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ENVELOPING ALGEBRAS OF PRE-LIE ALGEBRAS OF
ROOTED TREES

MOHAMED BELHAJ MOHAMED

Abstract. In this article, we study the insertion pre-Lie algebra of rooted trees (T ,B) and
we construct a pre-Lie structure on its doubling space (Ṽ ,I). We prove that Ṽ is a left pre-
Lie module on T . Moreover, we describe the enveloping algebras of the two pre-Lie algebras
denoted respectively by (K, ♦, Υ) and (W,�, Θ) and we show that (W,�, Θ) is a module-
bialgebra on (K, ♦, Υ). Finally, we find some relations between the enveloping algebras of
the insertion and the grafting pre-lie algebras of rooted trees.
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1. Introduction

The insertion pre-Lie algebra was studied for the first time by A. Connes and D.
Kreimer [6, 7] in the context of Feynman graph and thereafter by F. Chapoton and
M. Livernet [5] to study the pre-Lie operad, and by A. Dzhumadl’daev, C. Löfwall
[8], L. Foissy [9], D. Manchon and A. Saidi [12] in the context of rooted trees.

D. Calaque, K. Ebrahimi-Fard and D. Manchon [3] have studied the Hopf algebra
of rooted forest H where the coproduct ∆ is given by contraction of trees:

∆(t) =
∑
s⊆t

s⊗ t/s.

They showed that the primitive part of the graded dual of this right sided Hopf
algebra is endowed with a pre-Lie product defined by insertion of a tree inside
another. They also established a relation between the Hopf algebra H and the
Connes-Kreimer Hopf algebra of rooted trees HCK by means of a H-bicomodule
structure on HCK .

2020 Mathematics Subject Classification: 16T10, 16T15, 16T30, 05C90, 81T17.
Keywords: Insertion pre-Lie algebras, Rooted Forest, Bialgebras, Enveloping algebras of pre-

Lie algebras, Module-bialgebras.
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In a joint work with Dominique Manchon [1], we have studied the doubling of
the two bialgebras of rooted trees H and HCK , and we have established relations
similar to those found by D. Calaque, K. Ebrahimi-Fard and D. Manchon in [3].

We have studied in [2] the enveloping algebra of the grafting pre-Lie algebra of
rooted trees (H′, ?,Γ) and another enveloping algebra of pre-Lie algebra structure
on its doubling space denoted by (D′,F, χ), and we have proved that (D′,F, χ) is
a module-bialgebra on (H′, ?,Γ).

In this work, we study the insertion pre-Lie algebra of rooted trees. The pre-Lie
product B is defined for all t, s ∈ T , by:

t B s =
∑

v∈V(s)

t Bv s.

We consider the vector space Ṽ spanned by the couples (t, s), where t is a tree
and s is a subforest of t. We define a pre-Lie product I on Ṽ by:

(t1, s1) I (t2, s2) :=
∑

v∈V(t2−s2)

(t1 Bv t2, s1s2).

Thereafter, we use the method of Oudom and Guin to construct the associated
enveloping algebras of the two pre-Lie algebras T and Ṽ denoted by (K,♦,Υ) and
(W,�,Θ) respectively. We prove that Ṽ is a left pre-Lie module on T and we find
some relations between the two pre-Lie structures defined on Ṽ and T . Also we
show that (W,�,Θ) is a module-bialgebra on (K,♦,Υ).

In the last section, we give results relating the grafting pre-Lie structures studied
in [2] and the insertion pre-Lie structures defined in this article. More precisely,
we show that (H′, ?,Γ) is a module-coalgebra on (K,♦,Υ), which results in the
commutativity of this diagram:

H′ ⊗K

I⊗Υ
��

γ // H′

Γ
��

H′ ⊗K ⊗K

Γ⊗I⊗I
��

H′ ⊗H′

H′ ⊗H′ ⊗K ⊗K
τ23

// H′ ⊗K ⊗H′ ⊗K

γ⊗γ

OO

where γ is an action of H′ on K, defined for all t1 ∈ H′ and t2 ∈ K by:

γ(t1 ⊗ t2) = t1 ? t2.

In addition, if we define a map: ρ : K −→ K ⊗K by: ρ(t) = 1⊗ t, we show that γ
and ρ satisfy the following commutative diagram:
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H′ ⊗H′ ⊗K

I⊗I⊗ρ
��

?⊗I // H′ ⊗K

γ

��
H′ ⊗H′ ⊗K ⊗K

τ23

��

H′

H′ ⊗K ⊗H′ ⊗K
γ⊗γ

// H′ ⊗H′
?

OO

The commutativity of the last diagram is similar to the fact that (H′, ?,Γ) is a
module-algebra on (K,♦,Υ). The difference between them is that the map I⊗I⊗Υ
is replaced by the map I ⊗ I ⊗ ρ.

Similarly, we show that (D′,F, χ) and (W,�,Θ) satisfy the same results obtained
for (H′, ?,Γ) and (K,♦,Υ). The two maps γ and ρ are replaced here by α and σ
defined as follows:

α : D′ ⊗W → D′, σ :W →W ⊗W
(t1, s1)⊗ (t2, s2) 7→ (t1, s1)F(t2, s2) (t, s) 7→ (1,1)⊗ (t, s).

