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Enumeration of non-oriented maps via integrability
Volume 5, issue 6 (2022), p. 1363-1390.
https://doi.org/10.5802/alco.268

© The author(s), 2022.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Algebraic Combinatorics is published by The Combinatorics Consortium
and is a member of the Centre Mersenne for Open Scientific Publishing

www.tccpublishing.org www.centre-mersenne.org

e-ISSN: 2589-5486

https://doi.org/10.5802/alco.268
http://creativecommons.org/licenses/by/4.0/
https://www.tccpublishing.org/
www.tccpublishing.org
www.centre-mersenne.org
http://www.centre-mersenne.org/


Algebraic Combinatorics
Volume 5, issue 6 (2022), p. 1363–1390
https://doi.org/10.5802/alco.268

Enumeration of non-oriented maps via
integrability

Valentin Bonzom, Guillaume Chapuy & Maciej Dołęga

ABSTRACT In this note, we examine how the BKP structure of the generating series of several models of
maps on non-oriented surfaces can be used to obtain explicit and/or efficient recurrence formulas for their
enumeration according to the genus and size parameters.

Using techniques already known in the orientable case (elimination of variables via Virasoro constraints
or Tutte equations), we naturally obtain recurrence formulas with non-polynomial coefficients. This non-
polynomiality reflects the presence of shifts of the charge parameter in the BKP equation. Nevertheless, we
show that it is possible to obtain non-shifted versions, meaning pure ODEs for the associated generating func-
tions, from which recurrence relations with polynomial coefficients can be extracted. We treat the cases of
triangulations, general maps, and bipartite maps.

These recurrences with polynomial coefficients are conceptually interesting but bigger to write than those
with non-polynomial coefficients. However they are relatively nice-looking in the case of one-face maps. In
particular we show that Ledoux’s recurrence for non-oriented one-face maps can be recovered in this way, and
we obtain the analogous statement for the (bivariate) bipartite case.

1. INTRODUCTION AND MAIN RESULTS

In this note, we are interested in obtaining simple, or at least efficient, recurrence formulas
to count maps on surfaces according to their genus and size parameters. For us, a map is
the 2-cell embedding of a connected multigraph in a compact connected surface, considered
up to homeomorphism. Our surfaces are not necessarily orientable, and we call genus of a
surface the number g ∈ 1

2N such that its Euler characteric is 2 − 2g. The sphere has genus 0,
the projective plane has genus 1

2 , the torus and Klein bottle have genus 1, etc.
Perhaps one of the nicest-looking formulas in the field of map enumeration is the Goulden–

Jackson recurrence formula for orientable triangulations, i.e. maps in which all faces are
incident to three edge-sides. The Goulden–Jackson recurrence [29], in fact also discovered in
an equivalent form in [32, Eq. (B.6)], asserts that the number tn,g of rooted(1) triangulations
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with n faces on an orientable surface of genus g is solution of the equation

(n+ 1)tn,g = 4n(3n− 2)(3n− 4)tn−1,g−1 + 4
∑

i+j=n−2
h+k=g

(3i+ 2)(3j + 2)ti,htj,k.(1)

This formula was immediately recognized as a breakthrough in the field, because it gives a
much better access to these numbers (computational or theoretical) than the classical tech-
niques.

Indeed, in the classical approach, one introduces generating functions of maps of genus
g with a certain number of additional boundaries, and one shows that a combinatorial op-
eration of root-deletion on the maps (the “Tutte decomposition”) implies a functional equa-
tion for these functions. This approach has been very successful in the planar case since the
work of Tutte, see e.g. [39, 40, 41, 8, 11, 10]. In higher genus, it was pioneered by Lehman
and Walsh [43] and later Bender and Canfield, who showed that the generating functions
of maps of fixed genus and number of boundaries can be computed inductively on the Eu-
ler characteristic, thus revealing their particularly nice algebraic structure as well as their
singular behaviour [6, 7]. Bender and Canfield’s inductive technique can be seen as a pre-
decessor of the Chekhov–Eynard–Orantin topological recursion [24, 27], a powerful theory
invented in the context of matrix integrals [26] which has now been applied to study the
structure of fixed-genus generating functions of many models of maps or in enumerative ge-
ometry [28, 4, 19, 5, 14].

The need to introduce additional boundaries (and “catalytic” variables to mark their sizes)
makes these approaches ineffective for large values of g. There seems to be no hope to obtain
control on the bivariate numbers tn,g for non-fixed g in this way, a striking contrast with the
recurrence (1). For example (1) also gives access to the so-called double-scaling limit of the
numbers tn,g [32, 9], and it is also crucially used in the recent Budzinski-Louf breakthrough
on large genus asymptotics [18]. Perhaps we should insist on the fact that we mean no harm
to the “classical approach”. The study of the rational parametrization it gives rise to is a
fascinating subject, including purely bijective combinatorics [23, 22, 35, 3, 25], with probable
link to the study of random geometries [16, 17]. On the other hand, as of today, the bijective
interpretation of the Goulden–Jackson recurrence (1) is wide open.

One reason why the recurrence (1) gives access to different results is because it comes
from a completely different technique. It is based on the fact that the generating function of
maps on orientable surfaces, with an infinite number of variables pi, i ⩾ 1 (pi marking faces
of degree i), is a solution of the KP hierarchy – an infinite sequence of PDEs originating from
the theory of integrable systems, with deep connections to infinite dimensional Lie algebras
and algebraic combinatorics [31, 37]. The first equation of the hierarchy (the KP equation)
reads

F22 − F3,1 + 1
2F

2
12 + 1

12F14 = 0,(2)

where each i-index indicates a partial derivative with respect to pi. In order to go from the KP
equation (2) to the recurrence (1), Goulden and Jackson use the fact that the generating func-
tion F (p1, p2, p3, 0, . . . ) of maps having only faces of sizes 1, 2, 3 can in fact be expressed in
terms of the series F (0, 0, t, 0, . . . ) of triangulations only. This enables one to set pi = tδi,3
in (2) and obtain an ODE for the generating function of triangulations (in this paper we use
the Kronecker δ symbol). The fact that the variables p1 and p2 can be eliminated in this way
relies on local surgery operations that can, in fact, be interpreted as first cases of the classical
Tutte decomposition.

A similar elimination technique has since been used to obtain similar results for other
models of maps. In [21], Carrell and the second author use the fact that the generating func-
tion of bipartite maps solves the KP hierarchy, and local operations related to the first Tutte
equations for bipartite quadrangulations, to obtain a recurrence formula similar to (1) to count
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maps by vertices and faces. In [33], Kazarian and Zograf use a slightly different elimination
procedure, using the so-called Virasoro constraints (which are also related to Tutte decompo-
sitions) to recover the recurrence of [21] and to obtain an analogue for bipartite maps. These
three works only use the first KP equation. Finally, Louf [36] uses a different integrable hi-
erarchy (the Toda hierarchy) to obtain a remarkable recurrence counting bipartite maps of
arbitrary genus with control on all face degrees, using a different elimination technique in-
spired by Okounkov’s work on Hurwitz numbers [38].

In this paper, we are interested in obtaining variants of these results for non-oriented sur-
faces. Our starting point is the fact that generating functions of maps (or bipartite maps) are
solutions of the BKP hierarchy of Kac and Van De Leur [30] (see also the appendix of [15]).
An important difference between the KP and BKP hierarchy is that the function F which is a
solution of this hierarchy also involves a so-called charge parameter N , which in our context
will always be a variable marking faces or vertices of a certain kind. The first BKP equation
reads

(3) F22(N)−F3,1(N)+ 1
2F12(N)2+ 1

12F14(N) = S2(N)τ(N−2)τ(N+2)τ(N)−2,

where τ(N) = eF (N) and where S2(N) is a model-dependant normalizing factor that will
always be an explicit rational function in our case. In [20], Carrell used the fact that the
generating function of non-oriented maps satisfies this equation, together with the elimination
techniques developed by Goulden and Jackson in the orientable case, to obtain a functional
equation for the case of triangulations (this technique leads to an explicit recurrence, see
Theorem 4.10 below).

The first task we perform in this paper, somehow unsurprisingly, is to apply the elimination
of variables from the papers [21, 33] to the BKP equation, to obtain recurrences of the same
kind to count maps (by vertices and edges) and bipartite maps (by edges, and vertices of
each colour) on non-oriented surfaces. The Virasoro constraints for these models are known
(e.g. [15]) and our main task here is to make sure that the elimination procedure indeed
works, i.e. that these equations indeed enable to reduce all derivatives appearing in (3) to
differential polynomials in a single variable. For completeness, we also treat Carrell’s case
of triangulations explicitly. All these recurrences are larger than (1), but incredibly short
compared to any alternative, and it is not unreasonable to believe that they could have a
combinatorial interpretation. For example, we obtain in Section 5 the following recurrence
formula. Everywhere in the paper, the symbol

∑/
denotes a sum over elements of 1

2N.

THEOREM 1.1 (Counting maps by edges and genus). The number hg
n of rooted maps of genus

g with n edges, orientable or not, can be computed from the following recurrence formula:

(4) hg
n = 2

(n+1)(n−2)

(
n(2n− 1)(2hg

n−1 + h
g−1/2
n−1 ) + (2n−3)(2n−2)(2n−1)(2n)

2 hg−1
n−2

+ 12
∑/

g1=0..g
g1+g2=g

∑
n1=0..n

n1+n2=n

(2n2−1)(2n1−1)n1
2 hg2

n2−1h
g1
n1−1

−
∑/

g1=0..g
g1+g2=g

∑
n1=0..n−1
n1+n2=n

∑/
g0=0..g1
g1−g0∈N

(
n1+2−2g0

n1−2g1

)
22(1+g1−g0)hg0

n1

(
(2n2−1)(2n2−2)(2n2−3)

2 hg2−1
n2−2 − δ(n2,g2 )̸=(n,g)

n2+1
4 hg2

n2
+ 2n2−1

2 (2hg2
n2−1 + h

g2−1/2
n2−1 )

+ 6
∑/

g3=0..g2
g3+g4=g2

∑
n3=0..n2

n3+n4=n2

(2n3−1)(2n4−1)
4 hg3

n3−1h
g4
n4−1

))
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for n > 2, with the initial conditions h0
0 = 1, h0

1 = 2, h0
2 = 9, h1/2

1 = 1, h1/2
2 = 10, h1

2 = 5,
and hg

n = 0 if n < 2g.

We will obtain similar theorems for other models, in particular one with control on vertices
and faces (Theorem 5.2 or Theorem 3.7 depending on the elimination technique), one for
bipartite maps (Theorem 4.4), and one for triangulations which is implicit in Carrel’s work
(Theorem 4.10).

The crucial fact that the BKP equation (3) involves not only the function F (N) but also its
shifts F (N + 2) and F (N − 2) has an important effect on the recurrence formulas we obtain.
The functional equations corresponding to these recurrences, which involve derivatives but
also shifts of variables, are not ODE in their main variable. In return, the recurrences obtained
do not have polynomial coefficients (for example (4) contains binomial coefficients, which
are not polynomials in the summation variables). This is a deep structural difference between
the recurrence (1) and recurrences such as (4).

It is natural to ask if one could instead obtain formulas in which the shifts are not involved,
i.e. true polynomial recurrence formulas, corresponding to nonlinear ODEs with polynomial
coefficients for the associated generating functions. This would be much more satisfying, at
least at the conceptual level. Maybe surprisingly, we will see that the answer to this question
is yes. To see this, we will have to use several (in fact, three) equations of the BKP hierarchy.
Using additional derivations and manipulations, we will be able to eliminate the shifts from
equations, and obtain equations at fixed N , at the price of having to consider higher deriva-
tives. It is not obvious, but it will be true, that a finite number of Virasoro constraints will still
be sufficient to perform the elimination of variables in this context.

