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Cyclically valued rings and formal power series

Gérard Leloup

Abstract

Rings of formal power series k[[C]] with exponents in a cyclically ordered group
C were defined in [2]. Now, there exists a “valuation” on k[[C]] : for every σ in
k[[C]] and c in C, we let v(c, σ) be the first element of the support of σ which is
greater than or equal to c. Structures with such a valuation can be called cyclically
valued rings. Others examples of cyclically valued rings are obtained by “twisting”
the multiplication in k[[C]]. We prove that a cyclically valued ring is a subring of
a power series ring k[[C, θ]] with twisted multiplication if and only if there exist
invertible monomials of every degree, and the support of every element is well-
ordered. We also give a criterion for being isomorphic to a power series ring with
twisted multiplication. Next, by the way of quotients of cyclic valuations, it follows
that any power series ring k[[C, θ]] with twisted multiplication is isomorphic to a
R′[[C′, θ′]], where C′ is a subgroup of the cyclically ordered group of all roots of
1 in the field of complex numbers, and R′ ' k[[H, θ]], with H a totally ordered
group. We define a valuation v(ε, ·) which is closer to the usual valuations because,
with the topology defined by v(a, ·), a cyclically valued ring is a topological ring if
and only if a = ε and the cyclically ordered group is indeed a totally ordered one.

1. Introduction.

The formal power series with exponents in a cyclically ordered group gave
rise to cyclically valued rings. Recall that (C,+, (·, ·, ·)) (or more simply
(C, (·, ·, ·)), resp. C) is a cyclically ordered abelian group, if (C,+) is an
abelian group and (·, ·, ·) satisfies for every a, b, c, d :
- (a, b, c)⇒ a 6= b 6= c 6= a & (b, c, a)
- (a, b, c)⇒ (a + d, b + d, c + d) (compatibility).
- (c, ·, ·) is a strict total order on C\{c}.

For every c ∈ C, we will denote by ≤c the associate order on C with first
element c. For Ø 6= X ⊂ C, minc X will denote the minimum of (X,≤c),
if it exists.
Definition 1.1. ([2]) Let C be a cyclically ordered group, R be a com-
mutative ring, v a mapping from C × R onto C ∪ {∞}, where for every
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a, b in C, a <b ∞, and let σ ∈ R.
The support of σ is the set Supp(σ) := {v(a, σ) | a ∈ C}.
σ is a monomial if the support of σ is a singleton. If Supp(σ) = {c}, c will
be called the degree of σ.
σ is a constant if either σ = 0 or Supp(σ) = {0}.
(R, v) is a cyclically valued ring if the following five conditions hold.
(1) For every a ∈ C, (R,+, v(a, ·)) is a valued group.
(2) For every σ ∈ R and a ∈ C, if v(a, σ) = a, then there exists a unique
monomial µa,σ such that v(a, σ−µa,σ) 6= a. If v(a, σ) 6= a, we set µa,σ = 0.
(3) For every σ ∈ R and a ∈ C, mina(Supp(σ)) exists and is equal to
v(a, σ).
(4) For every σ and σ′ in R, Supp(σσ′) ⊂ Supp(σ) + Supp(σ′).
(5) For every n ∈ N∗, a ∈ C, σ ∈ R and σ′ ∈ R, if card(Supp(σ) ∩
(a − Supp(σ′))) = n, say Supp(σ) ∩ (a − Supp(σ′)) = {a1, . . . , an}, then
µa,σσ′ = µa1,σµa−a1,σ′ + · · ·+ µan,σµa−an,σ′ .

Notation 1.2. M will denote the set of all monomials of (R, v), and for
c ∈ C, Mc will denote the set of all monomials of degree c.

One can prove that condition (3) is equivalent to :
(3’) For every σ in R and a, b in C, a ≤a b ≤a v(a, σ)⇒ v(b, σ) = v(a, σ)
(see [5]).

Furthermore, if (R, v) satisfies (1) and (3), then for every σ, τ in R,
Supp(σ + τ) ⊂ Supp(σ) ∪ Supp(τ).

Let S be a subset of C. We say that (S, (·, ·, ·)) is well-ordered if there
exists c ∈ C, such that the totally ordered set (S,≤c) is well-ordered.
This implies that for every c ∈ C, the totally ordered set (S,≤c) is well-
ordered. We know that the sum of any two well-ordered subsets of C is
well-ordered (see [2]). If σ is a mapping from C to k, the support of σ is
the subset of all c in C such that σ(c) 6= 0 (we will denote σc instead of
σ(c)). Let k[[C]] (resp. k[C]) be the subset of all mappings from C to k
with well-ordered (resp. finite) support. For any a ∈ C, σ ∈ k[[C]] (resp.
σ ∈ k[C]) let v(a, σ) be the lowest element of the support of σ ordered by
<a. We define an addition and a multiplication on k[[C]] as usual. Then
(k[[C]], v) and (k[C], v) are cyclically valued rings (see [2]).

We know that if the support of every element of a cyclically valued
ring (R, v) is well-ordered and if M contains a group which is canoni-
cally isomorphic to C, then (R, v) embeds in a ring of formal power series
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with cyclically ordered exponents k[[C]]. In Section 2 we prove that, by
“twisting” the multiplication of k[[C]], we can take the condition “M con-
tains invertible elements of every degree”, instead of “M contains a group
canonically isomorphic to C” (Theorem 1). We will denote by k[[C, θ]]
these formal power series rings with “twisted” multiplication. In Theorem
2, we give necessary and sufficient conditions for being isomorphic to a
twisted ring of formal power series. These conditions imply that the sup-
port of every element is well-ordered. Notice that any valued field of equal
characteristic embeds in some k[[C, θ]], whence the usual valuations can
be seen as particular cases of cyclic valuations. If R contains elements σ
such that nor Supp(σ) nor −Supp(σ) is well-ordered, then these theorems
fail. We give examples of such rings.

In Section 3, we define and we characterize quotients of cyclically va-
lued rings (Theorems 3 and 4). By means of these quotients, we prove
that power series rings with cyclically ordered exponents are indeed power
series rings with cyclically ordered exponents such that the group of ex-
ponents is archimedean, i.e. it embeds in the group of all roots of 1 in the
field of complex numbers.

It is well-known that there exist at most one element ε 6= 0 in C such
that ε = −ε. If C doesn’t contain such an element, then for every a, b in C
set a <ε b if and only if either (a, b) ∈ −P×P∪{0}, or (a, b) /∈ −P×P∪{0}
and a <0 b, where P := {c ∈ C | (0, c, 2c)} = {c ∈ C | (0, c,−c)}.
P is called the positive cone of C. Note that we have : P <0 −P and
P ∪ −P ∪ {0, ε} = C.

Assume that for every σ ∈ R, minε(Supp(σ)) exists. Then we set

v(ε, σ) := minε(Supp(σ)) if σ 6= 0, and v(ε, 0) :=∞.

The linear part of C is the largest subgroup l(C) such that (l(C),≤ε)
is a totally ordered group. l(C) is a convex subset of (C,≤ε) and C/l(C)
embeds in the cyclically ordered group of all roots of 1 in the field of com-
plex numbers (see [1]). C is a linear cyclically ordered group if C = l(C).

In Section 4, we show that, if C is a linear cyclically ordered group, then
v(ε, ·) satisfies the usual rules ∀σ, ∀τ, v(ε, στ) = v(ε, σ) + v(ε, τ). Fur-
thermore, if the product of any two monomials is not 0, then for every
a ∈ C ∪ {ε}, (R, v(a, ·)) is a topological ring if and only if either C is a
linear cyclically ordered group and a = ε or (C,<0) has a greatest element
(Theorem 5).
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Various people asked whether cyclically valued rings are definable in
a relational language. Section 5 gives a positive answer to this question.
The goal is to make easier a model theoretic approach to cyclically valued
groups. However, it remains an open question to characterize elementar-
ily equivalent cyclically valued rings. A first step was made in [5] : by
dropping the multiplication symbol, one can get classes of existentially
equivalent additive groups (R, v).

2. Cyclically valued rings with C interpretable.

Definition 2.1. Let (R, v) be a cyclically valued ring. We will say that
C is interpretable if for every c ∈ C, there exists an invertible monomial
of degree c.

First let us prove some basic facts about the unit element and mono-
mials.