The Connes-Kreimer Hopf algebra and the Hopf algebra of D. Calaque, K.
Ebrahimi-Fard and D. Manchon of rooted trees are two important examples of
Hopf algebras in the study of renormalization in quantum field theory. In the same
context, we try to find some relations connecting these two Hopf algebras and others
resulting from the insertion and the grafting pre-Lie algebras.

2. Hopf algebra of rooted forests

A rooted tree is a finite connected simply connected oriented graph such that
every vertex has exactly one incoming edge, except for a distinguished vertex (the
root) which has no incoming edge. The set of rooted trees is denoted by T and the
set of rooted trees with n vertices is denoted by Tn.

Example 2.1. —
T1 = { }
T2 = { }

T3 = { , }

T4 = { , , , }

Let T be the vector space spanned by the elements of T and H̃ = S(T ) be the
algebra of rooted trees. D. Calaque, K. Ebrahimi-Fard and D. Manchon showed
that the space H̃ generated by the rooted forests, graded according to the number
of edges, admits a structure of graded bialgebra [3]. The unit is the empty forest,
the product is the concatenation, and the coproduct is defined for any non empty
forest t by:

∆(t) =
∑
s⊆t

s⊗ t/s,
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where s is a covering subforest of a rooted tree t and t/s is the tree obtained by
contracting each connected component of s onto a vertex.

Example 2.2. — The coproduct ∆ applied to the tree :

∆( ) = ⊗ + ⊗ +2 ⊗ + ⊗ + ⊗ + ⊗ + ⊗ .

The Hopf algebra H is given by identifying all elements of degree zero to unit 1:
H = H̃/J (2.1)

where J is the ideal generated by the elements 1 − t where t is a forest of degree
zero.

The example of coproduct above becomes by identifying the unit to :

∆( ) = ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + ⊗ + ⊗ .

Let Ṽ be the vector space spanned by the couple (t, s) where t is a tree, and
s is a subforest of t. We have defined in [1] the doubling of the bialgebra H̃ by
D̃ := S(Ṽ ) and the coproduct Λ for all (t, s) ∈ D̃ by:

Λ(t, s) =
∑
s′⊆s

(t, s′)⊗ (t/s′, s/s′).

The unit (1,1) is identified to the couple of empty graphs, the counit ε is given by
ε(t, s) = ε(s) and the graduation is given by the number of vertices of s:

|(t, s)| = |s|.
The product is given by:

(t, s)(t′, s′) = (tt′, ss′).
We showed that D̃ is a graded bialgebra. Moreover we have Λ(Ṽ ) ⊂ Ṽ ⊗ Ṽ , so we
can restrict the coassociative product Λ to Ṽ .

3. Enveloping algebra of pre-Lie algebra

In this section, we describe the method of Oudom and Guin [14] to find the
enveloping algebra of a pre-Lie algebra.

Definition 3.1. — [4, 10] A left pre-Lie algebra over a field k is a k-vector
space A with a binary composition . that satisfies the left pre-Lie identity:

(a . b) . c− a . (b . c) = (b . a) . c− b . (a . c), (3.1)
for all a, b, c ∈ A. Analogously, a right pre-Lie algebra is a k-vector space A with
a binary composition / that satisfies the right pre-Lie identity:

(a / b) / c− a / (b / c) = (a / c) / b− a / (c / b). (3.2)

As any right pre-Lie algebra (A, /) is also a left pre-Lie algebra with product
a . b := b / a, we will only consider left pre-Lie algebras for the moment. The left
pre-Lie identity rewrites as:

L[a,b] = [La, Lb], (3.3)
where La : A −→ A is defined by Lab = a.b, and where the bracket on the left-hand
side is defined by [a, b] := a . b− b . a. As a consequence this bracket satisfies the
Jacobi identity.
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Definition 3.2. — [14] Let (A, .) be a pre-Lie algebra. We consider the Hopf
symmetric algebra S(A) equipped with its usual coproduct ∆. We extend the
product . to S(A). Let a, b and c ∈ S(A), and x ∈ A. We put:

1 . a = a

a . 1 = ε(a)1
(xa) . b = x . (a . b)− (x . a) . b

a . (bc) =
∑
a

(a(1) . b)(a(2) . c).

On S(A), we define a product ? by:

a ? b =
∑
a

a(1)(a(2) . b).

Proposition 3.3. — [14] Let a, b and c ∈ S(A). We have:

ε(a . b) = ε(a)ε(b) (3.4)
∆(a . b) =

∑
(a),(b)

(a(1) . b(1))⊗ (a(2) . b(2)) (3.5)

a . (b . c) = (a ? b) . c. (3.6)

Theorem 3.4. — [14] The product ? is associative and (S(A), ?,∆) is a Hopf
algebra.

