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CONVEX INTEGRATION
OF NON-LINEAR SYSTEMS

OF PARTIAL DIFFERENTIAL EQUATIONS

by David SPRING

1. Introduction.

In this paper existence theorems are proved for (Y solutions
to underdetermined systems of non-linear r-th order partial diffe-
rential equations which are subject to certain convex conditions,
r G {1,2,3, . . .} . Furthermore, the solutions satisfy given approxi-
mations on lower order derivatives.

The main geometrical construction, Convex Integration, was
first introduced by M. Gromov [1] in his study of 1st order systems.
Our main results generalize Gromov's theorems on 1st order systems
to r-th order systems of partial differential equations, r £ {1,2,3,.. .}.
Despite the analytic character of the main results (§2, § 3), the
proofs are mainly geometrical in conception.

From the point of view of differential topology, an r-th order
system of partial differential equations is a closed differential relation
in the space of r-jets of C^ maps between smooth manifolds. There
are very few general theorems in topology which yield solutions to
closed differential relations. One goal of this paper is to provide a self-
contained, detailed exposition of the Convex Integration technique as
it applies to a system of partial differential equations defined on an
open set in Euclidean space. The principal local result, The Local Ex-
tension Theorem (Appendix 6), is also the main step in all the appli-
cations of the Convex Integration technique to solving open and closed
differential relations in jet spaces.

In particular, in the case of open differential relations, some of
the classical results reprovable by Convex Integration are the Immer-
sion Theorem of Hirsch [5], and the principal theorems of Gromov and
Eliasberg on the removal of singularities [2] (cf. Gromov [4], for a
recent summary of results).
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While the systems of partial differential equations studied in
this paper are in some respects quite general, the convex conditions
exclude linear or quasi-linear systems of partial differential equations.

To understand the scope of the method, let S be an r-th order
system of m partial differential equations in q unknown real-valued
C''-functions ^ , f^, . . . , f^ defined on an open set U in R" , n > 1 .

§ may be written as follows:
S = F,.(x , D^ f^(x)) = 0 , 1 < / < m ; 1 < / < q ; x G U, where
1) D^ runs over all local differential operators (on C/ functions

of ^-variables) which have the following form:
Let ( u ^ , u ^ , . . . ,^) be coordinates in R" .

9^1
Then D^ = -—————————— ' \Q\ = n + / 7 4- /? <».

a^a^2...^ 5 ^^^-^a^r.

Note. — Throughout this paper, a differential operator D0 on
functions of ^-variables will mean a differential operator as defined
above.

2) F .̂ is a real-valued continuous function on the space of r-jets
of maps from U to ^ , / = 1, 2, 3, . . . , m .

The analysis of the system provided by the method of Convex
Integration may be described as follows:

Coordinates in R" are (u^, ̂ ,. . . , ̂ _ ^ , t ) .
For each x E U, the w-equations of the system S define a

(singular) surface ^(x) = Sl(x) in R^ according to the following
prescription:

A point ( X i . x ^ , . . . . x ^ E R ^ lies in Sl(x) if and only if,
F^x.iy^OO,^,^, . . . , x^ ) = 0, K ; < m ; 1 < / < ^ , where
in the above equations for the system S, one replaces the derivativey' f.
-^ (x) by the independent variable x., 1 < ; < q , and, D^ runs

over all differential operators on functions of /2-variables such that
y

1^1 <r and D^ -^ . Thus (D^.Oc))^, ^3 as above, is a se-

quence of constants in these equations for the surface Sl(x) C R^ .
Evidently, a C 'map/= (^ , / , , . . . , /^ ) : u—^ R^ is a

solution to the system § on U C R^ , if and only if:
For each x E U,
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^w=(^•^•••••^w)e»M•
Example. — Let S be the 2nd order system consisting of one

equation in 3 unknown functions on an open set U C R2 (coordi-
nates in R2 are (y , t)):

^_ r^i2 j ̂ r „./ .^ ^ '̂ ^f\
9t2 [ s ^ J ^ L ' ^ J ~ F ^ 5 ' ? / 5 'B i r ? ^7 ? ^7 ? ^ )

where / = (/i, /^, ̂ ): U —^ R 3 , and F is a continuous map.
Evidently for each (y , t ) E U, f t ( . y , O C R 3 is the surface (a

hyperbolic paraboloid),

f t(^,0= (x^x^^GR 3 ! ;^ -x j+x j

/ a/ _a^ a^ a 2 / ^ )
V ' 7 ? a r ? ^ 5 a^2 ' sra^/ )

Remark. — Genetically, a system S of m equations in ^ un-
known functions (q > m) defines a submanifold ft(.x) C R^ of di-
mension q — m for each x G U.

The Convex Integration technique for solving the system S de-
pends on simple geometric properties of the surfaces Sl(x).

Specifically, for each C'' map h : U —> R^ and x G U, one
requires the following properties which are here informally stated:
P(l) : Sl^(x) = ^l(x) is closed in R^ and is locally arc-wise con-

nected.
P(2) : For each z G Sl(x) the convex hull of every neighbourhood of

z in Sl(x) has non empty interior in R^ .
P(3) : There is a neighbourhood N(S2) (x) of Sl(x) in R^ and a

retraction R: N(ft)(x) —> Sl{x).
P(4) : (Coherence properties):

The (closed) set ft = U ft^(x) is a topological fiberbundle,
x , h

and ft is a retract of a neighbourhood of ft in the space of
^-jets of C^ maps from U to R^ .

Precise statements of the above properties, especially P(4), are
provided in Appendix 1 and in § 3.
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Formal solution to S.

Assume now that the system '§ satisfies properties P(l) to
P(4) above.

Let h = (h^h^, . . . ,^) : U — > R'7 be a C map and
$ = ($1, . . . , ̂  ) : U —^ R^ a continuous map such that the
following conditions obtain:

F( l ) : For each ; c G U ,

F,(x, D^.Oc), <^(x), <^(x), . . . , <^0c)) = 0,
-\r

K z < m ; 1 < 7 < ^ ; l j 3 | < r , and D^——'
3^

In other words, for each x G U , $(x) lies on the surface
^ ( jQCR^ . There is, of course, no a priori relationship between

^r i

the continuous maps $ : U —> R^ , —^- : U —^ R^ .
9t

Evidently, if /: U —> R^ is a C^ map which solves the
yf

system §, then the maps /, $ = — 7 satisfy F( l ) . Thus F(l)
of

is a (weak) necessary condition for the existence of a solution to the
system S.

F(2): For each x G U , the convex hull of the arc-component
yh

of $(x) in n^(x) contains —,- (x) in its interior. The following
ot

refined form of F(2) is also used.
F(2) (e): Fix e > 0 . For each ^ G U , the convex hull of

the arc-component of ^(x) in ^l^(x) H D(^(x) ;e) contains
yh , ,
—- (x) in its interior:
9t __
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The shaded area is the convex hull of the arc-component of
$(x) in ^(x)HD($(x) ;e) , where D ( ^ ; 5 ) is the open ball in
R^ , centre y , radius 6 > 0.

DEFINITION. — A formal solution to '§ is a pair of maps ( /?,$)
which satisfies condition F( l ) , F(2) above.

Example. — In the above example of a 2nd order partial dif-
ferential equation, properties P(l) to P(4) are satisfied. Note also
that the convex hull of S l ( y , t ) is R3 , for all ( y , t ) ^ V .

For any C2 map h: U —^ R 3 , one easily constructs a conti-
nuous map $ : U ——> R3 such that (h , <^>) is a formal solution to
the equation S.

Statement of the Main Theorem.

The main result of this paper, theorem 2 (§ 3), states that if
( /?,$) is a formal solution to an r-th order system S which satisfies
the geometrical conditions P(l) to P(4), then there is a C^ map
/: U —> R^ which solves S, and is such that the maps D^f:
U ——> R^ , D^ h : U —> R^ satisfy given approximations for all

y

P such that | j31 < r , D^ ^ —^ '
9t

In particular, /: U —^ R^ is a C''"1 approximation to the
map h in the Whitney fine C^"1 topology. Thus, in the above
example, any C2 map h : U —> R3 can be approximated, in
the fine C1-topology, by a C2 solution to the equation S.

The proof of the theorem depends ultimately on the solution
of the following C1' -approximation problem which is of independent
interest.

A sketch of the proof of Theorem 2 follows the discussion of
this approximation result.

The ^-Cube-Lemma (cf. Appendix 5).

Let [0,1]" be the n-cube in R". Coordinates in R" are
( s ^ s ^ , . . . , ^ _ i , t ) . Let Q C t O . l f x R ^ be an open subset.
Let Q(x) = Q H O c x R^), x E [ 0 , l f ; thus QQc) Cx x R9 = R^ .
Let <i> : [0,1]" ——> R^ be a continuous map such that the graph
of <X> is contained in Q.
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Fix an integer r > 1 .

Suppose G: [0 , l f——> R^ is a C' map and K o C [ 0 , l f
a closed set such that :

a) For each x €[0,1]" , the convex hull of the arc-component
a'G

of <i>(x) in Q(x) contains —— (-^) in its interior.ot
b) There is a neighbourhood U of KQ in K such that, for

3'G
each x G U , ——=$0c) .

ot

The approximation problem, informally stated, is to find a C^
<\r p

map F: [0 , l f——^ R^ such that the graph o f — — : [0 , l f—^ R"
d^

is contained in Q and such that the maps F, G satisfy given ap-
proximations on all lower order derivatives. This problem was first
formulated and solved by Gromov [1] in the case r = 1 (the one-
dimensional lemma). In Appendix 5, we solve the approximation
problem in a uniform manner to obtain the following precise result:

Fix e > 0 .
There is a C'' map F: [0,lf ——^ R^ and a neighbourhood

V of Ko in K, V C U , such that:

9'F
(i) the graph of —;-: [0,lf —^ R" is contained in Q.

9t yp
More precisely, for each xG[0 , l ] " , — — ( x ) is contained in the

ot
arc-component of $(x) in Q(x).

(ii) For each ( y , t ) G [O.I]"-1 x [0,1] == [0,1]" , (|| || is the
Euclidean norm on f^q).

I I D^(F - G) ( y , t ) || < e , where D^ runs over all differential
operators on functions of ^-variables such that I j81 < r and D^ in-
volves at most (r — 1) differentiations in the ^-coordinate.

(iii) For each x G V, F(;c) = G(x).

This is represented schematically as follows.
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A = $(;c).

Sketch of the Proof of Theorem 2.

One constructs a suitable sequence of metaneighbourhoods
(Met^ ^2) ^ _ ^ of ^2 in the space of r-jets such that nMet"""^ = ̂ .

m m

A metaneighbourhood of S2 is an open set, whose closure
contains n, and which satisfies certain convexity properties (precise
definitions and properties of metaneighbourhoods are provided in
Appendix 1). Let ( / z , ^ > ) be a formal solution to the closed condi-
tion n . One constructs a sequence of formal solutions (h^ , <^)^>o
to the closed condition K such that:

1) 7^(U)CMet^n, m = 0 , 1 , 2 , 3 , . . . .
That is, /^ : U —> R^ is a CY map which solves the open

condition Met^, ?2, m > 0.
2) For large m, ̂  : U —^ R^ is a close approximation to

the derivative map ——^ : U —> R^ .a^
3) The C'' maps h, h^ : U —^ R^ satisfy given approxim-

ations on lower order derivatives, m = 0,1, 2,3, . . . .
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The limit map / = lim h : U —> R^ exists, is of class C^
m-" °°

and solves the closed condition ?2 .
In this way, the closed condition Sl is solved by passing to a

suitable sequence of solutions to "nearby" open conditions. The cor-
responding problem of existence of solutions to open conditions in
jet spaces is solved in Theorem 1, § 2.

Brief Sketch of the proof of Theorem 7.
Suppose (h, $) is a formal solution to an open condition Y

in the space of r-jets.
The construction of a C/ solution /: U——> R^ to Y pro-

ceeds as follows: One covers U with a suitable locally-finite cover
by ^-cubes. The construction of the map / proceeds by an infinite
series of modification of maps (beginning with the map h: U —> R4),
each modification taking place within one of the ^-cubes of the cover.

Within each ^2-cube, the required modifications are made by ap-
plying the Local Extension Theorem (Appendix 6) which is a closely
related refinement of the Cube lemma discussed above.

Remarks. — 1) Generically, for underdetermined systems (i.e.
q > w ) , the geometric properties P(l) to P(4) associated to the
system S are always satisfied, and one may construct formal solu-
tions, at least locally in U . One therefore concludes that, generically,
all underdetermined r-th order systems of partial differential equations
are solvable, at least locally, r G { l , 2 , 3 , . . . } .