Lemma 2.2. Assume that (R, v) is a cyclically valued ring, and let µ ∈M
such that, for every τ in M , µτ 6= 0. Then for every σ in R, Supp(µσ) =
Supp(µ) + Supp(σ).

Proof. Let d be the degree of µ. We already know : Supp(µσ) ⊂ Supp(µ)∪
Supp(σ) = d + Supp(σ). Let a ∈ C such that a − d ∈ Supp(σ). Then
{a− d} = Supp(σ)∩ (a−Supp(µ)), hence by (5) of Definition 1.1 µa,µσ =
µµa−d,σ 6= 0, and a ∈ Supp(µσ). �

Now, assume that µ satisfies conditions of Lemma 2.2, and that R con-
tains a unit element 1. Then {d} = Supp(µ) = Supp(µ · 1) = Supp(µ) +
Supp(1) = {d}+ Supp(1). It follows that Supp(1) = {0} i.e. 1 is a mono-
mial of degree 0.

Furthermore, assume that µ is invertible. Then by Lemma 2.2 {0} =
Supp(µµ−1) = Supp(µ)+Supp(µ−1) = d+Supp(µ−1). Whence Supp(µ−1) =
{−d} i.e. µ−1 is a monomial of degree −d.

Note that if (M ∪ {0}, ·) contains a unit element 1, then 1 is the unit
element of R. Indeed, let σ ∈ R and a ∈ C. 1 · σ− µa,σ = 1 · σ− 1 · µa,σ =
1 · (σ−µa,σ). By Lemma 2.2, Supp(1 · (σ−µa,σ)) = {0}+ Supp(σ−µa,σ).
Hence v(a, 1 · σ − µa,σ) = v(a, σ − µa,σ) 6= a. Now, µa,1·σ being unique,
we have : µa,1·σ = µa,σ. It follows : ∀a ∈ C, µa,1·σ−σ = µa,1·σ − µa,σ = 0.
Hence 1 · σ − σ = 0.
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Proposition 2.3. Let (R, v) be a cyclically valued ring. Assume that the
product of any two monomials is not 0. Then the following (i) and (ii) are
equivalent.
(i) The ring of all constants M0 ∪ {0} is a field.
(ii) (M, ·) is a group.
If this holds, then C 'M/M0.

Proof. It’s not difficult to check that M0 ∪ {0} is a subring of R (see [2]).
Now, recall that the hypothesis “the product of any two monomials is not
0” is equivalent to “M is closed under multiplication”. Hence, so is M0,
and M0 ∪ {0} is an integral subring of R.

Assume that (M, ·) is a group, and let µ ∈M0. We have already proved
that deg(µ−1) = −deg(µ), hence µ−1 ∈ M0. It follows that M0 ∪ {0} is a
field.

Assume that M0 ∪ {0} is a field. Let µ be a monomial of degree d. By
definition of cyclically valued rings, there exists a monomial µ′ of degree
−d (because v is onto). M is closed under multiplication, so µµ′ 6= 0. It
follows that µµ′ is a constant different from 0. Let µ1 be the inverse of
µµ′, then µµ′µ1 = 1, i.e. µ′µ1 is the inverse of µ. �

Definition 2.4. Let k be a commutative ring with 1, and θ be a mapping
from C × C to k. We will say that θ(C,C) is a commutative factor set if
it enjoys the following :
∀(d1, d2) ∈ C × C, θ(d1, d2) = θ(d2, d1),
∀d ∈ C, θ(0, d) = 1,
∀(d1, d2, d3) ∈ C ×C ×C, θ(d1, d2)θ(d1 + d2, d3) = θ(d1, d2 + d3)θ(d2, d3).

Let k be a commutative ring with 1, and θ : C ×C → k be a mapping.
Any element σ of the Hahn product ud∈Ck, will be denoted by σ =∑
d∈C σdX

d instead of σ = (σd)d∈C .
Let σ =

∑
d∈C σdX

d and τ =
∑

d∈C τdX
d in ud∈Ck. Supp(σ) and Supp(τ)

are well-ordered, hence for every d ∈ C, the set Supp(σ) ∩ (d− Supp(τ))
is finite, we set

στ =
∑
d∈C

(
∑
c∈C

σcτd−cθ(c, d− c))Xd

In the same way as any of [6], [7], [3] or [8], [9], we can prove that, with
the multiplication (σ, τ) 7→ στ defined above, the Hahn product ud∈Ck is
a commutative ring with unit element 1 = X0 if and only if θ(C,C) is a
commutative factor set. Furthermore, if k is a field, C is a linear cyclically
ordered group and θ(C × C) ⊂ k\{0}, then this Hahn product is a field.
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Proposition 2.5. Let k be a commutative ring with 1, and θ : C×C → k
be a mapping such that θ(C,C) is a commutative factor set. For every
a ∈ C and σ ∈ ud∈Ck, we let v(a, σ) be the first element of the support of
σ, ordered by <a. Then :
1) ud∈Ck is a cyclically valued ring.
2) The set of all polynomials is a cyclically valued subring of ud∈Ck.
3) k is naturally isomorphic to a subring of ud∈Ck.
4) If for every d in C, θ(−d, d) is a unit in k, then C is interpretable in
ud∈Ck.

Proof. We let the reader check 1) and 2).
3) The embedding of k into ud∈Ck is given in the following way. Let x ∈
k\{0}, the support of its image is {0}, and the corresponding coefficient
is x, so we will assume k ⊂ ud∈Ck.
4) If, for every d in C, θ(−d, d) is a unit in k, then Xdθ(−d, d)−1X−d =
X0 = 1, hence Xd is a unit, and C is interpretable. �

In [3], Kaplansky proved that any perfect henselian valued field of equal
characteristic with value group G and residue field k embeds in some
k[[G, θ]]. Now, G can be cyclically ordered by setting for every a, b, c in G,
(a, b, c) if and only if either a < b < c or b < c < a or c < a < b. The usual
valuation is the valuation v(ε, ·). So, in the case of equal characteristic,
the usual valuation is a particular case of a cyclic valuation.

Notation 2.6. Let k be a commutative ring with 1, and θ : C×C → k\{0}
be a mapping such that θ(C,C) is a commutative factor set. k[[C, θ]] will
be the Hahn product ud∈Ck together with the mapping (σ, τ) 7→ στ .
We set k[C, θ] = {σ ∈ k[[C, θ]] | Supp(σ) is finite }.
Remark 2.7. The proofs of some results of [2] extend to the “twisted”
power series rings :
- if k[[C, θ]] is a field, then k is a field, θ(C × C) ⊂ k\{0}, and C/l(C)
embeds in the group of all roots of 1 in the field of complex numbers,
- if k is a field, θ(C × C) ⊂ k\{0} and C/l(C) is finite, then k[[C, θ]] is a
field,
- k[C, θ] is integral if and only if k is integral, C is torsion-free and θ(C ×
C) ⊂ k\{0}.
Theorem 1. Let (R, v) be a cyclically valued ring such that C is inter-
pretable and let k be the ring of constants of R.
For every d ∈ C\{0}, fix an invertible monomial µd, and let µ0 = 1.
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For d1 and d2 in C, let θ(d1, d2) = (µd1µd2)µ
−1
d1+d2

(we can assume that
µ−d = µ−1

d , so, for all d in C, θ(−d, d) = 1) then we have the following.
1) θ(C,C) is a commutative factor set.
2) For σ in R, d in C, set Ψd(σ) := µd,σµ−1

d (with µd,σ the only element
of k such that v(d, σ − µd,σ) 6= d), and let Ψ(σ) := (Ψd(σ))d∈C ∈

∏
d∈C k

(cartesian product).
If the support of every element of R is well-ordered, then Ψ is an isomor-
phism from the cyclically valued ring (R, v) into the cyclically valued ring
k[[C, θ]].

Proof. .
1) From the definition, it follows : ∀(d1, d2) ∈ C × C, θ(d1, d2) =

θ(d2, d1), and ∀d ∈ C, θ(0, d) = 1. Let (d1, d2, d3) ∈ C × C × C,

θ(d1, d2)θ(d1 + d2, d3) = µd1µd2µ
−1
d1+d2

µd1+d2µd3µ
−1
d1+d2+d3

= µd1µd2µd3µ
−1
d1+d2+d3

= µd1µd2+d3µ
−1
d1+d2+d3

µd2µd3µ
−1
d2+d3

= θ(d1, d2 + d3)θ(d2, d3).