Proof. — The associativity of ? follows from Definition 3.2 and Proposition 3.3,
and the compatibility between ∆ and ? follows from formula (3.5). �

4. Insertion pre-Lie algebras of rooted trees

In this section, we study the insertion pre-Lie algebra of rooted trees. Let T be
the vector space spanned by the elements of T . The product B is defined for all
t, s ∈ T , by:

t B s =
∑

v∈V (s)

t Bv s,

where t Bv s is the tree obtained by inserting the root of t on the vertex v of s.
More explicitly, the operation t B s consists of inserting the root of t on every
vertex of s.

Example 4.1. —

B = 2 + .

B = + .

B = 2 + + .

Theorem 4.2. — [3, 5] Equipped with B, the space T is a pre-Lie algebra.
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Definition 4.3. — Let (t1, s1) and (t2, s2) be two elements of Ṽ . We define
the map I by:

(t1, s1) I (t2, s2) :=
∑

v∈V(t2−s2)

(t1 Bv t2, s1s2), (4.1)

where the notation v ∈ V(t2 − s2) denotes that v is a vertex of t2 but it is not a
vertex of s2.

Example 4.4. —

( , ) I ( , ) = ( , ) + ( , ),

( , ) I ( , ) = ( , ) + ( , ),

( , ) I ( , ) = ( , ) + ( , ).

Theorem 4.5. — The pair (Ṽ ,I) is a pre-Lie algebra.

Proof. — Let (t1, s1), (t2, s2) and (t3, s3) be three elements of Ṽ , we have:
(t1,s1) I

[
(t2, s2) I (t3, s3)

]
−
[
(t1, s1) I (t2, s2)

]
I (t3, s3)

= (t1, s1) I
( ∑
v∈V(t3−s3)

(t2 Bv t3, s2s3)
)
−

∑
r∈V(t2−s2)

(t1 Br t2, s1s2) I (t3, s3)

=
∑

v∈V(t3−s3)
r∈V(t2Bvt3−s2s3)

(
t1 Br (t2 Bv t3), s1s2s3

)
−

∑
v∈V(t3−s3)
r∈V(t2−s2)

(
(t1 Br t2) Bv t3, s1s2s3

)
=

∑
r , v∈V(t3−s3)

r 6=v

(
t1 Br (t2 Bv t3), s1s2s3

)
+

∑
v∈V(t3−s3)
r∈V(t2−s2)

(
t1 Br (t2 Bv t3), s1s2s3

)
−

∑
v∈V(t3−s3)
r∈V(t2−s2)

(
t1 Br (t2 Bv t3), s1s2s3

)
=

∑
r , v∈V(t3−s3)

r 6=v

(
t1 Br (t2 Bv t3), s1s2s3

)
.

The last term is symmetric on (t1, s1) and (t2, s2), which means that the product
I is pre-Lie. �

5. Enveloping algebras of the insertion pre-Lie algebras of rooted
trees

We consider the Hopf symmetric algebraK := S(T ) of the pre-Lie algebra (T ,B),
equipped with its usual unshuffling coproduct Υ. We extend the product B to K
by the same method used in Definition 3.2 and we define a product ♦ on K by:

t♦t′ =
∑
(t)

t(1)(t(2) B t′).

By Theorem 3.4, the product ♦ is associative, ♦ and Υ are compatible (Υ is a
morphism of algebras) and consequently the space (K,♦,Υ) is a Hopf algebra. The
unit 1 is the empty forest, the counit εK takes value 1 on the empty forest and 0 on
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the other elements of K, and the graduation is given by the number of connected
components of forest.

Similarly, we showed that (Ṽ ,I) is a pre-Lie algebra, so we consider the Hopf
symmetric algebra W := S(Ṽ ) equipped with its usual unshuffling coproduct Θ.
We extend the product I to W by using Definition 3.2 and we define a product �
on W by:

(t, s)�(t′, s′) =
∑
(t,s)

(t, s)(1)((t, s)(2) I (t′, s′)
)
.

By Theorem 3.4, the product � is associative, � and Θ are compatible and
consequently the space (W,�,Θ) is a Hopf algebra. The unit is (1,1), the counit
εW takes value 1 on (1,1) and 0 on the other elements of W, and the graduation
is given by the number of connected components of s:

|(t, s)| = |s|.
It is clear that, |(t, s)�(t′, s′)| = |(t, s)|+ |(t′, s′)|.

6. Module-bialgebra and comodule-bialgebra

In this section, we recall the definitions of module-bialgebra and comodule-
bialgebra using the works of R. K. Molnar [13], and D. Manchon [11].