Due to the use of higher BKP equations and additional manipulations involved, the equa-
tions thus obtained are bigger than the previous ones.(2) We will only state them here in a
non-explicit form. The reader eager to see them at work may access these equations, and use
them to compute numbers of maps, in the accompanying Maple worksheet [13]. A typical
statement we obtain from these methods is the following.

THEOREM 1.2 (Counting maps by edges and genus – unshifted recurrence). The number hg
n

of rooted maps of genus g with n edges, orientable or not, is solution of an explicit recurrence
relation of the form

hg
n =

K1∑
a=0

K2∑/
b=0

K3∑
k=1

∑
n1,...,nk⩾1

n1+···+nk=n−a

∑/
g1,...,gk⩾0

g1+···+gk=g−b

Pa,b,k(n1, . . . , nk)hg1
n1
hg2

n2
. . . tgk

nk
,(5)

where the Pa,b,k are rational functions with P0,0,1 = 0, and K1,K2,K3 < ∞.

We will obtain similar theorems for other models, in particular one for bipartite maps
(Theorem 4.5), and for triangulations (Theorem 4.11). Moreover, we will in fact prove a
version of Theorem 1.2 with control on the number of faces, from which we obtain a closed
recurrence formula enumerating one-face maps, small enough to be explicitly written.

THEOREM 1.3 (Ledoux’s recursion for non-oriented one-face maps). The number ug
n of

rooted non-oriented maps of genus g with n edges and only one face (or equivalently with n

(2)They are however not gigantic, see the accompanying worksheet [13]. The main ODE for maps fits in slightly
more than a page in \tiny LaTex print, we have however chosen not to reproduce it here.
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edges and only one vertex) is given by the recursion

(6)

(n+1)ug
n = (8n−2)ug

n−1 − (4n−1)ug−1/2
n−1 +n(2n−3)(10n−9)ug−1

n−2 −8(2n−3)ug
n−2

− 10(2n− 3)(2n− 4)(2n− 5)ug−1
n−3 + 5(2n− 3)(2n− 4)(2n− 5)ug−3/2

n−3

+ 8(2n− 3)ug−1/2
n−2 − 2(2n− 3)(2n− 4)(2n− 5)(2n− 6)(2n− 7)ug−2

n−4

with the convention that ug
n = 0 for g < 0 and g > n

2 and with the initial condition u
1/2
1 = 1,

u1
2 = u

1/2
2 = 5, u3/2

3 = 41, u1
3 = 52, u1/2

3 = 22.

The recurrence (6) was first obtained by Ledoux [34] using matrix integral techniques
unrelated (as far as we know) to the BKP equation. It is remarkable to see that it is, in fact,
the shadow of bigger nonlinear recurrence giving access to an arbitrary number of faces. The
Ledoux recurrence can be viewed as an non-oriented version of the infamous Harer–Zagier
recurrence, a similar (but smaller) formula which covers the case of orientable one-face maps
(and which is itself a special case of the recurrence of [21]). The Harer–Zagier recurrence has
a nice analogue in the bipartite case due to Adrianov [2], and it is natural to ask if our non-
shifted recursion in the bipartite case implies an non-oriented version of Adrianov’s result.
The answer is yes.

THEOREM 1.4 (A recurrence for non-oriented bipartite one-face maps). The number bi,j
n of

rooted one-face maps with n edges, i white and j black vertices, orientable or not, is given
by the recursion:

(n+1)bi,j
n = (4n−1)(bi−1,j

n−1 +bi,j−1
n−1 −bi,j

n−1)+(5n3−16n2+13n−1)bi,j
n−2

+(2n−3)(4bi−1,j
n−2 +4bi,j−1

n−2 −3bi−2,j
n−2 +3bi,j−2

n−2 −2bi−1,j−1
n−2 )

+(10n3−68n2+150n−107)(bi,j
n−3−bi−1,j

n−3 −bi,j−1
n−3 )

+(4n−11)(bi−3,j
n−3 +bi,j−3

n−3 −bi−2,j−1
n−3 −bi−1,j−2

n−3 −bi−2,j
n−3 −bi,j−2

n−3 +2bi−1,j−1
n−3 )

+(4−n)((2n−7)2(n−2)2bi,j
n−4+(5n2−32n+53)(bi−2,j

n−4 +bi,j−2
n−4 −2bi−1,j−1

n−4 )

+bi−4,j
n−4 +bi,j−4

n−4 −4bi−3,j−1
n−4 +4bi−1,j−3

n−4 +6bi−2,j−2
n−4 ))(7)

with the convention that bi,j
n = 0 for i + j > n + 1, and bi,0

n = b0,j
n = 0 and the initial

conditions b1,1
1 = b2,1

2 = b1,2
2 = b1,1

2 = 1, b3,1
3 = b1,3

3 = 1, b2,2
3 = b2,1

3 = b1,2
3 = 3,

b1,1
3 = 4.

To conclude this introduction, it is natural to ask if our techniques of shift elimination are
specific to the case of maps or apply to general solutions of the BKP hierarchy. The latter
is in fact true, and any function F (N) which solves the BKP hierarchy is in fact solution
of an explicit (but big) PDE involving only the function F (N) and its derivatives, with no
shifts (Theorem B.1 in the appendix). We are not aware of any in-depth study of such “fixed
charge” BKP equations, which might be worth considering in the future.

STRUCTURE OF THE PAPER. In Section 2, we will recall what we need about the first BKP
equations, directing the reader to other sources for the depth of the BKP theory. In Section 3,
we will address the case of maps, taking the time to explain the main ideas and techniques.
We will write the Virasoro constraints, and show how to use them to express some derivatives
of a specialization of the main BKP tau function as univariate differential polynomials. This
will give us "shifted" equations. We will also show how to eliminate the shifts appearing in
the BKP equation using instead the first three BKP equations to obtain non-shifted ODEs. In
Section 4.1 and Section 4.2, we will address the cases of bipartite maps and triangulations.
The main steps are similar to the case of maps and we will give fewer details than in the
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previous section. In Section 5, we apply the technique of elimination of variables of the
paper [21] to obtain slightly different recurrence formulas than in Section 3 to count maps.

Appendix A contains tables of the numbers of rooted maps and bipartite maps of genus
g with n edges and of rooted triangulations of genus g with 2n faces, generated with our
recurrences. Appendix B derives the fixed charge equation for BKP solutions (Theorem B.1),
which we do not use directly in this paper.

Throughout the paper, the notation R[·],R(·),R[[·]] denote respectively polynomials, ra-
tional functions, and formal power series with coefficients in the ring R.

ACCOMPANYING MAPLE WORKSHEET. A Maple worksheet containing an implementation
of the recurrences of this paper, together with automated calculations of the bigger ODEs for
the different cases (as well as certain proofs regarding their top coefficients) is available in
both Maple and html form in [13]. The worksheet also contains recursive programs obtained
from these ODEs, as well tables for small genus and consistency checks against existing
formulas of the literature.

2. A FEW WORDS ON THE BKP HIERARCHY

In this paper, we will use the BKP hierarchy as a black box, and only recall the statements
and equations needed for our purposes. We refer the reader to [30, 42] for the general theory,
and to the appendix of our previous paper [15] for details about the applications to maps and
bipartite maps.

The BKP hierarchy is an infinite set of partial differential equations (PDEs) for a sequence
of functions τ(N)N∈Z depending on “time parameters” (formal variables) p1, p2, . . . . For our
combinatorial purposes, it will be convenient to think of the symbol N as a formal variable
rather than an integer, and this turns out to be possible under technical conditions, formalized
in the notion of “formal-N” BKP tau function in [15].

A formal-N BKP tau function is in fact a pair, consisting of a formal power series τ(N) ∈
Q(N)[[p1, p2, . . . ]], together with a normalizing sequence (βN )N∈Z which is such that

βN−1βN+k−1

βNβN+k−2
= Rk(N) ,

βN−2βN+k

βNβN+k−2
= Sk(N)(8)

for N ⩾ 0, and for respectively every odd positive integer k and every positive integer k, for
some rational functions Rk(N), Sk(N) ∈ Q(N). These conditions may seem technical but
they are crucial to stating the equations of the BKP hierarchy in a formal way as we will do
here. In the context of enumeration, the field Q will often be promoted to a field of rational
functions or formal Laurent series involving additional variables, for example Q(t) so that
Rk(N), Sk(N) ∈ Q(t)(N).

The typical definition of a (formal or not) BKP tau function makes use of the infinite
wedge formalism. It is the image of the orbit of the exponential of an infinite-dimensional
Lie algebra, often denoted b(∞), via the boson-fermion correspondence. We refer the reader
to the references mentioned above. For the purposes of this paper, we will admit the PDEs of
the BKP hierarchy as a definition:

DEFINITION 2.1. A pair (τ(N), βN ) as above is a formal-N BKP tau function if for k ∈
N, k ⩾ 1 the following bilinear identity holds in C(N)[p,q][[t]],

(9)
1
2
(
(−1)k − 1

)
Rk(N)U(q)τ(N − 1) · τ(N + k − 1)

+ Sk(N)
∑

j⩾k+1
hj(2q)hj−k−1(−Ď)U(q)τ(N − 2) · τ(N + k)

+
∑
j⩾0

hj(−2q)hj+k−1(Ď)U(q)τ(N) · τ(N + k − 2) = 0

Algebraic Combinatorics, Vol. 5 #6 (2022) 1368



Enumeration of non-oriented maps via integrability

where q = (q1, q2, . . . ) is a vector of formal indeterminates. Here, hj denotes the complete

homogeneous symmetric function of degree j, and we define U(q) = e

∑
r⩾1

qrDr and Ď =
(kDk)k⩾1, where Dr is the Hirota derivative with respect to pr,

(10) Drf · g = ∂

∂sr
f(pr + sr)g(pr − sr)|sr=0.

By extracting coefficients in the variables q1, q2, . . . in (9), one obtains explicit PDEs for
the function τ(N), which altogether form the BKP hierarchy. For example, by setting k = 2
and extracting the coefficient of q3, we obtain the BKP equation (3) stated in the introduction,
where we recall the notation

τ(N) = expF (N),
in the sense of formal power series, and where indices indicate partial derivatives,

fi := ∂

∂pi
f.

We will only need two other equations of the hierarchy, namely the following bilinear identi-
ties valid in C(N)[p,q][[t]]:

(11) −2F4,1(N)+2F3,2(N)+2F2,1(N)F12(N)+ 1
3F2,13(N)

= S2(N)τ(N−2)τ(N+2)
τ(N)2 (F1(N+2) − F1(N−2)).

(12) −6F5,1(N)+4F4,2(N)+2F32(N)+4F3,1(N)F12(N)+ 2
3F3,13(N)+4F2,1(N)2

+2F22(N)F12(N)+F22,12(N)+ 1
3F12(N)3+ 1

6F14(N)F12(N)+ 1
180F16(N)

= S2(N)τ(N−2)τ(N+2)
τ(N)2

(
F12(N+2) + F12(N−2) + 2F2(N+2) − 2F2(N−2)

+ (F1(N+2) − F1(N−2))2),
obtained respectively by extracting the coefficient of q4 and q5, again with k = 2.

We now proceed with map enumeration.

3. THE CASE OF MAPS

3.1. GENERATING FUNCTIONS OF MAPS. For us a surface is a non-oriented two-
dimensional real manifold without boundary. A surface of Euler characteristic 2 − 2g
has genus g. A map is a graph (with loops and multiple edges allowed) embedded in a
surface such that the complement of the embedding is a disjoint collection of contractible
components, called faces. The genus of the map is the one of the underlying surface. A
corner of a map is a small angular sector around a vertex delimited by two consecutive
edge-sides; a corner is oriented if an orientation of it (among the two possible ones) is
distinguished; the degree of a face/vertex is the number of corners belonging to it/adjacent
to it, respectively. In this paper orientable surfaces do not play a particular role, however in
some places we will explicitly use the terminology non-oriented maps to emphasize that our
surfaces can be orientable or not.