2) Suppose now the maps F .̂ are C°° (that is the system S is
defined by C°° data). In this paper we are unable to obtain results
about C°° solutions to the r-th order system S . The question of
C°° solutions in the presence of C°° data for the r-th order system
S remains an outstanding problem.

3) Our results are existence theorems only. In general, for
systems S which satisfy the geometrical conditions P(l) to P(4)
above, there are infinitely many solutions to S which satisfy the
given approximations on lower order derivatives.

Historical Remarks.
The method of Convex Integration is close in spirit to the work

of J. Nash on the C1 isometric embedding problem (Nash [8], and
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also Kuiper [7]). In order to realize a given continuous metric by a
C1 embedding in Euclidean space, Nash begins with a "short" embed-
ding, and, working locally via an inductive procedure, proceeds to
lengthen the embedding to obtain a new short embedding for which
the induced metric is closer to the given metric. In the limit, a C1

embedding is obtained which realizes the given metric.
The key step of "stretching" a given short embedding in a small

neighbourhood is achieved by a one-dimensional lemma analogous
to the one-dimensional Lemma (Appendix 3). This one-dimensional
lemma was clarified by Kuiper who obtained also codimension > 1
results.

Indeed, the method of Convex Integration, detailed in this paper,
may be applied to recover and extend Nash's C1 isometric embedding
theorem (cf. Gromov [3] for an announcement of his results on this
problem).

Organization of the Paper.

In § 2, complete details are provided for the solution of open
conditions in jet spaces which admit a formal solution. In § 3, the
results on open conditions in the space of r-jets are applied to solve
closed conditions in jet spaces which satisfy the geometrical conditions
P(l) to P(4) above. In § 4, related results on mixed derivatives are
discussed.

In order not to overburden the proofs in each section, the follow-
ing steps have been taken:

1) Additional refinements to Theorems 1, 2 (§ 2, § 3) have been
placed at the end of the sections, in a series of Complements.

2) The main technical results concerning metaneighbourhoods,
Convex Hulls, the Cube Lemma, the Local Extension Theorem, etc.,
have been relegated to a series of Appendices in order to minimize
the numerous digressions into technical details that would otherwise
become necessary to discuss in § 2, § 3.

Finally I should like to thank M. Gromov for the many useful
discussions we had together about Immersion Theory and Convex
Integration Theory. In particular, I thank him for introducing me
to his paper on C1 systems [ I ] , and for his encouragement to write
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a complete account of the results in this paper, which were first an-
nounced in the preprint [9]. Independently, using a different approach
to solving the Approximation Theorem (Appendix 3), he sketched a
proof (unpublished) of the principal results of this paper. His solu-
tion to open and (generic) closed differential relations in jet spaces,
as well as. a wealth of other remarkable results, will appear in some-
what condensed form in a forthcoming book.

2. Solving Open Conditions in Jet Spaces.

In this section, it is proved that a formal solution to an open
condition in the space of r-jets may be transformed into an exact
solution (i.e., which does satisfy the given open condition), while
controlling in a precise way all lower order derivatives.

Briefly, one performs an infinite series of transformations of a
given formal solution, each transformation taking place within an
n-cube (of a locally finite cover by /i-cubes). Within each M-cube,
the transformation is performed by employing the Local Extension
theorem (Appendix 6); thus, the success of the process depends on
a local construction designed to solve the approximation problem
discussed in the introduction.

Let U C R" be open, n > 1 .
s: FdJ.R^) —> U is the product bundle of r-jets of C

maps from U to R^ (s is the source map), r G {1 ,2 ,3 , . . .}. Thus
if /: U —> R^ is a C' map, ff\ U —> J '(U, R^) is the conti-
nuous section, ff(x) = (x , f(x) . . . , Tf f (x ) , . . . ) , where D^
runs over all differential operators on functions of ^-variables such
that |a| </• .

In particular, x G U asss^ so^ f(x) = x .
Coordinates in R" are denoted by (^, s^, . . . , s^ _ ^ , t ) .

r(U, R^) == J^U, R^) x R^ where the R" factor in this product
y

decomposition corresponds to the "pure" r-ih order derivative —^ •
ot

-\r ^

One employs the notation, j'fW =(flf(x) , —7 (x)) , x e U,
\ of /

where /i/ is the corresponding continuous section of the bundle,
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s : J^U,^)—> U. Note that TT : r (U ,R^) —> J^U,^) is
a trivial Euclidean vector bundle, fiber R ^ , where TT is the projec-
tion map onto the first factor.

Statement of the Problem,

Let Ycro j .R 9 ) be ah open set.
We seek reasonable conditions which ensure the existence of

a (V map /: U —> R^ such that: x G U ====> ffW G Y.
These conditions are stated in terms of the Euclidean vector

bundle TT : r (U ,R^) —> J^U.R^) .
The following notation is convenient (cf. also Appendix 1).
DForeach z E J ^ U . R ^ ) , Y(z) = Y H TT-^Z) C z x R^ = R<? .
2) Let w E Y ( z ) .

(i) Arc(Y(z) ;w) is the arc component of w in Y(z).
(ii) Env(Y(z) ;w) is the interior (in R^) of the convex hull

of Arc(Y(z) ;w) .
(iii) Let e > 0.
Arc, (Y(z); w) = Arc (Y(z) 0 D(w ; e); w).

EnvJY(z);w) = E n v ( Y ( z ) n D ( w ; e ) ; w ) , where D ( w ; e ) is
the open ^-ball in R'3' with center w , radius e .

Formal Solution to Y.

A formal solution to the open condition YCJ^U^^) is a
pair of maps ( h , g ) where h: U—> R^ is a C map and g :
U ——^ R^ is a continuous map, such that:

F( l ) : For each x G U , (/^^(x), ^(x)) G Y .

F(2): For each x G U , ——(Jc)eEnv(Y(7 i /^ (x) ) ;g(x) ) .
d^

Remarks. - Suppose h: U —> R^ is a C'' map which solves

the condition Y; i.e., 7^(U)CY. Then (h,9-^) is a formalv 3r /

solution to Y. Thus the existence of a formal solution is a (weak)
necessary condition for the existence of a CY solution to Y.
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Let a : U—> (0,oo) be a continuous map. The pair ( h , g )
is a formal solution to within tolerance a if, in addition, F(a) • for

yh
each x G U, -^ (x) G Env^^ (Y(;1 h (x)) ; ̂ Qc)).

The principal result of this section. Theorem 1, may be inform-
ally stated-as follows (the precise statement of Theorem 1 is provided
below):

Let ( h , g ) be a formal solution to an open condition
Ycro;,^). Then there is a (7 map /: U —> R^ such that
/^/(U) C Y. The proof of Theorem 1 reduces to solving the following
extension problem.

The Extension Problem.

Let A, B be closed sets in U, A C B . Let ( h , g ) be a formal
'\r j^

solution to Ycroj ,^) such that —T=g in a neighbourhood
6t

of A in U (i.e., the C map h: U —> W solves the open condi-
tion Y in a neighbourhood of A in U).

The formal solution ( h , g ) extends to a formal solution ( h , ~ g )

to Y with respect to the closed sets A C B , if —^ = ~g in a neigh-
9t

bourhood of_ B in U and if there is a neighbourhood of A in U on
which h = h , g = ~g .

In particular, there is a neighbourhood N(A) of A in U such

that: For each x G N(A), —— (x) = —— (x) = g ( x ) == g ( x ) .
ot 6t

The proof of Theorem 1 reduces to proving the extension problem
in case B = A is contained in the interior of an n-cuhe (this is the
main inductive step in the proof of Theorem 1). This step in the proof
is solved by the Local Extension Theorem (Appendix 6). By employing
a suitable locally finite cover of U by ^-cubes, a proof of Theorem 1
is obtained.

Remarks. -Let (h,~g) be a formal solution to Y which
extends (h, g) with respect to the closed sets A C B .

One constructs (h •, g ) to satisfy the additional properties:
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a) h, h satisfy given approximations on lower order derivatives.
b) There is a homotopy of formal solutions to Y , rel a neigh-

bourhood of A in U, connecting ( h , g ) to h , ~ g ) . (cf. Comple-
ment 2, below).

THEOREM 1. - Let Y C r(U , W) be an open set.
Let (h, g) be a formal solution to Y .

—7 (x) = g ( x ) [ . In particular, the C^ map
of }

Let T = ] x G U

h: U ——^ R^ solves the open condition Y on the closed set T.
Let W(/z) be a neighbourhood of j^hW) in J^U.R^) .
There is a C map f: U—> R'7 such that:
a) /VWCW^).

b) The r-jets f f', fh: U —> F(U, R^) coincide in a neigh-
bourhood of T in U.

c) For each x G U, ^Oc) E Arc (YC/1/^)); ̂ )).
d^

(In particular ffW) C Y).

Remarks. — It follows from conclusion a) that in particular, /
is a C"'"1 approximation to h: U —> R^ in the fine C/"1 topo-
logy.

Proof. — Without loss of generality, one may assume that there
is a neighbourhood N(T) of T in U such that: for each x €N(T) ,

g(x)= ^-(x).
6t

Let (Ap)p^o, (Kp)p^o be countable locally finite covers of
U such that:

1)Kp is a translate in R" of an ^-cube [0,^f, Op > 0,
p = = 0 , l , 2 , . . . .

2) A is a compact subset of int K , p = 1, 2,3, . . .
To prove the theorem, one constructs, inductively, an open

( m \
neighbourhood M^ of T U _U AJ in U, and a formal solution

(fm^m) to Y , m = -1,0,1,2,. . . , suchthat:

10
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l (w) : j^WWcww.
^r ^

2(m): For each x EM^, g^(x-) = —f (x).
d^

In particular, for each xCM^, ] ' ( f ^ ) (x) G Y. Thus the C'
map /^, : U —> R^ solves the condition Y over M^ .
3(m): Foreach x G U, g ( x ) G YO1/^)), and,

^(x) G Arc (YC/^OC)); ^(x)).
yf

4(m): Foreach x £ U , -^(x) £ EnvCYC/^^)) ;^(x)).
ot

5(m + I ) : (Coherence properties):
For each x E U - K^ , /^(x) = f^ (x) ; ^(x) = g^^ (x);

^ - ̂ +1 = ̂  - t^i •

Remarks. — The inductively defined data begins with m = — 1 ,
where, /_ i = /? ; ^_ i = ^ ; A_^ =0, M _ ^ = = N ( T ) . Thus when
m = — 1 , the above conditions obtain by the hypotheses of the
theorem. Assuming the existence of neighbourhoods and formal so-
lutions with the above properties, m = — 1, 0,1, 2,3, . . . , the theo-
rem is proved as follows:

Let /: U —> R^ be the map f(x) = lim f^(x) (pointwise).
ftl—> oo

Since (Kp)p^o is a locally finite cover of U, it follows from
the coherence properties, 5(m + 1), that / is well-defined, is a
C^ map, and that the conclusions of the theorem are all satisfied.
The sequence of maps (g^: U —> R^m^-i ls ̂ ^ for the refi-
nements of Theorem 1 (cf. Complement 2 below.)

The construction of the inductively defined data proceeds as
follows:

Assume that (/^ , g^) and M^ have been constructed.
Working now within the ^z-cube K^+^ = K, let

L = K ^ n ( T u ( ^ A,)) ; M = L U A ^ .

Since A^i C int K^+i , it follows that (M - L) H 3K = 0.
Let N(L) = M^ ^^m+i ' ^ms N(L) is an open neighbourhood

of L in K^i . Define K^ = L U 3K (K^ C K is a closed subset).
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9K,w+1

135

M = L U A ^
Ko == L U 8K .

The n-cubG K^+, = K

The formal solution (/„, ,g^) satisfies the following properties:
1) For each x eK,^,, ^,(x) GArc (YO^OC)) ; ̂ (x))

2) For each x G K^,, , a-^ (x) G Env (YO^x)) ; g(x))a/
9''/•'w3) For each x G N ( L ) , g^(x) = —f (x).
3^

In what follows, one extends (/^ ,^), within the cube K^i ,
to a formal solution (/^ , g ^ ) to the open condition Y, with respect
to the closed sets L C M. This is the basic induction step; the Local
Extension Theorem (Appendix 6) is employed to complete this step.
It is convenient to work over the submanifold /^/^(K^+i) C ^(U, R^)
in the Euclidean vector bundle TT : J^U,^) —> ^(U,^):

K^ x R^ roj,^)

Km+l
f^f T

———^ J^U,^)

To this end, we pull-back via the embedding y1/^ to obtain the
product Euclidean vector bundle, fiber R^ over K^.^ .