Definition 6.1. — Let (A,mA,∆A, uA, εA) and (A,mB ,∆B , uB , εB) be two
unital counital bialgebras over some field k. We assume that there exists a coaction
λ : A −→ B ⊗A, i.e. the following diagrams commute:

A

λ

��

λ // B ⊗A

∆B⊗I
��

B ⊗A
I⊗λ

// B ⊗B ⊗A

A

Id

))

λ // B ⊗A

εB⊗I
��

k ⊗A

(1) (A,mA,∆A, uA, εA) is a comodule-coalgebra on (B,mB ,∆B , uB , εB) if ∆A

and εA are morphisms of left A-comodules. This amounts to the commu-
tativity of the following diagrams:

A

∆A

��

λ // B ⊗A

I⊗∆A

��
A⊗A

λ⊗λ
��

B ⊗A⊗A

B ⊗A⊗B ⊗A
τ23

// B ⊗B ⊗A⊗A

mB⊗I

OO

A

εA

��

λ // B ⊗A

I⊗εA

��
k

uB

// B

i.e. (I ⊗∆A) ◦ λ = (mB ⊗ I) ◦ τ23 ◦ (λ⊗ λ) ◦∆A, and (I ⊗ εA) ◦ λ = uB ◦ εA.
(2) (A,mA,∆A, uA, εA) is a comodule-algebra on (B,mB ,∆B , uB , εB) if λ is

a unital algebra morphism. This amounts to say that mA and uA are
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morphisms of left A-comodules. In other words, the two following diagrams
commute:

A⊗A

λ⊗λ
��

mA // A

λ

��
B ⊗A⊗B ⊗A

τ23

��

B ⊗A

B ⊗B ⊗A⊗A
mB⊗I⊗I

// B ⊗A⊗A

I⊗mA

OO

k

uA

��

uB // B

I⊗uA

��
A

λ
// B ⊗A

i.e., λ◦mA = (I⊗mA)◦(mB⊗I⊗I)◦τ23◦(λ⊗λ), and (I⊗uA)◦uB = λ◦uA.
(3) (A, mA, ∆A, uA, εA) is a comodule-bialgebra on (B, mB , ∆B , uB , εB) if

(A,mA,∆A, uA, εA) is both a comodule-algebra and a comodule-coalgebra
on (B,mB ,∆B , uB , εB).

Definition 6.2. — Let (A,mA,∆A, uA, εA) and (A,mB ,∆B , uB , εB) be two
unital counital bialgebras over some field k. We assume that there exists an action
β : A⊗B −→ A, i.e. the following diagrams commute:

A⊗B ⊗B

I⊗mB

��

β⊗I // A⊗B

β

��
A⊗B

β
// A

A⊗ k

Id
**

I⊗uB // A⊗B

β

��
A

(1) (A,mA,∆A, uA, εA) is a module-algebra on (B,mB ,∆B , uB , εB) if the prod-
uct mA and the unit uA are morphisms of left A-modules. This amounts
to the commutativity of the following diagrams:

A⊗A⊗B

I⊗I⊗∆B

��

mA⊗I // A⊗B

β

��
A⊗A⊗B ⊗B

τ23

��

A

A⊗B ⊗A⊗B
β⊗β

// A⊗A

mA

OO

B

εB

��

uA⊗I // A⊗B

β

��
k

uA

// A

i.e. β ◦ (mA⊗I) = mA ◦ (β⊗β)◦τ23 ◦ (I⊗I⊗∆B), and β ◦ (uA⊗I) = uA ◦εB .

(2) (A,mA,∆A, uA, εA) is a module-coalgebra on (B,mB ,∆B , uB , εB) if β is
a unital algebra morphism. This amounts to say that ∆A and εA are
morphisms of left A-modules. In other words, the two following diagrams
commute:
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A⊗B

I⊗∆B

��

β // A

∆A

��
A⊗B ⊗B

∆A⊗I⊗I
��

A⊗A

A⊗A⊗B ⊗B
τ23

// A⊗B ⊗A⊗B

β⊗β

OO

A⊗B

β

��

εA⊗I // B

εB

��
A

εA

// k

i.e., ∆A◦β = (β⊗β)◦τ23◦(∆A⊗I⊗I)◦(I⊗∆B), and εB◦(εA⊗I) = εA◦β.
(3) (A, mA, ∆A, uA, εA ) is a module-bialgebra on (B, mB , ∆B , uB , εB ) if

(A,mA,∆A, uA, εA) is both a module-algebra and a module-coalgebra on
(B,mB ,∆B , uB , εB).

7. Relations between the two pre-Lie structures

In this section, we find some relations connecting the pre-Lie structures as well
as the bialgebra structures defined previously. We prove that Ṽ is a left pre-Lie
module on T and we find some relations between the two pre-Lie structures defined
on Ṽ and T . We also show that (K,m,Υ) is a comodule-coalgebra on (H̃,m,∆)
and that (W,m,Θ) is a comodule-coalgebra on (D̃,m,Λ). Moreover, we prove that
(W,�,Θ) is a module-bialgebra on (K,♦,Υ).

Definition 7.1. — Let (A, ◦) be a pre-Lie algebra. A left A-module is a vector
spaceM provided with a bilinear law denoted by �: A⊗M −→M such that for
all x, y ∈ A and m ∈M, we have:

x � (y � m)− (x ◦ y) � m = y � (x � m)− (y ◦ x) � m. (7.1)

Definition 7.2. — Let t1 ∈ T and (t2, s2) ∈ Ṽ . We define the map ♥ by:

t1♥(t2, s2) :=
∑

v∈V(s2)

(t1 Bv t2, t1 Bv s2). (7.2)

Theorem 7.3. — Equipped with ♥, the space Ṽ is a left T -module. In other
words for any t1, t2 ∈ T and (t3, s3) ∈ Ṽ , we have:

t1♥
[
t2♥(t3, s3)

]
− (t1 B t2)♥(t3, s3) = t2♥

[
t1♥(t3, s3)

]
− (t2 B t1)♥(t3, s3).