We will be interested in enumeration of rooted maps, i.e. maps with a distinguished and
oriented corner called the root corner. Rooted maps are considered up to homeomorphisms
preserving the root corner. Define the generating function

(13) F (t,p, u) :=
∑
M

t2e(M)

4e(M)u
v(M)

∏
f∈F (M)

pdeg(fi),

where we sum over all rooted non-oriented maps, where F (M), E(M), V (M) denote the set
of faces, edges and vertices of M , and f(M), e(M), v(M) denote their cardinalities. Note
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that since the sum of face degrees in a map is equal to twice the number of edges, F satisfies
the homogeneity relation

t
∂

∂t
F =

∑
k⩾1

kpk
∂

∂pk
F.(14)

The following specialization operator plays a crucial role throughout the paper.

DEFINITION 3.1 (Specialization θ). We let θ be the operator that specializes all variables pi

to the variable z, namely θ(pi) = z for every i ⩾ 1.

We define the formal power series Θ(t, z, u) ∈ Q[u, z][[t]]

(15) Θ(t, z, u) := θF (t,p, u) =
∑
M

t2e(M)

4e(M)u
v(M)zf(M) =

∑
n⩾1

∑
i,j⩾1

Hi,j
n

4n t2nuizj

which is the bivariate generating function of rooted non-oriented maps M with variables
t, u, z marking respectively twice the number of edges, the numbers of vertices, and faces,
i.e.Hi,j

n denotes the number of rooted non-oriented maps with n edges, i vertices and j faces.
It is important to note that a map with n edges, i vertices, and j faces, has Euler characteristic
i − n + j = 2 − 2g, so the genus is implicitely controlled in this generating function and
Θ(t, z, u) can be rewritten as

Θ(t, z, u) :=
∑
n⩾1

∑
g⩾0

Hg
n(u, z)
4n t2n, where Hg

n(u, z) :=
∑

i+j=n+2−2g

Hi,j
n uizj .

We additionally set hg
n := Hg

n(1, 1) for the number of rooted, non-oriented maps of genus g
with n edges and ug

n := Hn+1−2g,1
n for the number of rooted, non-oriented maps of genus g

with n edges and only one face.
The main goal of this section is to obtain functional equations on the function Θ(t, z, u),

allowing us to compute its coefficients. For this, we start from the fact that the “bigger”
function F has a deep structure inherited from the BKP hierarchy, which was proved by [42]
using a connection with matrix integrals (see also [15, Appendix] for details on the connection
with maps). Here we use the notation 2p = (2p1, 2p2, 2p3, . . . ), and Γ denotes the usual
gamma function.

PROPOSITION 3.2 ([42]). Let βN := 2⌊ N
2 ⌋ (2π)

N
2 (2t2)

N(N+1)
4

N ! Γ( 3
2 )N

∏N
j=1 Γ

(
1 + j

2
)
. Then the pair(

τ(t, 2p, N) := expF (t, 2p, N), βN

)
is a formal-N tau function of the BKP hierarchy. The

function βN satisfies (8) with in particular S2(N) = t4N(N − 1).

Proposition 3.2 implies that F (t, 2p, N) satisfies the BKP equation (3). It is tempting to
apply the operator θ to this equation in order to get information on the function Θ(t, z, u),
however because partial derivatives with respect to the pi do not commute with θ, it is not
obvious that such an approach will succeed. For a sequence of non-negative integers λ =
(i1, . . . , ik), we introduce the quantity

F θ
λ ≡ F θ

λ (t, z, u) := θ(Fλ) = θ

 k∏
j=1

∂

∂pij

F (t,p, u)

 .

The F θ
λ are the quantities naturally appearing when applying θ to the BKP equation (3).

In order to obtain information on the F θ
λ , we use the fact that τ(t,p, u) satisfies the fol-

lowing Virasoro constraints.
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PROPOSITION 3.3. [15, Proposition A.1] We have Liτ(t,p, u) = 0 for i ⩾ −1, where
(Li)i⩾−1 are given by

Li =
p∗

i+2
t2

−
(

2
∑

a,b⩾1
a+b=i

p∗
ap

∗
b +

∑
a⩾1

pap
∗
a+i + ((i+ 1) + 2u)p∗

i + δi,−1up1+u(u+1)δi,0
2

)(16)

and p∗
i := i∂

∂pi
for i > 0 and p∗

i := 0 for i < 1.

Equation (16) has a simple combinatorial interpretation corresponding to the deletion of
the root edge in a (non necessarily connected) map whose root face has degree i+2. It is thus
closely related to the Tutte/Lehman–Walsh equations. The term “Virasoro constraints” comes
from the fact that the operators Li satisfy the commutation relations of the Virasoro algebra
with central charge c = −2 [1] – a fact that we will not use here. The Virasoro constraints
imply the following proposition:

PROPOSITION 3.4. For i ⩾ −1 and n1, n2, n3 ⩾ 0, one has the recurrence relation

(17)
(i+ 2)F θ

i+2,3n3 ,2n2 ,1n1

t2
=
(
δi,−1(δn1,1 + zδn1,0) + (u+ 1)δi,0δn1,0

)u
2 δn2,0δn3,0

+ 2
∑

a+b=i
a,b⩾1

ni∑
li=0

i=1,2,3

ab

(
n1

l1

)(
n2

l2

)(
n3

l3

)
F θ

a,3l3 ,2l2 ,1l1F
θ
b,3n3−l3 ,2n2−l2 ,1n1−l1

+2
∑

a+b=i
a,b⩾1

abF θ
a,b,3n3 ,2n2 ,1n1 +

3∑
j=1

nj(i+j)F θ
i+j,3n3−δ3,j ,2n2−δ2,j ,1n1−δ1,j

+t ∂
∂t
F θ

3n3 ,2n2 ,1n1

−(n1+2n2+3n3)F θ
3n3 ,2n2 ,1n1 −z

i∑
a=1

aF θ
a,3n3 ,2n2 ,1n1 +δi ̸=−1(2u+i+1)iF θ

i,3n3 ,2n2 ,1n1 ,

with the initial condition that F θ
302010 = F θ

∅ = Θ(t, z, u).
Consequently, for any integer vector λ of the form λ = [ℓ, 3n3 , 2n2 , 1n1 ] with ℓ ⩽ 9 and of

size |λ| = ℓ+n1 + 2n2 + 3n3, there exists a polynomial Pλ in |λ| variables, with coefficients
in Q[t, u, z], such that

(18) F θ
λ = Pλ

(
∂

∂t
Θ(t, z, u), . . . , ∂

|λ|

∂t|λ| Θ(t, z, u)
)
.

This polynomial is linear for ℓ ⩽ 3 and |λ| ⩽ 5, and quadratic for 4 ⩽ ℓ ⩽ 6 and |λ| ⩽ 6.

Proof. The constraints read explicitly

(19) (i+ 2)Fi+2 = t2
(

2
∑

a+b=i

ab(Fa,b + FaFb) +
∑
a⩾1

pa(i+ a)Fi+a

)
+ t2(2u+ i+ 1)iFi + t2

u(u+ 1)
2 δi,0 + t2δi,−1

p1u

2 .

We act on both sides of (19) with ∂n1+n2+n3

∂p
n1
1 ∂p

n2
2 ∂p

n3
3

and apply θ. The action on
∑

a⩾1 pa(i +
a)Fi+a can be re-written using the following equation:

θ
∑
a⩾1

pa(i+a)Fi+a,3n3 ,2n2 ,1n1 = z
∑
a⩾1

(i+a)F θ
i+a,3n3 ,2n2 ,1n1

= t
∂F θ

3n3 ,2n2 ,1n1

∂t
−(n1+2n2+3n3)F θ

3n3 ,2n2 ,1n1 −z
i∑

a=1
aF θ

a,3n3 ,2n2 ,1n1 .
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It itself comes from the homogeneity relation (14) by acting with ∂n1+n2+n3

∂p
n1
1 ∂p

n2
2 ∂p

n3
3

and apply-
ing θ. This produces (17).

Note that the size of all vectors indexing F θs appearing in the RHS of (17) are strictly
smaller than the size i + 2 + n1 + 2n2 + 3n3 in the LHS. In order to be able to iterate this
equation on all these terms, we need all vectors appearing in the RHS to have at most one part
larger than 3. The only term on the RHS that could have two parts larger than 3 is of the form
F θ

a,b,3n3 ,2n2 ,1n1 . Since a+ b = i, this does not happen unless i+ 2 > 9. We thus obtain (18).
The last statement is a direct check. □

REMARK 3.5. The Virasoro constraints in fact imply a more general result: F θ
λ for any λ is a

differential polynomial of Θ. This is proved by applying
∏k

j=1
∂

∂pij
to (19) and performing

an induction on |λ|. We will refrain from writing it since we will not need it in full generality.
Instead, the previous proposition is enough to cover the cases we need with explicit formulas,
involving vectors of size |λ| ⩽ 6.

We insist on the fact that the recurrence given in Proposition 3.4 can be fully automated to
compute the polynomials Pλ, and this is done in the accompanying Maple worksheet [13].

It is now immediate to see that applying the operator θ to the BKP equation (3) produces
a functional equation on Θ(t, z, u).

THEOREM 3.6. The generating function Θ(t, z, u) satisfies a functional equation of the fol-
lowing form:( ∂

∂t

(
Θ(t, z, u+ 2) + Θ(t, z, u− 2) − 2Θ(t, z, u)

))
P

(
∂

∂t
Θ(t, z, u), . . . , ∂

5

∂t5
Θ(t, z, u)

)
= Q

(
∂

∂t
Θ(t, z, u), . . . , ∂

5

∂t5
Θ(t, z, u)

)
,

where P and Q are quadratic polynomials with coefficients in Q[t, u, z].

Proof. Consider (3) for τ(t, 2p, u). Applying θ to both sides we get:

4F θ
22 − 4F θ

3,1 + 4
3(6(F θ

12)2 + F θ
14) = S2(u)eΘ(t,z,u+2)+Θ(t,z,u−2)−2Θ(t,z,u).

The difference between the LHS in the equation above and the LHS in (3) is due to the
fact that τ(N) is a formal-N tau function of the BKP hierarchy after rescaling the variables
p → 2p. Taking the derivative with respect to t and substituting the initial equation (3) back
into it to eliminate exponentials, we obtain

(20)
∂

∂t

(
4F θ

22 − 4F θ
3,1 + 4

3(6(F θ
12)2 + F θ

14)
)

− 4
t

(
4F θ

22 − 4F θ
3,1 + 4

3(6(F θ
12)2 + F θ

14)
)

=( ∂
∂t

(
Θ(t, z, u+ 2) + Θ(t, z, u− 2) − 2Θ(t, z, u)

))(
4F θ

22 − 4F θ
3,1 + 4

3(6(F θ
12)2 +F θ

14)
)

thanks to the identity ∂
∂tS2(u) = 4

tS2(u) implied by S2(u) = t4u(u − 1). Proposition 3.4
immediately concludes the proof. □

The functional equation above can be transformed into a recurrence to compute coeffi-
cients. It has the following relatively compact form:

THEOREM 3.7 (Counting maps by vertices, faces, and genus). The generating polynomial

Hg
n ≡ Hg

n(u, z) =
∑

i+j=n+2−2g

Hi,j
n uizj
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of rooted non-oriented maps of genus g with n edges, with weight u per vertex and z per face,
can be computed from the following recurrence formula:

Hg
n+ 3u2∂2

n(n+1)∂u2H
g
n = 1

n(n+1) ×

(
n

(
2(2n−1)((4u+z)Hg

n−1−2Hg−1/2
n−1 )+4(2n−3)

(
3uzHg

n−2

+ (2n− 1)(n− 1)Hg−1
n−2
)

+ 6
∑/

g1=0..g
g1+g2=g

∑
n1=0..n

n1+n2=n

(2n1 − 1)(2n2 − 1)Hg2
n2−1H

g1
n1−1

)

−
∑/

g1=0..g
g1+g2=g

∑
n1=1..n

n1+n2=n

∑/
g0=0..g1
g1−g0∈N

∑
p+j=n1+2−2g0

22(1+g1−g0)
(

p

2(1 + g1 − g0)

)
un1−2g1−jzjHp,j

n1

(
−n2 + 1

2 Hg2
n2

+(2n2−1)
(
(4u+z)Hg2

n2−1−2Hg2−1/2
n2−1

)
+2(2n2−3)

(
(2n2−1)(n2−1)Hg2−1

n2−2

+3uzHg2
n2−2

)
+ 3

2δg0 ̸=gδn1,nu(δg1,gu−δg1,g−1/2)+δn1,n−1uz(δg1,g(4u+z)−2δg1,g−1/2)

+3uzδn1,n−2(δg1,guz+2δg1,g−1)+3
∑/

g3=0..g2
g3+g4=g2

∑
n3=0..n2

n3+n4=n2

(2n3−1)(2n4−1)Hg4
n4−1H

g3
n3−1

))

for n > 2, with the initial conditions Hg
0 = 0, H0

1 = uz(u+z), H0
2 = uz(2u2 +5uz+2z2),

H
1/2
1 = uz, H1/2

2 = 5uz(u+ z), H1
2 = 5uz, and Hg

n = 0 if n < 2g.

