring struc-
ture (with a base of neighborhoods of zero formed by open right ideals) such
that the category of left C-contramodules is isomorphic to the category of left
R-contramodules, C–contra ' R–contra [92, Propositions 10.4 and 10.5] (see Sec-
tion 3.7 below for a further discussion). This provides another point of view on the
categorical properties of the category C–contra.

The discussion in the beginning of this section suggests that one should con-
sider, in addition to the categories of left C-comodules, right C-comodules, and left
C-contramodules, the pairing functors of cotensor product and cohomomorphisms
acting from those categories to the category of abelian groups. Let us define these
functors of two co/contramodule arguments now.

The cotensor product N �C M of a right C-comodule N and a left C-comodule
M is an abelian group defined as the kernel of the difference of the pair of maps

νN ⊗ id, id⊗ νM : N ⊗A M⇒ N ⊗A C⊗A M

one of which is induced by the C-coaction in N and the other one by the C-coaction
in M. For any right C-comodule N and any left A-module V there is a natural
isomorphism of abelian groups

N �C (C⊗A V ) ' N ⊗A V ;

the similar formula holds for the cotensor product of a coinduced right C-comodule
and an arbitrary left C-comodule. In particular, one has N�C C ' N and C�CM '
M (see [25, Section 21] or [69, Sections 0.2.1 and 1.2.1]).

The abelian group of cohomomorphisms CohomC(M,P) from a left C-comodule
M to a left C-contramodule P is defined as the cokernel of (the difference of) the
pair of maps

Hom(νM, id), Hom(id, πP) : HomA(C⊗A M, P)
' HomA(M,HomA(C,P))⇒ HomA(M,P).

For any left C-comodule M, any left C-contramodule P, and any left A-module V ,
there are natural isomorphisms of abelian groups

CohomC(C⊗A V, P) ' HomA(V,P)
CohomC(M,HomA(C, V )) ' HomA(M, V );

in particular, one has CohomC(C,P) ' P [69, Sections 0.2.4 and 3.2.1].
Notice that the functor of cotensor product �C over a coring C, being defined

as the kernel of a morphism of cokernels, is neither left nor right exact in general.
Similarly, the functor CohomC, being defined as the cokernel of a morphism of
kernels, is neither left nor right exact (even when all the categories involved are
abelian and all the forgetful functors are exact).
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2.6. Semicontramodules over semialgebras. The notion of a semialgebra over
a coalgebra over a field is dual to that of a coring in the same way as the notion
of a coalgebra over a field is dual to that of an (associative) ring [2, 22, 68, 69]. In
this section we present the related piece of theory, aiming to define semimodules
and semicontramodules over semialgebras and interpret contramodules over topo-
logical groups as semicontramodules over certain semialgebras, as it was promised
in Section 1.8.

Let C be a (coassociative) coalgebra (with counit) over a field k. In addition
to the definitions of left C-comodules, right C-comodules and left C-contramodules
given in Section 1.1 and then repeated, in the greater generality of a coring C, in
the previous Section 2.5, we will also need the definition of a C-C-bicomodule.

Let D be another coalgebra over k. A C-D-bicomodule K is a k-vector space
endowed with a left C-comodule and a right D-comodule structures ν′ : K→ C⊗kK
and ν′′ : K→ K⊗k D which commute with each other in the following sense. The
composition of the left coaction map ν′ : K→ C⊗kK with the map id⊗ν′′ : C⊗kK→
C⊗kK⊗kD induced by the right coaction map ν′′ should be equal to the composition
of the right coaction map ν′′ : K → K ⊗k D with the map ν′ ⊗ id : K ⊗k D →
C⊗kK⊗kD induced by the left coaction map ν′. Equivalently, the vector space K
should be endowed with a C-D-bicoaction map ν : K→ C⊗k K⊗k D satisfying the
coassociativity and counitality equations (µC ⊗ idK ⊗ µD) ◦ ν = (idC ⊗ ν ⊗ idD) ◦ ν
and (εC ⊗ idK ⊗ εD) ◦ ν = idK,

K→ C⊗k K⊗k D⇒ C⊗k C⊗k K⊗k D⊗k D
K→ C⊗k K⊗k D→ K

(see [25, Sections 11.1 or 22.1] or [69, Sections 0.3.1 or 1.2.4]).
Recall from the end of the previous section that the cotensor product N�CM of

a right C-comodule N and a left C-comodule M is the k-vector space constructed
as the kernel of (the difference of) the pair of maps

νN ⊗ id, id⊗ νM : N ⊗k M⇒ N ⊗k C⊗k M

induced by the C-coaction maps in N and M. Similarly, the k-vector space of coho-
momorphisms from a left C-comodule M to a left C-contramodule P is construced
as the cokernel of the pair of maps

Homk(C⊗k M, P) ' Homk(M,Homk(C,P))⇒ Homk(M,P)

one of which is induced by the C-coaction in M and the other one by the C-contra-
action in P. The functor of cotensor product of comodules over a coalgebra C over
a field k, being defined as the kernel of a morphism of exact functors, is left exact;
while the functor of cohomomorphisms of comodules and contramodules over C,
defined as the cokernel of a morphism of exact functors, is right exact. For any
left C-comodule M, right C-comodule N, and k-vector space V , there is a natural
isomorphism of k-vector spaces [69, Sections 0.2.4 and 3.2.2, and Proposition 3.2.3.1]

CohomC(M,Homk(N, V )) ' Homk(N �C M, V ),

where the k-vector space Homk(N, V ) is endowed with a left C-contramodule struc-
ture as explained in Section 1.2.
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For any three coalgebras C, D, and E, any C-D-bicomodule N, and any D-E-
bicomodule M, the cotensor product N �D M has a natural C-E-bicomodule struc-
ture. Furthermore, for any right C-comodule N, any C-D-bicomodule K, and any
left D-comodule M there is a natural associativity isomorphism

(N �C K) �D M ' N �C (K �D M).

To put it simply, both the iterated cotensor products are identified with one and the
same subspace in the vector space N⊗k K⊗k M (cf. the beginning of Section 2.5).

Similarly, for any C-D-bicomodule K and any left C-contramodule P, the space
of cohomomorphisms CohomC(K,P) has a natural left D-contramodule structure.
One can define it by noticing that CohomC(K,P) is a quotient contramodule of
the left D-contramodule Homk(K,P), whose contramodule structure is induced by
the right D-comodule structure on K via the construction described in Section 1.2.
For any C-D-bicomodule K, any left D-comodule M, and any left C-contramodule
P, there is a natural associativity isomorphism

CohomC(K �D M, P) ' CohomD(M, CohomC(K,P)).

Both the (iterated) Cohom spaces are identified with the quotient space of the
vector space Homk(K ⊗k M, P) ' Homk(M,Homk(K,P)) by one and the same
vector subspace [69, Sections 0.3.4 or 3.2.4].

In particular, it follows from these associativity isomorphisms for a coalgebra
C = D that the category of C-C-bicomodules C–comod–C is an associative ten-
sor category with respect to the cotensor product functor �C, the category of left
C-comodules C–comod is a left module category over C–comod–C, and the cate-
gory C–contraop opposite to the category of left C-contramodules is a right module
category over C–comod–C with respect to the cohomomorphism functor CohomC.

A semialgebra S over a coalgebra C over a field k is an associative ring object
in the tensor category of C-C-bicomodules. In other words, it is a C-C-bicomodule
endowed with a semimultiplication map m : S�CS→ S and a semiunit map e : C→
S satisfying the following colinearity, semiassociativity and semiunitality equations.
First of all, the maps m and e must be C-C-bicomodule morphisms. Secondly, the
compositions of the two maps m� idS and idS �m : S�C S�C S⇒ S�C S induced
by the semimultiplication map m with the semimultiplication map

S �C S �C S⇒ S �C S→ S

should be equal to each other, m ◦ (m � idS) = m ◦ (idS �m). Thirdly, both the
compositions of the maps e� idS and idS � e : S⇒ S�C S induced by the semiunit
map e with the semimultiplication map m

S⇒ S �C S→ S

should be equal to the identity map, m ◦ (e � idS) = idS = m ◦ (idS � e).
A left semimodule M over a semialgebra S over a coalgebra C is a module object

in the left module category of left C-comodules over the ring object S in the tensor
category of C-C-bicomodules. In other words, it is a left C-comodule endowed
with a left semiaction map n : S �C M → M satisfying the following colinearity,
semiassociativity and semiunitality equations. First of all, the map n must be a left
C-comodule morphism. Secondly, the compositions of the two maps m � idM and
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idS�n : S�C S�CM⇒ S�CM induced by the semimultiplication and semiaction
maps with the semiaction map

S �C S �C M⇒ S �C M→M

should be equal to each other, n◦(m�idM) = n◦(idS�n). Thirdly, the composition
of the map e �C idM : M → S �C M induced by the semiunit map e with the
semiaction map n

M→ S �C M→M

should be equal to the identity map, n ◦ (e�C idM) = idM. A right semimodule N

over S is a right C-comodule endowed with a right semiaction map n : N�C S→ N

satisfying the similar equations
N �C S �C S⇒ N �C S→ N,

N→ N �C S→ N.

These definitions can be found in [2, Sections 2.3 and 6.1], [22, Section 6], [24,
Section 8], and [69, Sections 0.3.2 and 1.3.1]; see [69, Section 0.3.10] for some
further references.

Before defining semicontramodules, let us recall from the discussion in Section 1.1
that there are two ways to define the conventional modules over associative algebras
over k in tensor/polylinear algebra terms. In addition to the familiar definition of
a left A-module M as a k-vector space endowed with a k-linear map n : A ⊗k M
→ M satisfying the associativity and unitality equations, one can also say that a
left A-module structure on M is defined by a linear map p : M → Homk(A,M)
satisfying the correspodingly rewritten equations.

A left semicontramodule P over a semialgebra S over a coalgebra C is an object
of the opposite category to the category of module objects in the right module
category C–contraop over the ring object S in the tensor category C–comod–C. In
other words, it is a left C-contramodule endowed with a left semicontraaction map
p : P → CohomC(S,P) satisfying the following contralinearity, semicontraasso-
ciativity, and semicontraunitality equations. First of all, the map p must be a
left C-contramodule morphism. Secondly, the compositions of the semicontraaction
map p with the two maps Cohom(m,P) : CohomC(S,P)→ CohomC(S �C S, P)
and Cohom(S,p) : CohomC(S,P)→ CohomC(S,CohomC(S,P))

P→ CohomC(S,P)⇒ CohomC(S �C S, P) ' CohomC(S,CohomC(S,P))
should be equal to each other, Cohom(m,P) ◦ p = Cohom(S,p) ◦ p, where the
above identification CohomC(S�CS,P) ' CohomC(S,CohomC(S,P)) is presumed.
Thirdly, the composition of the semicontraaction map with the map CohomC(e,P) :
CohomC(S,P)→P induced by the semiunit map e

P→ CohomC(S,P)→P

should be equal to the identity map, CohomC(e,P) ◦p = idP. This definition can
be found in [69, Sections 0.3.5 or 3.3.1].

For any right S-semimoduleN and any k-vector space V , the left C-contramodule
Homk(N, V ) has a natural left S-semicontramodule structure. The left semicontra-
action map p : Homk(N, V )→ CohomC(S,Homk(N, V )) is constructed by applying
the functor Homk(−, V ) to the right semiaction map n of the S-semimodule N

Homk(N, V )→ Homk(N �C S, V ) ' CohomC(S,Homk(N, V )).
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Generally speaking, the kernels of arbitrary morphisms exist in the category of
left S-semimodules S–simod and are preserved by the forgetful functors S–simod→
C–comod → k–vect, but the cokernels in S–simod may be problematic when C is
not an injective right C-comodule. Similarly, the cokernels of arbitrary morphisms
exist in the category of left S-semicontramodules S–sicntr and are preserved by the
forgetful functors S–sicntr → C–contra → k–vect, but the kernels in S–sicntr may
be problematic when C is not an injective left C-comodule.

Now let us assume that the semialgebra S is an injective right C-comodule.
Then the cotensor product functor S �C − : C–comod → C–comod is exact, so
the category S–simod of left S-semimodules is abelian and the forgetful functors
S–simod → C–comod → k–vect are exact. Both the infinite direct sums and in-
finite products exist in S–simod and both are preserved by the forgetful functor
S–simod→ C–comod, though only the infinite direct sums are preserved by the full
forgetful functor S–simod→ k–vect.

Indeed, let Mα be a family of left S-semimodules and
∏
αMα be their infinite

product in the category of left C-comodules C–comod; then one can easily con-
struct a left semiaction map m : S �C

∏
αMα →

∏
αMα and show that the left

S-semimodule so obtained is the product of the family of objects Mα in S–simod.
So the category S–simod satisfies the axioms Ab5 and Ab3*, but not in general
Ab4*. It also has a set of generators, for which one can take the S-semimodules
S�CL induced from finite-dimensional left C-comodules L. Hence there are enough
injective objects in S–simod; we will see in Section 3.5 below how one can construct
them.

Furthermore, the vector space A = HomSop(S,S) = HomCop(C,S) can be en-
dowed with a topological k-algebra structure (with a base of neighborhoods of
zero formed by open left ideals) such that the category of left S-semimodules is
isomorphic to the category of discrete left A-modules, S–simod ' A–discr [92, Re-
mark 10.9]. This provides another point of view on the categorical properties of
the category S–simod.

Assume that the semialgebra S is an injective left C-comodule. Then the co-
homomorphism functor CohomC(S,−) : C–contra → C–contra is exact, so the cat-
egory S–sicntr of left S-semicontramodules is abelian and the forgetful functors
S–sicntr → C–contra → k–vect are exact. Both the infinite direct sums and infi-
nite products exist in the category S–sicntr and both are preserved by the forgetful
functor S–sicntr→ C–contra, though only the infinite products are preserved by the
full forgetful functor S–sicntr→ k–vect.

Indeed, let Pα be a family of left S-semicontramodules and
⊕

αPα be their
infinite direct sum in the category C–contra. Then one can easily construct a left
semicontraaction map p :

⊕
αPα → CohomC(S,

⊕
αPα) and show that the left

S-semicontramodule so obtained is the direct sum of the family of objects Pα in
S–sicntr. So the category S–sicntr satisfies the axioms Ab3 and Ab4*, but not in
general Ab4 or Ab5*. There are enough projective objects in S–sicntr; we will see
in Section 3.5 how to construct them.

Furthermore, the vector space R = HomS(S,S) = HomC(C,S) can be endowed
with a topological k-algebra structure (with a base of neighborhoods of zero formed
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by open right ideals) such that the category of left S-semicontramodules is isomor-
phic to the category of left R-contramodules, S–sicntr ' R–contra [92, Proposi-
tion 10.8 and subsequent discussion] (see also Section 3.7 below). This provides
another point of view on the categorical properties of the category S–contra, in-
cluding a description of its projective objects.

Example 2.13. — Let us explain the construction of the semialgebra S for which
the category of S-semicontramodules is equivalent to the category of contramod-
ules over a (locally compact totally disconnected) topological group G, as it was
promised in Section 1.8. In fact, we will see that for any given group G there is a
whole family of such semialgebras S depending on the choice of a compact (i. e.,
profinite) open subgroup H ⊂ G. All of them are Morita equivalent to each other
in the sense of [69, Section 8.4.5], i. e., the categories of (say, left) semimodules over
all of them are equivalent, as are the categories of semicontramodules.

Given a commutative ring k, by a discrete G-module over k we mean a k-module
M endowed with a k-linear discrete G-module structure M → M{G}; similarly,
a G-contramodule over k is a k-module endowed with a k-linear G-contramodule
structure P[[G]] → P. In other words, a discrete G-module over k is a k-linear
object in the additive category G–discr and a G-contramodule over k is a k-linear
object in the additive category G–contra.

For the beginning, let k be a field. We will freely use the terminology and
notation of Section 1.8; in particular, k(X) denotes the vector space of locally
constant compactly supported k-valued functions on a (locally compact totally
disconnected) topological space X. Then for any topological spaces X and Y there
is a natural isomorphism k(X × Y ) ' k(X) ⊗k k(Y ). For any profinite group H,
the inverse image map k(H) → k(H ×H) with respect to the multiplication map
H ×H → H, together with the map k(H) → k of evaluation at the unit element
e ∈ H, endow the vector space k(H) with the structure of a coassociative coalgebra
over k. For any k-vector space A one has A{H} = A(H) ' k(H)⊗kA and A[[H]] '
Homk(k(H), A), so one can easily identify discrete H-modules over k with (left or
right) k(H)-comodules and H-contramodules over k with k(H)-contramodules.

Let H be a compact open subgroup in a topological group G; then the left
and right actions of H in G endow k(G) with a natural structure of bicomodule
over k(H). Denote by G×H G the quotient space of the Cartesian square G×G by
the equivalence relation (g′h, g′′) ∼ (g′, hg′′) for all g′, g′′ ∈ G and h ∈ H. Being
a disjoint union of G/H copies of G, this quotient is also a locally compact and
totally disconnected topological space. The inverse image of functions with respect
to the factorization map G ×G → G ×H G identifies the vector space k(G ×H G)
with the cotensor product k(G) �k(H) k(G) ⊂ k(G)⊗k k(G) = k(G×G).

For any étale map (local homeomorphism) of topological spaces p : X → Y and
any abelian group A, the push-forward map A(X)→ A(Y ), assigning to a function
f : X → A the function p∗(f) : Y → A,

(p∗f)(y) =
∑

p(x)=y

f(x), y ∈ Y, x ∈ X,

is defined [69, Section E.1.1]. In particular, the push-forwards with respect to
the multiplication map G ×H G → G and the embedding map H → G provide
natural left and right H-equivariant k-linear maps k(G) �k(H) k(G) → k(G) and
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k(H)→ k(G) endowing the vector space Sk(G,H) = k(G) with the structure of a
semialgebra over the coalgebra Ck(H) = k(H) [69, Section E.1.2].

It is claimed that the category of (left or right) Sk(G,H)-semimodules is isomor-
phic to the category of discrete G-modules over k; the datum of a Sk(G,H)-semi-
module structure on a k-vector space M is equivalent to the datum of a discrete
G-module structure on M. Indeed, according to [69, Sections E.1.3 and 10.2.2], the
datum of a Sk(G,H)-semimodule structure on M is equivalent to that of two struc-
tures of a G-module and a Ck(H)-comodule satisfying two compatibility equations;
essentially, this is the same as an action of G in M whose restriction to H comes
from a Ck(H)-coaction. It remains to notice that an action of G whose restriction
to H is discrete is the same thing as a discrete action of G.

Similarly, the category of Sk(G,H)-semicontramodules is isomorphic to the cate-
gory of G-contramodules over k; the datum of a Sk(G,H)-semicontramodule struc-
ture on a k-vector spaceP is equivalent to the datum of aG-contramodule structure.
Indeed, according to loc. cit., the datum of a Sk(G,H)-semicontramodule structure
on M is equivalent to that of two structures of a G-module and a Ck(H)-contra-
module satisfying two compatibility equations. Essentially, it is claimed that a
contraassociative G-contraction map P[[G]] → P can be uniquely recovered from
its restriction to the point measures in G and the measures supported inside H, pro-
vided that the two compatibility equations are satisfied. One notices that there is an
external product map k[[G]]⊗kP[[G]]→ P[[G×G]] orP[[G]]⊗kk[[G]]→ P[[G×G]]
assiging to a k-valued and a P-valued measures on G a P-valued measure on G×G.
The contraassociativity equation in the definition of a G-contramodule, restricted
to the external products of k-valued point measures in G and P-valued measures
in H, taken in any fixed order, provides a prescription for the desired recovering of
the G-contraaction map from its restrictions to the two specific kinds of measures
(cf. [83, proof of Corollary 3.1]).