Proof. — Let t1, t2 be two elements of T and let (t3, s3) be an element of Ṽ , we
have:
t1♥

[
t2♥(t3, s3)

]
− (t1 B t2)♥(t3, s3)

= t1♥
[ ∑
r∈V(s3)

(t2 Br t3, t2 Br s3)
]
−

∑
l∈V(t2)

t1 Bl t2
)
♥(t3, s3)

=
∑

r∈V(s3)
l∈V(t2Brs3)

[t1 Bl (t2 Br t3), t1 Bl (t2 Br s3)]

−
∑

l∈V(t2)
r∈V(s3)

[
(t1 Bl t2) Br t3, (t1 Bl t2) Br s3

]
.
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In the term
∑

r∈V(s3)
l∈V(t2Brs3)

[t1 Bl (t2 Br t3), t1 Bl (t2 Br s3)], the vertex r is
common between s3 and t2. Then the condition l ∈ V(t2 Br s3) is equivalent to
l ∈ V(s3), l 6= r or l ∈ V(t2). We then get:

t1♥
[
t2♥(t3, s3)

]
− (t1 B t2)♥(t3, s3)

=
∑

l , r∈V(s3)
l 6=r

[t1 Bl (t2 Br t3), t1 Bl (t2 Br s3)]

+
∑

l∈V(t2)
r∈V(s3)

[t1 Bl (t2 Br t3), t1 Bl (t2 Br s3)]

−
∑

l∈V(t2)
r∈V(s3)

[
(t1 Bl t2) Br t3, (t1 Bl t2) Br s3

]
=

∑
l , r∈V(s3)

l6=r

[t1 Bl (t2 Br t3), t1 Bl (t2 Br s3)].

The last term is symmetric in t1 and t2, therefore:

t1♥
[
t2♥(t3, s3)

]
− (t1 B t2)♥(t3, s3) = t2♥

[
t1♥(t3, s3)

]
− (t2 B t1)♥(t3, s3). �

Theorem 7.4. — The law ♥ is a derivation of the algebra (Ṽ ,I). In other
words, for any t1 ∈ T and (t2, s2), (t3, s3) ∈ Ṽ , we have:

t1♥
(
(t2, s2) I (t3, s3)

)
=
(
t1♥(t2, s2)

)
I (t3, s3) + (t2, s2) I

(
t1♥(t3, s3)

)
.

Proof. — Let t1 ∈ T and (t2, s2), (t3, s3) ∈ Ṽ , we have:

t1♥
(
(t2, s2) I (t3, s3)

)
= t1♥

( ∑
v∈V(t3−s3)

(t2 Bv t3, s2s3)
)

=
∑

r∈V(s2s3) v∈V(t3−s3)

(
t1 Br (t2 Bv t3), t1 Br (s2s3)

)
=

∑
r∈V(s2) v∈V(t3−s3)

(
(t1 Br t2) Bv t3, (t1 Br s2)s3

)
+

∑
r∈V(s3) v∈V(t3−s3)

(
t2 Bv (t1 Br t3), s2(t1 Br s3)

)
=
(
t1♥(t2, s2)

)
I (t3, s3) + (t2, s2) I

(
t1♥(t3, s3)

)
. �

Theorem 7.5. — We denote by P2 the projection on the second component.
The following diagram is commutative:

T ⊗ Ṽ

I⊗P2

��

♥ // Ṽ

P2

��
T ⊗ K

B
// K

In other words, P2 is a morphism of pre-Lie modules.
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Proof. — Let t1 ∈ T and (t2, s2) ∈ Ṽ , we have:

P2
(
t1♥(t2, s2)

)
= P2

( ∑
v∈V(s2)

(t1 Bv t2, t1 Bv s2)
)

=
∑

v∈V(s2)

t1 Bv s2

= t1 B s2

= t1 B P2(t2, s2)
= (I ⊗ P2)

(
t1 ⊗ (t2, s2)

)
. �

Theorem 7.6. — (1) (K,m,Υ) is a comodule-coalgebra on (H̃,m,∆).
(2) (W,m,Θ) is a comodule-coalgebra on (D̃,m,Λ).

Proof. —
(1) It is clear that ∆ : K −→ H̃⊗K is a coaction. It follows from the coassocia-

tivity of ∆. We now show that Υ and εK are morphisms of left K-comodules.
Let t be an element of K.

(I ⊗Υ) ◦∆(t) = (I ⊗Υ)
(∑
s⊆t

s⊗ t/s
)

=
∑
s⊆t

s⊗Υ(t/s)

=
∑

s⊆t , (t/s)

s⊗ (t/s)(1) ⊗ (t/s)(2)

=
∑

s1⊆t(1) , s2⊆t(2) , (t)

s1s2 ⊗ t(1)/s1 ⊗ t(2)/s2.