It is convenient to again denote by Y the (open) subset of
^+1 x Rq obtained by pulling back Y C J ^ U . R ^ ) via the em-
bedding /1^: K^ —> J^U.R^) .

Thus, for each ^CK^, Y(x) = Y(71^,(Jc)) C R^ .
To summarize, with respect to the product bundle TT :

^+1 x Rq —> K ^ + i , the formal solution (f^ , ̂ ) satisfies
the properties:
K^ x R^

1) Foreach x G K ^ , g^(x) EArc (Y(x), ^(^)).

2) Foreach xGK^ , ̂  (x) G Env (YM, ^(x)).
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3) For each x E N ( L ) , g^(x) = bf^ (x).
ot

Applying now the Local Extension Theorem (Appendix 6), one
obtains the following conclusion:

Let e > 0.
There is a C map f^: K^^ —> ^ , a continuous map

^m : ^+1——^ u. a neighbourhood W of M in K^,^ , a neigh-
bourhood V of KQ in K,^ , such that the following properties
obtain:

a) sup I ID^C/^- /^ , ) (^) | | < e , where D0 runs over all
^ c G K ^ + i

differential operators on functions of ^-variables, | a |<r andy^-
b) For each x £ K^,.n ,

^(^) G Arc (\(x); g^(x)) (= Arc (Y(x); ̂ (x)).)

9''/c) For each x € K^, , -̂ " (^) € Env (Y(;c); ̂ ,(^)).

^r ~c
d) For each x G W , ^(x) == —^ (x)

d^
e) For each x G V , 7^(^) =/^(^); ^(^) = ^(x).
f ) w n a K ^ ^ c N ( L ) n a K ^ ^ .
Remarks. - 1) Employing e) above, /^ = f^ ; ^ = ̂  in a

neighbourhood of 3K^+i in K^+i .
2) There is a neighbourhood U of L in K^^ (in fact,

U = N(L)OV) such that:

For each ^ G U , ̂  00 == ̂  (x) = g^x) = g^(x).

One concludes therefore, from the Local Extension theorem
applied to the data (/^,^) on K^ , that the formal solution
(fm » ^m) extends (/^ , g^) with respect to the closed sets L C M
in K^.

Construction of the neighbourhood M ^ ^ ^ , and the maps /^+^ ,
^m+l '

Let M^^ =WU(M, , -K^) .
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Applying conclusion (/) above, it follows that M^, is a

neighbourhood of T u{ "U_ A,) in U.

Let f^ : V—^ R9 be the map,

. fmW,xe\J-K^,
j m+} \-^) — —

/^)^<=K^.

Employing Remark 1, above, /^ is a C" map.
Let g^ : U —> R" be the map,

^(x), ^ € = U - K ^
^m+lOO =

( ^»00> ^K,,,,
Employing Remark 1, above, g^^ is a continuous map.
Furthermore for e > 0 sufficiently small, it is clear that the

following properties obtain:
1) /^idDcwc/O.
2) Employing the remark on compactness in Complement 2

of Appendix 5, it follows that for e > 0 sufficiently small (so that
the maps /•i/^ , /i/^, : U —-^ J^U, R") are sufficiently close):

a) For each x <= U, g ( x ) € Y(/1/^ (x));
g^t (x) £ Arc (Y(/1/^^ (x)); g(x)).

^\r ^
b) For each x € U, -̂ -1 (x) € Env (Y(/^ (^)); ̂ )).

»\^ y

3) For each x E M . - , , , , —m^ ( x ) = s ( x }9^ ow+i^^'

In particular, (/^^,^^) is a formal solution to Y which
extends formal solution (/^ , g^) to Y with respect to the closed

/ m \ / m+l x
sets, TU( u A, )CTU( U A.}

\,=-i '/ V,=-i ' / '

Evidently properties l (w + 1) to 4(w + 1) are satisfied by
the formal solution (/^ , ̂ ,) as well as the coherence properties
5 ( w + l ) .

This completes the inductive step and hence the proof of
Theorem 1 is complete.
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Complement 1.
Let Y C r (U, R9) be an open set.
Let o r : U——> (0,°°) be a continuous map.
Suppose h: U —> R^ is a C map, g : U —> R^ a conti-

nuous map such that ( h , g ) is a formal solution to Y within the
tolerance a (cf. the definition of formal solution in this section).

In this case, the conclusions of Theorem 1 may be strengthened
to include the following (cf. Complement 3, Appendix 6):

^\r ^
For each xEU, -^(x) EArc,^ (YC;1/^)); g (x ) ) .

(This strengthened conclusion is used in § 3 to prove convergence
results.)

Complement 2.
Since {Kp}^o is a locally finite cover, one employs Com-

plement 1 to the Local Extension Theorem (Appendix 6) to prove
that there is a homotopy of formal solutions, rel T, to the open

^\r r-
condition Y C J ^ U . R ^ ) which connects ( h , g ) to (f,——r\

^ 9 ^ /

Complement 3.
Suppose in addition, h: U —> R^ is a C°° map. Employing

Complement 4 to the Local Extension Theorem (Appendix 6) one
easily proves the following additional conclusions to Theorem 1:

Fix an integer s > r and a neighbourhood W of the constant
map equal to zero, 0: U —> R^ , in the space of continuous
maps from U to R^ in the fine C°-topology.

Then, D ^ y - T O e W , for all differential operators D" on
functions of ^-variables |a |<5 ' , and such that D" involves dif-
ferentiation at most (r- l)- t imesofthe r-variable.

3. Solution to Closed Conditions in Jet Spaces.

In this section the main result (theorem 2) of this paper is proved.
Suppose ^2 C J^dJ, R^) is a closed condition in the space of r-jets
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which satisfies the geometrical properties G(l) to G(4) stated
below. If there is a formal solution to ^l, then by theorem 2,
there is an exact solution to n which satisfies given approxima-
tions on all lower order derivatives.

Briefly, one constructs a suitable sequence of metaneighbour-
hoods (Met^n)^_i of n in rOJ .R^) .

For each m , Met^ ̂  is open in V (U, R'7) and H Met^O = ̂  .
One constructs a sequence (S) of formal solutions (^w»^)^>-i
to the closed condition Sl such that:

1) For each m , f h^ (U) C Met^ S2 ; /z^ , /z satisfy given ap-
proximations on lower order derivatives.

2) For each m, the metaneighbourhood Met^ + ̂  is so

chosen so that derivative maps —-p , ——n^- : U —> R9 satisfy
d^ Qt

given estimates.
These estimates ensure the uniform convergence of the sequence

of derivative maps (—m : U—> R^V
ot m>-\

Let U C R" be open n > 1 .
Coordinates in R" are denoted by (^ , s^, . . . , s^ __ i , t).
Recall the product bundle s : J ^ U . R ^ ) — ^ U of ^--jets of

C^ maps from U to R^ , and also the product Euclidean vector
bundle, fiber R^ , TT : J'(U, R^) —> ^(U, R^) (cf. § 1 for
complete definitions of these bundles). In particular, if /: U —> R^
is a C^ map, then j r f ' . U —^ J ^ C U , R9) is the continuous section,

»\r z«

/r/^) = (71/^), 97 (x)) ^^(U.R^) x R^ = rCU.R^).

Statement of the Problem.

Let ?2 C ^(U, R^) be a closed subset. We seek reasonable
conditions which ensure the existence of a C^ map /: U —^ R^
which solves the condition ^l; ie., /^/(U) C ^2 .

As in the case of open conditions in .T(U, R^) treated in § 1,
these conditions are stated in terms of the Euclidean vector bundle
T T : roJ.R^) —> J^U.R^) .
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DEFINITION. — Q C R^ is nowhere flat if the intersection of
Q with each hyperplane in R9 is a nowhere dense subspace of Q.
Thus, for example, the unitsphere S" in Euclidean space Rn+l is
nowhere flat.

In this section, we suppose ^C.TdJ .R^) satisfies the fol-
lowing geometrical properties:

G(l) : The restriction map, TT : ^ —> ^ (U.R 9 ) is a topo-
logical fiber bundle with locally arc-wise connected fibers.

G(2): For each z G J ^ U . R ^ ) the fiber ^(z) = ^ H TT-^Z)
is nowhere flat in z x R^ = R^ .

G(3): There is a neighbourhood N(ft) of ?2 in J^U.R^)
and a retraction R: N(?2) —> Sl which respects the fibers:

TT o R = TT : N(S2) —> J^U, R^) .

Remarks. - Let S be an r-th order system of m partial dif-
ferential equations in q unknown functions defined on an open set
U C R".

Let h: U —> R^ be a C/ map. In the introduction, a surface
n^ (x) C R^ was defined by the system §, for each x E U.

The geometry of these surfaces is now explained within the
context of the product bundle TT : V (U, R") —> J1 (U, R9) .

For each x G U , let z =/^(x) GJ^U, R^) . Evidently njx)
is a surface in the fiber z x R^ ^ R^ of this bundle.

Let ^ = U ^(^craj.R^).
h,x

The properties G( l ) , G(2), G(3), above, make precise the
informally presented properties P(l) to P(4) in the introduction.

DEFINITION. - 1) A subset Q C R^ in locally ample if for each
x E Q, and for each e > 0, the convex hull of the arc-component
of x in Q n D ( ^ ; e ) contains x in its interior, where, D ( ^ ; 6 )
is the open q-ball in R^ center y and radius 5 > 0.

2) Let ^ c r ( U , R ^ ) .
S2 is locally ample if for each z E J - ^ U . R ^ ) , the fiber

ft(z) = n H (z x R^) C z x R^ = R^ is locally ample.

The main result of the paper is as follows:
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THEOREM 2. - Let h: U —^ R^ Z?^ a (y map, and g :
U —> R^ a continuous map such that the following conditions
obtain:

(i) For each x G U , (/^(x), g(x)) E^2 .

(ii) For ^c/z ^ E U , -^ (x) E Env (^(/^(x)); ^(;c)). TTz^?
6t

(h , g ) is a formal solution to the closed condition ^ C F(U, R^) .
(iii) In case n c r Q J . R ^ ) is locally ample, let T C U be

the closed set ] x G U | g(x) = —— (x) . (/^ particular, h solves
\ 6t

the condition along the closed set T in U).
Let W(/z) ^ a neighbourhood of j 1 h(V) C ̂ (U, R)9 .

There is a C' map f: U——> R^ such that the following
properties obtain:

•\r ^

1) For each x G U , '-(^EArc^C/1/^));^^)). (In
6t

particular f solves the condition Sl; ie., f'/(U) C n).
2)7 1 / (U)CW(/0.
3) In case n C ]' (U, R^) z'5 toca/fy awp^, ^^^ /or each x E T,

j r f ( x ) = j r h ( x ) .

Remarks. — 1) Theorem 2 states that a formal solution to
Sl C r(U, R^) can be transformed into a C'' solution to ^2 which
satisfies given approximations on lower order derivatives. As explained
in Complement 1 below, this transformation is performed by a homo-
topy of formal solutions to Sl.

2) It follows from conclusion (2) above that, in particular, / is
a C/"1 approximation to h in the fine C/~1 topology.

Proof of Theorem 2. — One fixes a convergent series of positive
00

numbers V a^ .
m==0

Recall the Euclidean vector bundle TT : ^ (U .R^) —> ^ (U .R^)
with fiber R^ . Let d be a metric on J^U , R 9 ) .

Applying Proposition 1.1 (Appendix 1) to this bundle, there
is a continuous map jn == jLi(w): ft —> (0,o°), m = — 1, 0, 1, 2, . . .
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such that: Let Met^ 0 = Met 0, the metaneighbourhood of 0
in V (U, R^) associated to the map jn .

M( l ) : j u < i n f { ^ , ^ ^ } ; Met^OCN(O) , if m > 0 .
JLI < f lo ; M e t _ i O C N ( 0 ) , if m = - l .

M(2): Let ze^aj .R^) ; w G O ( z ) ; i; G Env^)(0(z); w).

Then i; G Env^^ (0(z); R(i;)) ;
(the definitions and properties of metaneighbourhoods are provided
in Appendix 1).

Evidently, 0 Met^ 0 = 0 , and Metyy, 0 is an open subset
of r(U, R^) , m = - 1,0, 1 ,2,3, . . . .

Let W^(/Q be a neighbourhood if /-^(U) in ^ ( U . R ^ )
such that w7W)CW(/z) .