Therefore θ(C,C) is a commutative factor set.
2) Assume that the support of every element is well-ordered. Hence :

∀σ ∈ R, Ψ(σ) ∈ ua∈Ck. We let the reader check that for every d ∈ C, the
mapping {

(R,+) → (Md ∪ {0},+)
σ 7→ µd,σ

is a morphism of groups. We deduce that

{
(R,+) → k

σ 7→ Ψd(σ) = µd,σµ−1
d

and
{

(R,+) → (ud∈Ck, +)
σ 7→ Ψ(σ)

are morphisms of groups. If σ 6= 0, then Supp(σ) 6= Ø. Let a ∈ Supp(σ).
We deduce from (3’) that v(a, σ) = a, hence µa,σ 6= 0. Hence Ψ(σ) 6= 0.
Now, straightforward checkings show that Ψ is an isomorphism of cycli-
cally valued groups.

Let σ and τ be elements of R, d in C, and (d′1, d
′′
1), . . . , (d

′
n, d′′n) be all

43



G. Leloup

the elements of Supp(σ)× Supp(τ) such that d′i + d′′i = d. Then

Ψd(στ) = µd,στµ
−1
d

=
∑n

i=1 µd′i,σ
µd′′i ,τµ

−1
d

=
∑n

i=1 µd′i,σ
µ−1

d′i
µd′′i ,τµ

−1
di”

µd′i
µd′′i

µ−1
d

=
∑n

i=1 Ψd′i
(σ)Ψd′′i

(τ)θ(d′i, d
′′
i ).

Then Ψ is an isomorphism of rings. �

If we drop the hypothesis : “the support of every element is well-
ordered”. Ψ is an isomorphism from (R,+) to the cartesian product

∏
c∈C k.

Let σ and σ′ in R. If, for every a ∈ C, card(Supp(σ) ∩ (a − Supp(σ′)))
is finite, then σσ′ is defined by the rule : if Supp(σ) ∩ (a − Supp(σ′)) =
{a1, . . . , an}, then µa,σσ′ = µa1,σµa−a1,σ′ + · · ·+ µan,σµa−an,σ′ . We can de-
fine Ψ(σ)Ψ(σ′) in the same way. Otherwise, we can’t say anything about
σσ′.

Before going further, we give examples of cyclically valued rings contain-
ing elements σ such that nor Supp(σ) nor −Supp(σ) is well-ordered. Let k
be a field such that the transcendence degree of k over the field Q of ratio-
nal numbers is infinite, let C be the cyclically ordered group Z of all inte-
gers, and let (αc)c∈C be a family of element of k which is algebraically inde-
pendent over Q. Let α := (αc)c∈C ∈

∏
c∈C k. The elements of

∏
c∈C k will

be denoted by σ =
∑

c∈C σcX
c instead of σ = (σc)c∈C . We let k[C] be the

subgroup of all polynomials of
∏

c∈C k. k[C] is a ring. For every σ ∈ k[C],
the support of σ is finite, so card(Supp(σ)∩(a−Supp(α))) is finite, and we
define the product σα by the usual rules : σα :=

∑
a∈C(

∑
b∈C σbαa−b)Xa.

First example. We set R := {σ + τα | σ ∈ k[C], τ ∈ k[C]}, and we let
αα = 0. We will prove in the second example that σ+τα = 0⇒ σ = τ = 0.
Thus, we can define a multiplication on R by setting, for all σ1, τ1, σ2, τ2

in k[C], (σ1 + τ1α)(σ2 + τ2α) = σ1σ2 + (σ1τ2 + σ2τ1)α. For every a ∈ C,
we set v(a, σ + τα) = min Supp(σ + τα). (R, v) is a cyclically valued ring,
and Supp(α) = C.

Second example. For every positive integer n, we set αn :=
∑

c∈C αn
c Xc ∈∏

c∈C k. For every σ =
∑

a∈C σaX
a ∈ k[C], Supp(σ) is finite so we can set

σαn :=
∑

a∈C(
∑

b∈C σbα
n
a−b)X

a. R is the additive subgroup generated by
the σαn, with σ ∈ k[C] and n a positive integer. For every a ∈ C, we de-
fine v(a, ·) in the same way as in the first example. Then (R,+, v) satisfies
conditions (1), (2), (3) of Definition 1.1.
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For every σ0, . . . , σm in k[C], the support of σ0 + σ1α + · · · + σmαm

is either cofinite or empty, and if this sum is equal to 0, then σ0 = · · · =
σm = 0. Indeed,

σ0 + σ1α + · · ·+ σmαm =
∑
a∈C

(
∑
b∈C

m∑
k=0

σk,bα
k
a−b)X

a.

The σk being polynomials, there is a finite number of b in C such that
there exists k ∈ {0, . . . , m} with σk,b 6= 0. Let b1, . . . , bn be these
elements. For i ∈ {1, . . . , n}, let Qi(T ) be the polynomial

∑m
k=0 σk,bi

T k.
Therefore

σ0 + σ1α + · · ·+ σmαm =
∑
a∈C

(
n∑

i=1

Qi(αa−bi
))Xa.

The transcendence degree of Q(σk,bi
| 0 ≤ k ≤ m, 1 ≤ i ≤ n) over Q

is finite. If some σk’s are not equal to 0, i.e. some Qi’s are not equal to
0, then there is at most a finite number of n-tuples (αa1 , . . . , αan) such
that Q1(αa1)+ · · ·+Qn(αan) = 0. Hence there is a finite number of a ∈ C
such that

∑n
i=1 Qi(αa−bi

) = 0, i.e. the support of σ0 + σ1α + · · ·+ σmαm

is cofinite.
Hence, if σ0 + σ1α + · · ·+ σmαm = 0, then σ0 = σ1 = · · · = σm = 0. It

follows that : σ0 +σ1α+ · · ·+σmαm = σ′0 +σ′1α+ · · ·+σ′m′αm′ ⇒ m = m′

and σ0 = σ′0, . . . , σm = σ′m. We can define a multiplication on R by
setting :

(σ0 + σ1α + · · ·+ σmαm)(τ0 + σ1α + · · ·+ τnαn) =
m+n∑
i=0

(
i∑

j=0

σjτi−j)αi

(if i > n (resp. j > m), we set τi = 0 (resp. σj = 0)). So (R,+, ·) is a
commutative ring.

Let σ and σ′ in R.
If σ an σ′ belong to k[C], then (4) and (5) hold, by properties of k[C].
If σ and σ′ belong to R\k[C], then their supports are cofinite, hence

Supp(σ) + Supp(σ′) = C, and (4) follows. Now, hypothesis of (5) are not
satisfied, hence (5) holds.

Assume that σ′ = τ ∈ k[C], and σ = σ0 + σ1α + · · · + σmαm, with
σ0, . . . , σm in k[C]. We have

σ =
∑
a∈C

(σ0,a +
m∑

i=1

∑
b∈C

σi,bα
i
a−b)X

a.
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Hence, for every a ∈ C,

µa,σ = σ0,a +
m∑

i=1

∑
b∈C

σi,bα
i
a−b.

Now,
τσ= τσ0 + τσ1α + · · ·+ τσmαm

=
∑

a∈C(
∑

b∈C τbσ0,a−b)Xa +
∑m

i=1(
∑

a∈C(
∑

b∈C τbσi,a−b)Xa)αi

=
∑

a∈C(
∑

b∈C τbσ0,a−b)Xa+
∑m

i=1(
∑

c∈C(
∑

a∈C(
∑

b∈C τbσi,a−b)αi
c−a)X

c)
=

∑
c∈C(

∑
b∈C τb(σ0,c−b +

∑m
i=1

∑
a∈C σi,a−bα

i
c−a))X

c

=
∑

c∈C(
∑

b∈C τbµc−b,σ)Xc.

(R, v) satisfies (5) and (4).

In order to give a criterion for Ψ being onto, we need some definitions.

Definition 2.8. ([10]) Let (R, v) be a cyclically valued ring.
(a) Let a ∈ C, I be an initial segment of (C,≤a), σ, τ be elements of
R. We say that τ is a section of σ by I if Supp(τ) = Supp(σ) ∩ I, and
v(a, σ − τ) > I.
(b) We say that R is closed under section if, for every a ∈ C, every initial
segment I of (C,≤a) and every σ ∈ R, R contains a section of σ by I.