We use the shorthand notation: m13 := (m⊗ I) ◦ τ23.

(m13 ⊗ I) ◦ (∆⊗∆) ◦Υ(t) = (m13 ⊗ I)
(∑

(t)

∆(t(1))⊗∆(t(2))
)

= (m13 ⊗ I)
( ∑
s1⊆t(1) , s2⊆t(2) , (t)

s1 ⊗ t(1)/s1 ⊗ s2 ⊗ t(2)/s2
)

=
∑

s1⊆t(1) , s2⊆t(2) , (t)

s1s2 ⊗ t(1)/s1 ⊗ t(2)/s2.

Moreover,

(I ⊗ εK) ◦∆(t) = (I ⊗ εK)
(∑
s⊆t

s⊗ t/s
)

=
∑
s⊆t

s⊗ εK(t/s)

=
∑
s⊆t

εK(s)⊗ t/s

= εK(t)1
= uH̃ ◦ εK(t),
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which proves the first part of the theorem.
(2) The coaction is given by Λ :W −→ D̃⊗W. Similarly to part (1), we prove

that Θ and εW are morphisms of left W-comodules. �

Lemma 7.7. — Let (t1, s1) and (t2, s2) be two elements of W. The product �
satisfies the following result:

(t1, s1)�(t2, s2) =
∑

v∈V(t2−s2)
(t1)

(
t
(1)
1 (t(2)

1 Bv t2), s1s2
)
.

Proof. —

(t1, s1)�(t2, s2) =
∑

(t1,s1)

(t1, s1)(1)((t1, s1)(2) I (t2, s2)
)

=
∑

v∈V(t2−s2)
(t1,s1)

(t(1)
1 , s

(1)
1 )(t(2)

1 Bv t2, s
(2)
1 s2)

=
∑

v∈V(t2−s2)
(t1,s1)

(
t
(1)
1 (t(2)

1 Bv t2), s(1)
1 s

(2)
1 s2

)

=
∑

v∈V(t2−s2)
(t1)

(
t
(1)
1 (t(2)

1 Bv t2), s1s2
)
. �

Lemma 7.8. — Let (t1, s1) and (t2, s2) be two elements of W. The product �
satisfies the following result:

(t1, s1)�(t2, s2) = (t1♦t2 − t1 ∧ t2, s1s2),

where:

t1 ∧ t2 :=
∑

v∈V(s2)
(t1)

(t1)(1)(t1)(2) Bv t2.

Proof. —

(t1, s1)�(t2, s2) =
∑

v∈V(t2−s2)
(t1)

(
t
(1)
1 (t(2)

1 Bv t2), s1s2
)

=
∑

v∈V(t2) , (t1)

t
(1)
1 (t(2)

1 Bv t2)−
∑

v∈V(s2) , (t1)

t
(1)
1 (t(2)

1 Bv t2), s1s2

= (t1♦t2 − t1 ∧ t2, s1s2). �

Theorem 7.9. — (W,�,Θ) is a module-bialgebra on (K,♦,Υ).

Proof. — We consider the map: ϕ :W⊗K −→W defined for all (t, s) ∈ W and
t′ ∈ K by:

ϕ((t, s)⊗ t′) = (t♦t′, s).
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Firstly, we show that ϕ is an action. Let (t1, s1) ∈ W and t2, t3 ∈ K, we have:

ϕ ◦ (ϕ⊗ I)[(t1, s1)⊗ t2 ⊗ t3] = ϕ[(t1♦t2, s1)⊗ t3]
=
(
(t1♦t2)♦t3, s1

)
=
(
t1♦(t2♦t3), s1

)
= ϕ[(t1, s1)⊗ t2♦t3]
= ϕ ◦ (I ⊗♦)[(t1, s1)⊗ t2 ⊗ t3].

Moreover,

ϕ ◦ (I ⊗ uK)[(t1, s1)⊗ 1] = ϕ[(t1, s1)⊗ 1]
= (t1♦1, s1)
= (t1, s1)
= I(t1, s1).

Secondly, we use Lemma 7.7 and Lemma 7.8 to show that:

� ◦ (ϕ⊗ ϕ) ◦Υ23 = ϕ ◦ (�⊗ I), and ϕ ◦ (uW ⊗ I) = uW ◦ εK,

where: Υ23 = τ23 ◦ (I ⊗ I ⊗Υ). Let t be an element of K.

ϕ ◦ (uW ⊗ I)(t) = ϕ((1,1)⊗ t)
= (1♦t,1)
= (t,1)
= εK(t)(1,1)
= uW ◦ εK(t).

Let (t1, s1) and (t2, s2) be two elements of W:

� ◦ (ϕ⊗ ϕ) ◦Υ23((t1, s1)⊗ (t2, s2)⊗ t
)

=
∑
(t)

ϕ
(
(t1, s1)⊗ t(1))�ϕ((t2, s2)⊗ t(2))

=
∑
(t)

(t1♦t(1), s1)�(t2♦t(2), s2)

=
∑
(t)

(
(t1♦t(1))♦(t2♦t(2))− (t1♦t(1)) ∧ (t2♦t(2)), s1s2

)
=
(
(t1♦t2)♦t− (t1 ∧ t2)♦t, s1s2

)
.