In order to prove theorem 2, one constructs the following
sequences (S) of maps:

1) A sequence of C/ maps (/z^ : U —> ^q)m>Q '
2) A sequence of continuous maps (g^ : U —> ^^mx) '

These sequences (S) are required to satisfy the following properties
(recall the retraction map R: N(O) —> 0):

Km): / '^OOCMet^CNOW;
/^(LOCW^/z).

2(m): Foreach x G U , ^(x) = R(/ i^(x)) G0(/ i^(x)).

3(m): For each x€U , -^ (x) G Env^W;1^)); ^(x)).

4(m): In case 0 is locally ample :
Foreach ;cGT, j r h ^ ( x ) = j r h ( x ) .

5(m): For each x G U , rf( / l /^^(x), /^^m+i^)) < ^m where
d is the metric on ^ (U.R 9 ) .

6(m): Foreach x G U , ^+1 (^) G D(^(x); 2^ + 2^+^) , where
D(^ ; 5) is the open q ball in R4 , centre ^ , radius 8 > 0.

Assuming that the above sequences (S) have been constructed,
theorem 2 is proved as follows:
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a) From properties 6(m), 3(m) it is evident that the sequences
*\r ^

of continuous maps (——— : U-^ R^) , (^ : U—^ F^LX)
v dr ^x)

converge uniformly (in the topology of uniform convergence on com-
pact sets) to a continuous map from U to R^ , and that

lim ^ = lim a-^ : U —> R^ .^-.oo 6m w-^oo 3^

b) From property 5(m) and a) above, one easily concludes
that / = lim h^ is a C map from U to R ^ .

m —> oo

In particular, —- = lim —QL = lim g^ : V —^ R^ .
Ot w-+<» Of m-^^

c) Since Sl C Y (U, R^) is closed it follows from properties
2(w) and b) above that / solves the condition ft ; ie., fW) C ^2.

d) in case ^l is locally ample, if follows from 4(m) above
that for all x G T , 7r/(^) =/^(^c).

e) Evidently, from property l(m) above, /^/(U) C W(/z) .
Thus the map / = lim h^: U —^ R^ satisfies all the

w—»-00

conclusions of Theorem 2. It therefore remains to construct the
sequence (S).

Remark. — The sequences (S) are defined inductively. How-
ever one cannot set h^ = h since, in general f^h) (U) <? N(^2).

That is, condition 1(0) is violated, in general, if h^ = h. In
what follows the first term, h^ , of the sequence (/^ : U —> ^)m>o
is constructed inductively along with the remaining terms.

Set /z_ i = h, g_i = g .

Suppose that C1' maps h _ ^ , HQ, . . . , h^ : U —^ R^ and
continuous maps g _ ^ , ^o, g ^ , . . . ,g^ : U —^ R^ have been cons-
tructed and satisfy properties 1 (k) to 4(fc), k = 0,1, 2, . . . , m
(if m > 0) and properties 5(fc), 6(fc) fe = 0,1, 2, 3,. . . m - 1
(if m >1).

Set Y = Met^^croj.R^.

Remark. — T h e pair of maps (h^,g^) is a formal solution
to the closed condition i2 but, in general, (h^, g^) is not a formal
solution to the open condition Y C r(U, R^) [ft C Met^(S2)].
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One now perturbs the map g^ , in a controlled way, to achieve
a formal solution to Y.

To this end, applying Corollaries 1.7.1, 1.7.2 (Appendix 1),
there is a continuous map g ' : U—> R^ such that:

DFor each x E U , g\x) ED(^Oc); aj C R ^ , if m > 0
. . . E ( l )

2) For each x E U , (/^Oc), ^Qc)) E Y . ie.,
^WEYC/^OOCR^ .

3) For each x G U ,
y^-^ (x) E Env,̂  (YC/1/^)); ^(^)), if m > 0

. . . E ( 2 )-\r i ' }

-^'-(^)eEnv(Y(/•i^(x));^(x)), if w = - l .
'\r ^

4) In case ft is locally ample, g ' = ——^ in a neighbourhood
of T in U. d/

From (3), above, the pair of maps (/;„,, g ' ) is a formal solution
to the open condition Y C J^U.R"') (to within the tolerance 2a
if m ^ O ) .

Applying theorem 1, § 2 (Complement 1, if m ̂  U) one
concludes that there is a C map h^^: U —> R" such that:

(i) ^A^idOCW^). For each x £ U ,

d ( J l h ^ ( x ) , /^^lOOXo^, , if w > 0.
(ii) For each ^ E U ,

^^n.+i
-^-l-(x)eArc^(Y(/•l/^„,l(^));g(^)), if m>0 .. . E(3)

^-^WeArc(Y(/•i^„^));^(^)), if ^ = - 1 .

In particular the C'' map h^ : U —> R" solves the open
condition Y.

(iii) In case S2 is locally ample, 1'h^ = j ' ~ h ina neighbourhood
of T in U.
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^et 8m+i : U —> ^q be the continuous map defined by re-
tracting onto Sl: For each x e U,

8m^i W == RO'̂ i 00) ̂  "O1^! 00).

Employing property M(2) for the metaneighbourhood Met^n,
it follows that property 3(m 4- 1) is satisfied and that,

(iv) For each x E U , -^H (x) G D(^^ ;^^) C R^ . . . E(4)

The pair of maps (^+1,^+1) evidently satisfy all the pro-
perties l (m + 1) to 4(m + 1) and property 5(m) (incase m > 0)
for the sequences (S).

In case m>0, property 6(w) follows from the estimates
E( l ) , E(3), E(4), established above. More precisely ;

For each x G U , g'W G D(^(x) ;^+i), if m > 0 .

-^-(^eD^^) 2^), if m>0.

^^i(x)ED(^„(x);^„).

Consequently, if m > 0 :
For each x G U , g^+i00 E D(^(^); 2^+2^^^) .
This completes the inductive step in the construction of the

sequences (S) (including the construction of the first terms h^, g ^ ) .
Hence the proof of Theorem 2 is complete.

Complement 1.
Employing Complement 2 of Theorem 1, § 2, one may cons-

truct a homotopy of formal solutions, rel T, to the closed condi-
'\r ^

tion n c j ^ U . R ^ ) , which connects ( h , g ) to if, ——}, where
\ Qt /

f = lim h^: U —> Rq is the solution to ft constructed in
yn —> oo

theorem 2 above.
Suppose ^ is locally ample. It follows from the above com-

plement, and standard arguments, that there is a weak homotopy
equivalence between the space of formal solutions to ft and the
space of exact (holonomic) solutions to Sl.
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Complement 2.
Suppose in addition that h: U —> R^ is a C°° map. Em-

ploying Complement 3 to theorem 1, § 2, the following additional
conclusion is easily proved: The map /: U —> R^ in the conclusion
of theorem 2 is of class C 0 0 1 ' . That is, / is a (V map and D"/:
u —^ Rq' ^sts and is continuous map for all differential operators
D" on functions of ^-variables which involves differentiation in the
^-variable at most (r — l)-times.

Note, however, by Remark 2 in the Introduction, § 1, it is not
known whether one can arrange for /: U —> R^ to be of class
C^1 if n is also a C°° submanifold of J^U.R^) .

4. Results on Mixed Derivatives.

In the previous sections open and closed conditions in jet spaces
have been solved when they admit formal solutions defined with

y

respect to the "pure" derivative —— •
Qt

In this section, simple algebraic transformations are intro-
duced to partially extend our results to open and closed condi-
tions in jet spaces which admit formal solutions defined with res-
pect to a fixed differential operator on functions on ^-variables

_ a'^'
Dot = \ a, . ^————IT • The Tesulis are less comprehensive inQx^Qx^ ...ay
that one cannot control all the other derivatives D^, | j3 |< |a |
and ^a. Indeed, one should not expect to be able to do this;
thus, for example, employing elementary inequalities in analysis,

^2 ^
one cannot make large perturbations in the derivative ——'— while

a2/ a2 /- ^^v
keeping the perturbations of —— , —— arbitrarily small.

9x2 Qy2

Nevertheless, as will be seen below, all derivatives defined by
operators D^, where | j3 |< |a | , may be suitably controlled.

glal

One fixes a differential operator D0' == ————————- on func-
Bx0'1 . . . Qx^

lions of ^-variables (n>p) such that a , > 0 , 1 <^ < p . Let
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J^ be the set of all ^-tuples /? = (j^, ̂ , . . . , ̂ ) such that either,

a ) | ^ | < | a | (if 7 = ( 7 i , 7 2 . - - . , 7 n ) , then 1 7 1 = 1 7,),
or < = i /

p
b ) | j 3 | = | a | , ^ j3 ,< |a | , and j3, < a, ; = 1, 2, 3,. . . , p .

1=1

Example. — D01 = —-—— •
Qx2 Qy

Let D^ be a differential operator on functions of three variables
such that I j31 < 3 , then |3 ̂  J^ if and only if,

D^el-^-,-^-,-^- 33 )
( 9jc3 5 3^3 5 by2 9z ' 9x 3^2 (

In particular, if 1131 < 2 , then (3 E J^ .
^r

Remark. - Let D" = —— (the case of a "pure" r-th order
6t

derivative). Then j3EJ^ if and only if | j 3 |< r and D^ involves
differentiation in the ^-variable with multiplicity q , where q < r .
This is exactly the case considered in Theorems 1, 2 of this paper.

The following observation explains the above definition of J^.

Observation. - Let A be the invertible linear map on R" ,
t = ^i + x^ . . . 4- Xp u^ = Xj , 2 < / < n.

Let |3EJ^, and /: R"——> R^ a C' map (r = |a|). Then
the following conditions obtain:

1) D^f is a linear combination of terms of the form:
a'^/oA-1)

9^3^... 3^- where a l < r '

y (f o A~1 )
2) Dcif= —————— + a linear combination of terms as in (1 ) .

6t

It follows from the above observation that the techniques of
this paper carry over to mixed derivatives provided one is required
to control only those derivatives D^, where ft G J^.

Rather than state precise theorems for open and closed conditions
corresponding to mixed derivatives, we illustrate with the following
example:
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Let D^————.
9x2 by

Consider the following system S consisting of one partial
differential equation for a function of three variables defined on
anopenset U C R 3 , /: U——^ R3 (/ = (^ , /,, /,)).

s.^^-r-i^-r+f-^j2
Qx^y WQy] \_9x2 9y]

= p ( ^ f b3f 33/ b^ ^f ^1\
\ 9 x 9 y 9 z 9 9x2 9z 9 by Qz2 9 Qz2 9x 9 9z3 ) '

where F is a continuous map.
Note that the derivatives D^ included on the right-hand side

are defined by the condition: j3 G J^ .
Let h: U——> R3 beany C3 map.
Then there is a C3 map /: U——> R3 such that / solves

S on U and such that D^/, D0 h satisfy given approximations
for all derivatives D^, j3 E J^ . In particular / is a C2 approxima-
tion of h in the fine C2-topology.

Proof. -Set t == x + y ', u = y , v = z .
Let g ( t , u , v ) = f ( t - u , u , v ) , g = ( g ^ g ^ , g ^ ) .
In ( t , u , v ) coordinates, S is written,^-[^H^-r-<^

where G is a continuous map. Applying Theorem 2, § 3, there is
a C3 map g which solves §' and such that j1 g ,/1 h^ satisfy
given approximations where ho(t ,u , v ) = h(t — u ,u , v ) .

Transforming back to ( x , y , z ) coordinates, S is solved by
a C3 map which satisfies the required approximations.

Appendix 1.

In this appendix, the definition and properties of metaneigh-
bourhoods are established. The principal result, Proposition 1.1,
proves that metaneighbourhoods of ft can be constructed so that
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their constituent convex hulls have diameters of controlled size and
also that each point, v , in the metaneighbourhood is "enveloped"
by a convex hull, centred at R ( u ) G n , with preassigned diameter.
In this way, properties M ( l ) , M(2) are established for the sequence
of metaneighbourhoods (Met^n)^_^ in the proof of Theorem 2,
§ 3. This appendix makes precise the sketch of metaneighbourhoods
and extensive metaneighbourhoods in Gromov [ 1 ].

DEFINITION 1.1. - 1) A subspace Q C R^ is nowhere flat if
the intersection of Q with each hyperplane in R^ is nowhere dense
in Q. D ( x ' , r ) denotes the open ball, centre x , radius r > 0 ,
in R ^ .

2) Let Q C R^ be a subspace.
Fix x G Q .

(i) Arc (Q \x) is the arc component in Q to which x belongs.
(ii) Env(Q;x) is the interior, in R^ , of the convex hull ("en-

veloppe convexe>)) of Arc (Q ; x).
(iii) Arc,(Q;x) == Arc (QnDOc;e ) ;x ) .
(iv) Env^(Q;x) = Env(Q H D(x ; e) ;x).