Notice that the underlying k-vector space k(G) of the semialgebras Sk(G,H) does
not depend on the choice of a compact open subgroup H ⊂ G, but the semialgebra
structure does, Sk(G,H) being a semialgebra over the coalgebra Ck(H) = k(H) de-
pending on H. Still, the abelian categories of semimodules and semicontramodules
over Sk(G,H) do not depend on H; but their semiderived categories and the func-
tors of semi-infinite (co)homology and the derived semimodule-semicontramodule
correspondence, whose construction is the aim of the book [69], do depend on H in
a quite essential way [69, Section 8.4.6 and Remark E.3.2].

Now one would like to replace a field k with an arbitrary commutative ring,
including first of all k = Z. This was one of the motivating examples for developing
the theory of semimodules and semicontramodules in the generality of semialgebras
over corings over (generally speaking, noncommutative) rings rather than just over
coalgebras over fields in the main body of the book [69]. One unpleasant techni-
cal complication that arises in this connection is the possible nonassociativity of
cotensor product over a coring (see the discussion in the beginning of Section 2.5).
Hence the importance of various sufficient conditions guaranteeing such associativ-
ity; see [25, Sections 11.6 and 22.5–6] and [69, Section 1.2.5].

In particular, the results of [25, 11.6(iv)] or [69, Proposition 1.2.5(f)] ensure
that the notions of a semialgebra Sk(G,H) and arbitrary semimodules over it are
unproblematic for any commutative ring k. To consider semicontramodules, one
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also needs associativity of the cohomomorphism functor, which holds in this case
by the result of [69, Proposition 3.2.5(j)]. All the assertions mentioned above in this
example still hold in this setting. The more advanced homological constructions
and results of [69] in the application to the semialgebras Sk(G,H) depend on the
assumption of the ring k having finite homological dimension, though.

2.7. The category Octr. The conventional concept of representations of an alge-
braic group G is that of comodules over the coalgebra of regular functions C(G)
on G. Since every comodule over a coassociative coalgebra is the union of its finite-
dimensional subcomodules [102, Section 2.1] (cf. the discussion in Sections 1.3–1.4),
it means that infinite-dimensional representations of G are simply the unions of
finite-dimensional representations, or the ind-finite-dimensional representations.

In particular, while every finite-dimensional representation of the Lie algebra g
of a simply connected semisimple complex algebraic group G can be integrated to a
representation of G, this is no longer true for infinite-dimensional representations.
Indeed, for any nonzero Lie algebra g one can easily construct a module that is not
a union of its finite-dimensional submodules (it suffices to consider the enveloping
algebra U(g) with the action of g by left multiplications).

The Lie correspondence takes a particularly simple form in the case of unipotent
algebraic groups and nilpotent Lie algebras over a field of characteristic zero, which
are two equivalent categories [29, Corollaire VI.2.4.5] (see [69, Section D.6.1] for
further references and a discussion including the finite characteristic case). A mod-
ule over a finite-dimensional nilpotent Lie algebra g comes from an (always unique)
representation of the corresponding unipotent algebraic group G if and only if it is a
union of finite-dimensional g-modules where all the vectors from g act by nilpotent
linear operators [63, Sections 3.3.5–7].

It is a classical idea to work with categories intermediate between those of rep-
resentations of a Lie (or algebraic) group G and modules over its Lie algebra g.
For this purpose, one starts from a Lie algebra g with a chosen subgroup H, i. e.,
an algebraic group corresponding to a Lie subalgebra h ⊂ g. Then one considers
g-modules M for which the restriction to h of the action of g in M can be/has been
integrated to an algebraic action of H. As to the choice of the subgroup H, there
are two basic approaches: given a complex (or real) semisimple Lie group G and its
Lie algebra g, one can take H to be a maximal compact subgroup of G; or otherwise
one can use a Borel (or maximal unipotent) subgroup of G in the role of H.

Modules over a semisimple Lie algebra g integrable to representations of a
maximal compact Lie subgroup H are classically known as Harish-Chandra mod-
ules [30, 105], while g-modules which can be integrated to an algebraic action of the
Borel subgroup form what has been called the BGG (Bernstein–Gelfand–Gelfand)
category O [16, 47]. Both can be united under an umbrella notion of algebraic
Harish-Chandra modules, which means simply “modules over a pair consisting of
a Lie algebra and an algebraic subgroup” (see a terminological discussion in [69,
Remark D.2.5]).

An algebraic Harish-Chandra pair [12, Sections 1.8.2 and 3.3.2] is a set of data
consisting of a Lie algebra g over a field k, a finite-dimensional Lie subalgebra
h ⊂ H, an algebraic group H over k whose Lie algebra is identified with h, and an
action of H by automorphisms of the Lie algebra g. The following two compatibility
conditions have to be satisfied. Firstly, the subalgebra h must be an H-invariant
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subspace in g, and the restriction of the action of H in g to h should coincide with
the adjoint action of H in h. Secondly, the action of h in g obtained by taking the
derivative of the action of H in g should coincide with the adjoint action of h in g.

A Harish-Chandra module M over an algebraic Harish-Chandra pair (g, H) is a
k-vector space endowed with a g-module structure and an action of H satisfying
the following compatibility conditions. Firstly, the restriction of the g-action in M

to the Lie subalgebra h should coincide with the derivative of the action of H in M.
Secondly, the g-action map g⊗k M→M should be H-equivariant.

In algebraic (rather than algebro-geometric) terms, an (affine) algebraic group
G over a field k is described by the k-vector space C(G) of regular functions
on G, endowed with a noncommutative convolution comultiplication µ : C(G) →
C(G) ⊗k C(G) induced by the multiplication map G ×G → G and a commutative
pointwise multiplication m : C(G) ⊗k C(G) → C(G). Together with the antipode
map s : C(G) → C(G) induced by the inverse element map G → G, these struc-
tures make C(G) a commutative Hopf algebra [102]. By a representation of G one
conventionally means a C(G)-comodule, while the multiplication on C(G) is being
used in order to define a C(G)-comodule structure on the tensor product L ⊗k M
of any two k-vector spaces L and M endowed with C(G)-comodule structures. The
antipode map s, being (always) an anti-automorphism for (both the multiplica-
tion and) the comultiplication of C = C(G) (or any other Hopf algebra C), allows
to identify the categories of left and right C-comodules, so the difference between
them is inessential here.

Over a field k of characteristic 0, the enveloping algebra U(g) of the Lie algebra g
of an algebraic group G is interpreted as the algebra of left or right invariant differ-
ential operators on G or, simpler yet, the algebra of distributions (“delta functions”)
on G supported at the unit element e ∈ G. The k-vector space of distributions here
is defined as the discrete dual vector space to the linearly compact k-vector space
of functions on the formal completion of G at e. The noncommutative convolu-
tion multiplication m : U(g) ⊗k U(g) → U(g) in the Hopf algebra U(g) is induced
by the multiplication map G × G → G, while the commutative comultiplication
µ : U(g) → U(g) ⊗k U(g) is induced by the diagonal embedding G → G × G, and
the antipode map s : U(g)→ U(g) simply multiplies every vector from g by −1.

Evaluating a {e}-supported distribution at a regular function on G defines a
natural pairing φ : C(G) ⊗k U(g) → k. For example, the pairing with an element
of g assigns to a regular function on G the value of its derivative along the cor-
responding tangent vector at the origin e ∈ G. The pairing φ is compatible with
the Hopf algebra structures on C(G) and U(g), transforming the comultiplication
in the former into the multiplication in the latter and vice versa. In our left-right
conventions (see Section 1.4 for a discussion), this compatibility is expressed by the
equations

φ(f, uv) = φ(f(2), u)φ(f(1), v)
φ(fg, u) = φ(f, u(2))φ(g, u(1)),

for any f , g ∈ C(G) and u, v ∈ U(g), where µ(f) = f(1)⊗f(2) and µ(u) = u(1)⊗u(2)
is Sweedler’s symbolic notation for the comultiplication maps.

Given a C(G)-comodule M, one defines the “derivative” U(g)-module structure
m : U(g)⊗k M→M on M as given by the composition
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U(g)⊗k M→ U(g)⊗k C(G)⊗k M→M

of the maps induced by the coaction map and the pairing φ (with the arguments’
positions inverted). Alternatively, one can obtain a left action map in the form
p : M → Homk(U(g),M) as the composition M → C ⊗k M → Homk(U(g),M) of
the left coaction map and the map induced by the pairing φ. Furthermore, the
adjoint action of G in itself preserves the origin, so, unlike the left and right actions
of g in the enveloping algebra U(g), the adjoint action of g can be integrated to a
representation of G in U(g) as well as in g. Hence both g and U(g) are endowed
with natural C(G)-comodule structures.

Now an algebraic Harish-Chandra pair (g, H) is described in purely algebraic
terms as a set of data consisting of a Lie algebra g, a Hopf algebra C(H), a Lie
subalgebra h ⊂ g, a pairing φ : C(H) ⊗k U(h) → k compatible with the Hopf
algebra structures, and a coaction of C(H) in g satisfying the following compatibility
conditions. Firstly, the coaction of C(H) in g should be compatible with the Lie
algebra structure on g; then there is also the induced coaction of C(H) in U(g).
Secondly, the Lie subalgebra h ⊂ g should be preserved by the C(H)-coaction and
the pairing φ should be compatible with the induced coaction of C(H) in U(h) and
the adjoint coaction of C(H) in itself (equivalently, the restriction ψ : C(H)×h→ k
of the pairing φ should be compatible with the adjoint C(H)-coaction in C(H) and
C(H)-coaction in g restricted to h). Thirdly, the adjoint action of h in g should
coincide with the derivative h-action of the C(H)-coaction, which is defined in terms
of the given pairing φ.

Two generalizations of this setting, in two different directions, are discussed at
length in the book [69]. A “quantum” version, with two noncommutative, non-
cocommutative Hopf algebras C and K in place of C(H) and U(h), an associative
algebra R in the role of U(g), and “adjoint” coactions of C in K and R, is intro-
duced in [69, Section C.1]. A “Tate” version, with the Hopf algebra C(H) of regular
functions on an infinite-dimensional pro-affine pro-algebraic group H and a linearly
compact open subalgebra h in a Tate (locally linearly compact) Lie algebra g, can
be found in [69, Section D.2.1] (see the overview in Section 2.8 below).

To repeat a previously given definition in the slightly new language, a Harish-
Chandra module M over an algebraic Harish-Chandra pair (g, H) is a k-vector
space endowed with a g-module and a C(H)-comodule structures satisfying two
compatibility conditions. The restriction of the g-action in M to h should coincide
with the derivative h-action of the C(H)-coaction, and the action map g⊗kM→M

should be a C(H)-comodule morphism (where the coaction in the tensor product is
defined in terms of the multiplication in the Hopf algebra C(H)); equivalently, the
action map U(g)⊗k M→M should be a C(H)-comodule morphism.

Before defining Harish-Chandra contramodules, let us say a few words about
contramodules over the coalgebra C(G) of regular functions on an algebraic groupG.
Unfortunately, there does not seem to be any particular way to interpret a C(G)-con-
tramodule structure on a k-vector space P in any terms more explicit than the
general definition of a contramodule over a coalgebra over a field k. The only
known exception is the case of a reductive algebraic group H over a field k of
characteristic 0, when [69, Lemma A.2.2] or the last sentence of Section 1.2 apply
and the semisimple abelian categories of C(H)-comodules and C(H)-contramodules
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are equivalent. Otherwise there is only the general intuition of contramodules as
modules with infinite summation operations, supported by examples such as that
of comodules and contramodules over the coalgebra C(H) of regular functions on
the one-dimensional unipotent algebraic group H = Ga considered in Section 1.3.

However, the vector spaces P = Homk(M, V ) for all C(H)-comodules M (i. e.,
vector spaces with the algebraic group H acting in them in the conventional sense)
and all k-vector spaces V provide examples of C(H)-contramodules for any algebraic
group H (see Section 1.2). Moreover, for any commutative (for simplicity) Hopf
algebra C, a C-comodule M, and a C-contramodule P, the k-vector space Q =
Homk(M,P) has a natural C-contramodule structure. To construct the desired left
C-contraaction map πQ : Homk(C,Homk(M,P))→ Homk(M,P), suppose that we
are given a k-linear map g : C → Homk(M,P) and a vector m ∈ M. Consider the
k-linear map f : C→ P assigning to any element c ∈ C the vector

f(c) = g
(
s(m(−1))c

)
(m(0)) ∈ P,

and set
πQ(g) = πP(f),

where m 7−→ m(−1) ⊗ m(0) is the Sweedler notation for the left coaction map
νM : M → C ⊗k M, and πP : Homk(C,P) → P is the left contraaction map of the
original C-contramodule P [69, Section C.4.2].

Furthermore, given an algebraic group G and a C(G)-contramodule P, one de-
fines the “contraderivative” U(g)-module structure U(g)⊗k P→ P on P as given
by the composition U(g)⊗k P→ Homk(C(G),P)→ P of the map

u⊗ p 7−→ (c 7→ φ(c, u)p), u ∈ U(g), c ∈ C(G), p ∈ P

induced by the pairing φ : C(G) ⊗k U(g) → k with the left contraaction map π
(cf. [69, Sections 10.1.2]).

A Harish-Chandra contramodule P over an algebraic Harish-Chandra pair (g, H)
is a k-vector space endowed with a g-module and a C(H)-contramodule struc-
tures satisfying the following two compatibility conditions. Firstly, the restric-
tion of the g-module structure on P to the Lie subalgebra h ⊂ g should coincide
with the contraderivative h-module structure of the C(H)-contramodule structure
on P. Secondly, the U(g)-action map in the form P → Homk(U(g),P) should
be a C(H)-contramodule morphism, where the C(H)-contramodule structure on
Homk(U(g),P) is obtained from the C(H)-comodule structure on U(g) and the
C(H)-contramodule structure on P as described above.

The latter condition is equivalent to the g-action map P → Homk(g,P) be-
ing a C(H)-contramodule morphism. To convince oneself that this is so, one
can present the space Homk(U(g),P) as the projective limit of the Hom spaces
Homk(FnU(g),P), where F denotes the Poincaré–Birkhoff–Witt filtration of U(g),
and further present every space Homk(FnU(g),P) as a subspace of the Hom space
Homk(

⊕n
i=0 g

⊗n, P). Then it remains to use the fact that the C(H)-comodule
structure on U(g) is compatible with the associative algebra structure, i. e., the
multiplication map U(g)⊗k U(g)→ U(g) is a C(H)-comodule morphism, together
with the assumption of associativity of the U(g)-action in P.

Viewing the case of a semisimple Lie algebra g with a Borel or maximal unipotent
subgroup H as our main example, we denote by O(g, H) the category of Harish-
Chandra modules over an algebraic Harish-Chandra pair (g, H) and by Octr(g, H)
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the category of Harish-Chandra contramodules. These are abelian categories with
exact forgetful functors O(g, H) → k–vect and Octr(g, H) → k–vect, the former of
which preserves infinite direct sums, while the latter preserves infinite products.
The category O(g, H) satisfies the axioms Ab5 and Ab3* (but not Ab4*), while the
category Octr(g, H) satisfies the axioms Ab3 and Ab4* (but not Ab4 or Ab5*).

Now it is claimed that there is a semialgebra S over the coalgebra C = C(H)
such that the categories O(g, H) and Octr(g, H) are identified with the categories
of semimodules and semicontramodules over S. More precisely, there are naturally
two such semialgebras Sl(g, H) and Sr(g, H), differing by the left-right symmetry.
The category of Harish-Chandra modules O(g, H) is isomorphic to the categories
of left semimodules over Sl(g, H) and right semimodules over Sr(g, H), while the
category of Harish-Chandra contramodules Octr(g, H) is isomorphic to the category
of left semicontramodules over Sr(g, H).

The semialgebra Sl(g, H) is constructed as the tensor product U(g)⊗U(h) C(H),
where the left U(h)-module structure on C(H) is obtained by deriving the left
coaction of C(H) in itself. The right C-comodule structure on U(g) ⊗U(h) C(H) is
induced by the right coaction of C in itself, while the left C-comodule structure
on this tensor product is defined in terms of the multiplication in C, as the tensor
product of the left coaction of C in itself and the adjoint coaction of C in U(g). The
semiunit map e : C → Sl = U(g) ⊗U(h) C is induced by the embedding of algebras
U(h) → U(g). Finally, the semimultiplication map m : Sl �C Sl → Sl is defined as
the composition(

U(g)⊗U(h) C
)
�C

(
U(g)⊗U(h) C

)
' U(g)⊗U(h)

(
C �C (U(g)⊗U(h) C)

)
' U(g)⊗U(h) U(g)⊗U(h) C −−→ U(g)⊗U(h) C

of the mutual associativity isomorphism of the tensor and cotensor products, whose
natural existence in this case can be easily established from the fact that U(g)
is a projective right U(h)-module (by the Poincaré–Birkhoff–Witt theorem) [69,
Section 1.2.3], and the map induced by the multiplication map U(g)⊗U(h) U(g)→
U(g). This construction can be found in [69, Section 10.2.1].

Notice that for any left C-comodule M there is a natural isomorphism
Sl �C M =

(
U(g)⊗U(h) C

)
�C M ' U(g)⊗U(h) M,

where the U(h)-module structure on M is obtained by deriving the C(H)-comodule
structure. Hence it follows that the datum of a left Sl-semimodule structure
on a k-vector space M is equivalent to that of a left C(H)-comodule and a left
U(g)-module structures on M satisfying two compatibility equations [69, Section
10.2.2]. These are easily seen to express the definition of a structure of Harish-
Chandra module over (g, H) on the vector space M.

Similarly, the semialgebra Sr = Sr(g, H) is constructed as the tensor product
C(H) ⊗U(h) U(g), where the right U(h)-module structure on C(H) is obtained by
deriving the right coaction of C(H) in itself. The left C-comodule structure on
this tensor product is induced by the left coaction of C in itself, while the right
C-comodule structure is obtained by multiplying the right coaction of C in itself and
the adjoint coaction of C in U(g). The semimultiplication and semiunit maps of
the semialgebra Sr are induced by the multiplication map U(g)⊗U(h) U(g)→ U(g)
and the embedding U(h)→ U(g), as above.
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For any left C-contramodule P there is a natural isomorphism

CohomC(Sr,P) = CohomC(C⊗U(h) U(g), P) ' HomU(h)(U(g),P),

where the U(h)-module structure on P is obtained by contraderiving the C(H)-con-
tramodule structure. Hence one concludes that the datum of a left Sr-semicontra-
module structure on a k-vector spaced P is equivalent to that of a left C-contra-
module and left U(g)-module structures on P satisfying two compatibility equa-
tions (cf. Example 2.13 in Section 2.6). These are easily seen to express the def-
inition of a structure of Harish-Chandra contramodule over (g, H) on the vector
space P.

In addition to these descriptions of left Sl-semimodules and left Sr-semicontra-
modules, one would like to have an explicit interpretation of what it means to have
a left Sr-semimodule structure on a k-vector space M. Such a description of left
Sr-semimodules is indeed obtained in [69, Sections C.2 and C.4.3–4] under certain
mild assumptions, which we will now discuss.