On the other hand:

ϕ ◦ (�⊗ I)
(
(t1, s1)⊗ (t2, s2)⊗ t

)
= ϕ

(
(t1, s1)�(t2, s2)⊗ t

)
= ϕ

(
(t1♦t2 − t1 ∧ t2, s1s2)⊗ t

)
=
(
(t1♦t2 − t1 ∧ t2)♦t, s1s2

)
=
(
(t1♦t2)♦t− (t1 ∧ t2)♦t, s1s2

)
.
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Finally, we prove that Θ and εW are morphisms of modules. Let (t1, s1) ∈ W and
t2 ∈ K:

εW ◦ ϕ
(
(t1, s1)⊗ t2

)
= εW

(
t1♦t2, s1

)
=
(
εK(t1♦t2), εK(s1)

)
=
(
εK(t1)εK(t2), εK(s1)

)
= εW(t1, s1)εK(t2)
= εK ◦

(
εW ⊗ I

)(
(t1, s1)⊗ t2

)
.

Moreover,

Θ ◦ ϕ
(
(t1, s1)⊗ t2

)
= Θ

(
t1♦t2, s1

)
=
∑
(t1)

Θ
(
t
(1)
1 (t(2)

1 . t2), s1
)

=
∑

(t1) , (s1)

(t(11)
1 (t(12)

1 . t
(1)
2 ), s1

(1))⊗ (t(21)
1 (t(22)

1 . t
(2)
2 ), s(2)

1 )

=
∑

(t1,s1) , (t2)

(t(1)
1 ♦t

(1)
2 , s

(1)
1 )⊗ (t(2)

1 ♦t
(2)
2 , s

(2)
1 ).

We use the shorthand notation: (Θ⊗ I ⊗ I) ◦ (I ⊗Υ) = Θ⊗Υ.

(ϕ⊗ ϕ) ◦ τ23 ◦ (Θ⊗Υ)
(
(t1, s1)⊗ t2

)
= (ϕ⊗ ϕ)

( ∑
(t1,s1) , (t2)

(t(1)
1 , s

(1)
1 )⊗ t(1)

2 ⊗ (t(2)
1 , s

(2)
1 )⊗ t(2)

2
)

=
∑

(t1,s1) , (t2)

ϕ
(
(t(1)

1 , s
(1)
1 )⊗ t(1)

2
)
⊗ ϕ

(
(t(2)

1 , s
(2)
1 )⊗ t(2)

2
)

=
∑

(t1,s1) , (t2)

(t(1)
1 ♦t

(1)
2 , s

(1)
1 )⊗ (t(2)

1 ♦t
(2)
2 , s

(2)
1 ). �

8. Relation with the grafting pre-lie algebra

We have studied the grafting pre-Lie algebra (T ,→) of rooted trees in [2], and
we have introduced a pre-Lie structure on its doubling space (V, ). The grafting
pre-Lie product is given, for all t, s ∈ T , by:

t→ s =
∑

v∈V (s)

t→v s,

where t →v s is the tree obtained by grafting the root of t on the vertex v of s.
The pre-Lie product on the doubling space V is defined for all (t1, s1) and (t2, s2)
in V by:

(t1, s1) (t2, s2) :=
∑

v∈V(t2−s2)

(t1 →v t2, s1s2),

where the notation v ∈ V(t2−s2) denotes that v is a vertex of t2 but is not a vertex
of s2.

We have constructed the enveloping algebra of the grafting pre-Lie algebra of
rooted trees (T ,→) using the method of Oudom and Guin [14]. We have considered



ENVELOPPING ALGEBRAS 25

the Hopf symmetric algebra H′ := S(T ) of the pre-Lie algebra (T ,→), equipped
with its usual unshuffling coproduct Γ and a product ? defined on H′ by:

t ? t′ =
∑
(t)

t(1)(t(2) → t′).

We have also constructed (D′,F, χ) the enveloping algebra of (V, ), where χ is
the usual unshuffling coproduct and F is defined by:

(t, s)F(t′, s′) =
∑
(t,s)

(t, s)(1)((t, s)(2)  (t′, s′)
)
.

In this section, we give some relations between the insertion and the grafting pre-Lie
algebras of rooted trees.

Definition 8.1. — We consider the two maps: γ : H′ ⊗ K −→ H′ defined for
all t1 ∈ H′ and t2 ∈ K by:

γ(t1 ⊗ t2) = t1 ? t2,

and ρ : K −→ K⊗K defined for all t ∈ K by:

ρ(t) = 1⊗ t.

Theorem 8.2. — (1) (H′, ?,Γ) is a module-coalgebra on (K,♦,Υ).
(2) The two maps γ and ρ satisfy the following commutative diagram:

H′ ⊗H′ ⊗K

I⊗I⊗ρ
��

?⊗I // H′ ⊗K

γ

��
H′ ⊗H′ ⊗K ⊗K

τ23

��

H′

H′ ⊗K ⊗H′ ⊗K
γ⊗γ

// H′ ⊗H′
?