The following geometrical observations is useful for understanding
the proofs in this section.

Observation. -Let ^EEnv(Q;x ) . There is a finite set z ^ ,
z ^ , . . . , Z N , z, EArc(Q;x), ; == 1, 2,3, . . . , N such that the convex
hull of the set { z ^ , z ^ , . . . ,z^} is a neighbourhood of y in R^ .

Indeed let .yEinUA^) where A^ is a ^-simplex in R^
contained in Env(Q ;;c). Since the vertices of A^ are in the convex
hull of Arc(Q ;x) it follows that there are a finite number of points
in Arc(Q;x) whose convex hull is a neighbourhood of y in R^ .

The following properties are easily verified:
1)If Q C R ^ is open, then Arc(Q ;x) C Env(Q ;x), for all

;cEQ.

2) Let Q C R^ be locally arc-wise connected, and nowhere
flat. Fix e > 0.

Then for each x G Q, x G Env^(Q;x).
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Metaneighbourhood.
Let Q C R^ be locally arc-wise connected, and nowhere flat.

Fix a continuous map e : Q —^ (0, °°).
The e-metaneighbourhood of Q in R^ is the subset,

Met ,Q=^ Env,^(Q;;c).

Met^ Q is open in R9 ; Q C Metg Q, but in general Met^ Q
is not a neighbourhood of Q in R ^ .

Thus for example if c G ( 0 , l ) , the e-metaneighbourhood
of the unit circle S1 in R2 is an open annulus in the interior of
the unit disc, whose closure contains S1 .

The following lemmas are easily established.

LEMMA 1.1. —Let QCRQ be closed, locally arc-wise connec-
ted and nowhere flat. Then Q = n Metg Q

LEMMA 1.2. — Let Q C R9 be locally arc-wise connected, and
nowhere flat. Let h : [0,1] —^ Q be a continuous map.

Let e : Q—> (0,°°) be a continuous map.
Then U Env,/./^ (Q ; h (t)) is arc-wise connected.f e [ o , i ] €<rt<t))

COROLLARY 1.2. — Let MetgQ be an e-metaneighbourhood
of Q.

Fix ^ G Q ; ^€Env,^(Q;x).
For each a>0, Env^(Q ;x) C Env^^ (Met.Q ; y ) .

The above notions in R^ are now generalized to the context
of Euclidean vector bundles with fiber R4 .

Let X be a locally compact metric space.
Let TT : E —> X be a Euclidean vector bundle over X, fiber

R4 ' . r(E) denotes the space of continuous sections of this bundle.
Let Q be a subspace of E; Q(x) = Q n rr-^x), for all x E X .

DEFINITION 1.2. - Let n C E be a subspace and h E F(E)
such that h (X) C n.

a )Arc (n ; /0= U Arc(?2(x); h(x)).
xGX
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b) Env(ft ; h) = U Env(ft(x); h(x)).
x^X

The notation Env(ftO); h(x)) indicates that the interior is
taken in the fiber E(x) ̂  R^ .

The following lemma is easily established.

LEMMA 1.3.-// f t C E is open, then Arc(ft; h) is open
in E.

COROLLARY 1.3. - If ft C E is open, then Env(ft ; h) is open
in E and Arc(ft ; h) C Env(ft ; h).

Suppose now ft C E is a closed subspace which satisfies the
following geometrical properties (cf. the solution of closed condi-
tions § 3).
G(l) : T T : ft —> X is a topological fiber bundle, with locally arc-

wise connected fibers.
G(2) : For each x G X , the subset ft(x) C E(x) (^ R^) is nowhere

flat. (Since TT : E —> X is a vector bundle, this condition
makes sense).

G(3) : There is a neighbourhood N(ft) of ft in E and a conti-
nuous retraction map R: N(ft) —> ft which respects the
fibers: TT o R = TT : N(ft) ——> X.

Fiberwise Metaneighbourhood.
Fix a continuous map e : ft —> (0, °°).
For each x G X , let e(x): ft(;c) —> (0,oo) be the restric-

tion of the map e to the fiber ft(x).
The e-fiberwise metaneighbourhood of ft in E, denoted

by Met^ft , is the union of all the e(;c)-metaneighbourhoods in
each fiber:
Met^ = ̂  Met,^ S2(x) (= ̂  ̂  Env^^^(x) ;w)) .

The following lemma is easily established.

LEMMA 1.4. - a) Met^ ft C E is open.
b) ft = H Met, f t .

e e
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The main result of this Appendix is the following

PROPOSITION 1.1. — Let ^l C E be a closed set which satisfies
the geometrical properties G( l ) , G(2), G(3) above.

Let e : n—> (0,oo), 5: N(^) —> (0,°°) be continuous
maps.

There is a continuous map p.: ^l —> (0 , °°) such that:
(i) JLX < e ; Met^nCN(£2) .

(ii) Let x^X; w e n ( x ) ; i ;GEnv^(^(^(^);w).
r/zen i; E Env^(n(x); R(v)) fc/ F^r^ 7.7/

N (Sl) (x)

the^-ballD(R(^) ;n (i;))
m the fiber E(x)^ R'7

The shaded area is Env^^nCjc); R(i^)).

Remarks. — 1) Conclusion (ii) ensures that each point, v ,
in a sufficiently "thin" metaneighbourhood, Met ^l, is enveloped
by the points in S^l(x) which are contained in a ^-ball with pre-
assigned radius centred at R(i;)en. When applied to the context
of the solution of closed conditions, § 3, it is this property which

ensures the converges of the derivative maps ( —m : U —^ R^)
x bt / m>o

2) Let Y C X and h €E F(E(Y)) (i.e., h is a continuous section
over the subspace Y of X), such that h (Y) C Met^ Sl.

Define V(/i) = ^ Em^^(SZ(y) ; R(h(y))).

It follows from conclusion (ii) above that / z (Y)CV( /0 . In
Gromov [ I ] , V(ft) is called a fiberwise extensive neighbourhood of
A ( Y ) C E .
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Proof of Proposition 1.1. — The proof of the proposition results
from the following elementary lemmas in point set topology.

LEMMA 1.5. — Let 5 : N(^) —^ (0,°°) be a continuous map.
There is a continuous map v : ^2 —> (0,°°) such that:

(i) Met^CN(n).
( i i ) L e t x e X , z ^ ^ ( x ) , v G Env^(nOc) ;z) .
Then v ( z ) < 8 ( v ) .

LEMMA 1.6. —Let e ' . Sl —> (0,°°) be a continuous map. There
is a continuous map jn : Sl —> (0,°°) such that:

(i) JLI < e .
(ii) Met^CN02).

(iii) Let ;ceX; z E n ( x ) ; v E Env^ (^(x) ;z) .
77z6?n R(i;)EArc^^(n(x);z).
(In particular z E D(R(i;); e(z))).

Let us first prove the Proposition from the above Lemmas.
a) Applying Lemma 1.5, there is a continuous map v: ^2 —> (0,°°)

such that Met^(n)CN(n) and such that:
Let x G X ; zen( jc ) ; i ;GEnv^^(n(x);z) .

Then ^(z) < 8^ • . . . ( 1 )
^

b) From Lemma 1.6 there is a continuous map jn : Sl —^ (0,°°)
such that JLI < inf(^ ,e) , Met^f2 CN(^) , and such that:

Let x G X ; zen(x); ueEnv^^)(?2(x);z).

Then R(i;) G Arc,(^(n(^) ;z). . . . (2)

Fix points z ^ , z^ , . . . , z^ in Arc ^(^2(x) ;z) such that the
convex hull of { z ^ , z^, . . . , z^} in E(^) (^ Rq) is a neighbourhood
of i;. . . .(3)

From (1), (2) D(z ;^(z)) C D(R(v) ; S(z;)).
Since JLI < (/ , it follows from (2), (3), above, that

z^Arc^Wx)',R(v)), z = l , 2 , 3 , . . . , N .
Consequently v E EnVg^SK-x); R(t;)).
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This completes the proof of the Proposition.
Turning now to the proofs of the lemmas, recall that ft C E

is closed, and, X is a locally compact metric space. Evidently ft
is a locally compact metric space. Thus there is a countable relati-
vely compact open cover {Q,L>i of ft such that { Q y L ^ i is
locally finite, and such that the bundle TT: E —^ X is trivial over
7r (Q, )CX, 7 - I , 2, 3 , . . . . . . . (4 )

In what follows, when working in Q- , 7 fixed, one may
assume from (4) that E = X x R4' the product bundle.

Proof of Lemma 1.5. — For fixed 7 , since Q is compact,
it is clear that Q. is contained in a finite union of compact product
neighbourhoods, each of which is contained in N(ft). Evidently
there is a constant ey > 0 such that:

(i) e. < 6(1;), for each v in any of the above compact product
neighbourhoods.

(ii) For each z G Q . , the ^-ball D(z;e .) is contained in at
least one of the above compact neighbourhoods.

Let ~e: ft —^ (0,°°) be the lower semi-continuous map
e^(x) = inf { e . j x ^ Q.} . One easily constructs a continuous map
v: ft —> (O,00) such that v < e". Evidently, the metaneigh-
bourhood, Mety ft , satisfies the conclusions of Lemma 1.5.

Proof of Lemma 1.6. - Recall that TT : ft —> X is a topo-
logical fiberbundle whose fiber is locally arc-wise connected.

For fixed 7 , one easily verifies that for each
z == O c . Q E Q ^ C X x R^

there is a neighbourhood U(z) of z in ft and a number jLi(z) > 0
such that: If ^ G U ( z ) then D(y ; jn(z)) n ft(x) C Arc^(ft(x) \y).

Since Q. is compact, one concludes that there is a number
e. > 0 such that:

For each z = (x , t) G Q .̂ C X x R^ ,
ftOc) n D(z ;e? C Arc^(ftOc) ;z) ... (5)

Let ~e: ft —> (0,°°) be the lower semi-continuous map
r ( z ) = i n f { e . | z E Q , } . Let a: ft —> (0,°°) be a continuous
map such that a < ~e and such that Met^ ft C N(ft) (cf. Lemma 1.5).
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Finally, since R : N(O) —> ^2 is a continuous retraction
map, one again may employ the cover {Qy}y>i to construct a
continuous map ju : f2—> (0,°°) such that:

JLI < inf (a ,6) . . . .(6)
For each x G X , zE^O) ,

R(D(z ; jn(z))) C D(z ; a(z)) C E(x) - R9 . . . . (7)

To prove Lemma 1.6, one proceeds as follows:
a) Since a<~e, it follows from (5) above that:
For each x G X, z E n(^),

n(x) U D(z ; a(z)) C Arc^Wx) ; z) . . . (8)

b) Since ju < a, then Met^n C N(?2).
c) Fix x C X ; zen (x ) ; t ;GEnv^^(n(^);z).
From (7) above, one observes that R(v) is contained in the

^-ball D(z ; a(z)) C E(x) ^ R^ .
Consequently from (8) above, R(v) E ATC^^(SI(X) ;z) .
This completes the proof of Lemma 1.6.
To conclude this appendix, some additional topological properties

of metaneighbourhoods are established.

LEMMA 1.7. —Let Y C X be a closed subspace. Recall that
F(E(Y)) is the space of continuous sections of the bundle
TT : E ——> X over the subspace Y.

Let o: Y —> (0,°°) be a continuous map.
Suppose $ G F(E(Y)) is a continuous section over the subspace

Y, such that $(Y)C?2.
Then there is a continuous section ^GF(E(Y)) such that:

For each y G Y , g ( y ) E Env^(^) ;$(^)).

Proof. — One easily verifies that there is a locally finite open cover
{YA.^ of Y ; a family of continuous sections [gy ^ F(E(Y))}.^
such that:

For each y€\^ g^y) G Env^Wy) ; <W), /= 1, 2, 3,... .
00

Let ^Er(E(Y)) be the continuous section, g = ^ ^ / • ^ 7
/^i
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where (py: Y—> [0,l])^i is a partition of unity subordinate
to the cover {Y^.^. Since Env^(n(.y), <t>00) is a convex
set, for all ^ E Y, it follows that the section g satisfies the conclu-
sions of the lemma.

COROLLARY 1.7.1. - Let e : ^ —> (0,oo) be a continuous
map and Met^ the corresponding metaneighbourhood of ^l in E.

Let Y C X be a closed sub space and $ G F(E(Y)) a continuous
section over Y such that $(Y) C ̂  .