Proof. We extract the coefficient of [t2n+4rn+2−2g] in (20) after substitution u → ur, z →
zr. We obtain from Proposition 3.4

n

(
−(n+1)Hg

n +2(2n−1)
(
(4u+z)Hg

n−1−2Hg−1/2
n−1

)
+4(2n−3)

(
(2n−1)(n−1)Hg−1

n−2

+ 3uzHg
n−2
)

+ 6
∑/

g1=0..g
g1+g2=g

∑
n1=0..n

n1+n2=n

(2n1 − 1)(2n2 − 1)Hg2
n2−1H

g1
n1−1

)

=
∑/

g1=0..g
g1+g2=g

∑
n1=1..n

n1+n2=n

∑/
g0=0..g1
g1−g0∈N

∑
p+j=n1+2−2g0

22(1+g1−g0)
(

p

2(1 + g1 − g0)

)
un1−2g1−jzjHp,j

n1

(
−n2 + 1

2 Hg2
n2

+(2n2−1)
(
(4u+z)Hg2

n2−1−2Hg2−1/2
n2−1

)
+2(2n2−3)

(
(2n2−1)(n2−1)Hg2−1

n2−2

+ 3uzHg2
n2−2

)
+ 3

2δn1,nu(δg1,gu− δg1,g−1/2) + δn1,n−1uz(δg1,g(4u+ z) − 2δg1,g−1/2)

+3uzδn1,n−2(δg1,guz+2δg1,g−1)+3
∑/

g3=0..g2
g3+g4=g2

∑
n3=0..n2

n3+n4=n2

(2n3−1)(2n4−1)Hg4
n4−1H

g3
n3−1

)
.

Here we have extracted, respectively, in (20) (after substitution u → ur, z → zr), the coef-
ficient of [t2n+4rn+2−2g], of [t2n1−1rn1−2g1 ], and of [t2n2+5rn2+2−2g2 ], in the RHS, in the
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first factor of the LHS, and in the second factor of the LHS. Moreover we have used

[rm](f(zr, ur + 2) + f(zr, ur − 2) − 2f(zr, ur))

=
∑

i+j=m

uizj
∑
p>i

(
p

i

)
(2p+j−m + (−2)p+j−m)[upzj ]f(z, u)

=
∑

i+j=m

uizj
∑

p⩾i+2,
p+j−m∈2N

(
p

i

)
2p+j−m+1[upzj ]f(z, u)

=
∑

k⩾m+2
k−m∈2N

21+k−m
∑

p+j=k

(
p

m− j

)
um−jzj [upzj ]f(z, u).

In our case m = n1 − 2g1, and we parametrized k as k = n1 + 2 − 2g0 (the condition
k ⩾ m+ 2 translates into g0 ⩽ g1, and the summand is null when g0 < 0).

It now only remains to group the terms of the form Hi,j
n with i + j = n + 2 − 2g. In the

LHS they contribute to the first term Hg
n and in the RHS they appear as the terms Hp,j

n1
when

n1 = n, n2 = 0, g1 = g, g2 = 0, g0 = g). Collecting these terms on the RHS gives

3
2δn1,nδg1,gδg0,gu

2
∑

p+j=n1+2−2g0

22(1+g1−g0)
(

p

2(1 + g1 − g0)

)
un1−2g1−jzjHp,j

n1

= 6
∑

p+j=n+2−2g

(
p

2

)
upzjHp,j

n = 3u
2∂2

∂u2 H
g
n,

which leads to the main equation of the theorem. The identification of the initial conditions
for n ⩾ 2 can be done, either: by hand drawing, or from the OEIS, or from explicit expansions
in small genera using the equations of this paper, or from the expansion in Zonal polynomials
up to order n = 2. □

3.2. REMOVING THE SHIFTS. We now proceed with the task of obtaining a functional equa-
tion on the function Θ(t, z, u) which does not involve any shift on the variable u. We will do
this by using the three equations (3), (11), (12) to eliminate the shifts, and apply the opera-
tor θ. This will make terms of the form F θ

λ appear, with larger partitions λ than in the previous
section, but fortunately they are still in the range covered by Proposition 3.4. We have

THEOREM 3.8. There exists a polynomial P ∈ Q[t, u, z][x1, . . . , x6] of degree 5 such that

P

(
∂

∂t
Θ(t, z, u), . . . , ∂

6

∂t6
Θ(t, z, u)

)
≡ 0.

An explicit form of P can be obtained by applying Proposition 3.4 to the following equation

(21) t6
( ∂
∂t

KP1
)2

−
(

KP2
)2

+ KP1
(

KP3 −1
2 KP2 −

−
(
t6
∂2

∂t2
+ 2t5 ∂

∂t
+ 2t6 ∂

2

∂t2
Θ + 4t5 ∂

∂t
Θ + t4(uz − 4) + t2(3u+ 1 − z)

)
KP1

)
≡ 0,
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where

KP1 = −4F θ
3,1 + 4F θ

22 + 4
3(6(F θ

12)2 + F θ
14),

KP2 = −4F θ
4,1 + 4F θ

3,2 + 8
3(6F θ

2,1F
θ
12 + F θ

2,13),

KP3 = −6F θ
5,1 + 4F θ

4,2 + 2F θ
3,3 + 8

3(6F θ
3,1F

θ
12 + F θ

3,13) + 4(4(F θ
2,1)2 + 2F θ

22F θ
12 + F θ

22,12)

+ 4
45(60(F θ

12)3 + 30F θ
14F θ

12 + F θ
16),

and Θ ≡ Θ(t, z, u). An explicit form of this ODE can be found in the accompanying Maple
worksheet [13].

Proof. Denote ∆f(u) = f(u+ 2) − f(u− 2) and ∇f = f(u+ 2) + f(u− 2), and

E = S2(u)e∇Θ(t,z,u)−2Θ(t,z,u).

Using (3), (11), (12) and applying θ we obtain the following equations

(22) E = KP1, E∆(F θ
1 ) = KP2, E(∇(F θ

12) + ∆(F θ
2 ) + (∆F θ

1 )2) = KP3,
where KP1,KP2,KP3 are given in the statement of theorem. The difference between KP1,
KP2, KP3 and the LHS in (3), (11), (12) is due to the fact that τ(N) is a formal-N tau
function of the BKP hierarchy after rescaling the variables p → 2p. Using (17) and the
identity S2(u) = t4u(u− 1) we have

∆(F θ
1 ) = t3∆ ∂

∂t
Θ(t, z, u) + 2t2z, ∆(F θ

2 ) = t3

2 ∆ ∂

∂t
Θ(t, z, u) + t2(2u+ 1)

and

∇(F θ
12) =

(
t6
∂2

∂t2
+ 2t5 ∂

∂t

)
∇Θ(t, z, u) + t4uz + t2u

so that the third BKP equation reads

(23) E

((
t6
∂2

∂t2
+ 2t5 ∂

∂t

)
∇Θ(t, z, u) + t3

2 ∆ ∂

∂t
Θ(t, z, u) + t4uz + t2(3u+ 1)

+
(
t3∆ ∂

∂t
Θ(t, z, u) + 2t2z

)2
)

= KP3 .

We now use the first two BKP equations to express ∇ ∂
∂t Θ(t, z, u), ∇ ∂2

∂t2 Θ(t, z, u) and
∆ ∂

∂t Θ(t, z, u) in terms of Θ(t, z, u) and its t-derivatives. Taking the t-derivative of the first
BKP equation, we have

E∇ ∂

∂t
Θ(t, z, u) = ∂

∂t
KP1 +

(
2 ∂
∂t

Θ(t, z, u) − 4
t

)
KP1,

and another derivative gives

E∇ ∂2

∂t2
Θ(t, z, u) = ∂2

∂t2
KP1 +

(
2 ∂
∂t

Θ(t, z, u) − 4
t

)
∂

∂t
KP1 +

(
2 ∂

2

∂t2
Θ(t, z, u) + 4

t2

)
KP1

− ∂

∂t
KP1 ∇ ∂

∂t
Θ(t, z, u)

and further

E2∇ ∂2

∂t2
Θ(t, z, u) = KP1 ∂2

∂t2
KP1 +

(
2 ∂

2

∂t2
Θ(t, z, u) + 4

t2

)
KP12 −

( ∂
∂t

KP1
)2
.

From the second BKP equation,

Et3∆ ∂

∂t
Θ(t, z, u) = −2t2zKP1 + KP2 .
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Those expressions can then be substituted into (23), which gives (21). The statement about
the form of polynomial P is a direct consequence of Proposition 3.4. □

Theorem 1.2 is an immediate consequence of Theorem 3.8.

Proof of Theorem 1.2. It is enough to make the change of variables u → ur, z → zr in
(21) and extract the coefficient of [t2nrn+2g−2]. This substitution allows to track the genus
of the underlying maps. Extracting the coefficient gives a recursion for the bivariate version
of hg

n which additionally tracks the number of vertices and faces via u and z. Specializing
u = z = 1 gives the recursion for hg

n of the form (5) with a, b depending on the specific form
of ODE given by (21). A direct examination of the highest degree terms of this recurrence
implemented in [13] shows that

hg
n = hg−1/2

n −
∑

n1=1..n−1
n1+n2=n

∑
g1=0..g

g1+g2=g

(n1 + 1)(n2 + 1)
42(n+ 1) hg1

n1
hg2

n2

+
K1∑
a=1

K2∑/
b=0

K3∑
k=1

∑
n1,...,nk⩾1

n1+···+nk=n−a

∑/
g1,...,gk⩾0

g1+···+gk=g−b

Pa,b,k(n1, . . . , nk)hg1
n1
hg2

n2
. . . tgk

nk
,

which finishes the proof. □

The coefficient of z1 in Θ(t, z, u) is the generating function of maps having only one face,
with control on the number of edges and vertices (equivalently, edges and genus). Extracting
the bottom coefficient in z in (21), we obtain a linear ODE for this generating function. It is
equivalent to Ledoux’s recurrence (6) stated in the introduction.

COROLLARY 3.9. The generating function

u(t, u) := [z]Θ(t, z, u) =
∑
n⩾1

∑
g⩾0

ug
n

4nt
2nun+1−2g

of rooted non-oriented maps with only one face satisfies the following linear ODE

(24)
(
32t4

(
u2 − u− 5

)
+ 240t6(2u− 1) + t2(10 − 20u) + 2880t8 + 3

) ∂
∂t

u

+ t
(
2t4
(
8u2 − 8u− 109

)
+ 360t6(2u− 1) + t2(4 − 8u) + 7200t8 + 1

) ∂2

∂t2
u

+ 6t6
(
20t2(2u− 1) + 800t4 − 11

) ∂3

∂t3
u + 5t7(−1 + 2t2(2u− 1) + 240t4) ∂

4

∂t4
u

+120t12 ∂
5

∂t5
u+4t13 ∂

6

∂t6
u+240t7u+30t5(2u2−u)+2t3(4u3−4u2−11u)−2t(u2+u) ≡ 0.