OO

Proof. —
(1) Firstly, we show that γ is an action. Let t1 ∈ H′ and t2, t3 ∈ K:

γ ◦ (γ ⊗ I)[t1 ⊗ t2 ⊗ t3] = γ[(t1 ? t2)⊗ t3]
= (t1 ? t2) ? t3
= t1 ? (t2 ? t3)
= γ[t1 ⊗ (t2 ? t3)]
= γ ◦ (I ⊗ ?)[t1 ⊗ t2 ⊗ t3].

Moreover,
γ ◦ (I ⊗ uK)[t1 ⊗ 1] = (t1 ? 1)

= t1.

= I(t1 ⊗ 1).
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Secondly, we prove that Γ and εH′ are morphisms of modules.

εH′ ◦ γ
(
t1 ⊗ t2

)
= εH′

(
t1 ? t2

)
= εH′(t1)εK(t2)
= εK ◦ (εH′ ⊗ I)

(
t1 ⊗ t2

)
.

Otherwise,

Γ ◦ γ
(
t1 ⊗ t2

)
= Γ

(
t1 ? t2

)
=
∑

(t1?t2)

(t1 ? t2)(1) ⊗ (t1 ? t2)(2).

We use the shorthand notation: (Γ⊗ I ⊗ I) ◦ (I ⊗Υ) = Γ⊗Υ.

(γ ⊗ γ) ◦ τ23 ◦ (Γ⊗Υ)
(
t1 ⊗ t2

)
= (γ ⊗ γ) ◦ τ23(Γ(t1)⊗Υ(t2)

)
= (γ ⊗ γ) ◦ τ23( ∑

(t1) , (t2)

t
(1)
1 ⊗ t

(2)
1 ⊗ t

(1)
2 ⊗ t

(2)
2
)

=
∑

(t1) , (t2)

γ(t(1)
1 ⊗ t

(1)
2 )⊗ γ(t(2)

1 ⊗ t
(2)
2 )

=
∑

(t1) , (t2)

(t(1)
1 ? t

(1)
2 )⊗ (t(2)

1 ? t
(2)
2 )

=
∑

(t1) , (t2)

(t1 ? t2)(1) ⊗ (t1 ? t2)(2).

(2) We denote by: ρ23 := τ23 ◦ (I ⊗ I ⊗ ρ). Let t1, t2 ∈ H′ and t ∈ K:

? ◦ (γ ⊗ γ) ◦ ρ23(t1 ⊗ t2 ⊗ t) = γ
(
t1 ⊗ 1

)
? γ
(
t2 ⊗ t

)
= (t1 ? 1) ? (t2 ? t)
= t1 ? (t2 ? t).

Moreover,

γ ◦ (?⊗ I)
(
t1 ⊗ t2 ⊗ t

)
= γ

(
(t1 ? t2)⊗ t

)
= (t1 ? t2) ? t
= t1 ? (t2 ? t). �

Definition 8.3. — We consider the two maps: α : D′ ⊗W −→ D′ defined for
all (t1, s1) ∈ D′ and (t2, s2) ∈ W by:

α
(
(t1, s1)⊗ (t2, s2)

)
= (t1, s1)F(t2, s2),

and σ :W −→W ⊗W defined for all (t, s) ∈ W by:

σ(t, s) = (1,1)⊗ (t, s).

Theorem 8.4. — (1) (D′,F, χ) is a module-coalgebra on (W,�,Θ).
(2) The two maps α and σ satisfy the following commutative diagram:
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D′ ⊗D′ ⊗W

I⊗I⊗σ
��

F⊗I // D′ ⊗W

α

��
D′ ⊗D′ ⊗W ⊗W

τ23

��

D′

D′ ⊗W ⊗D′ ⊗W
α⊗α

// D′ ⊗D′
F

OO

Proof. —
(1) The action is given by α defined above. We prove this part of the theorem

similarly to that of the previous theorem.
(2) We denote by σ23 the following map: σ23 := τ23◦(I⊗I⊗σ). Let (t, s) ∈ D′

and (u1, r1), (u2, r2) ∈ W, we have:
F ◦ (α⊗ α) ◦ σ23((t, s)⊗ (u1, r1)⊗ (u2, r2)

)
= α

(
(t, s)⊗ (1,1)

)
Fα

(
(u1, r1)⊗ (u2, r2)

)
=
(
(t, s)F(1,1)

)
F
(
(u1, r1)F(u2, r2)

)
= (t, s)F

(
(u1, r1)F(u2, r2)

)
.

On the other hand, we have:
α ◦ (F⊗ I)

(
(t, s)⊗ (u1, r1)⊗ (u2, r2)

)
= α

(
(t, s)F(u1, r1)⊗ (u2, r2)

)
=
(
(t, s)F(u1, r1)

)
F(u2, r2)

= (t, s)F
(
(u1, r1)F(u2, r2)

)
.

This result is similar to the fact that (D′,F, χ) is a module-algebra on (W,�,Θ).
The map I ⊗ I ⊗ Θ in the module-algebra structure is replaced here by the map
I ⊗ I ⊗ σ. �
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