Fix a continuous map § : Y —> (0,°°).
Then there is a continuous section ^er(E(Y)) such that

^(Y)CMet^S2 and for each y G Y , rf(g(^), <^(.)Q) < S(^) [r/ze
metric on the Euclidean vector-bundle E ^ d ] .

Indeed, set a = inf{6 , e o ^ : Y —> (0,oo)}, and apply
Lemma 1.7.

COROLLARY 1.7.2. —Suppose, in addition to the hypotheses
of Corollary 1.7.1, there is a continuous section 7zEr(E(Y)) such
that:

For each y G Y , h(y) E Env,^^(^(^) ;$(^)) C Met,n .
56?r 5 = e o $ : Y —> (0,oo). r/z^, in addition, for each y G Y ,
/2QQ G Env,,^^^(Met,n(^); g(y)) .

Indeed, the ^-ball D ( g ( y ) ; 2e($(^))) contains the ^-ball
D(^>(^) ;e($(>/))) for all ^ E Y . Employing Lemma 1.2, this
corollary is easily proved.

To conclude this appendix, we state the following result the
proof of which is left to the reader.

PROPOSITION 1.2. - Let Y C X be a closed subspace and
^>^r(E(Y)) a continuous section over Y such that < ^ ( Y ) C ^ .

Let a: Y—> (0,°°) be a continuous map.
Let Z = ̂  Env^(^); <^)).

Then TT : Z —^ Y is a fiberbundle, with fiber the open
q-ball D(0;1)C R^ .



CONVEX INTEGRATION OF NON LINEAR SYSTEMS 1 57

Appendix 2.

The auxiliary functions.

1) Let K be a compact set.
Let eE (0 , l ) and let P == (p, : K—^[0,1])^^ be a

sequence of continuous functions such that:

For each j c G K , ^ p^(x) = 1 .
!=1

Following Gromov [ 1 ], one constructs a continuous map 0 = Q^
from K x [ 0 , l ] — > [0,1] such that:

(i) For each x G K , 0 ^ ( x , t ) is monotone increasing and

constant (=——) on a subinterval of [0,1] of length ( l-e)p^.(x) .

(ii) For each x G K , ^ ( j c , 0 ) = = 0 , 0 , ( ; c , l ) = l .

Remark. - In case K is a C°° manifold and p, : K——> [0,1]
is a C°° map, / = 1, 2, 3,. . . , n, one may construct Q^ to also
be a C°° map.

2) Let 6 ,G[0 ,1] , 1 < ; < N (N > 2), such that ^ 6, = 1 .
z'̂ l

Let N be the set of non-negative integers.
One easily constructs a C°° map,

9 : N x (0,1/2) x [0,1] ——> [0,1] such that the following properties
obtain: Fix m E N , 5 G (0,1/2).

a) The map 0(m , 5 , 0 == Q(t) is periodic with period ———— •
1 m + 1

0 ( m , § , 0 ) = 0 = 0 ( m , 6 , — — — ) •
^ m + I /

b) 0(m , 5 , 0 is constant ( = ———) on a subinterval, S.,v N 4- 1 / ' ^ ?

of [°'^TT] of length -̂Ji &" ^1>2 ,3 , . . . ,N .
^ c.

c) The interval separating S,, S/+i has length ——————.
(m + 1) N

/ = 1 , 2 , 3 , . . . , N - 1 .
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1 / W + 1

Appendix 3.
The One-dimensional Lemma.

In this appendix we prove the principal approximation result
(the one-dimensional lemma in Gromov [ 1 ]) in a general setting. The
central feature of the proof is an explicit uniform computation of
the approximation. This is useful for further applications of the convex
integration technique.

Let B be a Banach space, norm || ||. We consider a compact
set of the form K x [0,1], K compact.

Let Q C K x [0,1] x B . (For the purposes of the approximation
result, below, Q need not be open.)

Let 7: K x [0,1] x [0,1] —> B be a continuous map (a homo-
topy on K x [0,1]) such that:

For each (x , r , s ) in K x [0,1] x [0,1], (x , r , 7 (x , t , s ) ) ^ Q .
Let f^: K x [0,1] —> B be the continuous map,

fi (x , 0 = 7 (x , t , -̂ -̂  , i = 1, 2, 3, . . . , N .

Let g : K x [0,1]—> B be the continuous map (a convex
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N
combination), g = ^ b,f,, where b, G [0,1], 1 < ; < N , and

N
^ b, = 1 . Recall the auxiliary map Q : N x (0,1/2) x [0,1] —> [0,1]
i - 1
(Appendix 2).

Fix ( m , 5 ) G N x (0,1/2).
Define ^: K x [0,1] —> B as follows:

f ( y , t ) = j ( y , t , 6 ( t ) ) = - Y ( y , t , e ( m , 8 , t)).

Note that the graph of ^ is contained in Q, and, ^(.y , t) = /,.(^ , t)

on a subinterval of ——— ? ———— of length —————l, 1 <; < N ;
|_m 4- 1 m + 1 J m + 1

0 < / < m .

APPROXIMATION THEOREM (One-dimensional lemma). — Fix
87

e > 0. Suppose the derivative— is a continuous map.
d t

There is an integer J E N and a number SQ G (0,1/2) such that:
Let mGN, m >J; 5 G ( 0 , 6 o ) .

77^ map ^(y ,t) = j ( y , t , 0 (m , 5 , t)) satisfies the property:

For each (y,t)^K x [0,1], || fj (^ -g)0/,5)^|| <e .

Remarks. — Another way of stating the above conclusion is as
follows:

Let F ( ^ , r ) = F ^ ( y , s ) d s , G(y, t) = f t g ( y , s ) d s .
JQ ^0

Then the continuous map F: K x [0,1] —> B is a C° approxi-
mation to the continuous map G: K x [0,1] —^ B such that the

9F
graph of the derivative map —: K x [0,1]—> B is contained
in Q. Qt

Proof. - Let

C = sup{|| 7(^^)111 ( y , t , s) E K x [0,1] x [0,1]}.

The proof of the following lemma is straightforward and is omitted.

LEMMA 3.1. - Fix e > 0.
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There is an integer R such that:
Let q G { R , R + 1 , R + 2, . . .} . Let p C { 0 , 1 , 2, . . . ,q}.

Then, for all y C K,

/t r p p + n(i) I I p g ( y , s ) d s \ \ < e ; ^\——9——r\'^i iq +1 q ^ l ]

(ii) || f\ 7 (^ ,0(m,5 ,5) )^ | |<e ; re l — ^ , - ^ ^ 1 ! .
qTl L^ t 1 ^ "r 1 J

It follows from the above lemma that one need only prove the
following approximation result:

Fix e > 0.
There is an integer J G N and a number 5o G (0,1/2) such that:
Let mGN, m >J, 8 G(0,§o) .

The map ^ ( y , t ) = ̂ (y , t , 0 (m , 6 , t)) satisfies the property:
Let ^ G { 0 , l , 2 , 3 , . . . , m } .

/•-p-Then || / m+l (^ - g) {y , ̂ )^|| < e . . . . ( A . I )^o

The proof of (A.I) proceeds by a series of estimates.

Notation. - Fix ^ G {0 ,1 2, 3, . . . , m} . Let \(p) denote

the interval ——— » ———
[m + 1 m + i j

1) f g ( y , s ) d s = [ ^ b , f , ( y , s ) d s
-KP) -KP) ,= i ^

= I ^ f ^-(^^) ^.
,=i ^Kp)

Let ^^) =/;-0^,) + (/;•(>- ̂ )-/;.(^,^.)) where ^e i (p) .
A suitable choice of .̂ will be made below, ;' = 1, 2, 3,. . . . N .

Thus / g ( y , s ) d s = ^ -&— f , ( y , S ; , ) + E , .. . (A.2)
-ICP) ,^i m + 1 l

N
where E, = ^ 6, / (/;.(>., j) -/;.(j., ̂ ))ds .

1 = 1 I(P)
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Evidently, II EI II = ̂  °i(^TT ) where

lim Oi(———)=0.
„,->•«' 'VTM 4- 1 /

2) [ ^ ( y , s ) d s - = [ ' y ( y , s , 6 ( m , 8 , s ) ) d s
~i(p) i(p)

= V ( - Y ( y , s , 9 ( . s ) ) d s + [ 'v(y,s,6(s))ds ,
,"i "s, J^

(1 - 25)6,
where a) S. C I(p) is the subinterval, length ————-—, on which. m + 1
6 (m, 5, s) = —l— , i = 1, 2, 3,. . ., N (cf. the construction ofN + 1
the auxiliary function 6 , Appendix 2).

Recall that f,(.y , s ) = j ( y , s , l \, ; = 1 , 2 , . . . , N .

b) T is a disjoint union of subintervals of I(p), whose total
26 / N \

length is ———-; T n 1 U int Sj = 0.
m + 1 'i=i '

Thus, [ ^ ( y , s ) d s = ^ f f,(y,s)ds
^(P) ,"i "s,

+ \ 'Y(y,s,0(s))ds.
"T

Let f,(y , s) = f,(y , T?,) + (f,(y , s) - f,(y , T?,)) , where
T?,GS, , i= 1 , 2 , . . . , N .

Then f ^ ( y , s ) d s = ^ f,(y , T?,) (1 ~25)^ + E^ + £3
"HP) ,"i m + 1

. .. (A.3)

where, E, = j j ( y , s , 6 (s)) ds .

^ = Z / (f.(y,s)-fi(y,r],))ds.
i = 1 s'

26
Evidently, || E, || < ——— C,

m + 1
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^,iiE,n<2 y-^oj——). -28 o,(——) ,
,= i ^ + 1 \ w 4- 1 / w 4- 1 2 \m 4- 1 /

where, lim 0, (————) = 0.w-^ \m 4- I /

Since S,CI(p), all ;, one may choose £/==^. , f ==1,2 ,3 , . . . ,N.
Hence from (A.2), (A.3), above

r N 26
j ( g ( y , s ) - ^ ( y , s ) ) d s = ^ — — — r ^ ( ^ , ^ ) + E ^ - E, - £3 .

I(p) ^ ^ : ^ 7 7 Z + 1

Consequently,
/» 25C 1 / 1 \

I I I ( g ( y , s ) - ^ ( y , s ) ) d s \ \ < — — — +——— 0^ (———)J\(p) m + 1 m + 1 z Y m + I /
25C 1 - 2S / 1 \

m + 1 m 4- 1 ^m + 1^
45C 1 /_1_\

"" m+ 1 m + 1 3 ^ m 4- 1 ̂

where, lim 03 (———-) = 0 . . . . (A.4)w^°° \ m + 1 /

To prove the approximation result (A.I), one notes the fol-
lowing: Let p G {1, 2, 3,. . ., m}.

\\f^ ( g - ^ ) ( y , s ) d s \ \ < p^ \\f ( g - ^ ) ( y , s ) d s \ \
0 ,=o I(/)

r 45C 1 / 1 \1
<mL^TT+^"^03^^TT)J

< 46C 4- 03 (——1—)•3 ^m 4- \l

Clearly then, the approximation (A.I) obtains for m G N suffi-
ciently large and S G (0,1 /2) sufficiently small.

This completes the proof of the Approximation Theorem.
Complement 1.
Let $ : K x [0,1] —> B be the continuous map,

^ ( y , t ) = 7 ( ^ , ^ 0 ) .
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Let H: K x [0,1] x [0,1] —> B be the homotopy on
K x [0,1], H ( y , t , s ) =7(^^ .0(^ ,6 ,0) ) .

Clearly, the homotopy H connects the map $, ^, and is
such that the graph of the corresponding map at each stage of the
homotopy is contained in Q .

Complement 2.
Suppose U C K x [0,1 ] is a subset such that:
For each (x , t) G U x [0,1], 7 ( x , 0 = O E B .
Thus in particular, for each x E U, f^ (x) = g ( x ) = 0 , 1 < / < N .
Recall that by construction ^ : K x [0,1] —> B is the map,

^(y , t) = j(y , t , 0 (m, 6 , t)), for a suitable auxiliary map 0 .
Consequently, for each x G U , ^(x) = 0 G B .

Complement 3.
Suppose now K x [0,1] = [0,1]", the n-cuhe in FT

( K = [O.I]"-1) , and 7 : [0,1]" x [0 ,1 ]—>B is a C^1 map.
Coordinates in R" are denoted by (^ , s^, . . . , s^ _ i , t). The
Approximation Theorem easily extends to the following

C -APPROXIMATION THEOREM (C^-one dimensional Lemma). -
Fix an integer r > 0 and a real number e > 0. There is an integer
J G N and a number 5 ̂ G (0,1/2) such that:

Let m G N , m > J ; 5 G ( 0 , 6 o ) .
The C^ map ^(y , t) = ^ ( y , r , 0(m , 6 , r)) satisfies the

following property:
Foreach (y , r) E [O.I]"-1 x [0,1] = [0,1]",

I I f ^(g- ^ ) ( y , s ) d s I K e ,

where D0' runs over all differential operators on functions of n-
variables such that \a\ < r and D0 involves no derivatives in the
t-variable.