Remark 2.9. We see that the section of σ by I is unique because if τ1 and
τ2 are sections of σ by I, then v(a, τ1 − τ2) = v(a, τ1 − σ + σ − τ2) ≥a

mina(v(a, τ1 − σ), v(a, σ − τ2)) >a I. Hence v(a, τ1 − τ2) /∈ Supp(τ1) ∪
Supp(τ2) ⊂ I. It follows τ1 − τ2 = 0.

Definition 2.10. Let (R, v) be a cyclically valued ring, and a ∈ C.
(a) A sequence (σs)s∈S of R, with S a well-ordered set, is a pseudo-Cauchy
sequence of (R, v(a, ·)) if for every s1 < s2 < s3 in S, v(a, σs1 − σs2) <a

v(a, σs2 − σs3) (see [3]).
(b) (R, v(a, ·)) is spherically complete if for every pseudo-Cauchy sequence
(σs)s∈S of (R, v(a, ·)) there exists σ ∈ R such that for every s1 < s2 < s3

in S, v(a, σs1 − σs2) = v(a, σs1 − σ) (we say that σ is a pseudo-limit of
(σs)s∈S) (see [4]).
(c) (R, v) is spherically complete if, for every a ∈ C, (R, v(a, ·)) is spheri-
cally complete.

Example 2.11. Assume that R is a any of k[[C]] or k[[C, θ]], with k a ring.
In the same way as in the case of usual valuations, one can check that
(R, v) is closed under section and spherically complete.
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Proposition 2.12. Let (R, v) be a cyclically valued ring. If, (R, v) is
closed under section, then the support of every element of E is well-
ordered.

Proof. Let σ ∈ R and assume that Supp(σ) is not well-ordered. Then there
exists a ∈ C and a final segment F in (C,≤a) such that F ∩ Supp(σ) has
no lowest element. Let σ′ be the section of σ by C\F , then {v(c, σ − σ′) |
c ∈ C} = F ∩ Supp(σ) has no lowest element, which contradicts (3) of
Definition 1.1. �

Proposition 2.13. Let (R, v) be a cyclically valued ring.
(a) (R, v) is closed under section if and only if there exists a ∈ C such that
for every σ ∈ R and for every initial segment I of (C,≤a), R contains a
section of σ by I.
(b) Assume that (R, v) is closed under section. Then (R, v) is spherically
complete if and only if there exists a ∈ C such that (R, v(a, ·)) is spherically
complete.

Proof. .
(a) Assume that there exists a ∈ C such that for every σ ∈ R and for

every initial segment I of (C,≤a), R contains a section of σ by I. Now, let
b 6= a, σ ∈ R, J be an initial segment of (C,≤b), and let σ1 be the section
of σ by [a, b[.

If J ∩ [a, b[= Ø, then let σ2 ∈ R be the section of σ by {c ∈ C | c ≤a J}.
Then σ′ := σ2 − σ1 is the section of σ by J in (G, v(b, ·)).

If J∩[a, b[6= Ø, then J∩[a, b[ is an initial segment of (C,≤a). Let σ3 ∈ R
be the section of σ by J ∩ [a, b[. Then σ′ = σ − σ1 + σ3 is the section of σ
by J in (R, v(b, ·)).

The converse is trivial.
(b) Let a, b in C, assume that (R, v(a, ·)) is spherically complete and

closed under section. Let (σs)s∈S be a pseudo-Cauchy sequence of (G, v(b, ·)),
with S a well-ordered set. By general properties of pseudo-Cauchy se-
quences, we may assume that S is a well-ordered subset of (C,≤b) such
that for all s1 <b s2 in S, v(b, σs1 − σs2) = s1.

i) Assume that [a, b[∩S = Ø, i.e. S ⊂ [b, a[.
For every s ∈ S, let τs be the section of σs by [b, a[. It follows :

Supp(σs − τs) ⊂ [a, b[, and v(b, σs − τs) ≥b a (by (3) of Definition 1.1).
For every s1 <b s2 in S, we have Supp(τs1−τs2) ⊂ Supp(τs1)∪ Supp(τs2)

⊂ [b, a[. Hence v(a, τs1−τs2) ≥a b, and v(a, τs1−τs2) = v(b, τs1−τs2). Now
s1 = v(b, σs1 −σs2) = v(b, σs1 − τs1 + τs1 − τs2 + τs2 −σs2) = v(b, τs1 − τs2),
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because v(b, σs1 − τs1) >b a >b s1 and v(b, τs2 − σs2) >b a >b s1.
It follows that (τs)s∈S is a pseudo-Cauchy sequence of the spherically

complete group (R, v(a, ·)); let τ be a pseudo-limit. By properties of pseudo-
Cauchy sequences, ∀s ∈ S, v(a, τ − τs) = s.

Let s ∈ S, then mina(Supp(τ − τs)) = v(a, τ − τs) = s ≥a b, hence
v(b, τ − τs) = minb(Supp(τ − τs)) = s <b v(b, σs − τs). Consequently
v(b, τ − σs) = minb(v(b, τ − τs), v(b, τs − σs)) = s. We have proved that τ
is a pseudo-limit of (σs)s∈S in (R, v(b, ·)).

ii) Assume that S ∩ [a, b[6= Ø, and let S′ = S ∩ [a, b[. Then S′ is a final
segment of S and (σs)s∈S′ is a pseudo-Cauchy sequence of (R, v(b, ·)). Let
s1 <b s2 in S′. We have a ≤b v(b, σs1−σs2) = minb(Supp(σs1−σs2)). Hence
mina(Supp(σs1 − σs2)) = minb(Supp(σs1 − σs2)), and v(a, σs1 − σs2) =
v(b, σs1 − σs2). It follows that (σs)s∈S′ is a pseudo-Cauchy sequence of
(R, v(a, ·)). Let τ be a pseudo-limit of (σs)s∈S′ in (R, v(a, ·)).

Let τ ′ be the section of τ by [b, a[, s0 be the lowest element of (S′,≤a)
and σ′ be the section of σs0 by [b, a[. Set τ ′′ = τ−τ ′+σ′. Note that, by prop-
erties of pseudo-Cauchy sequences, and by (3) of Definition 1.1, for every
s >b s0 in S, σ′ is the section of σs by [b, a[, because v(b, σs − σs0) >b a.

Let s >b s0 in S′. We have v(b, σ′ − σs) ≥b a, hence v(b, τ ′′ − σs) =
v(b, τ − τ ′ + σ′ − σs) ≥b a, it follows : v(b, τ ′′ − σs) = v(a, τ ′′ − σs).

By definition of σ′ and τ ′, we have v(a, σ′) ≥a b and v(a, τ ′) ≥a b. Hence
v(a, σ′−τ ′) ≥a b. Now, v(a, τ−σs) = s <a b, v(b, τ ′′−σs) = v(a, τ ′′−σs) =
v(a, τ − σs + σ′ − τ ′) = mina(v(a, τ − σs), v(a, σ′ − τ ′)) = s. So τ ′′ is a
pseudo-limit of (σs)s∈S′ in (R, v(b, ·)).

We have proved that (R, v(b, ·)) is spherically complete.
The converse is trivial. �

Theorem 2. Assume that (R, v) is a cyclically valued ring. Let k :=
M0 ∪ {0} and assume (a), (b) below :
(a) C is interpretable.
(b) (R, v) is spherically complete and closed under section.
Then (R, v) is isomorphic to a ring (k[[C, θ]], v), for some θ : C ×C → k
such that θ(C × C) is a commutative factor set.