So far we used the notions of an “algebraic group H” and “a commutative Hopf
algebra C(H)” interchangeably, but in fact there are several differences between the
two (cf. [28]). First of all, it is only affine algebraic groups that can be described
by the algebras of global functions on them. As our aim is to consider linear
representations of our algebraic groups, we can safely assume all of them to be
affine.

Secondly, it is only finitely generated commutative algebras over a field that
correspond to algebraic varieties; the spectrum of an arbitrary commutative alge-
bra is, generally speaking, a pro-affine pro-algebraic variety. Considering Harish-
Chandra pairs with pro-affine pro-algebraic groups H presumes also having an
infinite-dimensional linearly compact Lie subalgebra h ⊂ g. Postponing this dis-
cussion to Section 2.8, we for now assume all our algebraic groups H to be finite-
dimensional, or the commutative Hopf algebras C(H) to be finitely generated as
algebras over k.

Thirdly and finally, algebraic varieties are generally assumed to be reduced
schemes, i. e., to have no nilpotent elements in their structure sheaves (or, if they
are affine, in the algebras of global functions on them). Now, over a field k of char-
acteristic 0, every algebraic group scheme is a smooth variety, and over any field k
every reduced algebraic group scheme is a smooth variety; but over a field k of finite
characteristic there exist nonreduced algebraic group schemes. It suffices to con-
sider the spectrum of the finite-dimensional algebra C = k[x]/(xp) over a field k of
characteristic p and notice that the rule µ(x) = 1⊗x+x⊗1 describes a well-defined
coassociative, counital comultiplication making C a Hopf algebra over k.

Now, assuming the algebraic group H to be a smooth finite-dimensional variety
over a field k, there is the one-dimensional vector bundle of differential forms of the
top degree on H. The group H acts in itself by the left and right multiplications,
and there are the two induced actions in the vector space of global differential top
forms E = Ωtop(H). The subspace of left H-invariant top forms in E is always
one-dimensional, as is the subspace of right H-invariant top forms, but these two
subspaces may not coincide. A smooth algebraic group H admitting a nonzero
biinvariant top form is said to be unimodular. An algebraic group H is unimodular
if and only if all the operators of its adjoint representation AdH : H → GL(h) belong
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to the subgroup SL(h) ⊂ GL(h). All the reductive algebraic groups are unimodular,
as are all the nilpotent ones; but many solvable groups are not.

Let us first assume the smooth algebraic group H to be unimodular. Then
the semialgebras Sl(g, H) and Sr(g, H) are naturally isomorphic to each other; the
isomorphism is provided by the maps given by the formulas

c⊗U(h) u 7−→ u[0] ⊗U(h) cu[1] and u⊗U(h) c 7−→ s(u[1])c⊗U(h) u[0],

where c ∈ C(H), u ∈ U(g), the notation c⊗U(h) u and u⊗U(h) c stands for elements
of Sr = C(H)⊗U(h)U(g) and Sl = U(g)⊗U(h)C(H), respectively, and u 7−→ u[0]⊗u[1]
with u[0] ∈ U(g) and u[1] ∈ C(H) is the Sweedler notation for right coaction map
defining the adjoint coaction of C(H) in U(g) [69, Section C.2.6]. Accordingly, the
categories of left Sr-semimodules and left Sl-semimodules are naturally isomorphic.

In the general case of a nonunimodular smooth algebraic group H, the categories
of left Sr-semimodules and left Sl-semimodules are still naturally equivalent, but
the equivalence Sr–simod ' Sl–simod does not commute with the forgetful func-
tors Sr–simod → C–comod and Sl–simod → C–comod. Instead, the two forgetful
functors differ by a twist with the modular character det AdH : H → GL(h) → k∗

[69, Sections C.2.4–5].
When the ground field k has characteristic 0 and the Harish-Chandra pair (g, H)

originates from a closed embedding of algebraic groups H ⊂ G over k, choosing a
biinvariant top form on H allows to interpret elements of the semialgebra Sl ' Sr as
distributions on the smooth variety G, supported in the smooth closed subvariety H
and regular along H [69, Remark C.4.4]. In the nonunimodular case, the k-vector
space of all distributions on G, supported in H and regular along H, has a natural
structure of an Sl-Sr-bisemimodule providing the Morita equivalence between the
semialgebras Sl and Sr.

2.8. Tate Harish-Chandra pairs. It appears that one cannot integrate the Vi-
rasoro Lie algebra to a Lie group, but a half of it one easily can. Indeed, let k be
a field of characteristic 0. Denote by H(k) the set of all formal Taylor power se-
ries a(z) = a1z + a2z

2 + a3z
3 + · · · with a vanishing coefficient in degree 0 and a

nonvanishing coefficient a1 6= 0 in degree 1. Then the composition multiplication
(a ∗ b)(z) = a(b(z)) defines a group structure on the set H(k). This group is nat-
urally the group of k-points of a certain pro-affine pro-algebraic group, which we
denote by H. The Lie algebra h of the pro-algebraic group H can be easily iden-
tified with the algebra of vector fields on the formal disk with a vanishing vector
at the origin zk[[z]]d/dz, or with the closed subalgebra in the Virasoro Lie algebra
topologically spanned by the basis vectors L0, L1, L2, . . . (see Section 1.7).

Let us say a few words about Lie theory in the pro-algebraic group setting. For
any subcoalgebra D in a commutative Hopf algebra C, the subalgebra generated by
D + s(D) in a Hopf subalgebra in C. Since C is the union of its finite-dimensional
subcoalgebras (see Section 1.3), it is also the union of its Hopf subalgebras that are
finitely generated as commutative algebras. Thus there is no difference between the
notions of a pro-affine pro-algebraic variety with a group structure and a pro-object
in the category of affine algebraic groups. The Lie functor on the category of (pro-
afffine) pro-algebraic groups can be simply obtained by passing to the pro-objects
on both sides of the functor assigning a Lie algebra to an algebraic group; so the Lie
algebra of a pro-algebraic group is a filtered projective limit of finite-dimensional
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Lie algebras. In particular, it follows that the topological Lie algebra k[[z]]d/dz,
which has no closed ideals (see Section 2.4), cannot correspond to any pro-algebraic
group, though its subalgebra zk[[z]]d/dz does, as we have just seen.

We are interested in considering Harish-Chandra pairs with a Tate Lie algebra g
and a pro-algebraic subgroup H corresponding to an open linearly compact subal-
gebra h ⊂ g. A precise definition presents a small technical difficulty in that one
has to explain what it means for the coalgebra C = C(H) to act in a Tate vector
space g. Neither the notion of a C-comodule nor that of a C-contramodule are suit-
able for the task; rather, the compact vector space h, being dual to a C-comodule,
can be viewed as a C-contramodule, while the quotient space g/h has a C-comodule
structure.

However, an action of a algebraic group in a vector space is, of course, not
determined by its restriction to an invariant subspace and the induced action in
the quotient space. The authors of the manuscript [15], where (what we call) Tate
Harish-Chandra pairs seem to have first appeared, solve the problem by working
over the field of complex numbers C and considering an action of the group of
points H(C) of a pro-algebraic group H in a Tate Lie algebra g [15, Section 3.1].
The approach taken in [69, Appendix D], which works over an arbitrary field, is to
give the definition of a continuous coaction of a discrete coalgebra in a topological
vector space.

Here we restrict ourselves to a brief sketch. Let C be a coassociative coalgebra
and V be a topological vector space over k (see Sections 2.3–2.4). A continuous right
coaction of C in V is a continuous linear map V → V ⊗! C, where C is considered
as a discrete topological vector space, satisfying the coassociativity and counitality
equations. Equivalently, a continuous right coaction can be defined as a continuous
linear map V ⊗∗ C∗ → V , where C∗ is viewed as a linearly compact vector space,
satisfying the associativity and unitality equations.

For any topological vector space V with a continuous coaction of a coassociative
coalgebra C, open subspaces of V invariant under the continuous coaction form a
base of neighborhoods of zero in V . Given a topological vector space V endowed
with a continuous coaction of a coalgebra C and a topological vector space W
endowed with a continuous coaction of a coalgebra D, all the three topological
tensor products V ⊗! W , V ⊗∗ W , and V

←⊗ W are naturally endowed with a
continuous coaction of the coalgebra C ⊗k D. In particular, when two topological
vector spaces V and W are endowed with continuous coactions of a Hopf algebra
C, the three topological tensor products acquire the tensor product coactions of C
[69, Sections D.1.3–4].

A continuous coaction of a commutative Hopf algebra C in a topological Lie
algebra g is said to be compatible with the Lie algebra structure if the bracket map
[ , ] : g ⊗∗ g → g commutes with the continuous coactions of C. Similarly one can
speak about compatibility of topological associative algebra structures, continuous
actions, pairings, etc. with continuous coactions of C [69, Section D.1.5]. A Tate Lie
algebra g with a continuous coaction of a commutative Hopf algebra C compatible
with the Lie algebra structure has a base of neighborhoods of zero consisting of
C-invariant compact open Lie subalgebras h ⊂ g [69, Section D.1.8].

A Tate Harish-Chandra pair (g,C) is a set of data consisting of a Tate Lie
algebra g, a commutative Hopf algebra C, a continuous coaction of C in g compatible
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with the Lie algebra structure, a C-invariant compact open subalgebra h ⊂ g, and
a continuous pairing ψ : C× h→ k, where C is endowed with the discrete topology.
These data should satisfy four compatibility equations: the pairing ψ should be
compatible with the comultiplication in C and the Lie bracket in g, and also with
the multiplication in C; the pairing ψ should be compatible with the restriction
to h of the continuous coaction of C in g and the adjoint coaction of C in itself;
the action of h in g obtained by deriving the continuous coaction of C in g using
the paring ψ should coincide with the adjoint action of h in g. We refer to [69,
Section D.2.1] for the details.

In particular, let g be a Tate Lie algebra with a pro-nilpotent compact open sub-
algebra h ⊂ g, i. e., h is the projective limit of a filtered projective system of finite-
dimensional nilpotent Lie algebras. Assume further that the discrete h-module g/h
is nilpotent or “ind-nilpotent”, i. e., it is the union of finite-dimensional nilpotent
modules over finite-dimensional quotient Lie algebras of h by its open ideals. Then,
over a field of characteristic 0, one can integrate the pair of Lie algebras (g, h) to
a Tate Harish-Chandra pair with the Hopf algebra C = C(H) of the pro-unipotent
pro-algebraic group H corresponding to the Lie algebra h. A version of this con-
struction is applicable over fields of arbitrary characteristic [69, Section D.6]. In
particular, let g =

⊕
n<0 gn ⊕

∏
n>0 gn be the Laurent totalization a Z-graded Lie

algebra with finite-dimensional components (see Section 2.4); then for any inte-
ger m > 1 the Lie subalgebra h =

∏
n>m gm ⊂ g satisfies the above nilpotency

conditions, so there is the corresponding Tate Harish-Chandra pair (g,C).
A Harish-Chandra module M over a Tate Harish-Chandra pair (g,C) is a k-vector

space endowed with a discrete g-module and a C-comodule structures satisfying
the following two compatibility equations. Firstly, the derivative h-action of the
C-coaction inM, which is always a discrete action due to the continuity/discreteness
condition imposed on the pairing ψ, should coincide with the restriction of the
g-action in M to h. Secondly, the action map g ⊗∗M → M should be compatible
with the continuous coactions of C; equivalently, the action map g/U ⊗k L → M

should be a morphism of C-comodules for any finite-dimensional C-subcomodule
L ⊂ M and any C-invariant compact open subspace U ⊂ g annihilating L [69,
Section D.2.5].

The pairing ψ : C × h → k can be viewed as a Lie algebra morphism h → C∗

(where the Lie algebra structure on C∗ is defined in terms of its associative alge-
bra structure), and as such, can be uniquely extended to an associative algebra
morphism U(h) → C∗, providing a pairing φ : C ⊗k U(h) → k compatible with
the Hopf algebra structures on both sides. When the pairing φ is nondegenerate
in C [69, condition D.2.2 (iv)], the derivative action functor C–comod → h–discr is
fully faithful [69, Section 10.1.4], which allows to simplify the definition of a Harish-
Chandra module over (g,C). Namely, the second one of the above two compatibility
equations holds automatically in this case and can be dropped, so Harish-Chandra
modules over (g,C) can be simply defined as discrete g-modules whose discrete
h-module structure comes from a C-comodule structure (cf. [69, Section D.2.2]).
In particular, this nondegeneracy condition holds in the above example of a Tate
Harish-Chandra pair associated with a Tate Lie algebra g with a pro-nilpotent
compact open subalgebra h acting ind-nilpotently in g/h (over any field k).
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A Harish-Chandra contramodule P over a Tate Harish-Chandra pair (g,C) is a
k-vector space endowed with a g-contramodule and a C-contramodule structures
satisfying the following two compatibility equations. Firstly, the contraderivative
h-contraaction of the C-contraaction in P, which is defined as the composition

h⊗̂P ' Homk(h∨,P) −−→ Homk(C,P) −−→ P

of the map induced by the pairing ψ and the C-contraaction map, should coincide
with the restriction of the g-contraaction in P to the subalgebra h (see the defini-
tion of a contramodule over a Tate Lie algebra g in Section 2.4). Secondly, for any
C-invariant compact open subspace U ⊂ g the g-contraaction map Homk(U∨,P)→
P should be a morphism of C-contramodules (where the C-contramodule structure
on the Hom space from a C-comodule U∨ into a C-contramodule P is provided
by the construction from Section 2.7). This definition can be found in [69, Sec-
tions D.2.7–8].

Moreover, under some additional assumptions this definition of the category
of Harish-Chandra contramodules can be also simplified, similarly to the above
discussion of the simpler definition of the category of Harish-Chandra modules.
See Theorem 3.18, Corollary 3.24, and Example 3.25 below.

For any Harish-Chandra module M over (g,C) and any k-vector space E, the
vector space P = Homk(M, E) has a natural Harish-Chandra contramodule struc-
ture with the C-contraaction in P provided by the construction from Section 1.2
and the g-contraaction in P defined according to the construction from Section 2.4.

The categories O(g,C) and Octr(g,C) of Harish-Chandra modules and contramod-
ules over a Tate Harish-Chandra pair (g,C) are abelian, and the forgetful functors
O(g,C) → k–vect and Octr(g,C) → k–vect are exact. Both the infinite direct sums
and infinite products exist in the cagories O(g,C) and Octr(g,C), but only the direct
sums are preserved by the forgetful functor O(g,C) → k–vect and only the prod-
ucts are preserved by the functor Octr(g,C)→ k–vect. The category O(g,C) satisfies
the axioms Ab5 and Ab3* (but not Ab4*), while the category O(g,C) satisfies the
axioms Ab3 and Ab4* (but not Ab4 or Ab5*).

There are enough injective objects in the category O(g,C) and enough projective
objects in the category Octr(g,C). The identification of these categories with cate-
gories of semimodules and semicontramodules over certain semialgebras, which we
will now briefly discuss, will make the explicit constructions of such injective and
projective objects explained below in Section 3.5 applicable in this case.

As in Section 2.7, the semialgebras Sl(g,C) and Sr(g,C) are defined as the tensor
products

Sl = U(g)⊗U(h) C and Sr = C⊗U(h) U(g),
where, as above, U(g) and U(h) denote the universal enveloping algebras of the Lie
algebras g and h considered as abstract Lie algebras without any topologies. The
left and right U(h)-module structures on C are obtained by deriving the left and
right coactions of C in itself using the pairing φ. The right coaction of C in Sl and
the left coaction in Sr are induced by the right and left coactions of C in itself. The
construction of the left coaction of C in Sl and the right coaction in Sr is rather
delicate [69, Section D.2.3]. Once the C-C-bicomodule structures on Sl and Sr has
been defined, the constructions of the semimultiplication and semiunit maps are
similar to those in Section 2.7 (see [69, Section 10.2.1]), though one still has to
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check that the maps Sl �C Sl → Sl and Sr �C Sr → Sr so obtained are morphisms
of C-C-bicomodules (the nontrivial part is to show that the former is a morphism
of left C-comodules and the latter a morphism of right ones).

The category O(g,C) of Harish-Chandra modules over a Tate Harish-Chandra
pair (g,C) is isomorphic to the category of left semimodules over the semialgebra
Sl(g,C); the datum of a left Sl-semimodule structure on a k-vector space M is
equivalent to that of a Harish-Chandra module structure on M. Similarly, the
category Octr(g,C) of Harish-Chandra contramodules over (g,C) is isomorphic to
the category of left semicontramodules over the semialgebra Sr(g,C); the datum
of a left Sr-semicontramodule structure on a k-vector space P is equivalent to
that a Harish-Chandra contramodule structure on P [69, Sections 10.2.2, D.2.5,
and D.2.8].

As in Section 2.7, one would like to have also an explicit description of what it
means to have a left Sr-semimodule structure on a k-vector spaceM. In the infinite-
dimensional situation, one cannot hope to have a Morita equivalence between the
semialgebras Sl and Sr. Rather, the determinantal anomaly moves one step higher
in the cohomological degree when one passes to Tate vector spaces, and what used to
be a twist with the modular character in the finite-dimensional case becomes a shift
of the central charge in the Tate Harish-Chandra situation. Before formulating the
precise assertion, let us give the definition of a central extension κ : (g′,C)→ (g,C)
of a Tate Harish-Chandra pair (g,C).

A morphism of Tate Harish-Chandra pairs (g′,C′) → (g,C) can be defined as a
set of data consisting of a continuous morphism of Tate Lie algebras g′ → g and a
morphism of Hopf algebras C → C′ such that the map g′ → g commutes with the
continuous C′-coactions and takes the subalgebra h′ ⊂ g′ into the subalgebra h ⊂ g,
while the maps C → C′ and h′ → h are compatible with the pairings ψ and ψ′. A
central extension of Tate Harish-Chandra pairs with the kernel k is a morphism
(g′,C′)→ (g,C) such that C′ = C is the same Hopf algebra and C→ C′ the identity
map, g′ → g is a quotient map of topological vector spaces with a one-dimensional
kernel k ⊂ g′ in which a fixed basis vector 1g′ ∈ k ⊂ g′ is chosen, the map of Lie
subalgebras h′ → h is an isomorphism, the kernel k = k · 1g′ lies in the center of
the Lie algebra g′, and the coaction of the Hopf algebra C in the subspace k ⊂ g′ is
trivial [69, Section D.2.2]. As it is usual for extensions with a fixed kernel, the set of
all (isomorphism classes of) central extensions of a given Tate Harish-Chandra pair
(g,C) with the kernel k has a natural structure of abelian group (and in fact, even
of a k-vector space) with respect to the Baer sum operation [69, Section D.3.1].