The proof of the C''-one-dimensional lemma is analogous to
the proof of the one-dimensional lemma subject to the following
observation.
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Observation. — Let D0' be a differential operator as above.
D" ̂ / ( y , t) = D" (7(j/ , r , 0 (w , 6 , r))) does not introduce the deri-

vative — 0(m,6 , t ) . . . . ( 1 ) .at
Let C, = supdID^Oc,^!! | ( x , ^ ) E [ 0 , l ] " x [0,1] and D^

as above}. 'Then, from (1), above,
sup {| | 0^(^,011 l ( ^ , r ) e [ 0 , i r - 1 x [0,1]= [0,1]", and D^ as
above} < C y , (independent of the choice of (m , 6) G N x (0,1/2)
in the auxiliary function 6).

Consequently, there is a corresponding Lemma 3.1 applied to
the maps D^, D^: [0,1]" —> B , D^ as above.

(The corresponding Lemma 3.1 provides an integer R inde-
pendent of (m , 5) E N x (0,1/2) in the auxiliary function 0).

With Lemma 3.1 in hand, the proof of the CY one-dimensional
lemma is an exact parallel to the above proof of the one-dimensional
lemma.

Complement 4.
The C^ one-dimensional lemma is easily reformulated and proved

in case the /i-cube [0,1]" is replaced by a translate in R" of the
^z-cube [0,^]" , a > 0.

Appendix 4.

Introduction. - Let X be compact and TT : E —> X a
Euclidean vector bundle over X, norm || ||.

Let Q C E be open. F (E) is the space of continous section
of E which map X into Q. Recall that Q(x) = Q n pr-1 (x),
x € X. Fix $ G FQ (E), and open sets U, Ui in X, U C Ui .

Suppose g is a continuous section of E such that:

x e X =<- g(x) E Env(Q(x); <^>(x)) (cf. Appendix 1)

jcEUi^ ^(x)=^>( jc) .

In the Convex Hull lemmas below, it is proved firstly, that the
above convexity conditions on the section g imply that g is a
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convex linear combination (variable coefficients, in general) of
sections in FQCE). Secondly, it is proved that this convex linear
combination may be replaced by a convex linear combination,
constant coefficients, of sections in FQ (E).

In this way the Convex Hull Lemma translates the above
convexity conditions on the map g into the requisite convex linear
combination conditions of the hypotheses in the one-dimensional
lemma (Appendix 3).

CONVEX HULL LEMMA I. - There are sections h^ E FQ (E) and
n

continuous maps, p ^ ' . X — ^ [ 0 , 1 ] , i= 1 , 2 , 3 , . . . » n , ^ p^ = 1 ,
such that : < = 1

n

^ ) g = S P i ' h i '
i=l

b) For each x G U, h^x) = $(x), i = 1, 2, 3, . . . , n.
c) For each x € X, h^x) G Arc(QOc); $(x)).

Proof. — Since Q is open, it follows from Lemma 1.3 (Appendix
l) that Arc(Q;<l>)= U Arc(QOc); <^(x)) is open in E.

jcGX

One easily constructs open covers of X , {V(-^)}^ex ?
{W(x)}^ex . V ( x ) C W O c ) , all x , such that :

( i ) W ( x ) C U i if ^ C U ; W ( x ) n U =0 if ; c^U.
(ii) For each x E X, there are sections /^ £ FQ (E),

1 < i < ^(^c) such that:
a) For each ^ E X , ^(^)e Arc(Q(jQ ; $(^)).
b ) i f ^ E X - W ( x ) , then ^ (^) = ^>(y).

c)if ^ G V ( x ) , then g ( y ) = ^ p ^ ( y ) h ^ ( y ^ where p? :
< = i

X —^ [0,1] is a continuous function, i = 1, 2:3, . . . . ^ and

t PW= 1, all ^EV(^ ) .
/ = = i

d) if x G U , then ^ = $; p^ = 1 (that is, in case ; c€U,
^(^•) = i). Since X is compact, the cover {V(x)}^^x contains
a finite sub-cover. An easy partition of unity argument completes the
proof.
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Complement 1.
There are homotopies F, : [0,1]—> FQ(E) connecting $,

hf, i = 1 , 2 , 3 , . . . , ^ , such that :
1) For each ( x ^ ) E U x [0,1], F^ , t) = $(;c),

/ = l , 2 , 3 , . . . , n .

2) For each (x , t)CX x [0,1], F,(;c, r )G Arc(QOc); $(x)),
i = 1 , 2 , 3 , . . . , n .

Compfem^/'Z

In case X is a compact C°° manifold (in particular X = [0,1]" ,
the ^z-cube in R " ) , and $, g are C°° sections, one may also
arrange that h^F^^E), F,: [0,1] —^ rQ(E)p , :X—^ [0,1] are
C00 maps, / = 1,2,3, . . . ,n.

CONVEX HULL LEMMA II. - Suppose now g= ^ p . h ' ,
1=1

/2,erQ(E) ^^ F, : [O, I ] —> FQCE), z = 1 , 2 , 3 , . . . ,^ ^ m
^^ conclusions of Convex Hull Lemma I.

N
There is a sequence (6,e [0,1])^^ , ^ &/ = 1, and maps

^GrQ(E) such that: i=l

1) For each xCX, g ( x ) = ^ ^/,(x).
(=1

2) For each x G U , /,(x) = $(x), ; = 1, 2, 3, . . . , N .
3) For each x ^ X , /;.(x)E Arc(Q(x); $(x)), ; = 1 ,2 ,3 , . . . ,N .

Pwo/ -Employing the homotopies F, : [0,1] —> r^(E),
one easily constructs a homotopy 7: [0,1] —> FQ(E) such that :

7(0) = ^> ; 7 ( ^ ) = h,, ;• = 1, 2, 3, . . . , n ; for each (x , s) E

U x [ 0 , l ] , j ( x , s ) = ^ ( x ) [the homotopy 7 runs "back
and forth" along each homotopy F,, i = 1, 2, 3, . . . , n], and, for each
( x , 5 ) G X x [0,1], (x ,7(x,5))GArc(Q(x);$(x)) . Fix e > 0 .

Recall the auxiliary map 0^ : X x [0,1] —^ [0,1] (Appendix 2)

associated to the continuous mapsp^. : X—> [0,1], ; = 1, 2 3 ... ^2
n

I P / = I .
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Let ̂  : [0,1] —> FQ(E) be the homotopy of sections,
^ (^ , t) = 7(x , Q^x , r)). In particular, ^(x , r) = h,(x), on a sub-
interval of [0,1] of length (1--e)^.0c), /= 1 , 2 , 3 , . . . , 7 2 .

Thus for each x E X ,

f^1 ^ , ( x , t ) d t = ^ (1 -6)p,(x)/z,(x)4-E,(x) ,
f = = i

where lim E,(x) = 0 . The map 7: [0,1] x X —> E has compact

image in E. Thus Urn f^ ^(x, t)dt = ^Qc), uniformly in X
. . . d ) .

Since X is compact, and Q C E is open, the following proper-
ties obtain : Fix e^ > 0.

1) There is a number § > 0 such that :
Let P = 0 = 5i < s^ < s^ . . . < J N + I = i be a partition of

[0,1], meshP< §. For each x E X ,

ll^^^x.r)^- f (^^ -^)^Oc,. ,)IKe, . . . ( 2 ) .
f = i

2) There is a number ^ > 0 such that :
Let/E F(E), H / l l < r . Then for each (x , 5 )EX x [0,1],

7 ( x , s ) +/(^)EArc(Q(x); ^>(x)). Fix a partition P , as above;
mesh P < § .

Let /er(E) be the section,

f(x)=g(x)- ^ (^i-^.)^(x,^).

From (1), (2), above, one may suppose that ||/|| < r . Note also
that, for each x E U , /(x) = 0 . Define f, E Fp (E) to be the section,

f,(x)=f(x) +^(x ,^ ) , / = 1 , 2 , 3 , . . . , N .

Set 6,=^-^E[0,1], ;= 1 ,2 ,3 , . . . . N , then f ^ .=1 .
f^li

Clearly, for each x E X , g ( x ) = ^ ^^. f^x).
i^l

Evidently, all the conclusions of the lemma are satisfied. Hence
the proof of the Convex Hull Lemma is complete,
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Complement 1.
Let Hy : [0,1] x [0,1] —> FQ(E) be the continuous map.

For each x £ X , H^(x , t , s ) = j(x , t . s) .
Evidently, for each Qc, r) G X x [0,1], H^(x ,t , 0) = $(x);

HLy(x , r , 1) = 7(^,0.
For each ( x , r , ^ ) E U x [0,1] x [0,1], H ^ ( x , r , ^ ) = $(x).
Employing the map H^ , one easily constructs homotopies

H: [0,1]—> FQ(E) connecting ^ to $, such that for each
( x , t ) E V x [0,1], H . ( x , r ) = = $ ( x ) , ;•= 1 , 2 , 3 , . . . N .

Complement 2.
In case X is a C°° manifold (in particular if X is the

n-cube [0,1]" in R") and g , p ^ , /z^. are C00 maps, ; == 1 , 2 , . . . , ^ ,
one may arrange that the maps 7, f^, H, are C°° maps,
/ = 1 , 2 , 3 , . . . , N .

Remark. -The construction of the maps 7, H^ associated
to the data h^, F^., / = 1, 2, . . . , n, may be repeated for the data
f^, H., ; = 1, 2 , . . . , N. In particular there are corresponding
continuous maps 7: [0,1] —> FQ(E) , H^ : [0,1] x [0,1] —^ FQ(E)
such that :

(i)For each ; c G X , 7 ( ^ , 0 ) = ^ > ( x ) ; 7^, —r-r) ==/,00,
/ = 1 , 2 , 3 , . . . , N . ^ ' 1

(ii) For each (x , r) E U x [0,1], 7 (x , r ) = $(x).
(iii) For each ( x , r , 5 ) E X x [0,1] x [0,1],

H^(x , r ,*?) = 7(x , t . s ) .
Consequently H^ (x , r , 0) == $(^); H^ (x , r , 1) = 7(^ , r ) .

Appendix 5.

The Cube Lemma.
In this appendix, the C^-cube Lemma (stated in the Introduction,

1) is solved.
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By hypothesis, for each x € [0,1]" ,

—— (x)GEnv(Q(x);^Oc))
of

VG
(cf. Appendix 1 for this notation) and —— = $ on a neighbourhood

9^
V of the closed set K^ in K.

Reduction of the Problem.
^\r f~^

For each x C [0,1]" , let Q'(x) = QOc) -—;- (x) [the
^\r r^

translate in R9 of the set QQc) by the vector —^- C O G R ^ ] ;

let $' : U —> R^ be the continuous map

<^(x)= ^(x)-9-^- (x).

Note that $' = 0 in U.
Thus Q' == U Q'(x) is open in [0,1? x R" , and

xe[o,ip
OeEnv(Q'(x),^) '(x)).

If necessary, one may replace the map ^f by a C°° map ^>o :
[0 ,1]"——^ R9 such that : For each x E [0,1]" ,

^>o(x) GArc(Q'(x) ;$'(x)) ;$o(x) = 0 in a neighbourhood Ug of
KQ in K , Uo C U . (Note that, (Appendix 1), Arc(Q'(x), ^'(x)) C R^
is open for all x E [0,1 ]" .) Fix a neighbourhood U^ of KQ , 0^ C 1̂  .

In what follows, the Cube Lemma is solved for the special case
when G: [0,1]" —> R^ is the constant map equal to zero. By
translating back to the original data, the Cube Lemma is solved in
general.

Applying the Convex Hull Lemma, Complement 2 (Appendix 4)
one concludes that there are constants b^ [0,1] 1 < / < N, C°°
maps / ; . : [ 0 , i r — ^ R ^ . l ^ z ^ N and a C°° map, 7 :
[0,1]" x [0,1] —> W such that :

N
(i) For each x G [0,1]" , 0 = ^ b,f,(x).

z = = i
(ii) For each ( x , r ) G U i x [0,1], j ( x , t ) = 0;

For each (;c, r) G [0,1]" x [0,1],

7(x,r)GArc(Q'(x);^(x)).
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(iii)For each x G [ 0 , l ] " , 7 (^, ̂ -^) =^.(x), 1 < ; < N .