Proof. By Proposition 2.12 and Theorem 1, there exists an isomorphism
Ψ from (R, v) into a ring (k[[C, θ]], v), for some θ : C × C → k such that
θ(C ×C) is a commutative factor set. It remains to prove that Ψ is onto.
We identify R with its image in k[[C, θ]]. Let σ be an element of k[[C, θ]].
We prove by induction on the initial segment I of the support S(σ) of σ
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that R contains all the sections of σ. It will follow that σ belongs to R.
If I contains only a finite number of elements of the support of σ, this

is true because R contains all the polynomials.
Assume that the property is true for all I ′ < I.
If I = I ′ ∪ {c}, there exists a section τ ′ ∈ R of σ with support I ′. Let

τ := τ ′ + σcX
c, τ ∈ R because (R,+) is a group, τ is a section of σ with

support I.
If I =

⋃
I′<I I ′, let (s) be an increasing sequence of I, cofinal in I. For

every s, set Is := {a ∈ I | a ≤ s}, and let τs ∈ R such that τs is a section
of σ with support Is, i.e. τs :=

∑
c∈Is

σcX
c. Then (τs) is a pseudo-Cauchy

sequence of R, hence it has a pseudo-limit τ ′′ in R (because R is spherically
complete), and the restrictions of τ ′′ and σ to I are equal. Let τ be the
section of τ ′′ with support I, τ ∈ R because R is closed under section, and
τ is a section of σ, too. �

3. Quotients and extensions of cyclic valuations.

Theorem 3. Let H be a subgroup of C.
1) Let R′ be the set of all elements of R with supports contained in H,
and v′ be the restriction of v to R′×H. Then (R′, v′) is a cyclically valued
subring of (R, v).
2) Assume that H is a convex subgroup of the linear part of C.
a) For every σ inR\{0} and every ain C, set v′′(a+H,σ) :=mina+H{v(c, σ)+
H | c ∈ C} and v′′(a + H, 0) := ∞. Then (R, v′′) satisfies (1), (3),
(4) of Definition 1.1, and the set of all monomials of degree a + H is
{ρ ∈ R | Suppv(ρ) ⊂ a + H}.
b) Let k be a ring, θ : C × C → k be a mapping such that θ(C,C) is
a commutative factor set, and assume that R = k[[C, θ]] or R = k[C, θ].
Then (R, v′′) is a cyclically valued ring.

Proof. .
1) (R′,+) is a subgroup of (R,+). Indeed, 0 ∈ R′, and if σ and τ

belong to R′, then Supp(−σ) = Supp(σ) ⊂ H, and Supp(σ + τ) ⊂
Supp(σ) ∪ Supp(τ) ⊂ H.
Any monomial with degree in H belongs to R′, hence v′ : R′ × H →
H ∪ {∞} is onto; furthermore, (R′, v′) satisfies condition (2) of Definition
1.1.
Clearly, for every a ∈ H, the restriction of v(a, ·) to R′ is a valuation of
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groups, hence (R′, v′) enjoys (1) of Definition 1.1.
Let σ ∈ R′ and a ∈ H. mina(Supp(σ)) exists and is equal to v(a, σ). Now,
Supp(σ) ⊂ H, hence v(a, σ) ∈ H. It follows that v′(a, σ) = v(a, σ) =
mina(Supp(σ)) ∩H i.e. (R′, v′) satisfies (3) of Definition 1.1.
Let σ and τ in R′, then Supp(στ) ⊂ Supp(σ) + Supp(τ) ⊂ H, hence R′ is
a subring of R. Now, (R′, v) satisfies (4) and (5) of Definition 1.1 because
so does (R, v).

2) a)
In order to prove that the definition of v′′ is consistent, let a ∈ C and

σ 6= 0 in R. If Suppv(σ)∩(a+H) 6= Ø, then mina+H{v(c, σ)+H | c ∈ C} =
a+H. Otherwise, let b := v(a, σ) = mina{v(c, σ) | c ∈ C} and a1 ∈ a+H.
Then ∀s ∈ Suppv(σ)\{b}, (a, b, s). Now, H is a convex subgroup of l(C),
hence (a1, b, s), therefore v(a1, σ) = b = mina{v(c, σ) | c ∈ C}. It follows
that b + H = mina+H{v(c, σ) + H | c ∈ C}.

Let a ∈ C, σ, τ in R. By definition, v′′(a+H,σ) =∞⇔ σ = 0. Assume
that v′′(a + H,σ − τ) = a + H, then there exists a1 ∈ a + H such that
v(a1, σ − τ) = a1. Now v(a1, σ − τ) ≥a1 mina1(v(a1, σ), v(a1, τ)), hence
v(a1, σ) = a1 or v(a1, τ) = a1, in any case, mina+H(v′′(a + H,σ), v′′(a +
H, τ)) = a + H. Assume that v′′(a + H,σ − τ) 6= a + H, and let b =
v(a, σ − τ). We have already proved that v′′(a + H,σ − τ) = b + H.
We have b = v(a, σ − τ) ≥a mina(v(a, σ), v(a, τ)), hence mina+H(v′′(a +
H,σ), v′′(a + H, τ)) ≤a+H b + H. So (R, v′′) satisfies (1) of Definition 1.1.

By hypothesis, for every σ in R, Suppv′′(σ) ⊂ {v(c, σ)+H | c ∈ H}. Let
b ∈ Suppv(σ), then v′′(b+H,σ) = minb+H{v(c, σ) | c ∈ C} = b+H, hence
Suppv′′(σ) = {v(c, σ) + H | c ∈ C}. So for every a ∈ C, v′′(a + H,σ) =
mina+H Suppv′′(σ) and (R, v′′) satisfies (3) of Definition 1.1.

Let σ, τ in R. We have Suppv(στ) ⊂ Suppv(σ) + Suppv(τ), hence
{v(c, στ)+H | c ∈ C} ⊂ {v(c, σ)+H | c ∈ C}+ {v(c, τ)+H | c ∈ C}, i.e.
Suppv′′(στ) ⊂ Suppv′′(σ) + Suppv′′(τ). This proves (4) of Definition 1.1.

Trivially, the set of v′′-monomials of degree a is the set of all elements
with v-support non-empty and contained in a + H.

2) b)
i) Let σ ∈ R, a ∈ Suppv(σ) and µa+H,σ be the restriction of σ to a+H.

Then Suppv(µa+H,σ) ⊂ a + H and Suppv(σ − µa+H,σ) ∩ (a + H) = Ø,
hence v′′(a+H,σ−µa+H,σ) 6= a+H. Trivially, if µ is a v′′-monomial such
that v′′(a + H,σ − µ) 6= a + H, then µ = µa+H,σ. So (R, v′′) satisfies (2)
of Definition 1.1.

ii) Let σ, τ in R, a + H ∈ Suppv′′(στ) and {a1 + H, . . . , an + H} =
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Suppv′′(σ) ∩ ((a + H)− Suppv′′(τ)). In order to prove that

µa+H,στ = µa1+H,σµa−a1+H,τ + · · ·+ µan+H,σµa−an+H,τ ,

it is sufficient to prove that

Suppv(στ − µa1+H,σµa−a1+H,τ − · · · − µan+H,σµa−an+H,τ )∩ (a + H) = Ø.

Let σ =
∑

c∈C σcX
c, τ =

∑
c∈C τcX

c. For every i, 1 ≤ i ≤ n, we have
µai+H,σ =

∑
c∈ai+H σcX

c and µa−ai+H,τ =
∑

c∈a−ai+H τcX
c. Set

E:=[(C/H)×(C/H)]\{(a1+H)×((a−a1)+H)}∪· · ·∪{(an+H)×(a−an+H)},
then

στ−µa1+H,σµa−a1+H,τ−· · ·−µan+H,σµa−an+H,τ =
∑

(c1,c2)∈E

σc1τc2X
c1+c2θ(c1, c2).

Now, by hypothesis, ((c1, c2) ∈ E and c1 +c2 ∈ a+H)⇒ σc1 = 0 or τc2 =
0, hence

Supp(στ − µa1+H,σµa−a1+H,τ − · · · − µan+H,σµa−an+H,τ ) ∩ (a + H) = Ø.

�

Definition 3.1. Let k be a ring, θ : C × C → k be a mapping such
that θ(C,C) is a commutative factor set, R = k[[C, θ]] or R = k[C, θ], and
let H be a convex subgroup of C. If v′′ is the cyclic valuation defined by
v′′(a+H,σ) = mina+H{v(c, σ)+H | c ∈ C} and v(a+H, 0) =∞, we will
say that v′′ is a quotient of v.

Remark 3.2. Assume that R = k[[C, θ]] (or k[C, θ]) and that H is the linear
part of C. H being a totally ordered group, k[[H, θ]] is a “classical” power
series ring with twisted multiplication. Set R′ := k[[H, θ]], and C ′ := C/H.
Then R′ is the set of all constants of (R, v′′), and C ′ is interpretable in
(R, v′′), because for every a in C, Xa is an invertible v′′-monomial. Hence
there exists θ′ such that k[[C, θ]] ' R′[[C ′, θ′]]. So, any power series ring
with twisted multiplication can be seen as a power series ring with twisted
multiplication such that the cyclically ordered group is archimedean.