4. RECURRENCES FOR BIPARTITE MAPS AND TRIANGULATIONS

4.1. NON-ORIENTED BIPARTITE MAPS. Consider the generating function

(25) G(t,p, u, v) :=
∑
M

te(M)

2e(M)u
v◦(M)vv•(M)

∏
f∈F (M)

pdeg(fi),

where we sum over all rooted non-oriented bipartite maps, and v◦(M), v•(M) denote the
number of white and black vertices, respectively. Similarly, as in the case of general maps,
the function G inherits a deep structure from the BKP hierarchy. This result can be derived
directly from Van de Leur’s work [42], even though it is not stated explicitly there (see [15,
Appendix] for additional details on the connection with maps).
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PROPOSITION 4.1 ([42]). Let βN = 2⌊ N
2 ⌋(2t)

N(N+δ)
2

N ! Γ(3/2)N

∏N
j=1 Γ

(
1 + j

2
)
Γ
(

δ+j
2
)
. Then the pair

(τ(t, 2p, δ,N) := expG(t, 2p, N,N+δ), βN ) is a formal-N tau function of the BKP hierar-
chy. The function βN satisfies (8) with in particular S2(N) = t4N(N+δ)(N−1)(N+δ−1).

We recall that θ(pi) = z for i ⩾ 1. Define the power series η(t, z, u, v) ∈ Q[u, v, z][[t]]
(26)

η(t, z, u, v) := θG(t,p, u, v) =
∑
M

te(M)

2e(M)u
v•(M)vv◦(M)zf(M) =

∑
n,i,j,k⩾1

Ki,j,k
n

2n tnuivjzk,

which is the generating function of rooted, non-oriented bipartite maps M . The variables
t, u, v, z mark the number of edges, black vertices, white vertices and faces, respectively so
that Ki,j,k

n denotes the number of rooted non-oriented bipartite maps with n edges, i black
vertices, j white vertices and k faces (the root vertex is black by convention). Note that due
to the Euler relation we can rewrite η(t, z, u, v) so that it is parametrized by the number of
edges and genus:

η(t, z, u, v) :=
∑
n⩾1

∑
g⩾0

Kg
n(u, v, z)

2n tn, where Kg
n(u, v, z) :=

∑
i+j+k=n+2−2g

Ki,j,k
n uivjzk.

We additionally set kg
n := Kg

n(1, 1, 1) for the number of rooted non-oriented bipartite maps
of genus g with n edges and bi,j

n := Ki,j,1
n for the number of rooted non-oriented bipartite

maps of genus g with n edges, i black and j white vertices, and only one face.
In analogy with Proposition 3.4 we express Gθ

λ in terms of ∂i

∂ti η(t, z, u, v), where

Gθ
λ ≡ Gθ

λ(t, z, u, v) := θ(Gλ) = θ

 k∏
j=1

∂

∂pij

G(t,p, u, v)


for a sequence of non-negative integers λ = (i1, . . . , ik).

PROPOSITION 4.2. For i ⩾ 0 and n1, n2, n3 ⩾ 0, one has the recurrence relation

(27)
(i+ 1)Gθ

i+1,3n3 ,2n2 ,1n1

t
= uv

2 δi,0δn1,0δn2,0δn3,0

+ 2
∑

a+b=i
a,b⩾1

ni∑
li=0

i=1,2,3

ab

(
n1

l1

)(
n2

l2

)(
n3

l3

)
Gθ

a,3l3 ,2l2 ,1l1G
θ
b,3n3−l3 ,2n2−l2 ,1n1−l1

+2
∑

a+b=i
a,b⩾1

abGθ
a,b,3n3 ,2n2 ,1n1 +

3∑
j=1

nj(i+j)Gθ
i+j,3n3−δ3,j ,2n2−δ2,j ,1n1−δ1,j

+t ∂
∂t
Gθ

3n3 ,2n2 ,1n1

− (n1+2n2+3n3)Gθ
3n3 ,2n2 ,1n1 − z

i∑
a=1

aGθ
a,3n3 ,2n2 ,1n1 + (u+ v + i)iGθ

i,3n3 ,2n2 ,1n1 ,

with the convention that Gθ
30,20,10 = Gθ

∅ = η(t, z, u, v).
Consequently, for any partition λ of the form λ = [ℓ, 3n3 , 2n2 , 1n1 ] and of size |λ| = ℓ +

n1 +2n2 +3n3, there exists a polynomialQλ in |λ| variables, with coefficients in Q[t, u, v, z]
which is linear for ℓ ⩽ 2 and |λ| ⩽ 5, and quadratic for ℓ ⩾ 3, 4 ⩽ |λ| ⩽ 6 and satisfies

Gθ
λ = Qλ

(
∂

∂t
η(t, z, u, v), . . . , ∂

|λ|

∂t|λ| η(t, z, u, v)
)
.(28)

The proof is identical to the proof of Proposition 3.4 (and left to the reader) with the only
difference being in replacing Proposition 3.3 by its bipartite counterpart:
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PROPOSITION 4.3. [15, Proposition A.1] We have Liτ(t,p, u, v) = 0 for i ⩾ 0, where
(Li)i⩾0 are given by

Li =
p∗

i+1
t

−
(

2
∑

a,b⩾1
a+b=i

p∗
ap

∗
b +

∑
a⩾1

pap
∗
a+i + (i+ u+ v)p∗

i + uvδi,0

2

)
.

where p∗
i := i∂

∂pi
for i > 0 and p∗

i := 0 for i < 1.

THEOREM 4.4 (Counting bipartite maps by black/white vertices, faces, and genus). The gen-
erating polynomial

Kg
n ≡ Kg

n(u, v, z) =
∑

i+j+k=n+2−2g

Ki,j,k
n uivjzk

of rooted non-oriented bipartite maps of genus g with n edges, with weight u per black vertex,
v per white vertex and z per face, can be computed from the following recurrence formula:

Kg
n = 1

(n+1)

(
(2n−1)

(
(u+v+z)Kg

n−1 −Kg−1/2
n−1

)
−ψn(u, v, z)Kg

n−2 +(2n−1)(2n−3)nKg−1
n−2

− 6(n− 1)(u+ v − z)Kg−1/2
n−2 + 2

∑/
g1=0..g

g1+g2=g

∑
n1=0..n

n1+n2=n

(6n1n2 − 2(n1 + n2) + 1)Kg2
n2−1K

g1
n1−1

)

−
∑/

g1=0..g
g1+g2=g

∑
n1=1..n−1
n1+n2=n

∑/
g0=0..g1
g1−g0∈N

22(1+g1−g0)

(n−2)(n+1)

∑
p+q+k=

n1+2−2g0

n1−2g1−k∑
i=0

(
p
i

)(
q

n1−2g1−k−i

)
uivn1−2g1−k−izkKp,q,k

n1

(
−(n2 + 1)Kg2

n2 +(2n2 − 1)
(
(u+ v + z)Kg2

n2−1−Kg2−1/2
n2−1

)
+(2n2 − 1)(2n2 − 3)n2K

g2−1
n2−2

− 6(n2 − 1)(u+v−z)Kg2−1/2
n2−2 + δn2,1δg2,02uvz + 6uvδn2,2(δg2,0uv−δg2,1/2(u+v−z)+δg2,1)

− ψn2 (u, v, z)Kg2
n2−2 + 2

∑/
g3=0..g

g3+g4=g2

∑
n3=0..n2

n3+n4=n2

(6n3n4 − 2(n3 + n4) + 1)Kg3
n3−1K

g4
n4−1

)
for n > 2, with

ψn(u, v, z) := (n− 2)(u2 + v2 + z2 − 14uv − 2uz − 2vz) − 12uv

and the initial conditionsKg
0 = 0,K0

1 = uvz,K0
2 = uvz(u+v+z),K1/2

1 = 0,K1/2
2 = uvz,

K1
2 = 0, and Kg

n = 0 if n < 2g.

Proof. The proof is almost identical to the proof of Theorem 3.7. The only difference is that
(20) should be replaced by(

∂

∂t

(
η(t, z, u+2, v+2)+η(t, z, u−2, v−2)−2η(t, z, u, v)

))(
Gθ

22 −Gθ
3,1+ 1

3(6(Gθ
12 )2+Gθ

14 )
)

= ∂

∂t

(
Gθ

22 −Gθ
3,1 + 1

3(6(Gθ
12 )2 +Gθ

14 )
)

− 1
t

(
4Gθ

22 − 4Gθ
3,1 + 4

3(6(Gθ
12 )2 +Gθ

14 )
)
.

The computational details are left to the reader. □

As in the case of maps, it is possible to manipulate the first three BKP equations and obtain
an ordinary differential equation on η(t, z, u, v). In particular, it does not involve any shifts
on the variables u and v.

THEOREM 4.5. There exists a polynomial Q ∈ Q[t, u, v, z][x1, . . . , x6] of degree 5 such that

Q

(
∂

∂t
η(t, z, u, v), . . . , ∂

6

∂t6
η(t, z, u, v)

)
≡ 0.
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An explicit form of Q can be obtained by applying Proposition 4.2 to the following equation

(29) t4
( ∂
∂t

KP1
)2

−
(

KP2
)2

+ KP1
(

KP3 −1
2

(
t(u+ v + 1 − z) + 1

)
θKP2

−
(
t4
∂2

∂t2
+ 4t3 ∂

∂t
+ 2t4 ∂

2

∂t2
η + 8t3 ∂

∂t
η + 3uvt2 − (u+ v)t

)
KP1

)
≡ 0

where

KP1 = −4Gθ
3,1 + 4Gθ

22 + 4
3(6(Gθ

12)2 +Gθ
14),

KP2 = −4Gθ
4,1 + 4Gθ

3,2 + 8
3(6Gθ

2,1G
θ
12 +Gθ

2,13),

KP3 = −6Gθ
5,1 + 4Gθ

4,2 + 2Gθ
3,3 + 8

3(6Gθ
3,1G

θ
12 +Gθ

3,13)

+ 4(4(Gθ
2,1)2 + 2Gθ

22Gθ
12 +Gθ

22,12) + 4
45(60(Gθ

12)3 + 30Gθ
14Gθ

12 +Gθ
16),

and η ≡ η(t, z, u, v). An explicit form of this ODE can be found in the accompanying Maple
worksheet [13].

The proof is analogous to the proof of Theorem 3.8 and left to the reader. We have two
immediate corollaries, Theorem 4.6 which is analogous to Theorem 1.2 for bipartite maps,
and Theorem 4.7 which is a bipartite analogue of Ledoux’s recurrence and a non-oriented
analogue of Adrianov’s.

THEOREM 4.6 (Counting bipartite maps by edges and genus – unshifted recurrence). The
number bg

n of rooted bipartite maps of genus g with n edges, orientable or not, is solution of
an explicit recurrence relation of the form

(30)

bg
n = 1

2(n+ 1)

( ∑
n1=1..n

n1+n2=n+1

∑
g1=0..g

g1+g2=g

δ(n1,g1) ̸=(n,g)δ(n2,g2 )̸=(n,g)(n1 + 1)(n2 + 1)bg1
n1
bg2

n2

+
∑

n1=1..n−1
n1+n2=n

(6n1n2 + 5(n1 + n2) + 4)
( ∑

g1=0..g−1
g1+g2=g−1

bg1
n1
bg2

n2
− 3

∑
g1=0..g

g1+g2=g

bg1
n1
bg2

n2

))

+
K1∑
a=1

K2∑/
b=0

K3∑
k=1

∑
n1,...,nk⩾1

n1+···+nk=n−a

∑/
g1,...,gk⩾0

g1+···+gk=g−b

Qa,b,k(n1, . . . , nk)bg1
n1
bg2

n2
. . . bgk

nk
,

where the Qa,b,k are rational functions and K1,K2,K3 < ∞.