The Lie algebra gl(V ) of continuous endomorphisms of a Tate vector space V
has a canonical central extension gl(V )∼ with the kernel k defined in terms of
the trace functional on the space of all continuous linear operators V → V of
finite rank [14, Sections 2.7.8 and 3.8.17–18] (see also [69, Sections D.1.6–8]; a
historical discussion can be found in [14, the beginning of Section 2.7]). The central
extension γ0 : gl(V )∼ → gl(V ) can be characterized by the property that there is a
well-defined linear action of the Lie algebra gl(V )∼ in the space

∧∞/2(V ) of semi-
infinite exterior forms over V lifting the projective action of the Lie algebra gl(V )
(see [37], [51, Lecture 4], and [13, Sections 4.2.13 and 7.13.16]). One chooses the
canonical basis element 1gl∼ ∈ k ⊂ gl(V )∼ so that it acts by the identity operator
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in the space of semi-infinite forms; abusing the terminology, we say that
∧∞/2(V )

is a “gl(V )-module with the central charge γ0”.
Pulling back the central extension gl(g)∼ → gl(g) with respect to the adjoint rep-

resentation adg : g→ gl(g), one obtains the canonical central extension κ0 : g∼ → g
of an arbitrary Tate Lie algebra g. The above convention for the choice of the canon-
ical basis element 1gl∼ and the consequent choice of the basis element 1g∼ ∈ k ⊂ g
provide it that for any discrete module M over the Lie algebra g∼ where the ele-
ment 1g∼ acts by minus the identity operator (“a discrete g-module with the central
charge −κ0”) there is a well-defined discrete action of the original Lie algebra g in
the tensor product

∧∞/2(V ) ⊗k M , allowing to define the semi-infinite homology
of g with coefficients in M [14, Sections 3.8.19–22] as the homology of a natural
differential on

∧∞/2(V )⊗kM (see [14, the beginning of Section 3.8] for a historical
discussion). In addition, in [69, Sections D.5.5–6], the semi-infinite cohomology of
a Tate Lie algebra g with coefficients in any g∼-contramodule P where 1g∼ acts by
the identity (“a g-contramodule with the central charge κ0”) is also defined as the
cohomology of a natural differential on the space Homk(

∧∞/2(V ), P).
In particular, for the Lie algebra g = k((z))d/dz of vector fields on the formal cir-

cle, the canonical central extension g∼ is the Virasoro algebra Vir (see Section 1.7).
The canonical basis element 1 ∈ k ⊂ Vir is −C/26, i. e., the central element C ∈ Vir
acts by the scalar −26 in the space of semi-infinite forms

∧∞/2 (
k((z))d/dz

)
. So

the semi-infinite homology and cohomology is defined for any discrete Vir-module
(or, as we will say, “k((z))d/dz-module”) with the central charge C = 26 and any
Vir-contramodule (“k((z))d/dz-contramodule”) with the central charge −26.

When a Tate vector space V is endowed with a continuous coaction of a com-
mutative Hopf algebra C, the topological Lie algebra gl(V )∼ acquires the induced
continuous coaction of C [69, Sections D.1.6–7]. Hence a continuous coaction of
a commutative Hopf algebra C in a Tate Lie algebra g always lifts naturally to
a continuous coaction of C in the canonical central extension g∼ of g. Further-
more, the canonical central extension g∼ → g splits naturally over any compact
open Lie subalgebra h ⊂ g [14, Section 3.8.19], [69, Section D.1.8] (warning: over
a pair of embedded compact open Lie subalgebras h′ ⊂ h′′ ⊂ g, these splittings
do not agree, but rather differ by a relative adjoint trace character). For any Tate
Harish-Chandra pair (g,C), this allows to extend the canonical central extension
κ0 : g∼ → g of the Tate Lie algebra g to a canonical central extension of Tate
Harish-Chandra pairs (g∼,C)→ (g,C), which we will denote also by κ0.

Let κ : (g′,C) → (g,C) be a central extension of Tate Harish-Chandra pairs
with the kernel k = k · 1g′ . By a Harish-Chandra module M over (g,C) with the
central charge κ we mean a Harish-Chandra module over the Tate Harish-Chandra
pair (g′,C) such that the central element 1g′ ∈ g′ acts by the identity operator
in M. Similarly, a Harish-Chandra contramodule P over a Tate Harish-Chandra
pair (g,C) with the central charge κ is a Harish-Chandra contramodule over (g′,C)
such that the central element 1g′ contraacts by the identity operator in P, that is
the composition

P ' k ⊗̂P→ g′ ⊗̂P→ P

of the map induced by the choice of the element 1g′ ∈ g′ with the g′-contraaction
map is equal to the identity map P→ P.
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The category Oκ(g,C) of Harish-Chandra modules over (g,C) with the central
charge κ is abelian; the fully faithful embedding functor Oκ(g,C) → O(g′,C) is
exact and preserves both the infinite direct sums and products. The category
Octr

κ (g,C) of Harish-Chandra contramodules over (g,C) with the central charge κ is
also abelian; the fully faithful embedding functor Oκ(g,C)→ O(g′,C) is exact and
preserves the infinite direct sums and products. There are enough injective objects
in the category Oκ(g′,C) and enough projective objects in the category Octr

κ (g′,C);
we will see below in Section 3.5 how one can construct them.

Our next goal is to define semialgebras Sl = Slκ(g,C) and Sr = Srκ(g,C) such that
the categories of Harish-Chandra modules and contramodules over a Tate Harish-
Chandra pair (g,C) with the central charge κ could be identified with the categories
of semimodules and semicontramodules over Sl and Sr. Let us start with the related
elementary construction of the modified universal enveloping algebra corresponding
to a central extension of (nontopological) Lie algebras.

Given a central extension κ : g′ → g with the kernel k = k · 1g′ , the algebra
Uκ(g) is constructed as the quotient algebra U(g′)/(1U(g′) − 1g′) of the enveloping
algebra U(g′) by the ideal generated by the difference between the unit element
1U(g′) of the associative algebra U(g′) and the fixed basis vector 1g′ in the kernel
of the central extension. Then the category of left Uκ(g)-modules is isomorphic to
the category of “g-modules with the central charge κ”, i. e., g′-modules where the
element 1g′ acts by the identity operator, while the category of right Uκ(g)-modules
is isomorphic to the category of g-modules with the central charge −κ.

Now the semialgebras Slκ(g,C) and Srκ(g,C) are constructed as the tensor prod-
ucts

Sl = Uκ(g)⊗U(h) C and Sr = C⊗U(h) Uκ(g).

The datum of a left Sl-semimodule structure on a given k-vector space M is equiv-
alent to that of a Harish-Chandra module structure over (g,C) with the central
charge κ, while the datum of a left Sr-semicontramodule structure on a given
k-vector space P is equivalent to that of a Harish-Chandra contramodule structure
over (g,C) with the central charge κ [69, Sections D.2.2, D.2.5 and D.2.8]. The
following theorem, when its condition is satisfied, allows to describe left Sr-semi-
modules.

Theorem 2.14. — Assume that the pairing φ : C⊗kU(h)→ k is nondegenerate
in C. Then there is a natural isomorphism of semialgebras

Srκ+κ0
(g,C) ' Slκ(g,C)

over the coalgebra C.

Proof. — This is one of the most difficult, and at the same time a singularly
least well-understood result of the book [69]. The precise formulation, where the
desired isomorphism is uniquely characterized by a certain list of conditions, can
be found in [69, Section D.3.1]. The lengthy proof, which is based on the relative
nonhomogeneous quadratic duality theory developed in [69, Chapter 11] (see [69,
Section 0.4] for an introduction, cf. [86]), occupies the rest of [69, Section D.3]. �
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3. Tensor Operations and Adjusted Objects

3.1. Comodules and contramodules over coalgebras over fields. Let C be
a coassociative coalgebra over a field k. The constructions of the cotensor product
N�CM of a right C-comodule N and a left C-comoduleM and the vector space of co-
homomorphisms CohomC(M,P) from a left C-comoduleM to a left C-contramodule
P were already presented at the end of Section 2.5 and repeated in the beginning
of Section 2.6. The main function of these two tensor operations on comodules and
contramodules in the theories developed in the book [69] is to provide the tensor
and module category structures in whose terms the notion of a semialgebra and the
categories of semimodules and semicontramodules are subsequently defined.

Let us now introduce the definition of the contratensor product of a right C-co-
module N and a left C-contramodule P, which plays a key role in the comodule-
contramodule correspondence constructions. The contratensor product N �C P is
a k-vector space defined as the cokernel of (the difference of) the pair of maps

(id⊗ evC) ◦ (νN ⊗ id), id⊗ πP : N ⊗k Homk(C,P)⇒ N ⊗k P,

one of which is the composition N ⊗k Homk(C,P) → N ⊗k C ⊗k Homk(C,P) →
N ⊗k P of the map induced by the C-coaction in N and the map induced by the
evaluation map evC : C ⊗k Homk(C,P) → P, while the other one is induced by
the C-contraaction in P. The functor of contratensor product of comodules and
contramodules over a coalgebra C is right exact. For any right C-comodule N and
k-vector space V there is a natural isomorphism of k-vector spaces

N �C Homk(C, V ) ' N ⊗k V.

Furthermore, for any right C-comodule N, left C-contramodule P, and k-vector
space V there is a natural isomorphism of k-vector spaces

Homk(N �C P, V ) ' HomC(P,Homk(N, V )),

where the vector space Homk(N, V ) is endowed with a left C-contramodule structure
as explained in Section 1.2 [69, Sections 0.2.6 and 5.1.1].

For any two coalgebras C and D over k, any C-D-bicomodule K, and any
left C-comodule M, the vector space of C-comodule homomorphisms HomC(K,M)
has a natural left D-contramodule structure. One can define it by noticing that
HomC(K,M) is a subcontramodule in the left D-contramodule Homk(K,M), whose
contramodule structure is induced by the right D-comodule structure on K. Sim-
ilarly, for any C-D-bicomodule K and left D-contramodule P the vector space
K�D P has a natural left C-comodule structure.

For any C-D-bicomoduleK, left C-comoduleM, and leftD-contramoduleP there
is a natural isomorphism of k-vector spaces

HomC(K�D P, M) ' HomD(P,HomC(K,M)).

In other words, the functor K �D − : D–contra → C–comod is left adjoint to the
functor HomC(K,−) : C–comod → D–contra [69, Section 5.1.2]. The adjoint func-
tors HomC(C,−) and C�C − of comodule homomorphisms from and contratensor
product with the C-C-bicomodule K = C restricted to the additive subcategories of
injective C-comodules and projective C-contramodules provide the equivalence of
additive categories C–comodinj ' C–contraproj described at the end of Section 1.2.



CONTRAMODULES 153

Relations between (or rather, in the case of a coalgebra C over a field k, the
coincidences of) the following classes of adjusted objects, together with the classes of
injective and projective objects, in the comodule and contramodule categories play
an important role in the co/contramodule and semico/semicontramodule theory. A
discussion of these coincidences is the aim of the remaining part of this section. We
will see in the proof of Proposition 3.12 below how these results are being used.

A left C-comodule M is called coflat if the functor −�CM : comod–C→ k–vect of
cotensor product with M is exact on the abelian category of right C-comodules. A
left C-comodule M is called coprojective if the functor CohomC(M,−) : C–contra→
k–vect is exact on the abelian category of left C-contramodules.

Similarly, a left C-contramodule P is called contraflat if the functor − �C P :
comod–C→ k–vect of contratensor product with P is exact on the abelian category
of right C-comodules. A left C-contramodule P is called coinjective if the func-
tor CohomC(−,P) : C–comodop → k–vect is exact on the abelian category of left
C-comodules [69, Section 0.2.9].

Lemma 3.1. — Let C be a coassociative coalgebra over a field k. Then

(a) a C-comodule is coflat if and only if it is coprojective and if and only if it
is injective;

(b) a C-contramodule is contraflat if and only if it is coinjective and if and only
if it is projective.

Proof. — Part (a): it is clear from the natural isomorphism Homk(N�CM, V ) '
CohomC(M,Homk(N, V )) for any right C-comodule N, left C-comodule M, and
k-vector space V (see Section 2.6) that any coprojective left C-comodule M is coflat,
and from the natural isomorphism CohomC(C ⊗k V, P) ' Homk(V,P) for any
k-vector space V and left C-contramodule P (see Section 2.5) that any injective left
C-comodule M is coprojective.

Conversely, by a comodule version of Baer’s criterion, a left C-comodule M is
injective whenever the functor HomC(−,M) is exact on the category of finite-
dimensional left C-comodules. Indeed, a C-comodule morphism into M from a
subcomodule of any C-comodule can be successively extended to larger and larger
subcomodules in the way of a transfinite induction or Zorn’s lemma, and one only
has to deal with subcomodules of finite-dimensional C-comodules in the process. It
remains to notice the natural right C-comodule structure on the dual vector space
L∗ to any finite-dimensional left C-comodule L, and the natural isomorphism

HomC(L,M) ' L∗ �C M

for any finite-dimensional left C-comodule L and any left C-comodule M, in order
to conclude that any coflat left C-comodule M is injective.

Part (b): since any C-comodule is a union of its finite-dimensional subcomodules,
and the functor of contratensor product − �C P preserves inductive limits (in its
comodule argument), a left C-contramodule P is contraflat whenever the functor
−�CP is exact on the category of finite-dimensional right C-comodules. It remains
to notice the natural isomorphism

CohomC(L,P) ' L∗ �C P
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for any finite-dimensional left C-comodule L and any left C-contramodule P in
order to conclude that any coinjective left C-contramodule is contraflat. The as-
sertion that every projective C-contramodule is coinjective follows immediately
from the natural isomorphism CohomC(M,Homk(C, V )) ' Homk(M, V ) for any
left C-comodule M and k-vector space V (see Section 2.5).

Showing that every contraflat C-contramodule is projective is much more diffi-
cult. This assertion was formulated as a conjecture in [68] and eventually proven
in [69, Section A.3]. The result in question is a generalization of the classical theo-
rem that flat modules over a finite-dimensional associative algebra are projective [6,
Theorem P and Examples I.3(1)]. The argument is [6] is based on the structure
theory of Artinian rings. Similarly, the proof of projectivity of contraflat contra-
modules in [69] is based on the structure theory of coalgebras over fields [102,
Sections 9.0–1] and the structure theory of contramodules over them developed
in [69, Section A.2], and first of all, on the contramodule Nakayama lemma (see
Section 2.1).

In the exposition below, we restrict ourselves to proving that any coinjective
C-contramodule is projective. This is the result that has an important application
to semicontramodules that will be considered in Section 3.5. The argument that
we describe here also has an advantage of being generalizable to comodules and
contramodules over corings over arbitrary noncommutative rings [69, Lemma 5.2].

The assertion comes out as an unexpected consequence of one of the results estab-
lishing mutual associativity of the cotensor product/cohomomorphism operations
�C or CohomC with the operations of contratensor product, comodule homomor-
phisms, or contramodule homomorphisms �C, HomC, or HomC. The operations
from the first and the second list are exact on different sides, so they are only mu-
tually associative under certain adjustedness conditions on the objects involved [69,
Section 5.2] (cf. [68], where these mutual associativity assertions were formulated
in a less general form insufficient for deducing the corollary under discussion).

Let C and D be two coalgebras over a field k.

Proposition 3.2. — Let N be a right D-comodule, K be a D-C-bicomodule,
and P be a left C-contramodule. Then there is a natural map of k-vector spaces

(N �D K)�C P −−→ N �D (K�C P),
which is an isomorphism whenever P is a contraflat left C-contramodule or N is a
coflat right D-comodule.

Proposition 3.3. — Let L be a left D-comodule, K be a C-D-bicomodule, and
M be a left C-comodule. Then there is a natural map of k-vector spaces

CohomD(L,HomC(K,M)) −−→ HomC(K �D L, M),
which is an isomorphism whenever M is an injective left C-comodule or L is a
coprojective left D-comodule.

Proposition 3.4. — Let P be a left C-contramodule, K be a D-C-bicomodule,
and Q be a left D-contramodule. Then there is a natural map of k-vector spaces

CohomD(K�C P, Q) −−→ HomC(P,CohomD(K,Q)),
which is an isomorphism whenever P is a projective left C-contramodule or Q is a
coinjective left D-contramodule.
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Proof. — To construct the natural map in Proposition 3.2, one considers the
composition

(N �D K)⊗k P −−→ N ⊗k K⊗k P −−→ N ⊗k (K�C P)

and observes that it is has equal compositions with the two maps (N �D K) ⊗k
Homk(C,P) ⇒ (N �D K) ⊗k P, as well as with the two maps N ⊗k (K �C P) ⇒
N⊗k D⊗k (K�C P). This map is an isomorphism when the C-contramodule P is
contraflat, since the exact sequence

0 −−→ N �D K −−→ N ⊗k K −−→ N ⊗k D⊗k K

remains exact after applying the functor − �C P, and when the D-comodule N is
coflat, since the exact sequence

K⊗k Homk(C,P) −−→ K⊗k P −−→ K�C P −−→ 0

remains exact after applying the functor N �D −.
To construct the natural map in Proposition 3.4, one considers the composition

Homk(K�C P, Q) −−→ Homk(K⊗k P, Q)
' Homk(P,Homk(K,Q)) −−→ Homk(P,CohomD(K,Q))

and observes that it has equal compositions with the two maps Homk(D⊗k(K�CP),
Q)⇒ Homk(K�C P, Q), as well as with the two maps Homk(P,CohomD(K,Q))
⇒ Homk(Homk(C,P),CohomD(K,Q)). This map is an isomorphism when the
C-contramodule P is projective, since the exact sequence

Homk(D⊗k K, Q) −−→ Homk(K,Q) −−→ CohomD(K,Q) −−→ 0

remains exact after applying the functor HomC(P,−), and when the D-contramod-
ule Q is coinjective, since the exact sequence

K⊗k Homk(C,P) −−→ K⊗k P −−→ K�C P −−→ 0

remains exact after applying the functor CohomD(−,Q). The proof of Proposi-
tion 3.3 is similar. �

Now we can prove that any coinjective left C-contramodule P is projective. Let
l : E → P be a surjective C-contramodule morphism. According to the second
assertion of Proposition 3.4 applied to the coalgebras C = D, the bicomoduleK = C,
and the contramodules Q = P, there is a commutative diagram of maps of k-vector
spaces with a lower horizontal isomorphism

CohomC(C�C P, E) HomC(P,E)

CohomC(C�C P, P) HomC(P,P)

//

����

CohomC(C�CP, l)

��

HomC(P, l)

The leftmost vertical map, being a quotient of the surjective map

Homk(C�C P, l) : Homk(C�C P, E) −−→ Homk(C�C P, P),
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is surjective; so the rightmost vertical map is surjective, too. It follows that the
morphism id: P → P can be lifted to a C-contramodule morphism P → E, i. e.,
our surjective morphism of C-contramodules l : E→ P splits. �

3.2. Contramodules over pro-Artinian local rings. A pro-Artinian commu-
tative ring R is the projective limit of a filtered projective system of Artinian
commutative rings and surjective morphisms between them. Equivalently, R is a
complete and separated topological commutative ring where open ideals form a
base of neighborhoods of zero and all the discrete quotient rings are Artinian [81,
Section A.2].

A pro-Artinian local ring is the projective limit of a filtered projective system of
Artinian commutative local rings and surjective morphisms between them. E. g.,
any complete Noetherian local ring can be viewed as a pro-Artinian local ring.

Contramodules over pro-Artinian local rings are suggested in [81] for use in
the role of coefficients in homological theories involving tensor operations, infinite
direct sums and products, and reductions to the residue field. The point is that the
use of contramodules with their well-behaved reductions (satisfying Nakayama’s
lemma irrespectively of any finite generatedness assumptions) allows to extend to
pro-Artinian local rings many results originally provable over a field only.