Theorem 4. Let (R1, v1) be a cyclically valued ring such that C1 is a
linear cyclically ordered group. Let (R2, v2) be a cyclically valued ring
such that C2 is interpretable, the v2-support of every element of R is
well-ordered, and the ring of all v2-constants is isomorphic to R1. As-
sume that R2 contains a subset of v2-monomials M0 := {Xc2 | c2 ∈
C2 , degv2

(Xc2) = c2} such that X0 = 1, and for every c2, c′2 in C2,
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Xc2Xc′2(Xc2+c′2)−1 ∈ k\{0}, with k the ring of constants of (R1, v1). Then
there exists a cyclic valuation v3 on R2 such that v2 is a quotient of v3,
and the group of v3 is the lexicographically ordered product C3 = C1

←−×C2.

Proof. .
First we explain the notation C1

←−×C2. By a theorem of Rieger (see [1])
there exist a totally ordered abelian group G2 and z2 cofinal in the positive
cone of G2 such that C2 ' G2/Zz2. Then C1

←−×C2 = (C1
←−×G2)/Z(0, z2).

In the following, for every σ in R2 and a2 in C2, we let σa2 := µa2,σ(Xa2)−1

in R1 be the only v2-constant such that v2(a2, σ − σa2X
a2) 6= a2.

Let (a1, a2) ∈ C1 × C2, σ ∈ R2, and set b2 := v2(a2, σ). If b2 = a2 (i.e.
σa2 6= 0), set b1 := v1(a1, σb2). If b2 6= a2, set b1 := v1(ε1, σb2). Now, set
v3((a1, a2), σ) := (b1, b2).

We show that the set of all v3-monomials is

{µ1X
b2 | µ1 is a v1-monomial and b2 ∈ C2}.

Let µ1 be a v1-monomial, b1 be the v1-degree of µ1, and let b2 ∈ C2,
(a1, a2) ∈ C1 × C2. v2(a2, µ1X

b2) = b2 because µ1 is a v2-constant. If
b2 6= a2, then v3((a1, a2), µ1X

b2) = (v1(ε1, µ1), b2) = (b1, b2). If b2 = a2,
then v3((a1, a2), µ1X

b2) = (v1(a1, µ1), b2) = (b1, b2). Hence µ1X
a2 is a v3-

monomial. Let τ be a v3-monomial and (b1, b2) be the v3-degree of τ . For
every (a1, a2) ∈ C1 × C2, v3((a1, a2), τ) = (b1, b2), hence v2(a2, τ) = b2.
Hence τ is a v2-monomial. It follows that τ = µb2,τ , and τb2 = τ(Xb2)−1.
So τ = τb2X

b2 (with τb2 a v2-constant). If b2 6= a2, then v1(ε1, τb2) = b1. If
b2 = a2, then for every a1, v1(a1, τb2) = b1. Hence τb2 is a v1-monomial.

Consequently, the set of all v3-monomials is closed under multiplication,
the degree of the product of any two v3-monomials is the sum of their
degrees, and if τ is a v3-monomial such that (τ)−1 exists, then (τ)−1 is a
v3-monomial.

(1) of Definition 1.1. Let σ and τ in R2, (a1, a2) in C1
←−×C2 and (b1, b2) =

v3((a1, a2), σ − τ). By hypothesis, we have

b2 = v2(a2, σ − τ) ≥a2 min
a2

(v2(a2, σ), v2(a2, τ)).

If b2 = a2, then

b1 = v1(a1, (σ−τ)a2) = v1(a1, σa2−τa2) ≥a1 mina1(v1(a1, σa1), v1(a1, τa1)).
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If σa2 6= 0 6= τa2 , then

(b1, b2) ≥(a1,a2) min(a1,a2)((v1(a1, σa2), a2), (v1(a1, τa2), a2))
≥(a1,a2) min(a1,a2)(v3((a1, a2), σ), v3((a1, a2), τ)).

If τa2 = 0, then σa2 6= 0, and v2(a2, τ) >a2 a2 = v2(a2, σ). Hence

v3((a1, a2), σ) <(a1,a2) v3((a1, a2), τ).

Now, v1(a1, τa2) =∞, hence

b1 = v1(a1, σa2 − τa2) = v1(a1, σa2).

It follows :

(b1, b2) = v3((a1, a2), σ) = min(a1,a2)(v3((a1, a2), σ), v3((a1, a2), τ)).

The case σa2 = 0 is similar.
If b2 6= a2, then :

b1 = v1(ε1, (σ − τ)b2) = v1(ε1, σb2 − τb2) ≥ε1 minε1(v1(ε1, σb2), v1(ε1, τb2)).

If b2 >a2 mina2(v2(a2, σ), v2(a2, τ)), then :

v3((a1, a2), σ − τ) ≥(a1,a2) min(a1,a2)(v3((a1, a2), σ), v3((a1, a2), τ)).

If b2 = mina2(v2(a2, σ), v2(a2, τ)), say b2 = v2(a2, σ), then (τb2 6= 0 ⇔
v2(a2, τ) = b2). Hence :

v3((a1, a2), σ − τ) ≥(a1,a2) min(a1,a2)(v3((a1, a2), σ), v3((a1, a2), τ)).

(1) is proved.

(3) of Definition 1.1. Let (a1, a2) ∈ C1 × C2, σ ∈ R2, (b1, b2) :=
v3((a1, a2), σ) and (c1, c2) ∈ C1

←−×C2 with (c1, c2) ≤(a1,a2) (b1, b2). We have

b2 = v2(a2, σ) and ((c1, c2) ≤(a1,a2) (b1, b2)⇒ c2 ≤a2 b2),

hence b2 = v2(c2, σ), because v2 satisfies (3’).
If b2 6= c2, then v3((c1, c2), σ) = (v1(ε1, σb2), b2) = (b1, b2).
If b2 = c2 6= a2, then v3((c1, c2), σ) = (v1(c1, σb2), b2) = (b1, b2) (because

v1 satisfies (3’)).
If b2 =a2, then c2 = a2 and c1≤a1 b1 = v1(a1, σa2). Hence v3((c1, c2), σ) =

(v1(c1, σa2), b2) = (v1(a1, σa2), b2) = (b1, b2).

(2) of Definition 1.1. If v3((a1, a2), σ) 6= (a1, a2), take µ(a1,a2),σ = 0. If
v3((a1, a2), σ) = (a1, a2), then by the definition of v3, we have σa2 6= 0,
v2(a2, σ) = a2, v3(a2, σ − σa2X

a2) 6= a2 and v1(a1, σa2) = a1. We know
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that µa1,σa2
Xa2 is a v3-monomial, where µa1,σa2

is the only v1-monomial
such that v1(a1, σa2 − µa1,σa2

) 6= a1. Now :

v3((a1, a2), σ − µa1,σa2
Xa2) = v3((a1, a2), σ − σa2X

a2 + (σa2

−µa1,σa2
)Xa2)

≥(a1,a2) min(a1,a2)(v3((a1, a2), σ − σa2X
a2),

v3((a1, a2), (σa2 − µa1,σa2
)Xa2)

>(a1,a2) (a1, a2).

(2) is proved.

(4) of Definition 1.1. Let (a1, a2) ∈ Suppv3
(στ). The v2-support of ev-

ery element being well-ordered, card({(b, c) ∈ Suppv2
(σ)× Suppv2

(τ)}) is
finite, say equal to n. Let b2,i ∈ Suppv2

(σ), c2,i ∈ Suppv2
(τ), 1 ≤ i ≤ n,

such that a2 = b2,i + c2,i (1 ≤ i ≤ n). Then :

(στ)a2 = µa2,στ (Xa2)−1

= µb2,1,σµc2,1,τ (Xa2)−1 + · · ·+ µb2,n,σµc2,n,τ (Xa2)−1

= σb2,1τc2,1X
b2,1Xc2,1(Xa2)−1 + · · ·+ σb2,nτc2,nXb2,nXc2,n(Xa2)−1,

with Xb2,iXc2,i(Xa2)−1 ∈ k\{0}.

Recall that the support of the sum of any two elements is contained in the
union of the supports of these elements (see [5]). Hence :

Suppv1
(στ)a2 ⊂

⋃
1≤i≤n Suppv1

(σb2,i
τc2,i)X

b2,iXc2,i(Xa
2 )−1

⊂
⋃

1≤i≤n Suppv1
(σb2,i

τc2,i)
⊂

⋃
1≤i≤n Suppv1

(σb2,i
) + Suppv1

(τc2,i).