THEOREM 4.7 (A recurrence for non-oriented bipartite one-face maps). The number bi,j
n of

rooted one-face maps with n edges, i white and j black vertices, orientable or not, is given
by the recursion:

(n+1)bi,j
n = (4n−1)(bi−1,j

n−1 +bi,j−1
n−1 −bi,j

n−1)+(5n3−16n2+13n−1)bi,j
n−2

+(2n−3)(4bi−1,j
n−2 +4bi,j−1

n−2 −3bi−2,j
n−2 +3bi,j−2

n−2 −2bi−1,j−1
n−2 )

+(10n3−68n2+150n−107)(bi,j
n−3−bi−1,j

n−3 −bi,j−1
n−3 )

+(4n−11)(bi−3,j
n−3 +bi,j−3

n−3 −bi−2,j−1
n−3 −bi−1,j−2

n−3 −bi−2,j
n−3 −bi,j−2

n−3 +2bi−1,j−1
n−3 )

+(4−n)((2n−7)2(n−2)2bi,j
n−4+(5n2−32n+53)(bi−2,j

n−4 +bi,j−2
n−4 −2bi−1,j−1

n−4 )

+bi−4,j
n−4 +bi,j−4

n−4 −4bi−3,j−1
n−4 +4bi−1,j−3

n−4 +6bi−2,j−2
n−4 ))(31)
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with the convention that bi,j
n = 0 for i + j > n + 1, and bi,0

n = b0,j
n = 0 and the initial

conditions b1,1
1 = b2,1

2 = b1,2
2 = b1,1

2 = 1, b3,1
3 = b1,3

3 = 1, b2,2
3 = b2,1

3 = b1,2
3 = 3,

b1,1
3 = 4.

Proof of Theorem 4.7. To obtain a linear ODE for the generating function

b ≡ b(t, u, v) := [z]η(t, z, u, v) =
∑
n,i,j

bi,j
n

2n t
nuivj

of rooted non-oriented bipartite maps with only one face, we extract the coefficient of z1 in
(29), and multiply by 45

14t7uv(u−1)(v−1) . This gives

(32)

(−uv+2 ∂
∂t

b)+ t(2u2v+2uv2 −5uv+7 ∂
∂t

b(1−u−v)+ ∂2

∂t2
b)+ t2(−uv((u−v)2 −1)

+ (3(3u2 + 3v2 + 2uv) − 12(u+ v) − 29) ∂
∂t

b + 4(1 − u− v) ∂
2

∂t2
b)

+ t3(5(−u3 + u2v + uv2 − v3 + (u− v)2 + 7(u+ v − 1)) ∂
∂t

b + (2(3u2 + 3v2 + 2uv)

− 8(u+ v) − 86) ∂
2

∂t2
b) + t4(((u− v)4 − 18(u− v)2 + 81) ∂

∂t
b − 4(u3 − u2v − uv2 + v3

− (u− v)2 − 37(u+ v − 1)) ∂
2

∂t2
b − 44 ∂

3

∂t3
b) + t5(((u− v)4 − 64(u− v)2 + 719) ∂

2

∂t2
b

+ 82(u+ v − 1) ∂
3

∂t3
b − 5 ∂

4

∂t4
b) + t6((−38(u− v)2 + 1078) ∂

3

∂t3
b

+ 10(u+ v − 1) ∂
4

∂t4
b) + t7(−5(u− v)2 + 493) ∂

4

∂t4
b + 80t8 ∂

5

∂t5
b + 4t9 ∂

6

∂t6
b = 0.

Extracting the coefficient of [tnuivj ] produces the desired recursion. □

4.2. NON-ORIENTED TRIANGULATIONS. The generating series of triangulations can be ob-
tained from F (t,p, u) (given by (13)) by applying another specialization instead of θ. Indeed,
define the specialization operator θ3 by θ3(pi) := zδ3,i. This operator enforces that all faces
must be of degree 3, and

Ξ(t, z, u) := θ3F (t,p, u) =
∑

M:∀f∈F (M)
deg(f)=3

t2e(M)

4e(M)z
f(M)uv(M) =

∑
n⩾1

∑
g⩾0

tgn
12nt

6nz2nun+2−2g,

is the generating function of rooted, non-oriented triangulations M . Of course, triangulations
satisfy 2e(M) = 3f(M). By using Euler’s relation, one can expand Ξ(t, z, u) by the genus
and the number of edges, and here tgn denotes the number of rooted, non-oriented triangula-
tions with 3n edges (or equivalently 2n faces) and genus g.

Similarly as in the previous sections, we want to express F θ3
λ as a polynomial in Ξ(t, z, u)

and its derivatives with respect to t, where

F θ3
λ ≡ F θ3

λ (t, z, u) := θ3(Fλ) = θ3

 k∏
j=1

∂

∂pij

F (t,p, u)

 .

for a sequence of non-negative integers λ = (i1, . . . , ik).
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PROPOSITION 4.8. For i ⩾ −1 and n1, n2 ⩾ 0, one has the recurrence relations

(33) t2z(i+ 3)F θ3
i+3,2n2 ,1n1 = −2t2

∑
a+b=i
a,b⩾1

ni∑
li=0
i=1,2

ab

(
n1

l1

)(
n2

l2

)
F θ3

a,2l2 ,1l1F
θ3
b,2n2−l2 ,1n1−l1

− 2t2
∑

a+b=i
a,b⩾1

abF θ3
a,b,2n2 ,1n1 − t2

2∑
j=1

nj(i+ j)F θ3
i+j,2n2−δ2,j ,1n1−δ1,j

+ (i+ 2)F θ3
i+2,2n2 ,1n1

− t2δi̸=−1(2u+ i+ 1)iF θ3
i,2n2 ,1n1 − t2

(
δi,−1δn1,1 + (u+ 1)δi,0δn1,0

)u
2 δn2,0,

(34) F θ3
3,i1,...,ik

= t

3z
∂

∂t
F θ3

i1,...,ik
− i1 + · · · + ik

3z F θ3
i1,...,ik

(35) F θ3
1l = t5z

∂

∂t
F θ3

1l−1 + t4z(u2 + u)
2 δl,1 + t2u

2 δl,2,

with the convention that F θ3
30,20,10 = Ξ(t, z, u).

Consequently, for any sequence of integers of the form λ = [ℓ, 3n3 , 2n2 , 1n1 ] and of size
|λ| = ℓ+ n1 + 2n2 + 3n3, there exists a polynomial Rλ in |λ| variables, with coefficients in
Q[t, t−1, z, z−1, u] which is linear for ℓ ⩽ 4, and quadratic for 5 ⩽ ℓ ⩽ 8 and satisfies

F θ3
λ = Rλ

(
∂

∂t
Ξ(t, z, u), . . . , ∂

|λ|

∂t|λ| Ξ(t, z, u)
)
.(36)

Proof. Similarly to the proof of Proposition 3.4, we act with ∂n1+n2

∂p
n1
1 ∂p

n2
2

on both sides of (19)
and apply θ3 to obtain

(37) (i+ 2)F θ3
i+2,2n2 ,1n1 = t2z(i+ 3)F θ3

i+3,2n2 ,1n1 + δi ̸=−1t
2i(i+ 1 + 2u)F θ3

i,2n2 ,1n1

+ 2t2
∑

a+b=i

ab
(
F θ3

a,b,2n2 ,1n1 +
n1∑

l1=0

n2∑
l2=0

(
n1

l1

)(
n2

l2

)
F θ3

a,2l2 ,1l1F
θ3
b,2n2−l2 ,1n1−l1

)
+ t2n1(i+ 1)F θ3

i+1,2n2 ,1n1−1 + t2n2(i+ 2)F θ3
i+2,2n2−1,1n1

+ t2
(
δi,−1δn1,1 + (u+ 1)δi,0δn1,0

)u
2 δn2,0.

Equation (33) is obtained from (37) by moving t2z(i + 3)F θ3
i+3,2n2 ,1n1 to the left of the

equality and (i+ 2)F θ3
i+2,2n2 ,1n1 to the right.

To get Equation (34), one acts on both sides of the homogeneity relation
∑

i⩾1 pip
∗
iF =

t∂F
∂t with ∂k

∂pi1 ···∂pik
and applies θ3.

Furthermore, specializing i = −1, n2 = 0, n1 = l− 1 and then i = 0, n2 = 0, n1 = l− 1
in (37), we get

F θ3
1l = t2z2F θ3

2,1l−1+t2u2 δl,2 = t2z
(
t2z3F θ3

3,1l−1+t2(l−1)F θ3
1l−1+t2u(u+ 1)

2 δl=1

)
+t2u2 δl,2.

To get (35), one substitutes (34) into the above for i1, . . . , ik = 1 and k = l − 1.
Since the sizes of the vectors indexing F θ3 s appearing in the RHS of (33) are strictly

smaller than |λ|, one computes F θ
λ recursively for vectors of the form λ = [ℓ, 3n3 , 2n2 , 1n1 ],

where ℓ ⩽ 10 (by eliminating all the parts of length 3 thanks to (34), and reducing the sizes
of the indexing vectors thanks to (33) and finally using the recurrence (35) for the parts of the
form F θ

1l ). The last statement follows by induction on ℓ. □
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REMARK 4.9. We want to highlight the fact that the above computations are possible because
we are working with the specific model of triangulations. Replacing the specialization θ3 by
θl : pi 7→ δi,l with l ⩾ 4 makes the above technique fail to even compute F θl

1 .

The following theorem gives a recurrence formula with non-polynomial coefficients in the
case of triangulations. It is essentially equivalent to the functional equation for the associated
generating function given in [20, Corollary 3.2], which is obtained through (essentially) the
same method.

THEOREM 4.10 (Counting triangulations by faces, and genus). The number tgn of rooted non-
oriented triangulations of genus g with 2n faces (or, equivalently 3n edges) can be computed
from the following recurrence formula:

tgn = 2
2n2+(3−2g)n+(1−g)(1−2g) ×

(
n

(
6(3n− 1)tgn−1 + 12(3n− 4)

(
(3n− 2)ntg−1

n−2

+ 2(tg−1/2
n−2 + tgn−2)

)
+ 6

∑/
g1=0..g

g1+g2=g

∑
n1=0..n

n1+n2=n

(3n1 − 1)(3n2 − 1)tg2
n2−1t

g1
n1−1

)

−
∑/

g1=0..g
g1+g2=g

∑
n1=1..n

n1+n2=n

 ∑/
g0=0..g1
g1−g0∈N

(
n1+2−2g0

n1−2g1

)
22(1+g1−g0)tg0

n1

(− n2 + 1
8 tg2

n2
+ (3n2 − 1)tg2

n2−1

+ 2(3n2 − 4)
(
(3n2 − 2)n2t

g2−1
n2−2 + 2(tg2−1/2

n2−2 + tg2
n2−2)

)
+ 1

8δg0 ̸=gδn1,n(δg1,g − δg1,g−1/2)

+ δn1,n−1(2δg1,g + 2δg1,g−1/2 + δg1,g−1) + 4δn1,n−2(δg1,g + 2δg1,g−1/2

+ 9δg1,g−1 + 8δg1,g−3/2) +
∑/

g3=0..g2
g3+g4=g2

∑
n3=0..n2

n3+n4=n2

(3n3 − 1)(3n4 − 1)tg3
n3−1t

g4
n4−1

))

for n > 2, with the initial conditions tg0 = 0, t01 = 4, t02 = 32, t1/2
1 = 9, t1/2

2 = 118, t11 = 7,
t12 = 202, t3/2

2 = 128 and tgn = 0 if n < 2g − 1.