Let R be a pro-Artinian local ring with the maximal ideal m and the residue
field k. The category of R-contramodules R–contra and the reduction functor
P 7−→ P/mP acting from it to the category of k-vector spaces have the following
formal properties:

(i) R–contra is an abelian category with infinite direct sums and products;
the infinite product functors in R–contra are exact and preserved by the
forgetful functor R–contra→ R–mod;

(ii) R–contra is a tensor category with a right exact tensor product functor
⊗R and an internal Hom functor HomR; the forgetful functor R–contra→
R–mod takes the unit object of the tensor structure R ∈ R–contra to the
unit object R ∈ R–mod and commutes with the internal Hom functors;

(iii) there are enough projective objects in R–contra; these are called the free
R-contramodules, as they are precisely the direct sums of copies of the
object R; the class of free R-contramodules is preserved by infinite direct
sums, infinite products, and the operations ⊗R and HomR;

(iv) the reduction functor R–contra → k–vect preserves infinite direct sums,
infinite products, commutes with the tensor products, and commutes with
the internal Hom from free R-contramodules;

(v) the reduction functor does not annihilate any objects: P/mP = 0 implies
P = 0 for any P ∈ R–contra; in other words, a morphism of free R-contra-
modules F→ G is an isomorphism whenever its reduction F/mF→ G/mG
is an isomorphism of k-vector spaces.

The constructions of these structures and the proofs of the listed assertions can
be found in [81, Sections 1.1–1.6]. Let us point out two caveats, which are in fact
two ways to formulate one and the same observation. Firstly, the infinite direct
sums of R-contramodules are not always exact functors. Secondly, the functors
of tensor product F ⊗R − with a free R-contramodule F is not always exact in
R–contra.
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Both problems do not occur in the homological dimension 1 case. E. g., in the
case of the ring of l-adic integers R = Zl or the ring of formal power series in
one variable R = k[[z]], the infinite direct sums in R–contra are still exact, as are
the tensor products with free R-contramodules. Of course, even in these cases the
infinite direct sums and tensor products of R-contramodules are not preserved by
the forgetful functor R–contra→ R–mod (and one would not expect them to be).

The definition of a left contramodule over a complete and separated topological
ring R with open right ideals forming a base of neighborhoods of zero was explained
in Section 2.1. Let us now define the operation of tensor product ⊗R of contra-
modules over a commutative topological ring R with open ideals forming a base of
neighborhoods of zero.

The following definition of a contrabilinear map for contramodules over a com-
mutative topological ring was suggested to the author by Deligne. Let P, Q, and K
be three contramodules over R. A map b : P×Q→ K is called contrabilinear over
R if for any two families of coefficients rα and sβ ∈ R converging to zero in the
topology of R and any two families of elements pα ∈ P and qβ ∈ Q the equation

b

(∑
α

rαpα,
∑
β

sβqβ

)
=
∑
α,β

(rαsβ) b(pα, qβ)

holds in K. An R-contramodule L endowed with an R-contrabilinear map P×Q→
L is called the contramodule tensor product of the R-contramodules P and Q
if for any R-contramodule K and any R-contrabilinear map P × Q → K there
exists a unique R-contramodule morphism L → K making the triangle diagram
P×Q→ L→ K commutative [81, Section 1.6].

One has to check that, for any R-subcontramodules P′ ⊂ P and Q′ ⊂ Q, any
R-contrabilinear map P × Q → K annihilating P′ × Q and P × Q′ factorizes
uniquely through a contrabilinear map P/P′ × Q/Q′ → K. Then it follows that
the contramodule tensor product P/P′ ⊗R Q/Q′ can be obtained as the cokernel
of the natural morphism of contramodule tensor products

P′ ⊗R Q ⊕ P⊗R Q′ −−→ P⊗R Q,

so in order to produce the contramodule tensor products of arbitrary pairs ofR-con-
tramodules it remains to explain what the tensor products of free R-contramodules
are. Here one notices that setting R[[X]]⊗R R[[Y ]] ' R[[X × Y ]] for any two sets
X and Y does the job. Moreover, one has R[[X]]⊗RP '

⊕
X P for any set X and

any R-contramodule P, and generally the contramodule tensor product is a right
exact functor preserving infinite direct sums in the category R–contra.

The set HomR(P,Q) of all R-contramodule morphisms between two R-contra-
modules P and Q is endowed with the R-contramodule structure provided by the
pointwise infinite summation operations(∑

α

rαfα

)
(p) =

∑
α

rαfα(p)

for any family of morphisms fα : P → Q, any element p ∈ P, and any family of
coefficients rα ∈ R converging to zero in the topology of R [81, Section 1.5]. One
easily checks from the definitions that

HomR(P⊗R Q, K) ' HomR(P,HomR(Q,K))
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for any R-contramodules P, Q, and K, as is required of the internal Hom functor
in a tensor category.

Given an R-contramodule P, one denotes by mP ⊂ P the image of the con-
traaction map R[[P]] ⊃ m[[P]] → P. The passage to the quotient k-vector space
P/mP provides the construction of the reduction functor P 7−→ P/mP.

We have explained the constructions of all the structures mentioned in (i-v). The
proof of the assertion that the class of projective R-contramodules is closed under
the operations of infinite product and the internal Hom functor depends on the
assumption that the ring R is pro-Artinian [81, Lemma 1.3.7], as does the proof of
the fact that the reduction functor preserves infinite products [81, Lemma 1.3.6].
The proof of the Nakayama lemma (v) is based on the assumption of topological
nilpotence of the ideal m implied by the definition of a pro-Artinial local ring (see
Section 2.1), and the assertion that all projective R-contramodules are free follows
from the Nakayama lemma [81, Lemma 1.3.2].

In addition to R-contramodules, the coefficient formalism developed in [81, Sec-
tion 1] also includes discrete R-modules or R-comodules; see Section 3.6 for a short
discussion and [81, Sections 1.4 and 1.9] for the details.

3.3. Flat contramodules over topological rings. The aim of this section is
to describe a certain class of adjusted contramodules over topological rings which
plays a crucial role in the arguments in [89, Section 5] and [88, Section 7], and will
probably prove to be important and useful in other contexts as well (cf. [87, 91,
9, 10, 93]). To begin with, let us briefly return to the discussion of contramodules
over the adic completions of Noetherian rings by centrally generated ideals from
Section 2.2.

Let I be an ideal generated by central elements in a right Noetherian ring R;
denote by R = lim←−nR/I

n the I-adic completion of the ring R, viewed as a complete
and separated topological ring in its natural topology. Let I = lim←−n I/I

n denote
the ideal generated by the image of I ⊂ R in the ring R.

The following result is [71, Proposition C.5.4] or [93, Lemma 10.2 and proof of
Proposition 5.5 in Section 10]. In the commutative case, its proof can be found
in [81, Lemma B.9.2] or [76, Corollary 10.3].

Lemma 3.5. — A left R-contramodule P is a flat R-module if and only if the
R/In-module P/InP is flat for every n > 1. The natural map P → lim←−nP/I

nP

is an isomorphism if this is the case. �

In other words, the nonseparatedness phenomenon demonstrated by the coun-
terexamples from [99, 110, 69] described in Section 1.5 above does not occur for
R-contramodules satisfying any one of the two equivalent flatness conditions from
the first sentence of Lemma 3.5. The situation turns out to be similar in the much
more general contexts discussed below.

Let us now pass to the setting of [71, Section D.1]. Let R0 ←− R1 ←− R2 ←−
R3 ←− · · · be a projective system of associative rings and surjective morphisms
between them. Consider the projective limit R = lim←−nRn and endow it with the
topology of projective limit of discrete rings Rn. Let In ⊂ R denote the kernels of
the natural surjective morphisms of rings R → Rn; then the open ideals In form
a base of neighborhoods of zero in the topological ring R. To make our notation
closer to that of [71, Appendix D] and [66], we switch a bit away from our previous
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notation pattern and denote by JiP ⊂ P the image of the contraaction map
J[[P]]→ P for any closed ideal J ⊂ R and any R-contramodule P.

We recall from Section 2.1 that the category of left R-contramodules R–contra
is an abelian category with infinite direct sums, exact infinite products, and enough
projective objects. The next result is [71, Lemma D.1.1]; see also [69, Lemma A.2.3].

Lemma 3.6. — For any left R-contramodule P, the natural map
P→ lim←−

n

P/IniP

is surjective. �

Here is the promised definition in this context. A left R-contramodule F is called
flat if the left Rn-module F/IniF is flat for every n. The following proposition is
the main related result.

Proposition 3.7. — (a) For any flat left R-contramodule F, the map F→
lim←−n F/IniF is an isomorphism.

(b) The class of flat left R-contramodules is closed under extensions and the
passages to the kernels of surjective morphisms. For any short exact se-
quence of flat R-contramodules 0→ H→ G→ F→ 0, the short sequences
of Rn-modules 0→ H/IniH→ G/IniG→ F/IniF→ 0 are exact.

Proof. — Part (a) is [71, Corollary D.1.7]. Part (b) is [71, Lemmas D.1.4
and D.1.5]. �

The next result provides a characterization of projective R-contramodules, gen-
eralizing the results of [110, Corollary 4.5] and [81, Corollary B.8.2] (see also [65,
Theorem 1.10] and [71, Corollary C.5.6(a)]).

Proposition 3.8. — A left R-contramodule F is a projective object inR–contra
if and only if the left Rn-modules F/IniF are projective for all n > 0.

Proof. — This is [71, Corollary D.1.10(a)]. �

Finally, we consider the quite general setting of a complete, separated topological
ring R with a countable base of neighborhoods of zero consisting of open right
ideals [66, Sections 5–7]. The next lemma is [66, Lemma 6.3(b)].

Lemma 3.9. — For any left R-contramodule P, the natural map
P→ lim←−

I

P/IiP

is surjective, where the projective limit is taken over the poset of open right ideals
I ⊂ R ordered by the inverse inclusion. �

Let N be a discrete right R-module and P be a left R-contramodule. Then the
contratensor product N�RP is an abelian group constructed as the quotient group
of N ⊗Z P by the subgroup of all elements of the form∑

α

xrα ⊗ pα − x⊗
∑
α

rαpα.

Here rα ∈ R is family of elements of converging to zero in the topology ofR, indexed
by some family of indices α (which can be assumed to be at most countable when
R has a countable base of neighborhoods of zero), pα ∈ P is an arbitrary family of
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elements, and x ∈ N is an element. The sum in the left-hand side is well-defined
since xrα = 0 for all but a finite subset of indices α, while the sum in the right-hand
side denotes the contramodule infinite summation operation.

For any discrete right R-module N, any left R-contramodule P, and any abelian
group V , there is a natural isomorphism of abelian groups

HomAb(N �R P, V ) ' HomR(P,HomAb(N, V )),
where the left R-contramodule structure on the abelian group HomAb(N, V ) is
constructed as explained in Section 2.1. For any set X and any discrete right
R-module N, there is a natural isomorphism of abelian groups

N �R R[[X]] ' N[X].
Here is our key definition. A left R-contramodule F is called flat if the functor

of contratensor product N 7−→ N�R F is exact on the abelian category of discrete
right R-modules N. For a (complete and separated) topological ring R with a
countable base of neighborhoods of zero consisting of open two-sided ideals, this
definition is equivalent to the previous one. The following proposition lists some of
the main results of the theory.

Proposition 3.10. — (a) For any flat left R-contramodule F, the map
F→ lim←−I

F/IiF is an isomorphism.
(b) All projective left R-contramodules are flat. The class of flat left R-contra-

modules is closed under extensions and the passages to the kernels of surjec-
tive morphisms. For any short exact sequence of flat left R-contramodules
0 → H → G → F → 0 and any discrete right R-module N, the short
sequence of abelian groups 0→ N�RH→ N�RG→ N�RF→ 0 is exact.

(c) The class of flat left R-contramodules is closed under filtered inductive
limits in R–contra. The functor of filtered inductive limit of diagrams of
flat left R-contramodules is exact.

Proof. — Part (a) is [66, Corollary 6.15]. Part (b) is [66, Lemma 6.7, Corol-
lary 6.8, Lemma 6.9, and Corollary 6.13] (see also [66, Lemma 6.10]). Part (c)
is [66, Lemmas 5.6 and 6.16] (see also [66, Proposition 6.17]). �

An even more general setting of contramodules over a complete, separated topo-
logical ring with a (not necessarily countable) base of neighborhoods of zero con-
sisting of open right ideals is discussed in the papers [87, 91, 10, 93]. In this context,
the definition of a flat contramodule is the same as in the previous one. The class
of flat contramodules is still closed under filtered inductive limits, but it no longer
needs to be closed under the kernels of surjective morphisms [93, Example 12.4].
An example of a flat contramodule which cannot be obtained as a filtered inductive
limit of projective ones can be found in [93, Example 9.2]. Topological rings over
which the classes of projective and flat left contramodules coincide are character-
ized, under the name of topologically left perfect topological rings, in the paper [91,
Section 14].

3.4. Underived co-contra correspondence over corings. It was already men-
tioned in the end of Section 1.2 that the categories of injective left comodules and
projective left contramodules over a coalgebra C over a field k are naturally equiv-
alent. Similarly, at the end of Section 1.4 we pointed out the equivalence between
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the categories of injective discrete modules and projective contramodules over the
ring of l-adic integers Zl. These are the simplest instances of a very general homo-
logical phenomenon called the comodule-contramodule correspondence, which has
many manifestations in algebra [59, 32, 64, 50, 56, 48, 70, 81, 74, 75], algebraic
geometry [62, 61, 33, 71], and representation theory [38, 39, 96, 69, 92, 90]. In the
following three sections we restrict ourselves to an overview of those versions of the
co-contra correspondence that can be readily formulated on the level of additive or
exact categories, while referring to the presentation [72] and the introduction to the
paper [74] for a discussion of the derived comodule-contramodule correspondence.

Let C be a coassociative coring over an associative ring A (see Section 2.5). Then
the assignment of the left C-contramodule HomA(C, V ) to the left C-comodule C⊗A
V and vice versa establishes an equivalence between the full additive subcategories
of coinduced C-comodules in C–comod and induced C-contramodules in C–contra.
Indeed, one has

HomC(C⊗A U, C⊗A V ) ' HomA(C⊗A U, V )

' HomA(U,HomA(C, V )) ' HomC(HomA(C, U),HomA(C, V ))

for any left A-modules U and V [69, Section 0.2.6]. This is a particular case of
the isomorphism of Kleisli categories for a pair (left adjoint comonad, right adjoint
monad) in any base category [53, 18].

Adjoining the direct summands to the full subcategories of coinduced C-comod-
ules and induced C-contramodules, one obtains what are called the full subcate-
gories of relatively injective (or C/A-injective) C-comodules and relatively projec-
tive C-contramodules in the book [25, Sections 18.17–18] and the paper [18, Sec-
tions 2.7–8]. This may be the standard terminology; still in the monograph [69,
Section 5.1.3] we chose to call these quite relatively injective (quite C/A-injective)
C-comodules and quite relatively projective (quite C/A-projective) C-contramodules
while preserving the shorter terms with the single word “relatively” for the wider
and more important classes of comodules and contramodules discussed below.

A left C-comodule J is said to be quite C/A-injective if the short sequence of
abelian groups

0→ HomC(M, J)→ HomC(L, J)→ HomC(K, J)→ 0 (3.1)

is exact for every short exact sequence of left C-comodules 0 → K → L → M → 0
that splits as a short exact sequence of left A-modules. We recall that the category
of left C-comodules is not abelian in general, there being a problem with the kernels
of morphisms (see Section 2.5). However, any A-split surjection of C-comodules has
a kernel preserved by the forgetful functor C–comod→ A–mod.

Moreover, the category of left C-comodules with the class of all A-split short
exact sequences is an exact category (see [26] for the definition, discussion, and
references); the quite C/A-injective C-comodules are simply the injective objects of
this exact category structure. In particular, the coaction morphism M→ C⊗AM of
any left C-comodule M is split by the A-module map C⊗AM→M induced by the
counit ε of the coring C. Considering the corresponding A-split short exact sequence
of C-comodules, one easily concludes that a C-comodule is quite C/A-injective if and
only if it is a direct summand of a coinduced C-comodule.
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Similarly, a left C-contramodule F is said to be quite C/A-projective if the short
sequence of abelian groups

0→ HomC(F,P)→ HomC(F,Q)→ HomC(F,R)→ 0 (3.2)

is exact for every short exact sequence of left C-contramodules 0→ P→ Q→ R→
0 that splits as a short exact sequence of left A-modules. Recall that the category
of left C-contramodules is not abelian in general, there being a problem with the
cokernels of morphisms. However, any A-split embedding of C-contramodules has
a cokernel preserved by the forgetful functor C–contra→ A–mod.

Moreover, the category of left C-contramodules with the class of all A-split short
exact sequences is an exact category; the quite C/A-projective C-contramodules
are simply the projective objects of this exact category structure. In particular,
the contraaction morphism HomA(C,P) → P of any C-contramodule P is split
by the A-module map P → HomA(C,P) induced by the counit of the coring C.
Considering the corresponding A-split short exact sequence of C-contramodules,
one easily concludes that a C-contramodule is quite C/A-projective if and only if it
is a direct summand of an induced C-contramodule.

So the full additive subcategories of quite C/A-injective C-comodules in C–comod
and quite C/A-projective C-contramodules in C–contra are equivalent for any coas-
sociative coring C. When the coring C coincides with the ring A (i. e., the counit
map C → A is bijective), this reduces to the identity equivalence of the category
of left A-modules with itself. However, the category of A-modules is abelian and
not only additive; viewing it just as an additive category is rather unsatisfactory
from our point of view. Still the categories of quite relatively injective comodules
and quite relatively projective contramodules do not seem to carry any homological
structures beyond those of additive categories; in particular, they do not have any
nontrivial exact category structures. The following definitions [69, Sections 5.1.4
and 5.3] are purported to overcome this drawback (cf. [17, Sections 4.1 and 4.3],
where similarly defined relatively adjusted modules are called, more in line with
the traditional terminology, “weakly relatively projective” and “weakly relatively
injective”).

Assume that the coring C is a projective left and a flat right A-module; then
the categories of left C-comodules and left C-contramodules are abelian. A left
C-comodule J is called injective relative to A (C/A-injective) if the short sequence of
Hom groups (3.1) is exact for any short exact sequence of left C-comodules 0→ K→
L→M→ 0 that are projective as left A-modules. Similarly, a left C-contramodule
F is called projective relative to A (C/A-projective) if the short sequence of Hom
groups (3.2) is exact for any short exact sequence of left C-contramodules 0→ P→
Q→ R→ 0 that are injective as left A-modules.

Assume further that the ring A has finite left homological dimension (i. e.,
the category of left A-modules has finite homological dimension; cf. the last sen-
tence of Section 2.6). Then the full subcategory C–comodC/A–inj of C/A-injective
C-comodules is closed under extensions and the passages to the cokernels of in-
jective morphisms in C–comod. Similarly, the full subcategory C–contraC/A–proj of
C/A-projective C-contramodules is closed under extensions and the passages to the
kernels of subjective morphisms in C–contra [69, Lemma 5.3.1]. Being closed under
extensions, the full subcategories C–comodC/A–inj and C–contraC/A–proj inherit the
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exact category structures of the abelian categories C–comod and C–contra. More-
over, the following strong converse assertions hold.

Lemma 3.11. — (a) The subcategory of C/A-injective C-comodules

C–comodC/A–inj ⊂ C–comod
is the minimal full subcategory of the abelian category C–comod containing
the coinduced C-comodules and closed under extensions and direct sum-
mands.

(b) The subcategory of C/A-projective C-contramodules

C–contraC/A–proj ⊂ C–contra
is the minimal full subcategory of the abelian category C–contra contain-
ing the induced C-contramodules and closed under extensions and direct
summands.

Proof. — This is the strengthening of the result of [69, Remark 9.1] that one
obtains by replacing the resolution technique of [69, Lemma 9.1.2] with that of [35,
second half of the proof of Theorem 10]; see also [71, Corollary B.2.4].