It follows : a1 ∈
⋃

1≤i≤n Suppv1
(σb2,i

) + Suppv1
(τc2,i) and

(a1, a2) ∈
⋃

1≤i≤n(Suppv1
(σb2,i

) + Suppv1
(τc2,i))× {b2,i + c2,i}

=
⋃

1≤i≤n(Suppv1
(σb2,i

) + Suppv1
(τc2,i))× {a2}.

We deduce : Suppv3
(στ) ⊂ Suppv3

(σ) + Suppv3
(τ).

(5) of Definition 1.1. Let (a1, a2) ∈ Suppv3
(στ) and assume that

(b1,ij , b2,i) ∈ Suppv3
(σ), (c1,ij , c2,i) ∈ Suppv3

(τ), 1 ≤ i ≤ n, 1 ≤ j ≤ pi,
are the only elements such that (b1,ij , b2,i) + (c1,ij , c2,i) = (a1, a2) (so
a1 = b1,ij + c1,ij , a2 = b2,i + c2,i). Then for every i, j, v((b1,ij , b2,i), σ −
µb1,ij ,σb2,i

Xb2,i) 6=(b1,ij , b2,i) and v((c1,ij , c2,i), τ−µc1,ij ,τc2,i
Xc2,i) 6=(c1,ij , c2,i).
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Hence :
v3((a1, a2), στ − µb1,11,σb2,1

Xb2,1µc1,11,τc2,1
Xc2,1 − · · ·

−µb1,1p1 ,σb2,1
Xb2,1µc1,1p1 ,τc2,1

Xc2,1 − · · · − µb1,n1,σb2,n
Xb2,nµc1,n1,τc2,n

Xc2,n

− · · · − µb1,npn ,σb2,ni
Xb2,nµc1,npn ,τc2,n

Xc2,n)
= v3((a1, a2), στ − (σb2,1τc2,1X

b2,1Xc2,1 + · · ·+ σb2,nτc2,nXb2,nXc2,n)
+(σb2,1τc2,1−µb1,11,σb2,1

µc1,11,τc2,1
− · · ·−µb1,1p1 ,σb2,1

µc1,1p1 ,τc2,1
)Xb2,1Xc2,1+ · · ·

+(σb2,ni
τc2,n−µb1,n1,σb2,i

µc1,n1,τc2,n
− · · · − µb1,npn ,σb2,n

µc1,npn ,τc2,n
)Xb2,nXc2,n)

≥(a1,a2) min(a1,a2)(v3((a1, a2), στ − (σb2,1τc2,1X
b2,1Xc2,1 + · · ·

+σb2,nτc2,nXb2,nXc2,n)), v3((a1, a2), (σb2,1τc2,1 − µb1,11,σb2,1
µc1,11,τc2,1

− · · ·
−µb1,1p1 ,σb2,1

µc1,1p1 ,τc2,1
)Xb2,1Xc2,1), . . . , v3((a1, a2), (σb2,nτc2,n

−µb1,n1,σb2,n
µc1,n1,τc2,n

− · · · − µb1,npn ,σb2,n
µc1,npn ,τc2,n

)Xb2,nXc2,n)).

Now, v2(a, στ−(σb2,1τc2,1X
b2,1Xc2,1 + · · ·+σb2,nτc2,nXb2,nXc2,n)) 6= a2, and

for 1 ≤ i ≤ n,
v1(a1, σb2,i

τc2,i − µb1,i1,σb2,i
µc1,i1,τc2,i

− · · · − µb1,ipi
,σb2,i

µc1,ipi
,τc2,i

) 6= a1.
It follows :
v3((a1, a2), στ − µb1,11,σb2,1

Xb2,1µc1,11,τc2,1
Xc2,1 − · · ·

− µb1,npn ,σb2,n
Xb2,nµc1,npn ,τc2,n

Xc2,n) >(a1,a2) (a1, a2).

We conclude by proving that v2 is a quotient of v3. By construction,
H := C1

←−×{0} is a convex subgroup of the linear part of C3 = C1
←−×C2. We

have C2 ' (C1
←−×C2)/(C1

←−×{0}), hence for every (a1, a2) in C3, we can set
(a1, a2) + H = a2. Let σ ∈ R2 and a2 ∈ C2. By definition, for every a1 in
C1, we have v3((a1, a2), σ) + H = v2(a2, σ). Therefore mina2{v3(a1, a2) +
H | a1 ∈ C1} = v2(a2, σ) : v2 is a quotient of v3. �

Corollary 3.3. Let (R2, v2) be a cyclically valued ring such that C2 is a
summand in the set of monomials, and the support of every element of
R2 is well-ordered. Assume that the ring R1 of all constants is a cyclically
valued one, with a cyclic valuation v1 such that the group C1 is a linear
cyclically ordered group. Then there exists a cyclic valuation v3 on R2

such that v2 is a quotient of v3, and the group of v3 is the lexicographically
ordered product C1

←−×C2.

Corollary 3.4. Let S1 be a cyclically valued ring with ring of constants k
and cyclically ordered group C1, such that C1 is a linear cyclically ordered
group. Let C2 be an abelian cyclically ordered group, θ : C2 ×C2 → S1 be
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a mapping such that θ(C2, C2) is a commutative factor set, and the image
of θ is a subset of k. Then there exists a cyclic valuation v3 on S1[[C2, θ]]
such that v2 is a quotient of v3.

4. Valuation ε.

The valuation v(ε, ·) is first order definable in the language
(+, 0, ·, v, C, (·, ·, ·)), because v(ε, ·) exist if and only if :
∀σ ∈ R, (∃a ∈ C, (−a <0 a) ∧ v(a, σ) = a) ⇒ ∃a ∈ C, −a <0 a ∧ ∀b ∈
C, (−b <0 b⇒ v(a, σ) ≤0 v(b, σ) ),
and if that is the case then we define v(ε, ·) by setting for every σ ∈ R,

if ∃a ∈ C, −a <0 a, then v(ε, σ) is the element a ∈ C such that −a <0 a
and ∀b ∈ C, −b <0 b⇒ v(a, σ) ≤0 v(b, σ);

otherwise, v(ε, σ) = v(0, σ).
If ε ∈ C, (i.e. C\{0} contains an element ε such that −ε = ε), then

v(ε, ·) exists.
Now, <ε defines a Dedekind cut of C. Hence, by [5], we know that if

the cyclically valued ring (R, v) enjoys : ∀σ ∈ R, minε(Supp(σ)) exists,
then (R, v(ε, ·)) is a valued group.

The reader can check that, if the support of every element is well-
ordered, then v(ε, ·) exists.

Proposition 4.1. Assume that the product of any two monomials of R is
different from 0, that C is a linear cyclically ordered group and that v(ε, ·)
exists. Then for all σ and τ in R, v(ε, στ) = v(ε, σ) + v(ε, τ), and R is
integral.

Proof. Let a := v(ε, σ), b := v(ε, τ). Then a = minε Supp(σ) and b =
minε Supp(τ). Now, by hypothesis, (C,≤ε) is a totally ordered group,
hence Supp(σ) ∩ (a + b − Supp(τ)) = {a}. It follows that µa+b,στ =
µa,σµb,τ 6= 0, and v(a + b, στ) = a + b, so a + b ∈ Supp(στ). Now,
Supp(στ) ⊂ Supp(σ) + Supp(τ), hence v(ε, σ) + v(ε, τ) = a + b =
minε Supp(στ), and v(ε, στ) = v(ε, σ) + v(ε, τ). In particular, Supp(στ) 6=
Ø i.e. στ 6= 0. �

Theorem 5. Assume that the product of any two monomials of the cycli-
cally valued ring (R, v) is not 0, and let a ∈ C ∪{ε}. Then (R, v(a, ·)) is a
topological ring if and only if either C is a linear cyclically ordered group
and a = ε or (C,<0) has a greatest element.
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Proof. .
First, we note that, by properties of valued groups, for any a ∈ C ∪{ε},

(R,+, v(a, ·)) is a topological group. Hence (R,+, v(a, ·)) is a topological
ring if and only if the multiplication is continuous.

In the following, we set, for any a, b in C and σ ∈ R, Ba,>(σ, b) := {τ ∈
R | v(a, τ − σ) >a b}.

Assume that (C,<0) has a greatest element, say m. By compatibility,
a + m is the greatest element of (C,<a). It follows that for every σ ∈ R,
Ba,>(σ, a + m) = {σ}. Hence the topology is discrete, and the multiplica-
tion is continuous.