Proof. As in the case of bipartite maps, the proof is almost identical to the proof of Theo-
rem 3.7 and we leave the details for the interested reader. The only difference is that (20)
should be replaced by( ∂

∂t

(
Ξ(t, z, u+ 2) + Ξ(t, z, u− 2) − 2Ξ(t, z, u)

))(
4F θ3

22 − 4F θ3
3,1 + 4

3(6(F θ3
12 )2 +F θ3

14 )
)

= ∂

∂t

(
4F θ3

22 − 4F θ3
3,1 + 4

3(6(F θ3
12 )2 + F θ3

14 )
)

− 4
t

(
4F θ3

22 − 4F θ3
3,1 + 4

3(6(F θ3
12 )2 + F θ3

14 )
)
.

□

THEOREM 4.11. There exists a polynomial R ∈ Q[t, u, z][x1, . . . , x6] of degree 5 such that

R

(
∂

∂t
Ξ(t, z, u), . . . , ∂

6

∂t6
Ξ(t, z, u)

)
≡ 0.

An explicit form of R can be obtained by applying Proposition 4.8 to the following equation

(38) t10z2
( ∂
∂t

KP1
)2

−
(

KP2
)2

+ KP1
(

KP3 − 1
2t2z KP2

−
(
t10z2 ∂

2

∂t2
+5t9z2 ∂

∂t
+2t10z2 ∂

2

∂t2
Ξ+10t9z2 ∂

∂t
Ξ+4t8z2(u2 +u)+ t2u

)
KP1

)
≡ 0
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where

KP1 = −4F θ3
3,1 + 4F θ3

22 + 4
3(6F θ3

12
2 + F θ3

14 ),

KP2 = −4F θ3
4,1 + 4F θ3

3,2 + 8
3(6F θ3

2,1F
θ3
12 + F θ3

2,13),

KP3 = −6F θ3
5,1 + 4F θ3

4,2 + 2F θ3
3,3 + 8

3(6F θ3
3,1F

θ3
12 + F θ3

3,13) + 4(4F θ3
2,1

2 + 2F θ3
22 F

θ3
12 + F θ3

22,12)

+ 4
45(60F θ3

12
3 + 30F θ3

14 F
θ3
12 + F θ3

16 )

where Ξ ≡ Ξ(t, z, u). An explicit form of this ODE can be found in the accompanying Maple
worksheet [13].

The proof is the same as in the previous cases, so we leave it as an exercise. As a standard
consequence we have:

THEOREM 4.12 (Counting triangulations by edges and genus – unshifted recurrence). The
number tgn of rooted triangulations of genus g with 3n edges, orientable or not, is solution of
an explicit recurrence relation of the form

(39) tgn = tg−1/2
n −

∑
n1=1..n−1
n1+n2=n

∑
g1=0..g

g1+g2=g

(n1 + 1)(n2 + 1)
14(n+ 1) tg1

n1
tg2
n2

+
K1∑
a=1

K2∑/
b=0

K3∑
k=1

∑
n1,...,nk⩾1

n1+···+nk=n−a

∑/
g1,...,gk⩾0

g1+···+gk=g−b

Ra,b,k(n1, . . . , nk)tg1
n1
tg2
n2
. . . tgk

nk
,

where the Ra,b,k are rational functions and K1,K2,K3 < ∞.

In analogy to what we did for maps and bipartite maps, it would be natural to study now
the case of triangulations with only one vertex (or by duality, cubic one-face maps). However,
there exist very explicit and simple formulas in this case, obtained from bijective methods [12]
so we prefer not to go into such calculations here.

5. ANOTHER METHOD IN THE CASE OF MAPS

In this section, we quickly adress the case of maps treated in Section 3 with another method,
which actually leads to different recurrence relations. The situation is similar to the orientable
case, where the approaches used in [21] and [33] differ. In Section 3 (non-oriented analogue
of [33]) we started from the fact that the generating function F of maps is a BKP tau function,
and applied the substitution operator θ : pi 7→ z. In this section, we will instead start from
the fact that the generating function G of bipartite maps is a BKP tau function, and apply the
different substitution operator θ2 : pi → δi,2. We will only treat the equations with shifts, our
main motivation being that they are relatively nice looking – for example we will prove here
Theorem 1.1.

Our starting point is the well-known fact that, from a famous bijection due to Tutte and
valid on all surfaces, the number of rooted maps with n edges on a surface is equal to the
number of rooted bipartite quadrangulations on the same surface, with vertices and faces of
the map corresponding respectively to black and white vertices of the quadrangulation (see
e.g. [21]). Therefore, the generating function Θ(t, z, u) of maps defined in Section 3 and
G(t,p, u, v) of bipartite maps defined in Section 4.1 satisfy the relation

θ2G(t,p, u, z) = Θ(t, z, u) =
∑
n⩾1

∑
g⩾0

Hg
n

4n ,
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where Hg
n ∈ N[u, z] is the generating polynomial of rooted maps of genus g with n edges,

with u and z marking respectively vertices and faces. Let us write Gu,z ≡ G(t,p, u, z), so
that the BKP equation (3) for the function G can be rewritten

Gu;z
14 + 3Gu;z

22 − 3Gu;z
3,1 + 6(Gu;z

12 )2 = C(u, z) exp
(
Gu+2;z+2 − 2Gu;z +Gu−2;z−2

)
,

(40)

where the prefactor C(u, z) (which is equal to S2(N) after the substitution u = N, z =
N + δ), independent of the variables (pi)i⩾1, does not play any role in what follows, and
where as before the indices indicate derivatives with respect to the p-variables. By hitting
(40) with the operator ∂

∂p1
, and using (40) again to eliminate the factor C(u, z) exp

(
. . .
)
,

we obtain an equation which involves no exponential anymore, and in which the prefactor
has disappeared. Namely:

(41) Gu;z
15 + 3Gu;z

22,1 − 3Gu;z
3,12 + 12Gu;z

12 G
u;z
13 =(

Gu+2;z+2
1 − 2Gu;z

1 +Gu−2;z−2
1

)(
Gu;z

14 + 3Gu;z
22 − 3Gu;z

3,1 + 6(Gu;z
12 )2

)
.

To extract coefficients in this equation, we will use the following lemma. Here we use an
additional variable r which will be convenient to track the genus parameter. In this section, it
is convenient to use the convention H0

0 = uz.

LEMMA 5.1. We have, for (n, g) ∈ N × ( 1
2N), n ⩾ 1,

[t2n+1rn+2−2g]θ2 ∂1G
ru;rz = 1

2H
g
n,

[t2nrn+2−2g]θ2 ∂22Gru;rz = n−1
4 Hg

n

[t2nrn+1−2g]θ2 ∂12Gru;rz = 2n−1
2 Hg

n−1,

[t2nrn+2−2g]θ2 ∂14Gru;rz = (2n−1)(2n−2)(2n−3)
2 Hg−1

n−2,

[t2nrn+2−2g]θ2 ∂1,3G
ru;rz = (2n−1)

6

(
Hg

n − (u+ z)Hg
n−1 −H

g−1/2
n−1

)
,

[t2n+1rn+2−2g]θ2 ∂22,1G
ru;rz = n(n−1)

2 Hg
n,

[t2n+1rn+1−2g]θ2 ∂13Gru;rz = 2n(2n−1)
2 Hg

n−1,

[t2n+1rn+2−2g]θ2 ∂15Gru;rz = 2n(2n−1)(2n−2)(2n−3)
2 Hg−1

n−2,

[t2n+1rn+2−2g]θ2 ∂3,12Gru;rz = n(2n−1)
3

(
Hg

n − (u+ z)Hg
n−1 −H

g−1/2
n−1

)
.

For n = 0, the first equality remains valid, while all other quantities in left-hand sides vanish.

Proof. The lemma can easily be proved with Virasoro constraints in the same manner as
Proposition 4.8 and details are left to the reader. However, a calculation-free proof based
on digon contraction and elementary combinatorial map operation is also easily doable. The
proof is completely similar to [21, Lemma 7], the only difference is the extra term of genus
g − 1/2 in the two equations involving a hexagonal default (i.e. a p3-derivative). This term
comes from the possibility to create a rooted quadrangulation by adding a twisted diagonal
inside a digon. This is the only difference between the oriented and non-oriented case, and it
adds one term to Equation (11) in [21]. Once this difference is taken into account, the proof
of [21, Lemma 7] can be copied verbatim. □

A direct consequence of what precedes is the recurrence formula stated as Theorem 1.1 in
the introduction. One can also obtain a version with control on vertices and faces, from which
Theorem 1.1 follows immediately.
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THEOREM 5.2 (Counting maps by vertices, faces, and genus). The generating polynomial

Hg
n ≡ Hg

n(u, z) =
∑

i+j=n+2−2g

Hi,j
n uizj

of rooted maps of genus g with n edges, orientable or not, with weight u per vertex and z per
face, can be computed from the following recurrence formula:

(42)

Hg
n = 2

(n+1)(n−2) ×

(
n(2n−1)((u+z)Hg

n−1 +H
g−1/2
n−1 )+ (2n−3)(2n−2)(2n−1)(2n)

2 Hg−1
n−2

+ 12
∑/

g1=0..g
g1+g2=g

∑
n1=0..n

n1+n2=n

(2n2−1)(2n1−1)n1
2 Hg2

n2−1H
g1
n1−1

−
∑/

g1=0..g
g1+g2=g

∑
n1=0..n−1
n1+n2=n

∑/
g0=0..g1
g1−g0∈N

∑
p+q=n1+2−2g0

22(1+g1−g0)ϕp,q,n1−2g1(u, z)Hp,q
n1

(
(2n2−1)(2n2−2)(2n2−3)

2 Hg2−1
n2−2 −δ(n2,g2 )̸=(n,g)

n2+1
4 Hg2

n2
+ 2n2−1

2 ((u+z)Hg2
n2−1 +Hg2−1/2

n2−1 )

+ 6
∑/

g3=0..g2
g3+g4=g2

∑
n3=0..n2

n3+n4=n2

(2n3−1)(2n4−1)
4 Hg3

n3−1H
g4
n4−1

))

for n > 2, with the initial conditionsH0
0 = uz,H0

1 = uz(u+z),H0
2 = uz(2u2+5uz+2z2),

H
1/2
1 = uz, H1/2

2 = 5uz(u+ z), H1
2 = 5uz, and Hg

n = 0 if n < 2g, and where

ϕp,q,m(u, z) :=
∑

i+j=m
p⩾i,q⩾j

(
p
i

)(
q
j

)
uizj .

Proof. We substitute u → ur, z → zr in (41) and we extract the coefficient of
[t2n+1rn+2−2g] after applying θ2. We obtain from Lemma 5.1

− n(n+1)
2 Hg

n + n(2n− 1)((u+ z)Hg
n−1 +H

g−1/2
n−1 ) + (2n−3)(2n−2)(2n−1)(2n)

2 Hg−1
n−2

+ 12
∑/

g1=0..g
g1+g2=g

∑
n1=0..n

n1+n2=n

(2n2−1)(2n1−1)n1
2 Hg2

n2−1H
g1
n1−1

=
∑/

g1=0..g
g1+g2=g

∑
n1=0..n−1
n1+n2=n

 ∑/
g0=0..g1
g1−g0∈N

∑
p+q=n1+2−2g0

22(1+g1−g0)ϕp,q,n1−2g1(u, z)Hp,q
n1


(

(2n2−1)(2n2−2)(2n2−3)
2 Hg2−1

n2−2 + −n2−1
4 Hg2

n2
+ 2n2−1

2 ((u+ z)Hg2
n2−1 +H

g2−1/2
n2−1 )

+ 6
∑/

g3=0..g2
g3+g4=g2

∑
n3=0..n2

n3+n4=n2

(2n3−1)(2n4−1)
4 Hg3

n3−1H
g4
n4−1

)
.