Fix e > 0. Coordinates in FT are (^ , ̂  , . . . , ̂  , r).
Applying the C^-one dimensional lemma (Appendix 3), one concludes
there is a C°° map ^ : [0,1]" ——> R" (in fact, the map ^ is of
the form ^(y , r) = j(y , r , 0(r)) for a suitable auxiliary map
0(0), such that :

(iv) For each x E U^ , ̂ (x) = 0 .
(v) For each (^ , t) E [0,1]"-1 x [0,1] = [0,1]" ,

\\ j^ D^^^y ,s)ds\\<e , where D" runs over all differential

operators on functions of ^-variables such that |a| < r and D^
involves no differentiation in the r-coordinate.

Let/o = p f . . . ^ ^ ( y ^ s U d s Y .
^o ^o ^o

Evidently f^ : [0,1]" ——> R9 is a C00 map;

8 fJL We Arc(Q'(x);$o(x))3^
forall xE[0 , l ] " , and:

For each ( y , t ) C [O.I]'1-1 x [0,1] = [0,1]", ||D^ f^y . r)|| < e,
where D^ runs over all differential operators on functions of
^-variables such that 10 \<r and D^ involves at most (r — 1)

differentiations in the ^-coordinate (\hat is, |j8| < r and D^ ^ — )v Qf f
Thus /o : [0,1]" —> R^ solves the Cube lemma for the

(reduced data) G = 0 ; [0,1]"——> R9 except possibly for the
condition that /o must equal zero in a neighbourhood of KQ in
[0,1]".

To achieve this last property, let h: [0,1]"——> [0,1] be a
C°° map and U^ a neighbourhood of K^ in [0,1]", U^ C Ui ,
such that : KQ C int(/z-1 (1)) C supp h C U^ .

Define V = int ^(l), and let /: [0,1]"—> W be the
C00 map /= (1 -/z_)./o . Evidently, / = 0 in V and / =/^ on
the complement of U^ in [0,1]" .
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For e > 0 sufficiently small in the estimate (v) above, the
corresponding map /= (1 —/z ) /o satisfies the additional property.

For each x G [0,1]" , —L (x) E Arc(Q'(x), ^o(x)) (recall
yf

here that Q'C[0,1]" x R^ is open and —SL = ^ = 0 in U ^ ) .

Thus the cube lemma is proved with respect to the reduced
data G = 0 : [0,1? —> R^ .

It is evident that the map F = G +/: [0,1]" —> R^ is a
C/ map which yields all the conclusions of the Cube lemma for the
original data.

Complement 1.
Employing the homotopy H associated to the map 7 :

[0,1]" x [0,1] —> R^ (Convex Hull Lemma, Appendix 4), one
easily verifies that there is a homotopy H: [0,1]" x [0,1] —> R^

3''(G 4 - f )
such that Ho = $ ; Hi = ———— ; H(x , t) = ^(x) for all

(x , t) E V x [0,1], and also such that :
For each (x , r)e[0,l]" x [0,1],

Oc,H(;c ,r))GArc(QOc);$(;c)) .

Complement 2 (Compactness).
Let Arc (Q ;<!>)= U Arc(Q(x); $(;c)) (cf. Appendix 1).

jce[o,ip

Let A = { O c , 7 0 c , r ) ) G [ 0 , i r x R^ | (x , t) E [0,1]" x [0,1]}.
Evidently A is a compact subset of Arc(Q,$). Consequently

the graph of the homotopy H^ , 0 < t < 1 which connects
'\f rr~^ i ^"\

^, —————, (cf. Complement 1) lies in a preassigned compact

subset of Arc(Q;$); that is, a compact subset which is indepen-
dent of the auxiliary function 0 used to define the map ^:
[0,1]"——> W .

This complement is employed in §2 in the inductive construc-
tion of a solution to an open condition Y C J ^ U . R ^ ) , where
U C R" is open.
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Complement 3.
The C^-Cube Lemma is easily reformulated and proved in case

[0,1]" is replaced by a translate of the n-cube [0,^]" in R" ,
a > 0.

Complement 4.
Suppose in addition the map G:[0 , l ] "—> R9 of the

hypotheses of the Cube Lemma is of class C°° .
Then, in addition, the following conclusion obtains : Fix an

integer s > r .
One may choose the map F : [0,1]" —> R^ in the conclusion

of the Cube Lemma to be of class C°° , and also so that the following
estimate obtains : For each ( y , t) G [0,1]"-1 x [0,1] = [0,1]" ,

I I D ^ F - G K ^ . ^ I K e ,

where D0' runs overall differential operators on functions of
^-variables such that | a | < 5 and Da involves at most ( r — 1)
differentiations in the r-variable.

Appendix 6.
The Local Extension Theorem.

In this final appendix, the Local Extension Theorem is completely
proved. This is the principal local result on which depends the inductive
procedure for solving open conditions in jet spaces (§2). After
performing some preliminary technical modification, the proof of the
Local Extension Theorem is obtained by applying the Cube Lemma
(Appendix 5). Let L , M be subspaces of [0,1]", L C M , such
that M — L is contained in the interior of [0,1]" .

Let Y C [0,1]" x R^ be an open set.
Recall the notation, YQc) = Y 0 (x x R^ ) Cx x R^ = R^

x G [ 0 , i r .

LOCAL EXTENSION THEOREM. - Let / z : [0 , l ] " —> R^ be a
C'' map, ^ : [0,1]" —> R^ be a continuous map and N(L) a
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neighbourhood of L in [0,1]" such that the following properties
obtain :

1) The graph of $ (x) is contained in Y.
Vh

2) For each xE[0 , l ] " , —— (x)G Env(Y(;c); $00).

y/z
3) For each ^ E N ( L ) , —— (x) = $(;c).

TTz^s' ( /z , $) ^ a formal solution to Y which solves the open
condition Y in N(L).

Let Ko = LU3([0 ,1 ]" ) .
Fyc 6 > 0 . Coordinates in R" ^^ (^ , ̂  , . . . , ̂  _i ,r) .
Then there is a C/ map f\ [0,1]" —> R9 , a continuous

map $1 : [0,1]" —> R^ , a neighbourhood W o/ M w [0,1]",
a neighbourhood V o/ K^ ^ [0,1]" 5MC/Z ^^r the following
properties obtain :

(\)For each x G [0,1]" , HD^/- h) (x)\\ < e , w/?^ D"
n^^5 oiw a// differential operators on functions of n-variables such

that |a| < r , and D0' ^= —:.

WForeach x E [ 0 , l ] " , $i(x) E Arc(Y(x) ;$(x)).

(iii) For each x E [ 0 , l ] " , ̂  (x) E Env(Y(;c); $(x)).
yf

(iv) Fo^ ^c/z x E W, —— (x) = $1 (x).
or

(y) For each x E V , /(x) = A(x) ;$ i ( jc ) == $(x).
( v i ) w n a [ o , i ] " c N ( L ) n a [ o , i ] " .
Thus the formal solution (/,$i) to Y extends the formal

solution (h, $) ^o Y mY/z respect to the closed sets L C M in
the n-cube [0,1]" .

Proof. — Note that, in general, 9 [0,1]" is not a subset of L;

consequently, in general, the maps —^-, < t > : [0,1]" —> R^ are

not equal in a neighbourhood of 9 [0,1]" in [0,1]" . To remedy
this, some preliminary modifications on Y are introduced.
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Let QC[0,1]" x ̂  be the subset defined as follows : For
e a c h x G M , Q(x) = Arc(Y(x); $(x)).

For each x in the complement of M in [0,1]" ,
QOc)=Env(YOc) ;< I>Oc) ) .

Let Q = U QQc).
xG[0,l]n

Since Y is open, applying Lemma 1.3 (Appendix 1) it follows
that Arc(Y,$) C [0,1]" x R'7 is open and Arc(Y, $) C Env(Y, $).
Evidently then. Q is open in [0,1]" x R'7 .

Note that the graph of <^> is contained in Q and, for each

j c E [ 0 , l ] " , ^Oc)GEnv(Q(;c);<i>(x)) .
6t

Furthermore, for each x in the complement of M in [0,1]" ,

^(;c)eArc(Q(^);$(^)).

One easily constructs a continuous map <^>o : [0,1]"——^ Rq

such that :
»\ Y i

(i)<^ = —— in a neighbourhood of 3[0,1]" in [0,1]".

(ii) $o = $ in a neighbourhood of M in [0,1]" (recall
that iVT^Tc int([0,l]")).

(iii) For each x€[0 , l ] " , $o (x) E Arc(Q(x); $(x)).
Thus the pair of maps ( / z ,$o) is a formal solution to the

open condition Q, which solves Q in a neighbourhood of
KQ = L U 3 [ 0 , 1 ] " . Applying the Cube Lemma, Appendix 5, to
the data ( /z ,$o) and Q^0^]" x Rq > one concludes that there
is a C'' map /: [0,1]" —> ^ , a neighbourhood V of Ko in
[0,1]" such that :

(i) For each xE[0 , l ]" 9— (x) G Arc(Q(^); ̂ (x)).

(ii) For each x G V, f(x) = h (x); —— (x) = $o W'

(In particular /= h in a neighbourhood of 3 [0,1]" in [0,1]").
(iii) For each x C [0,1]^ , IID^/- h)\\ < e , where D" runs

over all differential operators on functions of ^-variables, such that
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| a | < r , and D0' ^ —— . From the definition of Q and (i) above,

it is clear that:

For each ;cG[0, l]" , ——^ (^)G Env(Y(;c); $(;c)),

For each x^M, -a-^ (x) E Arc(Y(;c), <I>(x)).
B ^ f

(Thus, over M, the graph of ——: [0,1]" —> ^ is contained
in Y).

Furthermore, employing Complement 1 to the Cube Lemma
(Appendix 4), there is a homotopy H: [0,1]" x [0,1]—> R^
such that :

yf
(iv) Ho == $o ; Hi == —— ; H^ = $o on the neighbourhood V

8^
of Ko in [0,1]" , 0 < r < 1.

(v) For each ^[0,1], the graph of H^ is contained in
Arc(Y;$).

One easily "truncates" the homotopy H in a suitable neigh-
bourhood of M in [0,1]" (recall that M- L H 3[0,1]" = 0) to
obtain a continuous map $1 : [0,1]" —> R^ , a neighbourhood
W of M in [0,1]" , such that the following properties obtain :

a) For each ^E[0 , l ] " , $1 Qc) G Arc(Y(x); $(x)).

Vfb)<^=-^- in W .

c) $1 = $ inV.
d ) w n a [ o , i ] " c N ( L ) n a [ o , i ] " .
Evidently the Cr map F: [0,1]"—^ R^ , the continuous map

^i : [0,1]"——> ^q , the neighbourhoods W o f M , V of KQ in
[0,1]" satisfy all the conclusions of the Local Extension Theorem.

This completes the proof of the Theorem.

Complement 1.
One easily constructs a homotopy of formal solutions to Y ,

rel a neighbourhood of KQ in [0,1]", connecting ( /z ,$) to
(/,$i).
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Complement 2.
The local Extension Theorem is easily reformulated and proved

in case [0,1]" is replaced by a translate of the n-cube [0,^]" in
FT, a>0.

Complement 3.
Let a : [0,1]"——> (0,°°) be a continuous map.
Suppose (h, $) is a formal solution to Y within the tolerance

a : For each x G [0,1]" , -J^ (x) CEnv^ (Y(x) ; $(x)). Then,

in addition, one may construct the C7 map /: [0,1]" —> R^ and
the continuous map $^ : [0,1]" ——^ R^ to satisfy the conclusion :

For each xe[0 , l ] " , ̂  Qc) E Env^ (Y(;c) ; $00).

For each x E [0,1]" , $^ (jc)G Arc^^ (Y(x) ; $(x)).

Complement 4.
Suppose, in addition to the hypotheses of the Local Extension

Theorem, h : [0,1]" —> R'7 is a C°° map.
Fix an integer s > r .
Then one may construct the map /: [0,1]" —^ R^ in the

conclusions of the Local Extension Theorem to be a C°° map and
such that the following estimates obtain :

For each ( y , t)C [O.I]"-1 x [0,1] = [0,1]",

II ̂ a (/ - h) (y , t) || < e , where D0' runs over all differential
operators on functions of ^-variables such that \a\ < s and D0'
involves differentiation in the ^-variable at most (r ~ 1) times (cf.
Complement 4, Appendix 5).
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