From now on, (C,<0) has no greatest element.
Assume that a ∈ C.
Let b ∈ P , and let σ0 be such that Supp(σ0) = {0, b} (i.e. σ is the

sum of a monomial of degree b and of a monomial of degree 0). In or-
der to prove that the multiplication is not continuous, we prove that for
every c ∈ C, there exists a monomial µ ∈ Ba,>(0, c) such that µ · σ0 /∈
Ba,>(0 · σ0, a − b) = Ba,>(0, a − b). Indeed, let d ∈ C such that d >a c,
and let µ be a monomial of degree d. We have Supp(µ · σ0) = {d, d + b}.
If d ≤a a − b, then v(a, µ · σ0) ≤a a − b, and µ · σ0 /∈ Ba,>(0, a − b).
If d >a a − b, then −b <0 d − a and by general properties of cyclically
ordered groups, b + d − a <0 b. Now, b ∈ P hence b <0 −b, it follows
b + d− a <0 −b, i.e. b + d <a a− b. Therefore v(a, µ · σ0) = b + d <a a− b,
and µ · σ0 /∈ Ba,>(0, a− b).

Assume that a = ε /∈ C, and that C is not linear cyclically ordered.
Then, there exist c and d in the positive cone P of C such that c+d ∈ −P .

First, we point out that for every e >ε c (that is e ∈ P and e >0 c),
d+ e ∈ −P . Indeed, e ∈ P , −d ∈ −P , hence e <0 −d (because P <0 −P ).
We have c <0 e <0 −d, hence c + d <d d + e <d 0. By general properties
of cyclically ordered groups, 0 <d+e d <d+e c + d, hence 0 <d+e c + d.
Consequently c + d <0 d + e, hence d + e ∈ −P .

Now let µd be a monomial of degree d. Let x >ε maxε(b, c) (so x ∈ P )
and let µe be a monomial of degree e. The support of µe · (1 + µd) is
{e, d+e} and is not contained in P , hence µe · (1+µd) is not in Bε,>(0, 0).
We have µe ∈ Bε,>(0, b), but µe · (1 + µd) /∈ Bε,>(0, 0) : the multiplication
is not continuous.

If a = ε and C is a linear cyclically ordered group, then by Proposi-
tion 4.1, for all σ and τ in R, v(ε, στ) = v(ε, σ) + v(ε, τ). It follows that
(R, v(ε, ·)) is a valued ring, so (R, v(ε, ·)) is a topological ring. �
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Notice that “(C,<0) has a greatest element” is equivalent to saying that
“(C,<0) is discretely ordered”. Indeed, if (C,<0) is discretely ordered,
then (C\{0}, <0) contains a lowest element e. Let b ∈ C\{0, e,−e}, then
(0, e, b+e). It follows : (−e, 0, b), hence (0, b,−e), i.e. b <0 −e. Therefore−e
is the greatest element of (C,<0). Now, assume that (C <0) has a greatest
element m. Let b /∈ {0, −m}. We have (0, b+m,m), and by compatibility,
(−m, b, 0), hence −m <0 b. It follows that −m is the successor of 0 in
(C,<0). Now, let a ∈ C, b ∈ C\{a, a−m}. We have −m <0 b− a, hence
a −m <a b. Assume that a <0 b. Hence b <a 0, so a −m <a b <a 0. It
follows : a <b a−m, and 0 <b a, hence 0 <b a−m. So a−m <0 b. Thus
a −m is the successor of a in (C,<0). Symmetrically, we can prove that
every non 0 element is the successor of an other element in (C,<0).

5. Definition of cyclic valuations in a relational language.

It is well-known that a language for valued fields is the language of fields
augmented with a new unary symbol for being an element of the valuation
ring. Indeed, if K is a valued field with valuation ring A, then the value
group is isomorphic to (K\{0})/A∗, and the valuation mapping is the
canonical mapping from K\{0} to (K\{0})/A∗. Thank to this language,
one can prove the theorems of Ax-Kochen-Ershov, which define classes
of elementarily equivalent valued rings. In the case of cyclically valued
rings, we will see that we can construct v with the group of all invertible
monomials, the subgroup of all invertible constants, the positive cone and
the subset {σ ∈ R | v(0, σ) = 0}. Now, defining classes of elementarily
equivalent cyclically valued rings remains an open question.

Assume that P is the positive cone of a cyclically ordered group C (i.e.
P = {c ∈ C | (0, c,−c)}). It is well-known that P satisfies (a), (b), (c),
(d) below.
(a) P ∩ −P = Ø
(b) There exists at most one ε 6= 0 such that ε = −ε, and if this holds
then −P = ε + P ,
(c) ∀c ∈ C, c /∈ P ∪ −P ⇔ c = −c,
(d) ∀a ∈ P , ∀b ∈ P , ∀c ∈ P , (b− a ∈ P and c− b ∈ P )⇒ c− a ∈ P .

Conversely, if C is an abelian group and P is a subset of C which sat-
isfies (a), (b), (c), (d), then there is a cyclic order (·, ·, ·) on C such that
P = {c ∈ C | (0, c,−c)}.
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This cyclic order is defined in the following way.
(0, a, b) if and only if one of the three following conditions is satisfied :
a ∈ P , b ∈ P ∪ {ε}, b− a ∈ P
−a ∈ P ∪ {ε}, −b ∈ P , b− a ∈ P
a ∈ P , −b ∈ P .
And in general, (a, b, c) if and only if (0, b− a, c− a) or (0, c− b, a− b) or
(0, a− c, b− c).

Now, let (R, v) be a cyclically valued ring such that the cyclically or-
dered group C is interpretable. Let IM be the group of all invertible
monomials, IM0 := IM ∩M0 be the subgroup of all invertible constants,
and let IMP be the subset of all invertible monomials µ such that the de-
gree of µ is an element of the positive cone of C. We have C ' IM/IM0,
and IMP gives rise to the cyclic order on C. For every µ in IM , we denote
by µ̄ the class of µ modulo IM0. Let V0 := {σ ∈ R | v(0, σ) = 0}. For
every σ ∈ R\{0}, there exists µσ such that σµ−1

σ ∈ V0, and ∀µ ∈ IM ,
σµ−1 ∈ V0 ⇒ µσ ≤0 µ̄. The support of σ is the set {µ̄ | σµ−1 ∈ V0}, and
v(µ̄, σ) = µσµ−1 .

Conversely, let R be an abelian ring with 1, IM be a subgroup of the
group of all units of R, IM0 be a subgroup of IM and IMP be a subset
of IM such that IMP · IM0 ⊂ IMP . Assume the following.
(a) IMP ∩ IM−1

P = Ø.
(b) ∀µ1 ∈ IM\IM0, ∀µ2 ∈ IM\IM0, (µ2

1 ∈ IM0 and µ2
2 ∈ IM0 ⇒

µ1µ
−1
2 ∈ IM0), and if such a µ1 exists, then IM−1

P = µ1IMP .
(c) ∀µ ∈ IM , µ /∈ IMP ∪ IM−1

P ⇔ µ2 ∈ IM0.
(d) ∀µ1 ∈ IM , ∀µ2 ∈ IM , ∀µ3 ∈ IM , ((µ1 ∈ IMP , µ2 ∈ IMP , µ3 ∈ IMP ,
µ2µ

−1
1 ∈ IMP , µ3µ

−1
2 ∈ IMP )⇒ µ3µ

−1
1 ∈ IMP ).

Then {µ · IM0 | µ ∈ IMP } is the positive cone of a cyclic order (·, ·, ·)
of the quotient group C = IM/IM0. So, we will say that IM , IM0 and
IMP define a cyclically ordered group in R.

For µ in IM , let µ̄ be the class of µ modulo IM0.
Assume that R contains a subset V0 which satisfies :
(e) V0 ∩ IM = IM0, V0 · IM0 = V0, and
(f) ∀σ ∈ R\{0}, ∃cσ ∈ C, ∀µ ∈ IM , (µ̄ = cσ ⇒ σµ−1 ∈ V0) and
σµ−1 ∈ V0 ⇒ cσ ≤0 µ̄.

Then there exists a mapping v from C ×R onto C ∪ {∞} such that for
every µ ∈ IM , and every σ ∈ R :
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if σ = 0, then v(µ̄, σ) =∞,
if σ 6= 0, then v(µ̄, σ) = µ̄cµ−1σ.
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