To be more specific, let us prove part (b). Let P be a left C-contramodule. The
C-contraaction map G = HomA(C,P) → P is a surjective morphism of C-contra-
modules; let us denote its kernel by K. According to [69, Lemma 3.1.3(b)], there
exists an injective C-contramodule morphism K → E from K into an A-injective
left C-contramodule E such that the quotient contramodule E/K is a finitely it-
erated extension of induced C-contramodules. Denote by F the fibered coproduct
(E ⊕ G)/K of the C-contramodules E and G over K; then F is an extension of the
C-contramodules E/K and G, and there is a surjective morphism F → P with the
kernel E.

Now suppose that the C-contramodule P is C/A-projective. Then the Ext group
ExtC,1(P,E) in the abelian category C–contra vanishes by [69, Lemma 5.3.1(b)],
hence the C-contramodule P is a direct summand of a finitely iterated extension
of induced C-contramodules F. Notice that the length of the iterated extension in
this construction is bounded by the left homological dimension of the ring A. �

According to [69, Theorem 5.3], the exact categories of C/A-injective left C-co-
modules and C/A-projective left C-contramodules are naturally equivalent

C–comodC/A–inj ' C–contraC/A–proj.

The equivalence is provided by the functor ΨC : M 7−→ HomC(C,M) of C-comodule
homomorphisms from the left C-comodule C and the functor ΦC : P 7−→ C �C P
of contratensor product of left C-contramodules with the right C-comodule C [69,
Sections 0.2.6–7 and 5.1.1] (cf. Section 3.1; see also [18, Section 5]). This equiv-
alence of exact categories can be viewed as an instance of the ∞-tilting-cotilting
correspondence phenomenon [90, Example 6.7].

3.5. Underived semico-semicontra correspondence. Let S be a semialgebra
over a coalgebra C over a field k (see Section 2.6). Assume that S is an injec-
tive left C-comodule and an injective right C-comodule, so the categories of left
S-semimodules and left S-semicontramodules S–simod and S–sicntr are abelian.
The full subcategory S–simodC–inj of left S-semimodules that are injective as left
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C-comodules is obviously closed under extensions (and cokernels of injective mor-
phisms) in S–simod, while the full subcategory S–sicntrC–proj of left S-semicontra-
modules that are projective as left C-contramodules is closed under extensions
(and kernels of surjective morphisms) in S–sicntr. Hence the full subcategories
S–simodC–inj and S–sicntrC–proj inherit the exact category structures of the abelian
categories S–simod and S–sicntr.

According to [69, Sections 0.3.7 and 6.2] (see also [68]), the exact categories
of C-injective left S-semimodules and C-projective left S-semicontramodules are
naturally equivalent. The equivalence is provided by the functor ΨS : M 7−→
HomS(S,M) of S-semimodule homomorphisms from the left S-semimodule S and
the functor ΦS : P 7−→ S}S P of (semi)contratensor product of left S-semicontra-
modules with the right S-semimodule S (cf. the definition of the contratensor prod-
uct over a coalgebra in Section 3.1). Furthermore, the equivalence of exact cate-
gories S–simodC–inj ' S–sicntrC–proj forms a commutative diagram of functors with
the equivalence C–comodinj ' C–contraproj between the additive categories of injec-
tive left C-comodules and projective left C-contramodules, and the forgetful functors
S–simodC–inj → C–comodinj and S–sicntrC–proj → C–contraproj,

S–simodC–inj S–sicntrC–proj

C–comodinj C–contraproj.

ΨS →
← ΦS

�� ��
ΨC →
← ΦC

(3.3)

The equivalence of exact categories in the upper line of the diagram (3.3) can be also
viewed as an instance of the ∞-tilting-cotilting correspondence [90, Example 6.9].

The particular case considered in Section 2.8, with the semialgebra

Srκ+κ0
(g,C) ' S = Slκ(g,C)

corresponding to a central extension κ : (g′,C) → (g,C) of Tate Harish-Chandra
pairs satisfying the condition of Theorem 2.14, is especially notable. In this situa-
tion we obtain the commutative diagram of equivalences of exact/additive categories
and forgetful functors

Oκ(g,C)C–inj Octr
κ+κ0

(g,C)C–proj

C–comodinj C–contraproj,

ΨS →
← ΦS

�� ��
ΨC →
← ΦC

(3.4)

where Oκ(g,C)C–inj ⊂ Oκ(g,C) and Octr
κ (g,C)C–proj ⊂ Octr

κ (g,C) denote the full ex-
act subcategories of C-injective Harish-Chandra modules and C-projective Harish-
Chandra contramodules with the central charge κ.

It was pointed out by Feigin–Fuchs [38], [39, Remark 2.4] and Meurman–Frenkel–
Rocha-Caridi–Wallach [96] back in the first half of 1980’s that the categories of
Verma modules over the Virasoro algebra on any pair of complementary levels
C = c and C = 26− c are anti-isomorphic. The above result extends this classical
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observation to the whole exact subcategories of C-adjusted objects in the abelian
categories O and Octr over any Tate Harish-Chandra pair satisfying the nondegen-
eracy condition.

Indeed, consider the Tate Harish-Chandra pair (g,C) =
(
k((z))d/dz,C(H)

)
over

a field k of characteristic 0 with the pro-algebraic subgroup H corresponding to
the compact open Lie subalgebra h = zk[[z]]d/dz ⊂ k((z))d/dz as described in
the beginning of Section 2.8. The group H acts in the Lie algebra g by changing
the independent variable in the vector fields, a−1(f(z)d/dz

)
= f(a(z)) d/da(z) =

f(a(z))/a′(z) d/dz for all a ∈ H(k), f ∈ k((z)).
A Verma module over Vir is an U(Vir)-module induced from a one-dimensional

module kv0 over the compact open subalgebra h ⊕ kC ⊂ Vir. The subalgebra
z2k[[z]]d/dz ⊂ h topologically spanned by the basis vectors Ln with n > 1 acts by
zero in kv0, while the generators C and L0 act by certain scalars c and h0 ∈ k.
These modules belong to the categories Oκ(g,C) with the respective central charges
κ = c, but, as such, do not play any noticeable role in our theory. Indeed, they do
not belong to the subcategories Oκ(g,C)C–inj ⊂ Oκ(g,C), being freely generated as
modules over a Lie subalgebra complementary to h in Vir and having no particular
adjustedness properties as comodules over C = C(H).

The contragredient Verma modules are relevant for us instead. Notice first of
all that the pro-algebraic group H contains a subgroup whose group of points
consists of the coordinate changes z 7−→ a1z multiplying the coordinate z with a
scalar factor a1 ∈ k. The category of comodules (as well as contramodules) over
(the coalgebra of) this algebraic group, which is isomorphic to the multiplicative
group Gm, is equivalent to the category of graded k-vector spaces. In particular, the
Verma modulesM(c, h0) over Vir carry the grading by the weights of the semisimple
operator L0.

Furthermore, the discrete Lie subalgebra
⊕

n kLn ⊕ C ⊂ Vir spanned nontopo-
logically by the generators C and Ln ∈ Vir has an involutive automorphism σ given
by the rules σ(Ln) = −L−n and σ(C) = −C. The contragredient Verma module
M(c, h0)∨ is the graded dual vector space to M(c, h0) endowed by the induced ac-
tion of the Lie subalgebra

⊕
n kLn ⊕ C, twisted by the automorphism σ and then

extended to the whole Lie algebra Vir by continuity. Both the passage to the dual
module and the involution σ change the sign of the central charge; hence M(c, h0)∨
is again a Vir-module with the central charge c. So the full subcategory of Verma
modules on the level κ = c (with a varying parameter h0 ∈ k) in Oκ(g,C) is anti-
isomorphic to the full subcategory of contragredient Verma modules in the same
category Oκ(g,C).

Denoting by H+ ⊂ H the pro-unipotent pro-algebraic subgroup whose points
are the power series a(z) = 1 + a2z

2 + a3z
3 + · · · with an ∈ k for n > 2, the contra-

gredient Verma modules can be described as precisely those objects of the category
Oκ(g,C) whose structures of C(H+)-comodules are those of cofree comodules with
one cogenerator. Alternatively, the contragredient Verma modules are distinguished
among all the objects of Oκ(g,C) by the property that their underlying C-comodules
are the “minimal possible”, i. e., indecomposable injective comodules.

Finally, consider the category of Harish-Chandra contramodules over (g,C) with
the central charge κ + κ0 = −26 + c whose C(H+)-contramodule structures are
those of free contramodules with one generator, or equivalently, whose underlying
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C-contramodules are indecomposable projective contramodules. This full subcat-
egory in Octr

κ+κ0
(g,C) is anti-equivalent to the category of contragredient Verma

modules with the central charge 26 − c via the linear duality functor P = N∗ =
Homk(N, k). It is also equivalent to the category of Verma modules with the central
charge 26− c via the functor assigning to a Verma module M the infinite product
P =

∏
n∈Z Mn of its grading components, endowed with the σ-twisted action of the

Virasoro Lie algebra and a natural C-contramodule structure (cf. the discussion of
graded contramodules in [69, Section 11.1.1] and [70, Remark 2.2]).

So the classical duality between the categories of Verma modules on the comple-
mentary levels appears in our setting, after the naïve twisting and linear duality are
taken into account, as the restriction of the equivalence of exact categories (3.4) to
the full subcategories of objects “of the minimal possible size”. (Cf. [69, Corollary
and Remark D.3.1], where a discussion of these results in the derived comodule-
contramodule correspondence context can be found; see also [69, Sections 0.2.6–7]
for relevant counterexamples demonstrating how exotic derived categories appear
in the derived co-contra correspondence.)

Now let us explain, as it was promised in Sections 2.6 and 2.8, how to use the
equivalence of exact categories (3.3) in order to construct injective objects in the
category S–simod and projective objects in the category S–sicntr. As above, we
assume that the semialgebra S is an injective left and right C-comodule.

Proposition 3.12. — (a) There are enough injective objects in the abelian
category of left S-semimodules. A left S-semimodule is injective if and only
if it is a direct summand of an S-semimodule of the form ΦS(Homk(S, V )),
where V is a k-vector space.

(b) There are enough projective objects in the abelian category of left S-semi-
contramodules. A left S-semicontramodule is projective if and only if it is a
direct summand of an S-semicontramodule of the form ΨS(S⊗k V ), where
V is a k-vector space.

Proof. — A left semimodule M over a semialgebra S over a coalgebra C over a
field k is called semiprojective if it is a direct summand of the S-semimodule S⊗kV
for some k-vector space V . Similarly, a left semicontramodule P over S is called
semiinjective if it is a direct summand of the S-semicontramodule Homk(S, V ) for
some vector space V [69, Sections 3.4.3 and 9.2].

The semiprojective semimodules are projective objects in the exact category of
C-injective left S-semimodules, as the functor

M 7−→ HomS(S⊗k V, M) ' Homk(V,ΨS(M))
' Homk(V,ΨC(M)) = Homk(V,HomC(C,M)) ' HomC(C⊗k V, M)

is exact on S–simodC–inj. For any C-injective left S-semimodule M, the semiaction
morphism S �C M → M is an admissible epimorphism in S–simodC–inj from a
semiprojective left S-semimodule S �C M onto M; so the projective objects of the
category S–simodC–inj are precisely the semiprojective semimodules.
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Similarly, the semiinjective semicontramodules are injective objects in the exact
category of C-projective left S-semicontramodules, as the functor

P 7−→ HomS(P, Homk(S, V )) ' Homk(ΦS(P), V )

' Homk(ΦC(P), V ) ' HomC(P, Homk(C, V ))

is exact on S–sicntrC–proj. For any C-projective left S-semicontramoduleP, the semi-
contraaction morphism P → CohomC(S,P) is an admissible monomorphism in
S–sicntrC–proj from P into a semiinjective left S-semicontramodule CohomC(S,P).
So the injective objects of the category S–sicntrC–proj are precisely the semiinjective
semicontramodules.

The functors ΨS and ΦS being mutually inverse equivalences between the ex-
act categories S–simodC–inj and S–sicntrC–proj, it follows that the S-semimodules
ΦS(Homk(S, V )) and their direct summands are the injective objects of the ex-
act category S–simodC–inj, while the S-semicontramodules ΨS(S ⊗k V ) and their
direct summands are the projective objects of the exact category S–sicntrC–proj.
Furthermore, any left S-semimodule can be embedded into a C-injective S-semi-
module. This assertion is provided by the combination of the construction of [69,
Lemma 1.3.3] (see also [68]) with the result of Lemma 3.1(a) above.

Similarly, any left S-semicontramodule is the quotient contramodule of a C-pro-
jective S-semicontramodule. To prove this fact, one has to combine the construc-
tion of [69, Lemma 3.3.3] (which was present already in [68]) with the assertion
of [69, Lemma 5.2 or 5.3.2] whose proof we reproduced, in our generality of co-
algebras over fields, in Lemma 3.1(b) above. Therefore, any left S-semimodule
can be embedded into an S-semimodule of the form ΦS(Homk(S, V )), and any left
S-semicontramodule is the quotient contramodule of an S-semicontramodule of the
form ΨS(S⊗k V ).

Finally, in order to show that any injective object J of the exact category
S–simodC–inj is also an injective object in the abelian category S–simod, suppose that
we are given an injective morphism J→ L from J into a left S-semimodule L. Let
L→M be an injective morphism from L into a C-injective left S-semimodule M.
Then J is a direct summand in M, so there is a projection M → J splitting the
embedding J →M. Restricting this projection to the subsemimodule L ⊂M, we
see that the embedding J→ L also splits.

Similarly, in order to prove that any projective object F of the exact category
S–sicntrC–proj is also a projective object in the abelian category S–sicntr, suppose
that we are given a surjective morphism Q → F onto F from a left S-semi-
contramodule Q. Let P→Q be a surjective morphism onto Q from a C-projective
left S-semicontramodule P. Then F is a direct summand in P, so there is a section
F→P splitting the surjection P→ F. Composing this section with the projection
P→Q, we obtain a section F→Q showing that the surjection Q→ F also splits
(cf. [69, proof of Lemma 9.2.1]). �

3.6. Co-contra correspondence over topological rings. In this section we
discuss generalizations of the equivalence between the additive categories of injective
comodules and projective contramodules over a coalgebra over a field to topological
rings R more complicated than the linearly compact topological algebras (which are
dual to coalgebras over fields). For examples of derived co-contra correspondence
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over topological rings the reader is referred to [71, Sections C.1, C.5, and D.2] (see
also [92, Sections 8 and 10.3]).

First let us suppose that R is a pro-Artinian commutative ring (see Section 3.2).
By the definition, an R-comodule is an ind-object in the abelian category opposite
to the category of discrete R-modules of finite length [81, Section 1.4]. There is
a natural contravariant functor M 7−→ Mop assigning to every R-comodule a pro-
object in the category of discreteR-modules of finite length. Furthermore, there is a
distinguished object C = C(R) in the category R–comod of R-comodules such that
Cop = R; the functor M 7−→Mop, viewed as a contravariant functor from R–comod
to the category of abelian groups, is represented by C(R). A cofree R-comodule is
a direct sum of copies of the R-comodule C; the cofree R-comodules are injective,
and any R-comodule can be embedded into a cofree one.

According to Matlis’ duality (see [58, Corollary 4.3] or [60, Theorem 18.6]),
choosing an injective hull of the irreducible module over an Artinian commutative
local ring R fixes an anti-equivalence of the category of R-modules of finite length
with itself. Passing to the inductive limit of such auto-anti-equivalences over all the
discrete quotient rings of a pro-Artinian commutative ring R, one obtains an auto-
anti-equivalence of the category of discrete R-modules of finite length depending
on the choice of a “minimal injective cogenerator” of the abelian category R–discr,
i. e., an injective hull of the direct sum of the irreducible discrete R-modules.
Hence choosing such an injective object E ∈ R–discr identifies the category of
discrete R-modules with the category of R-comodules; the equivalence of categories
R–comod ' R–discr takes the object C ∈ R–comod to the object E [81, Section 1.9].

For any pro-Artinian commutative ring R, the categories of injective R-co-
modules and projective R-contramodules are naturally equivalent, R–comodinj '
R–contraproj. The equivalence is provided by the functor ΨR : M 7−→ HomR(C,M)
of R-comodule homomorphisms from the R-comodule C(R) and the functor ΦR :
P 7−→ C �R P of contratensor product of R-contramodules with the R-comodule
C(R). It assigns the freeR-contramoduleR[[X]] to the cofreeR-comodule

⊕
XC(R)

for any set X. This result can be found in [81, Section 1.5].

More generally, let R be a right pseudo-compact topological ring, i. e., a com-
plete, separated topological ring with a base of neighborhoods of zero formed by
open right ideals J for which the rightR-modulesR/J have finite length [42, § IV.3].
We define left R-comodules as the ind-objects in the abelian category opposite to
the category of discrete right R-modules of finite length. The category of left
R-comodules R–comod is anti-equivalent to the category of pseudo-compact right
R-modules, i. e., pro-objects in the category of discrete right R-modules of finite
length or, which is the same, complete and separated topological right R-modules
with a base of neighborhoods of zero formed by open submodules with discrete
quotient modules of finite length. As above, we denote this anti-equivalence by
M 7−→Mop.

There is a distinguished left R-comodule C = C(R) for which Cop = R; the func-
tor M 7−→ Mop, viewed as a contravariant functor from R–comod to the category
of abelian groups, is represented by C(R). A cofree left R-comodule is a direct sum
of copies of the R-comodule C; the cofree R-comodules are injective, and any left
R-comodule can be embedded into a cofree one. The abelian category R–comod is
locally finite [42, § II.4]; and the choice of an injective cogenerator E in any locally
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finite abelian category A fixes an equivalence between A and the category of left
comodules over the topological ring R = EndA(E)op opposite to the ring of endo-
morphisms of the object E ∈ A. The topology on the ringR is defined to have a base
of neighborhoods of zero consisting of (the right ideals opposite to) the annihilators
of subobjects of finite length L ⊂ E. The equivalence of categories A ' R–comod
assigns the object C ∈ R–comod to the object E [42, Corollaire VI.4.1].

For any right pseudo-compact topological ring R, the categories of injective left
R-comodules and projective left R-contramodules are naturally equivalent,

R–comodinj ' R–contraproj.

Indeed, the injective left R-comodules are the direct summands of the cofree R-co-
modules

⊕
X C(R), and the projective left R-contramodules are the direct sum-

mands of the free R-contramodules R[[X]], where X denotes arbitrary sets. It
remains to compute the groups of morphisms between the cofree R-comodules and
the free R-contramodules in terms of projective limits over the subcomodules of
finite length L ⊂ C and the open right ideals J ⊂ R,

HomR

(⊕
X C,

⊕
Y C
)
'
∏
X HomR

(
C,
⊕

Y C
)
'
∏
X lim←−L⊂C HomR

(
L,
⊕

Y C
)

'
∏
X lim←−L⊂C

⊕
Y HomR(L,C) '

∏
X lim←−J⊂R

⊕
Y R/J =

∏
X lim←−J⊂R R/J[Y ]

'
∏
X R[[Y ]] '

∏
X HomR

(
R,R[[Y ]]

)
' HomR

(
R[[X]],R[[Y ]]

)
,

in order obtain an isomorphism of the categories they form. One also has to check
that these isomorphisms agree with the compositions of morphisms in the two
categories.

In other words, we can conclude that the additive categories of projective left
R-contramodules and projective pseudo-compact right R-modules are anti-equi-
valent (cf. [69, the end of Remark A.3]).