Here we have extracted, respectively, in (41) (after applying θ2, and substitution u → ur, z →
zr) the coefficient of [t2n+1rn+2−2g], of [t2n1+1rn1−2g1 ], and of [t2n2rn2+2−2g2 ], in the
LHS, in the first factor of the RHS, and in the second factor of the RHS. The summation over
n1 in the RHS stops at (n − 1) since from the last sentence of Lemma 5.1, the term n2 = 0
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does not contribute. Moreover we have used

[rm](f(ru+ 2, rz + 2) + f(ru− 2, rz − 2) − 2f(ru, rz))

=
∑

i+j=m

uizj
∑

p⩾i,q⩾j
p+q ̸=m

(
p

i

)(
q

j

)
(2p+q−m + (−2)p+q−m)[upzq]f(u, z)

=
∑

i+j=m

uizj
∑

p⩾i,q⩾j
p+q⩾m+2,p+q−m∈2N

(
p

i

)(
q

j

)
21+p+q−m[upzq]f(u, z)

=
∑

k⩾m+2
k−m∈2N

21+k−m
∑

p+q=k

ϕp,q,m(u, z)[upzq]f(u, z),

which we use with the parametrization m = n1 − 2g1, k = n1 + 2 − 2g0 (the condition
k ⩾ m+ 2 translates into g0 ⩽ g1, and the summand is null when g0 < 0).

It now only remains to group the two terms of the form Hg
n (namely: the first term of the

LHS and the term Hg2
n2

in the RHS when n1 = 0, n2 = n, g1 = 0, g2 = g). They appear
in the difference LHS−RHS with coefficient − n(n+1)

2 + 22 × n+1
4 = − (n+1)(n−2)

2 , which
leads to the main equation of the theorem after dividing by this factor. The identification of
the initial conditions for n ⩾ 2 can be done in many ways including: by hand drawing, or
from the OEIS, or from explicit expansions in small genera using the Virasoro constraints, or
from the expansion in Zonal polynomials up to order n = 2. □

Proof of Theorem 1.1 stated in the introduction. Note that hg
n = Hg

n(1, 1) and

ϕp,q,n1−2g1(1, 1) =
∑

i+j=m
p⩾i,q⩾j

(
p
i

)(
q
j

)
=
(

p+q
n1−2g1

)
,

therefore (4) is a specialization of (42) at u = z = 1. □

APPENDIX A. SOME TABLES

We provide here some tables computed with our recurrences, see also [13].

A.1. ROOTED MAPS OF GENUS g WITH n EDGES (ORIENTABLE OR NOT).

n\g 0 1/2 1 3/2 2

1 2 1 0 0 0
2 9 10 5 0 0
3 54 98 104 41 0
4 378 983 1647 1380 509
5 2916 10062 23560 31225 24286
6 24057 105024 320198 592824 724866
7 208494 1112757 4222792 10185056 17312568
8 1876446 11934910 54617267 164037704 361811054
9 17399772 129307100 696972524 2525186319 6912864180
10 165297834 1412855500 8807574390 37596421940 123814835628
11 1602117468 15548498902 110483092984 545585129474 2111880200672
12 15792300756 172168201088 1377998069826 7758174844664 34669329147582
13 157923007560 1916619748084 17108920039328 108518545261360 551879941676492
14 1598970451545 21436209373224 211636362018548 1497384373878512 8565305839025180
15 16365932856990 240741065193282 2609949110616064 20426386710028260 130146976774282440
16 169114639522230 2713584138389838 32104324480419131 275940187259609296 1942255149093281772

n\g 5/2 3 7/2 4

5 8229 0 0 0
6 516958 166377 0 0
7 19381145 13093972 4016613 0
8 562395292 595145086 382630152 113044185
9 13929564070 20431929240 20549348578 12704958810

10 309411522140 587509756150 818177659640 790343495467
11 6344707786945 14923379377192 26881028060634 35918779737610
12 122357481545872 345651571125768 770725841809552 1330964564940140
13 2247532739398856 7452363840633244 19946409152977346 42611002435124552
14 39681114425793904 151717486205709730 476412224477845444 1220973091185233106
15 677939355268197412 2946794762696249280 10665684328125155376 32054128913697072040
16 11265765391845733784 55029552840385680100 226357454725004343024 783804517126931727890
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A.2. ROOTED BIPARTITE MAPS OF GENUS g WITH n EDGES (ORIENTABLE OR NOT).

n\g 0 1/2 1 3/2 2

1 1 0 0 0 0
2 3 1 0 0 0
3 12 9 4 0 0
4 56 69 63 20 0
5 288 510 720 480 148
6 1584 3738 7254 7584 4860
7 9152 27405 68460 99372 99036
8 54912 201569 621315 1169640 1607432
9 339456 1488762 5496208 12841632 22759560

10 2149888 11043318 47759130 134278720 293971176
11 13891584 82257890 409620156 1354371348 3553592152
12 91287552 615092178 3478672642 13287239184 40855164228
13 608583680 4615882908 29315742924 127526774024 451592018748
14 4107939840 34752865332 245539064736 1202371430148 4836001359644
15 28030648320 262437282621 2046309441924 11170818315900 50454786158100
16 193100021760 1987229885913 16983591315267 102508926612240 515031678182160

n\g 5/2 3 7/2 4

6 1348 0 0 0
7 57204 15104 0 0
8 1445760 793260 198144 0
9 28251720 24092916 12500640 2998656

10 470885712 553335140 446044020 222034464
11 7034561160 10652501508 11827897444 9139492032
12 96964428080 181251943620 259263273912 275741173612
13 1256403317832 2812951666460 4965451637328 6799083573828
14 15499423803780 40643437847436 85911625991020 145094953853052
15 183709516250796 554529301430940 1372607347932900 2774708761422460
16 2106284848285632 7218066635434760 20563312515574176 48658560979911312

A.3. ROOTED TRIANGULATIONS OF GENUS g WITH 2n FACES (ORIENTABLE OR NOT).

n\g 0 1/2 1

1 4 9 7
2 32 118 202
3 336 1773 4900
4 4096 28650 112046
5 54912 484578 2490132
6 786432 8457708 54442636
7 11824384 151054173 1177912344
8 184549376 2745685954 25302706734
9 2966845440 50606020854 540709469284
10 48855252992 943283037684 11509659737732
11 820675092480 17746990547634 244254583041960
12 14018773254144 336517405188900 5170993925895980
13 242919827374080 6423775409047716 109258058984867592
14 4261707069259776 123332141503711704 2304778527410416728
15 75576645116559360 2379824766494404317 48552885599587471920

n\g 3/2 2 5/2

1 0 0 0
2 128 0 0
3 6786 3885 0
4 249416 309792 163840
5 7820190 15536592 17742726
6 224154528 626073960 1140086560
7 6064485588 22147258392 56574101430
8 157592065776 718135826112 2394618429216
9 3975252852294 21875815507824 90903502798380
10 98013064376240 635740513124184 3186926652389376
11 2373323509105164 17808561973715832 105134232237568182
12 56632532943141168 484348105828421472 3305475583204245376
13 1335091307453227116 12857728996745420112 99951709676667034212
14 31155184166556067968 334487003255090327376 2926388895694344300864
15 720738499764872647080 8553392225715199201200 83383518174303020028732
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n\g 3 7/2 4

4 0 0 0
5 8878870 0 0
6 1227058016 587202560 0
7 96836144376 99359372628 45877917085
8 5738654714432 9344829276160 9227542480640
9 283959455776728 646430229699516 1011244742721480
10 12391917590699520 36729466978572288 80222081136864896
11 492702239182522512 1816211696054002632 5159782135287908304
12 18229054925434379424 80930038930104447744 285723552389864612352
13 636795227835309684024 3324906134317505727756 14128927461188199914592
14 21225085309259820837824 127965696661596592413184 639196545524077326637824
15 680321493460375920656880 4667484955217376877322616 26909217174327495052218480

APPENDIX B. A FIXED-CHARGE BKP EQUATION

THEOREM B.1. Let τ(N) be a BKP tau function. Then for k ∈ N, k ⩾ 1 the following identity
holds in C(N)[p,q][[t]]:

(43) 2F13 KP13 = (KP31 −2 KP22) KP12 −(KP3 −3 KP112) KP1 KP11

+ 2(KP12 − KP21) KP1 KP2 +2 KP22 KP11 −2 KP13
1 − KP12 KP113 ,

where

KP1 = −F3,1 + F22 + 1
2F

2
12 + 1

12F14 ,

KP2 = −2F4,1 + 2F3,2 + 2F2,1F12 + 1
3F2,13 ,

KP3 = −6F5,1 + 4F4,2 + 2F32 + 4F3,1F12 + 2
3F3,13 + 4F 2

2,1 + 2F22F12 + F22,12

+ 1
3F

3
12 + 1

6F14F12 + 1
180F16 ,

with F ≡ F (N) = log τ(N).

Proof. Denote ∆f(N) = f(N + 2) − f(N − 2) and ∇f = f(N + 2) + f(N − 2), and

(44) E = S2(N)e∇F (N)−2F (N).

Using (3), (11), (12) we obtain the following equations

(45) E = KP1, E∆(F1) = KP2, E(∇(F12) + 2∆(F2) + (∆F1)2) = KP3,

where KP1,KP2,KP3 are given in the statement and they are the LHS in (3), (11), (12). We
need to differentiate the 3rd equation w.r.t. p1,

(46) ∆2F2,1 + ∇F13 + 2∆F1∆F12 =
(KP3

KP1

)
1

and rewrite the LHS using derivatives of the first 2 BKP equations,

(47)

2∆F2,1 + ∇F13 + 2∆F1∆F12 = 2
(KP2

KP1

)
2

+ 2F13 +
(KP11

KP1

)
12

+ 2
(KP2

KP1

)(KP2
KP1

)
1

= 2F13 + 1
KP13

(
−2 KP1 KP2 KP12 +2 KP12 KP22 −2 KP22 KP11

+ 2 KP13
1 +2 KP1 KP2 KP21 −3 KP1 KP11 KP112 + KP12 KP113

)
.

We finally equate the RHS of the above two equations and multiply by KP13 to obtain (43).
□

Algebraic Combinatorics, Vol. 5 #6 (2022) 1388



Enumeration of non-oriented maps via integrability

REFERENCES

[1] M. Adler and P. van Moerbeke, Hermitian, symmetric and symplectic random ensembles: PDEs for the distri-
bution of the spectrum, Ann. of Math. (2) 153 (2001), no. 1, 149–189.

[2] N. M. Adrianov, An analog of the Harer–Zagier formula for unicellular bicolored maps, Funktsional. Anal. i
Prilozhen. 31 (1997), no. 3, 1–9.

[3] M. Albenque and M. Lepoutre, Blossoming bijection for higher-genus maps, and bivariate rationality, Preprint
arXiv:2007.07692, 2019.

[4] A. Alexandrov, G. Chapuy, B. Eynard, and J. Harnad, Weighted Hurwitz numbers and topological recursion,
Comm. Math. Phys. 375 (2020), no. 1, 237–305.

[5] R. Belliard, S. Charbonnier, B. Eynard, and E. Garcia-Failde, Topological recursion for generalised Kontsevich
graphs and r-spin intersection numbers, Preprint arXiv:2105.08035, 2021, https://arxiv.org/abs/
2105.08035.

[6] E. A. Bender and E. R. Canfield, The asymptotic number of rooted maps on a surface, J. Combin. Theory Ser.
A 43 (1986), no. 2, 244–257.

[7] , The number of rooted maps on an orientable surface, J. Combin. Theory Ser. B 53 (1991), no. 2,
293–299.

[8] , The number of degree-restricted rooted maps on the sphere, SIAM J. Discrete Math. 7 (1994), no. 1,
9–15.

[9] E. A. Bender, Z. Gao, and L. B. Richmond, The map asymptotics constant tg , Electron. J. Combin. 15 (2008),
no. 1, Research paper 51, 8 pp.

[10] O. Bernardi and M. Bousquet-Mélou, Counting colored planar maps: Algebraicity results, J. Combin. Theory
Ser. B 101 (2011), no. 5, 315–377.

[11] , Counting coloured planar maps: Differential equations, Comm. Math. Phys. 354 (2017), no. 1, 31–84.
[12] O. Bernardi and G. Chapuy, Counting unicellular maps on non-orientable surfaces, Adv. in Appl. Math. 47

(2011), no. 2, 259–275.
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