One would like to generalize this equivalence from locally finite to locally Noe-
therian abelian categories, i. e., abelian categories satisfying the axiom Ab5 and
admitting a set of generators consisting of Noetherian objects, or equivalently,
Ab5-categories where every object is the union of its Noetherian subobjects and
isomorphism classes of Noetherian objects form a set [42, § II.4] (cf. [56]).

Remark 3.13. — A remark at the end of [42, § IV.3] suggests considering topo-
logical rings R with a base of neighborhoods of zero formed by (say, right) ideals J
such that the quotient modules R/J are Artinian, and topological right R-modules
with a base of neighborhoods of zero formed by open R-submodules with Artinian
quotient modules. Then the opposite abelian category E(R) to such category of
R-modules is locally Noetherian, and the object C opposite to the right R-module
R is injective in it.

However, the direct summands of direct sums of copies of the object C do not
exhaust the class of injective objects in E(R), as one can see already in the ex-
ample of the topological ring R = Zl with the Artinian discrete right R-module
Ql/Zl, which admits no surjective continuous morphisms from topological products
of copies of the right R-module R. Furthermore, given a locally Noetherian abelian
category A, choosing an injective object E ∈ A such that all the injectives in A
are direct summands of the direct sums of copies of E leads to a topological ring
R = EndA(E)op which does not satisfy the above Artinianness condition in general.
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Indeed, it suffices to take A = Ab and E = R/Z; then the Noetherian object
Z ∈ A is embeddable into E by means of any irrational number in R/Z, hence the
discrete right R-module HomAb(Z,R/Z) = R/Z is the quotient module of R =
EndAb(R/Z)op by a certain open right ideal, and it is not an Artinian module. Nor
does the functor assigning the R-module HomAb(Z,R/Z) to the abelian group Z
appear anywhere close to being an anti-equivalence of abelian categories. That is
why we choose a different path below.

Let us start from an arbitrary locally Noetherian abelian category A. Recall that,
being a Grothendieck abelian category (an Ab5-category with a set of generators),
any locally Noetherian category has enough injectives [45, No 1.10].

Theorem 3.14. — For any locally Noetherian abelian category A there exists
a unique abelian category B with enough projectives such that the full additive
subcategories of injective objects in A and projective objects in B are (covariantly)
equivalent,

Ainj ' Bproj.

All the infinite direct sums and products exist in the abelian categories A and B,
and both the subcategories of injective objects in A and projective objects in B are
closed under both the infinite direct sums and the infinite products.

Proof. — To prove uniqueness, we notice that an abelian category with enough
projectives is determined by its full additive subcategory of projective objects. In-
deed, given an abelian category B′ with enough projectives and an abelian category
B′′, any additive functor B′proj → B′′ can be uniquely extended to a right exact
functor B′ → B′′. In particular, let B′ and B′′ be two abelian categories with equiv-
alent full subcategories of projectives B′proj ' B′′proj. Then the embedding functor
B′proj → B′′ extends uniquely to a right exact functor B′ → B′′, while the embedding
functor B′′proj → B′ extends uniquely to a right exact functor B′′ → B′. The com-
positions B′ → B′′ → B′ and B′′ → B′ → B′′ are right exact functors isomorphic
to the identity functors on the full subcategories of projective objects, so they are
also naturally isomorphic to identity functors on the whole abelian categories B′
and B′′.

Now, given a locally Noetherian abelian category A, choose an injective object
E ∈ A such that all the injectives in A are directs summands of the direct sums of
copies of E. E. g., one can take E to be the direct sum of injective envelopes of all
the quotient objects of Noetherian generators of A. Consider the topological ring
R = EndA(E)op with a base of neighborhoods of zero formed by the right ideals
opposite to the annihilators of Noetherian submodules L ⊂ E in EndA(E). Set
B = R–contra to be the abelian category of left R-contramodules.

To identify the full subcategory of direct sums of copies of the object E in A with
the full subcategory of free R-contramodules in B, one computes the Hom groups

HomA
(⊕

X E,
⊕

Y E
)
'
∏
X HomA

(
E,
⊕

Y E
)
'
∏
X lim←−L⊂E HomA

(
L,
⊕

Y E
)

'
∏
X lim←−L⊂E

⊕
Y HomA(L,E) '

∏
X lim←−J⊂R

⊕
Y R/J

'
∏
X R[[Y ]] '

∏
X HomR

(
R,R[[Y ]]

)
' HomR

(
R[[X]],R[[Y ]]

)
in both subcategories in terms of projective limits over the Noetherian subobjects
L ⊂ E and the open right ideals J ⊂ R. Once again, one has to check that these
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isomorphisms agree with the compositions of morphisms in the two categories. Ad-
joining the direct summands (the images of idempotent endomorphisms) to both
the full subcategories, one obtains the desired equivalence between the full subcat-
egories of injective objects in A and projective objects in B.

Any abelian category with infinite direct sums and a set of generators has infinite
products by Freyd’s Special Adjoint Functor existence Theorem [57, Corollary V.8];
and the category of left contramodules over a topological ring R with a base of
neighborhoods of zero consisting of open right ideals always has both the infinite
direct sums and products, as we have seen in Section 2.1. In any abelian category
the infinite direct sums of projective objects are projective and the infinite products
of injective objects are injective.

The infinite direct sums of injective objects in a locally Noetherian abelian cate-
gory A are injective [42, Corollaire II.4.1 and Proposition IV.2.6]. Finally, to prove
that the infinite products of projective objects in our category B are projective, we
notice that any family of objects of the full subcategory Bproj ⊂ B has an infinite
product in Bproj (since any family of objects of Ainj has an infinite product in Ainj).
It is claimed that whenever an abelian category B has enough projectives and the
full subcategory of projectives Bproj ⊂ B has infinite products, these are also the
infinite products of objects of Bproj in the whole category B, i. e., the embedding
functor Bproj → B preserves infinite products.

Indeed, let an object X ∈ B be presented as the cokernel of a morphism of
projective objectsQ→ P , so that there is an initial fragment of projective resolution
Q → P → X → 0 in B. Let Fα be a family of objects in Bproj and F =

∏Bproj
α Fα

be their product in Bproj. Then one computes the group HomB(X,F ) as the kernel
of the map of abelian groups HomB(P, F ) → HomB(Q,F ), which is isomorphic to
the product of the kernels of the maps HomB(P, Fα) → HomB(Q,Fα), that is the
group

∏
α HomB(X,Fα). �

A further discussion of the correspondence between the abelian categories A
and B described in Theorem 3.14 can be found in [90, Examples 6.3–6.5] and [92,
Section 10.2].

3.7. Add(M) and projective contramodules. The following results and con-
structions from the papers [92, 90, 78] provide a series of far-reaching generalizations
of the theorem and proof from the previous section.

Let A be an additive category with infinite direct sums and M ∈ A be an object.
Then we denote by Add(M) ⊂ A the full subcategory in A consisting of all the
direct summands of (infinite) direct sums of copies of the object M .

We start with the case of a module over an associative ring.

Proposition 3.15. — Let R be an associative ring and M be a left R-module.
Then there is a complete and separated topological ring S with a base of neighbor-
hoods of zero formed by open right ideals such that the full subcategory Add(M) ⊂
R–mod is equivalent to the category of projective left S-contramodules, Add(M) '
S–contraproj.

Proof. — When the R-module M is finitely generated, the category Add(M) is
equivalent to the category of projective left S-modules, Add(M) ' S–mod, for the
discrete ring S of endomorphisms of the R-module M . This is a classical result
(see [92, Remark 7.2] for references and a further discussion).
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To be more precise, in the general case S = HomR(M,M)op is the opposite ring
to the ring of endomorphisms of the R-module M ; so the ring S acts in M on the
right, making M an R-S-bimodule. The topology on S is defined by the condition
thatM should be a discrete right S-module; specifically, the annihilators of finitely
generated R-submodules L ⊂ M form a base of neighborhoods of zero in S. We
refer to [92, Theorem 7.1] for the details. �

The next proposition provides a generalization to the categorical context.
Proposition 3.16. — Let A be a locally finitely presentable, or more generally,

a locally finitely generated abelian category in the sense of the book [1, Sections 1.A
and 1.E]. LetM ∈ A be an object. Then there is a complete and separated topolog-
ical ring R with a base of neighborhoods of zero formed by open right ideals such
that the full subcategory Add(M) ⊂ A is equivalent to the category of projective
left R-contramodules, Add(M) ' R–contraproj.

Proof. — As above, put R = HomA(M,M)op; so R is opposite ring to the ring
of endomorphisms of M , or in other words, the universal ring acting in the object
M ∈ A on the right. The annihilators of finitely generated subobjects L ⊂M form
a base of the topology on R. The proof is the same as in Proposition 3.15. �

Even more generally, let A be a locally weakly finitely generated abelian category
with a generator, in the sense of the paper [92, Section 9.2] or which is the same,
a nearly locally finitely presentable abelian category in the sense of the paper [67].
Then, for any object M ∈ A, the full subcategory Add(M) ⊂ A is equivalent to
the category of projective left contramodules R–contraproj over the topological ring
R = HomA(M,M)op with a base of the topology formed by the annihilators of
weakly finitely generated (= nearly finitely presentable) subobjects L ⊂ M . This
is the result of [92, Theorem 9.9].

A further generalization to additive categories with closed functors discussed
in [92, Section 9.3] makes the above assertions applicable to the abelian categories
A = C–comod and A = S–simod of comodules over corings and semimodules over
semialgebras [92, Section 10.3]. These results allow to interpret the abelian cate-
gories of left C-contramodules and left S-semicontramodules C–contra and S–sicntr
as the categories of contramodules over appropriately constructed topological rings
R, as mentioned above in Sections 2.5 and 2.6.

The following proposition is even more general.
Proposition 3.17. — Let A be an idempotent-complete additive category with

infinite direct sums, and let M ∈ A be an object. Then there exists a unique
abelian category B with enough projective objects such that the full subcategory
Add(M) ⊂ A is equivalent to the full subcategory of projective objects in B, that is
Add(M) ' Bproj.

Proof. — The uniqueness was explained in the proof of Theorem 3.14. Concern-
ing existence, there are two constructions of the category B suggested in [90, proof
of Theorem 1.1(a)]. Fistly, one can construct B as the category of finitely presented
(coherent) functors Add(M)op → Ab. Since the category Add(M) has weak kernels,
the category of coherent functors on it is abelian.

Secondly, B is the category of algebras/modules over the additive monad X 7−→
HomA(M,M (X)) on the category of sets (see also [92, Section 6] and [78, Sec-
tion 1]). The advantage of this point of view is that it specializes to the above
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descriptions of B as the abelian category of contramodules over a topological ring,
under appropriate assumptions. �

An approach to the Enochs conjecture on covers and direct limits based on the
results described above in this section was suggested in the papers [87, 9, 10]. An
application of these results to direct limits of classes of modules was developed
in [93].

3.8. Fully faithful contramodule forgetful functors. Let R be a complete and
separated topological ring with a base of neighborhoods of zero formed by open right
ideals. Let R be an associative ring, and let ρ : R → R be a ring homomorphism.
Consider the composition of the natural forgetful functor R–contra→ R–mod with
the functor of restriction of scalarsR–mod→ R–mod. When is the forgetful functor
R–contra→ R–mod fully faithful?

We have seen in Section 1.6 that the forgetful functors k[[z]]–contra→ k[z]–mod
and Zl–contra → Z–mod are fully faithful. Moreover, for a right Noetherian as-
sociative ring R and its completion R = lim←−nR/I

n in the adic topology of a
centrally generated ideal I ⊂ R, Theorem 2.2 stated that the forgetful functor
R–contra → R–mod is fully faithful and explicitly described its essential image.
Far-reaching generalizations of these relatively basic observations were obtained in
the papers [83, Theorem 2.1], [78, Section 3], and [82, Section 6].

Let us start with the case of a coalgebra C [83, Section 2.2]. A coalgebra C over
a field k is said to be coaugmented if it is endowed with a coalgebra morphism
(coagmentation) γ : k → C. Over a coaugmented coalgebra C, the one-dimensional
vector space k (as well as any other k-vector space) carries the so-called trivial
left C-comodule structure, which is defined in terms of the coagmentation. The
cohomology of a coaugmented coalgebra C is the graded vector space (or the graded
algebra) of Yoneda Ext in the category of left C-comodules, H∗(C) = Ext∗C(k, k). In
particular, one has H0(C) = k, and the space H1(C) = Ext1

C(k, k) can be computed
as the kernel of the comultiplication map µ : C+ → C+ ⊗ C+, where C+ = C/γ(k).

A coaugmented coalgebra C is said to be conilpotent (see, e. g., [70, Sections 5.5
and 6.4]) if for every element c ∈ C there exists an integer m > 0 such that the
element c is annihilated by the composition C → C⊗m+1 → C⊗m+1

+ of the iterated
comultiplication map µ(m) : C → C⊗m+1 with the natural surjection C⊗m+1 →
C⊗m+1

+ . The vector space H1(C) = ker(C+ → C⊗2
+ ) is interpreted as the vector

space of cogenerators of a conilpotent coalgebra C (see [77, Section 5] for a discussion
of cogenerators and corelations of conilpotent coalgebras). A conilpotent coalgebra
C is said to be finitely cogenerated if the k-vector space H1(C) is finite-dimensional.

Following the discussion in Section 2.3, for any coalgebra C over a field k,
a left C-contramodule is the same thing as a left contramodule over the pro-
finite-dimensional topological algebra R = C∗. Hence we have a natural forgetful
functor C–contra → C∗–mod [69, Section A.1.2], [83, Section 2.1]. Given a left
C-contramodule P, the left action of the k-algebra C∗ in P is constructed as the
composition C∗ ⊗k P → Homk(C,P) → P of the natural embedding C∗ ⊗k P →
Homk(C,P) with the C-contraaction map πP : Homk(C,P)→ P. As above, given
an associative ring homomorphism ρ : R → C∗, we obtain a forgetful functor
C–contra→ R–mod.
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Theorem 3.18. — Let C be a finitely cogenerated conilpotent coalgebra over k.
Then the forgetful functor C–contra→ C∗–mod is fully faithful. Moreover, for any
dense subring R ⊂ C∗ in the pro-finite-dimensional topology of the k-algebra C∗,
the forgetful functor C–contra→ R–mod is fully faithful.

Proof. — This is [83, Theorem 2.1]. The argument is based on the contramodule
Nakayama lemma for coalgebras over fields [69, Lemma A.2.1]. �

Example 3.19. — The following example is a particular case of [78, Examples 3.3].
Let R = k{{z1, . . . , zm}} be the algebra of noncommutative formal Taylor power
series in a finite set of variables z1, . . . , zm over a field k. We consider R as a
topological ring in the formal power series topology (or, in other words, the adic
topology for the ideal generated by the variables). Then R ' C∗ is the dual pro-
finite-dimensional algebra to the cofree conilpotent coalgebra C withm cogenerators
z∗1 , . . . , z∗m. Let R = k{z1, . . . , zm} be the k-algebra of noncommutative polyno-
mials in z1, . . . , zm, and let ρ : R → R be the natural embedding. According to
Theorem 3.18, the forgetful functor R–contra→ R–mod is fully faithful.

Now we turn to a discussion of topological rings R with a countable base of
neighborhoods of zero. Let R be a topological ring and J ⊂ R be a right ideal.
One says that a finite set of elements s1, . . . , sm ∈ J strongly generates J if for
every family of elements rx ∈ J, indexed by a set X and converging to zero in the
topology of R, there exist m families of elements tj,x ∈ R, j = 1, . . . , m, each of
them indexed by the set X and converging to zero in the topology of R, such that
rx =

∑m
j=1 sjtj,x for every x ∈ X. Since any element r ∈ J can be viewed as a

family of elements indexed by a one-point set X, and any finite family of elements
in R converges to zero in R by definition, any finite family of elements sj strongly
generating a right ideal J also generates J in the conventional sense [78, Section 3].

The following proposition is a generalization of Theorem 3.18 to topological rings
of much more general nature than the pro-finite-dimensional algebras over fields.

Proposition 3.20. — Let R be a complete and separated topological associa-
tive ring and R ⊂ R be a dense subring. Assume that R has a countable base of
neighborhoods of zero consisting of open two-sided ideals J, each of which, viewed
as a right ideal, is strongly generated by a finite set of elements belonging to R∩J.
Then the forgetful functor R–contra→ R–mod is fully faithful.

Proof. — This is [78, Theorem 3.1]. The argument is based on a suitable version
of the contramodule Nakayama lemma for topological rings ([71, Lemma D.1.2]
or [66, Lemma 6.14]; see Lemma 3.22 below). �

An even more general result can be found in [82, Section 6]. Let R be a complete
and separated topological ring with a base of neighborhoods of zero formed by open
right ideals, and let ρ : R→ R be an associative ring homomorphism with a dense
image. Then the full preimages of open right ideals in R under ρ form a base of
a topology on R, making R a topological ring. The ring R is the completion of
the ring R in this topology. Furthermore, the assignment I 7−→ I = ρ−1(I) defines
a bijection between open right ideals I ⊂ R and open right ideals I ⊂ R [82,
Section 4].

Generalizing the previous definition, we say that an open right ideal I ⊂ R is
strongly generated (or, in other words, the corresponding open right ideal I ⊂ R is
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strongly generated by elements coming from R) if, for any set X and any X-indexed
family of elements rx ∈ I converging to zero in the topology ofR, there exists a finite
set of elements s1, . . . , sm ∈ I and m families of elements tj,x ∈ R, j = 1, . . . , m,
each of them indexed by the set X and converging to zero in the topology of R,
such that rx =

∑m
j=1 ρ(sj)tj,x for every x ∈ X. When the topological ring R has

a countable base of neighborhoods of zero, it suffices to check this condition for
families of elements rx belonging to the dense subring ρ(R) ⊂ R [82, Lemma 6.4].

Moreover, as explained in [82, Section 6], the property of an open right ideal
I ⊂ R to be strongly generated by elements coming from R can be expressed
consizely by the equation I[[X]] = IR[[X]]. Here I[[X]] ⊂ R[[X]] is the subgroup
of all X-indexed zero-convergent families of elements from I in the left R-module
of all X-indexed zero-convergent families of elements from R. According to [82,
Remark 6.5], an open right ideal I ⊂ R is strongly generated by a finite set of its
elements (in the sense of our previous definition) whenever it is strongly generated
and is finitely generated as a right ideal in an abstract associative ring R.

Theorem 3.21. — Let R be a complete and separated topological ring with
a countable base of neighborhoods of zero consisting of open right ideals, and let
ρ : R→ R be a ring homomorphism with a dense image. Then the forgetful functor
R–contra → R–mod is fully faithful if and only if all the open right ideals I ⊂ R
are strongly generated by elements coming from R. It suffices to check the latter
condition for any chosen base of neighborhoods of zero in R consisting of open right
ideals.

Proof. — This is [82, Theorem 6.2]. Once again, the proof of the “if” part is
based on the contramodule Nakayama lemma, which is formulated immediately
below. �

Lemma 3.22. — Let R be a complete and separated topological ring with a
countable base of neighborhoods of zero consisting of open right ideals, and let P
be a left R-contramodule. Assume that one has IiP = P for every open right
ideal I ⊂ R (see Section 3.3 for the notation). Then P = 0.

Proof. — This is [66, Lemma 6.14] (cf. Lemma 2.1). �

In the rest of this section we discuss the full-and-faithfulness of certain forgetful
functors originating from the categories of semicontramodules S–sicntr over semi-
algebras S over finitely cogenerated conilpotent coalgebras C (see Section 2.6).

Let us briefly recall a construction of semialgebras from [69, Section 10.2] that
was already used in Sections 2.7–2.8 above. Let k be a field, C be a coalgebra
over k, and K be an associative algebra over k. Let K → C∗ be a homomorphism
of k-algebras whose image is dense in the pro-finite-dimensional topology of C∗.
Then the related pairing φ : C ⊗k K → k is nondegenerate in C. Following [69,
Section 10.1.4], the composition comod–C → mod–C∗ → mod–K of the natural
functor comod–C → mod–C∗ (see Section 1.4) with the functor of restriction of
scalars mod–C∗ → mod–K is fully faithful. The same applies to the similar com-
position of functors C–comod → C∗–mod → K–mod between the categories of left
(co)modules.

Let R be another associative algebra over k and f : K → R be a k-algebra homo-
morphism such that R is a flat left K-module in the (bi)module structure induced
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by f . Set S = C⊗K R, where the right K-module structure on C is provided by the
above functor comod–C→ mod–K. Then S is naturally an injective left C-comodule
and a right R-module. Assume that the underlying right K-module structure on S

originates from a right C-comodule structure (i. e., the right K-module S belongs
to the essential image of the fully faithful functor comod–C→ mod–K). Then the
C-C-bicomodule S has a natural structure of a semialgebra over C with the semiunit
map e : C→ S induced by the morphism f : K → R and the semimultiplication map
m : S�CS→ S induced by the multiplication map R⊗KR→ R [69, Section 10.2.1].

Lemma 3.23. — Assume that R is a projective leftK-module. Then the abelian
category of left S-semicontramodules S–sicntr is isomorphic to the category of
k-vector spaces P endowed with the structures of a left C-contramodule and a
left R-module satisfying the following two compatibility conditions: firstly, the two
underlying left K-module structures should coincide, and secondly, the R-action
map P→ HomK(R,P) should be a morphism of left C-contramodules.

Here the left C-contramodule structure on the k-vector space HomK(R,P) is
provided by the natural isomorphism HomK(R,P) ' CohomC(S,P), which holds
for any left C-contramodule P.

In particular, there is a natural exact, faithful forgetful functor S–sicntr →
R–mod forming a commutative square diagram with the forgetful functors S–sicntr
→ C–contra→ K–mod and R–mod→ K–mod.

Proof. — This is explained in [69, Section 10.2.2]. �

Corollary 3.24. — Let C be a coalgebra over a field k, let K → R be a
morphism of associative algebras over k making R a projective left K-module, and
let K → C∗ be a morphism of algebras with a dense image. Assume that the right
K-module structure on S = C⊗KR comes from a right C-comodule structure, so S is
a semialgebra over C; and assume further that C is a finitely cogenerated conilpotent
coalgebra. Then the forgetful functor S–sicntr → R–mod is fully faithful, and its
essential image consists of all the left R-modules whose underlying left K-module
structure comes from a left C-contramodule structure.

Proof. — By Theorem 3.18, the forgetful functor C–contra → K–mod is fully
faithful. Hence the first assertion of the corollary follows immediately from the first
assertion of Lemma 3.23. To deduce the second assertion of the corollary, it remains
to observe that, for any left R-module P , the action map P → Homk(R,P ) is a left
R-module morphism, hence also a left K-module morphism, and use Theorem 3.18
again. �

Example 3.25. — Let g be a Tate (locally linearly compact) Lie algebra (see Sec-
tion 2.4), and let h ⊂ g be a compact open subalgebra. Assume that the topological
Lie algebra h is pro-nilpotent and the discrete h-module g/h is nilpotent. Let C

be the coassociative coalgebra related to h and (g,C) be the Tate Harish-Chandra
pair related to g and h (see Section 2.8 and [69, Section D.6]). Assume that the
coalgebra C is finitely cogenerated, or equivalently, the Lie algebra h is topologically
finitely generated (see [69, Section D.6.1] for the isomorphism of cohomology of the
Lie coalgebra L = h∨ and the coassociative coalgebra C).

Let ḡ ⊂ g be a dense Lie subalgebra; then h̄ = h ∩ ḡ is a dense Lie subalgebra
in h. Consider the two enveloping algebras K = U(h̄) and R = U(ḡ). Then
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the associative algebra morphism K → R induced by the embedding h̄ → ḡ and
the associative algebra morphism K → C∗ obtained as the composition U(h̄) →
U(h)→ C∗ satisfy the assumptions of Corollary 3.24. The semialgebra S = C⊗K R
is naturally isomorphic to the semialgebra Sr = C⊗U(h) U(g) from Section 2.8.

Hence the following description of the category of (Tate) Harish-Chandra con-
tramodules Octr(g,C) = Sr–sicntr is provided by Corollary 3.24. The category
of Harish-Chandra contramodules P over (g,C) is isomorphic to the category of
ḡ-modules whose underlying h̄-module structure comes from a C-contramodule
structure. In particular, the forgetful functor Octr(g,C) → ḡ–mod is fully faith-
ful.

For example, let g = Vir be the Virasoro Lie algebra, h ⊂ Vir be a compact
open subalgebra contained in the topological span of the generators Li, i > 1, and
ḡ = Vir ⊂ Vir be a dense subalgebra. Then h is a topologically finitely generated
pro-nilpotent Lie algebra, so the above considerations apply. Thus the forgetful
functor Octr(Vir,C)→ Vir–mod is fully faithful.
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[39] B. L. Fĕıgin and D. B. Fuchs. Verma modules over the Virasoro algebra. In Topology
(Leningrad, 1982), volume 1060 of Lecture Notes in Math., pages 230–245. Springer, Berlin,
1984.

[40] Edward Frenkel and Dennis Gaitsgory. Local geometric Langlands correspondence and affine
Kac-Moody algebras. InAlgebraic geometry and number theory, volume 253 of Progr. Math.,
pages 69–260. Birkhäuser Boston, Boston, MA, 2006.

[41] Vyacheslav Futorny and Libor Křižka. Positive energy representations of affine vertex alge-
bras. Comm. Math. Phys., 383(2):841–891, 2021.

[42] Pierre Gabriel. Des catégories abéliennes. Bull. Soc. Math. France, 90:323–448, 1962.
[43] Dennis Gaitsgory and David Kazhdan. Algebraic groups over a 2-dimensional local field:

some further constructions. In Studies in Lie theory, volume 243 of Progr. Math., pages
97–130. Birkhäuser Boston, Boston, MA, 2006.

[44] K. R. Goodearl and R. B. Warfield, Jr. An introduction to noncommutative Noetherian
rings, volume 16 of London Mathematical Society Student Texts. Cambridge University
Press, Cambridge, 1989.

[45] Alexander Grothendieck. Sur quelques points d’algèbre homologique. Tohoku Math. J. (2),
9:119–221, 1957.

[46] D. K. Harrison. Infinite abelian groups and homological methods. Ann. of Math. (2), 69:366–
391, 1959.

[47] James E. Humphreys. Representations of semisimple Lie algebras in the BGG category O,
volume 94 of Graduate Studies in Mathematics. American Mathematical Society, Provi-
dence, RI, 2008.

[48] Srikanth Iyengar and Henning Krause. Acyclicity versus total acyclicity for complexes over
Noetherian rings. Doc. Math., 11:207–240, 2006.

[49] Uwe Jannsen. Continuous étale cohomology. Math. Ann., 280(2):207–245, 1988.
[50] Peter Jørgensen. The homotopy category of complexes of projective modules. Adv. Math.,

193(1):223–232, 2005.
[51] V. G. Kac and A. K. Raina. Bombay lectures on highest weight representations of infinite-

dimensional Lie algebras, volume 2 of Advanced Series in Mathematical Physics. World
Scientific Publishing Co., Inc., Teaneck, NJ, 1987.

[52] D. Kazhdan and G. Lusztig. Tensor structures arising from affine Lie algebras. I. J. Amer.
Math. Soc., 6(4):905–947, 1993.

[53] Mark Kleiner. Adjoint monads and an isomorphism of the Kleisli categories. J. Algebra,
133(1):79–82, 1990.

[54] Maxim Kontsevich and Alexander Rosenberg. Noncommutative spaces and flat descent.
Max-Planck-Institut für Mathematik (Bonn) preprint MPIM 2004-36, 2004.

[55] Maxim Kontsevich and Alexander L. Rosenberg. Noncommutative smooth spaces. In The
Gelfand Mathematical Seminars, 1996–1999, Gelfand Math. Sem., pages 85–108. Birkhäuser
Boston, Boston, MA, 2000.

[56] Henning Krause. The stable derived category of a Noetherian scheme. Compos. Math.,
141(5):1128–1162, 2005.

[57] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1998.



180 L. Positselski

[58] Eben Matlis. Injective modules over Noetherian rings. Pacific J. Math., 8(3):511–528, 1958.
[59] Eben Matlis. The higher properties of R-sequences. J. Algebra, 50(1):77–112, 1978.
[60] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Ad-

vanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Trans-
lated from the Japanese by M. Reid.

[61] Daniel Murfet. The mock homotopy category of projectives and Grothendieck duality. Ph. D.
Thesis, Australian National University, 2007. Available from http://www.therisingsea.
org/thesis.pdf.

[62] Amnon Neeman. The homotopy category of flat modules, and Grothendieck duality. Invent.
Math., 174(2):255–308, 2008.

[63] A. L. Onishchik and È. B. Vinberg. Lie groups and algebraic groups. Springer Series in
Soviet Mathematics. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a
preface by D. A. Leites.

[64] Marco Porta, Liran Shaul, and Amnon Yekutieli. On the homology of completion and tor-
sion. Algebr. Represent. Theory, 17(1):31–67, 2014.

[65] Marco Porta, Liran Shaul, and Amnon Yekutieli. Cohomologically cofinite complexes.
Comm. Algebra, 43(2):597–615, 2015.

[66] L. Positselski and J. Rosický. Covers, envelopes, and cotorsion theories in locally presentable
abelian categories and contramodule categories. J. Algebra, 483:83–128, 2017.

[67] L. Positselski and J. Rosický. Nearly locally presentable categories. Theory Appl. Categ.,
33:10, 253–264, 2018.

[68] Leonid Positselski. Seriya pisem pro polubeskonechnye (ko)gomologii associativnyh algebr.
[“A series of letters about the semi-infinite (co)homology of associative algebras”, transliter-
ated Russian], 2000, 2002. Available from http://positselski.livejournal.com/314.html
or http://posic.livejournal.com/413.html.

[69] Leonid Positselski. Homological algebra of semimodules and semicontramodules, volume 70
of Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series).
Birkhäuser/Springer Basel AG, Basel, 2010. Appendix C in collaboration with Dmitriy
Rumynin; Appendix D in collaboration with Sergey Arkhipov.

[70] Leonid Positselski. Two kinds of derived categories, Koszul duality, and comodule-
contramodule correspondence. Mem. Amer. Math. Soc., 212(996):vi+133, 2011.

[71] Leonid Positselski. Contraherent cosheaves. arXiv:1209.2995 [math.CT], 2012–2017.
[72] Leonid Positselski. Comodule-contramodule correspondence. Slides of the presentation at

the meeting in Třešť, Czech Republic, 2014. Expanded version. Available from http://
math.cas.cz/~positselski/.

[73] Leonid Positselski. Semi-infinite algebraic geometry. Slides of the presentation at the con-
ference “Some Trends in Algebra”, Prague, 2015. Available from http://math.cas.cz/
~positselski/.

[74] Leonid Positselski. Dedualizing complexes and MGM duality. J. Pure Appl. Algebra,
220(12):3866–3909, 2016.

[75] Leonid Positselski. Coherent rings, fp-injective modules, dualizing complexes, and covariant
Serre-Grothendieck duality. Selecta Math. (N.S.), 23(2):1279–1307, 2017.

[76] Leonid Positselski. Contraadjusted modules, contramodules, and reduced cotorsion modules.
Mosc. Math. J., 17(3):385–455, 2017.

[77] Leonid Positselski. Koszulity of cohomology = K(π, 1)-ness + quasi-formality. J. Algebra,
483:188–229, 2017.

[78] Leonid Positselski. Abelian right perpendicular subcategories in module categories.
arXiv:1705.04960 [math.CT], 2017–2018.

[79] Leonid Positselski. Contramodules: their history, and applications in commutative and
noncommutative algebra. Slides of the presentation at the external meeting of the Insti-
tute of Mathematics of the Czech Academy of Sciences, Zvánovice, 2018. Available from
http://math.cas.cz/~positselski/.

[80] Leonid Positselski. Triangulated Matlis equivalence. J. Algebra Appl., 17(4):1850067, 44,
2018.

[81] Leonid Positselski. Weakly curved A∞-algebras over a topological local ring. Mém. Soc.
Math. Fr. (N.S.), 159:vi+206, 2018.

http://www.therisingsea.org/thesis.pdf
http://www.therisingsea.org/thesis.pdf
http://positselski.livejournal.com/314.html
http://posic.livejournal.com/413.html
http://math.cas.cz/~positselski/
http://math.cas.cz/~positselski/
http://math.cas.cz/~positselski/
http://math.cas.cz/~positselski/
http://math.cas.cz/~positselski/


CONTRAMODULES 181

[82] Leonid Positselski. Flat ring epimorphisms of countable type. Glasg. Math. J., 62(2):383–
439, 2020.

[83] Leonid Positselski. Smooth duality and co-contra correspondence. J. Lie Theory, 30(1):85–
144, 2020.

[84] Leonid Positselski. Exact categories of topological vector spaces with linear topology.
arXiv:2012.15431 [math.CT], 2020–2021.

[85] Leonid Positselski. Remarks on derived complete modules and complexes. arXiv:2002.12331
[math.AC], 2020–2021. To appear in Math. Nachrichten.

[86] Leonid Positselski. Relative nonhomogeneous Koszul duality. Frontiers in Mathematics.
Birkhäuser/Springer, Cham, Switzerland, 2021.

[87] Leonid Positselski. Contramodules over pro-perfect topological rings. Forum Math., 34(1):1–
39, 2022.

[88] Leonid Positselski and Alexander Slávik. On strongly flat and weakly cotorsion modules.
Math. Z., 291(3-4):831–875, 2019.

[89] Leonid Positselski and Alexander Slávik. Flat morphisms of finite presentation are very flat.
Ann. Mat. Pura Appl. (4), 199(3):875–924, 2020.

[90] Leonid Positselski and Jan Šťovíček. ∞-tilting theory. Pacific J. Math., 301(1):297–334,
2019.

[91] Leonid Positselski and Jan Šťovíček. Topologically semisimple and topologically per-
fect topological rings. arXiv:1909.12203 [math.CT], 2019–2021. To appear in Publicacions
Matemàtiques.

[92] Leonid Positselski and Jan Šťovíček. The tilting-cotilting correspondence. Int. Math. Res.
Not. IMRN, 2021(1):191–276, 2021.

[93] Leonid Positselski and Jan Trlifaj. Closure properties of lim−→C. arXiv:2110.13105 [math.RA],
2021.

[94] Chrysostomos Psaroudakis and Jorge Vitória. Realisation functors in tilting theory. Math.
Z., 288(3-4):965–1028, 2018.

[95] Luis Ribes and Pavel Zalesskii. Profinite groups, volume 40 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-
Verlag, Berlin, second edition, 2010.

[96] Alvany Rocha-Caridi and Nolan R. Wallach. Characters of irreducible representations of the
Virasoro algebra. Math. Z., 185(1):1–21, 1984.

[97] Walter Roelcke and Susanne Dierolf. Uniform structures on topological groups and their
quotients. Advanced Book Program. McGraw-Hill International Book Co., New York, 1981.

[98] Jean-Pierre Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-
Verlag, Berlin, English edition, 2002. Translated from the French by Patrick Ion and revised
by the author.

[99] Anne-Marie Simon. Approximations of complete modules by complete big Cohen-Macaulay
modules over a Cohen-Macaulay local ring. Algebr. Represent. Theory, 12(2-5):385–400,
2009.

[100] Bo Stenström. Rings of quotients. Die Grundlehren der mathematischen Wissenschaften,
Band 217. Springer-Verlag, New York-Heidelberg, 1975.

[101] Jan Šťovíček. On purity and applications to coderived and singularity categories.
arXiv:1412.1615 [math.CT], 2014.

[102] Moss E. Sweedler. Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin, Inc.,
New York, 1969.

[103] Roberto Vázquez García. The category of the triples in a category (Spanish). An. Inst. Mat.
Univ. Nac. Autónoma México, 5:21–34, 1965.

[104] Enrico M. Vitale. Localizations of algebraic categories. II. J. Pure Appl. Algebra, 133(3):317–
326, 1998.

[105] Nolan R. Wallach. Real reductive groups. I, volume 132 of Pure and Applied Mathematics.
Academic Press, Inc., Boston, MA, 1988.

[106] Robert Wisbauer. Comodules and contramodules. Glasg. Math. J., 52(A):151–162, 2010.
[107] G. C. Wraith. Algebraic theories. Lecture Notes Series, No. 22. Matematisk Institut, Aarhus

Universitet, Aarhus, 1970. Lectures Autumn 1969.
[108] Milen Yakimov. Affine Jacquet functors and Harish-Chandra categories. Adv. Math.,

208(1):40–74, 2007.



182 L. Positselski

[109] Milen Yakimov. Categories of modules over an affine Kac–Moody algebra and finiteness of
the Kazhdan–Lusztig tensor product. J. Algebra, 319(8):3175–3196, 2008.

[110] Amnon Yekutieli. On flatness and completion for infinitely generated modules over Noether-
ian rings. Comm. Algebra, 39(11):4221–4245, 2011.

[111] Amnon Yekutieli. A separated cohomologically complete module is complete. Comm. Alge-
bra, 43(2):616–622, 2015.

Manuscript received October 2, 2019,
revised October 25, 2021,
accepted November 15, 2021.

Leonid POSITSELSKI
Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Prague 1,
Czech Republic
Laboratory of Algebra and Number Theory, Institute for Information Transmission
Problems, Moscow 127051, Russia
positselski@math.cas.cz

mailto:positselski@math.cas.cz

	0. Introduction
	1. First Examples
	1.1. Contramodules over coalgebras over fields
	1.2. Basic properties of comodules and contramodules
	1.3. Contramodules over the formal power series
	1.4. Contramodules over the l-adic integers
	1.5. Counterexamples
	1.6. Recovering the contramodule structure
	1.7. Contramodules over the Virasoro algebra
	1.8. Contramodules over topological groups

	2. Comodule and Contramodule Categories
	2.1. Contramodules over topological rings
	2.2. Contramodules over the adic completions of Noetherian rings
	2.3. Contramodules over topological algebras over fields
	2.4. Contramodules over topological Lie algebras
	2.5. Contramodules over corings
	2.6. Semicontramodules over semialgebras
	2.7. The category Octr
	2.8. Tate Harish-Chandra pairs

	3. Tensor Operations and Adjusted Objects
	3.1. Comodules and contramodules over coalgebras over fields
	3.2. Contramodules over pro-Artinian local rings
	3.3. Flat contramodules over topological rings
	3.4. Underived co-contra correspondence over corings
	3.5. Underived semico-semicontra correspondence
	3.6. Co-contra correspondence over topological rings
	3.7. `3́9`42`.5"613A``45`47`2mu-:6muplus1mu"603AAdd(M) and projective contramodules
	3.8. Fully faithful contramodule forgetful functors

	Acknowledgement
	References

