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UNFOLDINGS OF FOLIATIONS
WITH MULTIFORM FIRST INTEGRALS

par Tatsuo SUWA (¥)

In this note we study unfoldings of codim 1 local foliations
F = (w) generated by germs w of the form

14 df
w=f...f, X N+
i=1 M
for some germs f; of holomorphic functions and complex numbers
A;, generalizing the situation considered in [10].

For such a foliation F satisfying some side conditions, we
determine the set U(F) of equivalence classes of first order un-
foldings ((1.7) Proposition) and give explicitly a universal unfolding
of F ((1.11) Theorem) as an application of the versality theorem

in [7]. In section 2, it is shown that the unfolding theory for F = (w),
p )

w=fi...f, X N ?fl is equivalent to the unfolding theory for
i=1 i A A

the “multiform function” f= f, oo fpp . In section 3, we consider

foliations with holomorphic or meromorphic first integrals. In either

case, it turns out that the given generator w is of the form considered

in section 1. Thus, under the conditions of (1.11) Theorem, such a

foliation has a universal unfolding (Theorems (3.4) and (3.10)). If

the conditions are not satisfied, then the space U(F) may have obs-

tructed elements ((3.6) Example) .

This work was inspired by the extension theory of Cerveau and
Moussu for forms with holomorphic integrating factors [1,4]. An
unfolding is certainly an extension and, by the implicit function

(*) Partially supported by the National Science Foundation.
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theorem, an extension can be thought of as an unfolding. Also a
morphism in the unfolding theory is a morphism in the extension
theory. However, the converse is not true in general. Thus a versal
unfolding is a versal extension but not vice versa. In [1] and [4],
it is proved that a germ w of the form in section 1 of this note

(or more, generally, w with holomorphic integrating factor f,

. w . . . .
ie., d (—) = (0 forsome f in ©) has a mini-versal extension.

f

I would like to thank K. Saito for helpful conversations.

: o, df;
1. Unfoldings of w =f,...f, 2, )\,.7—‘
i=1 i

Let ,0 (or simply ©) denote the ring of germs of holomorphic
functions at the origin 0 in C" = {(z,,...,z,)} and let ,Q (or
simply ) denote the ©-module of germs of holomorphic I-forms
at 0. For an element w in £, we denote by S(w) (the germ at
0 of) the set of zeros of w and call it the singular set of w.

Let w be anelementin ,& of the form

P df;
w=f1...fp>_‘>\i'f_\'a
i=1 i
where f; are germs in © and N\; are complex numbers. If we set
F,.=f,...f,-...fp (omit f;) for each i=1,...,p, we may

p
write. w = Y N\F;df;. Note that w is integrable; dw A w = 0.
i=1
By regrouping the f;’s, if necessary, we may always assume that
(1.1) 7\,-#)\1-(9&0), if i#7j.

In what follows we also assume that codim S(w) = 2, which implies
that

(1.2) each f; is reduced, ie., for any non-unit g in O, f; is
not divisible by g2,
and that

(1.3) f; and f; are relatively prime, if i #j.

Let F be the codim 1 local foliation at O in C" generated
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by w as above ([6]4, [7]1, [8]). The set U(F) of equivalence
classes of first order unfoldings of F is given by ([6]6, [7]1).

14
UGF) = I(w)/( X NFaf),

i=1

where I(w) is anideal in © defined by

I(w)y={h€O|hdw=nAw forsome nEN}

2
and ( Y NF af,> is the ideal generated by

i=1
14 of. p of;
Z )\iFi’*f-;,...,Y AiFi"'fL'
i=1 9z, i=1 0z,
For a g-tuple of integers iy, ... 0 with 1<i, <...<i;<p,
let I(i,,...,i,) denote the idealin O generated by
f”iz...j}q,...,j’il...]‘ii...fiq (omitfij),...,f}l...fiq_l.

Note that I(l,...,p)=(F,,..., Fp) (the ideal generated by
Fl,‘..,Fp). We denote by htI the height of an ideal I in ©.

(1.4) LEMMA. — Suppose ht(f;, f;, i) =3 if i, j, k are
distinctand f;, f;, f; are non-units. Then we have
1G,,...,i)= N | (G P |
! 1 {Il ..... ]q_l}C{il,..‘,iq} ! a-1
for q = 3.

Proof. — Without loss of generality, we may assume that
(iy,..., i)=(,..., q). Obviously, the left hand side in the
above equality is in the right hand side. Take any element A in
the right hand side. We set Fj =f, ... fioo fio £y (omit f
and fj) for each pair of distinct indexes i, j and

Fiw=fi-o fioo fio fio Sy

for each triple of distinct indexes i, j, k. Then we may write

(1.5) h=7Y aF,

ij> @4;€0,
i#j

for each j =1,...,q. Now we show that g; is in the ideal (f;, f)
for each i, j with i ¥ j, which would imply that A isin I(1,...,q).
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This is obviously true if f; or f; is a unit. Thus we assume that f;
and f; are non-units. If k£ is an index different from i or j, we
have, from (1.5),

Fir(ayfe —an ) = ( DI I z am,F,'m,) fi-
n;er k m#i,j
By our assumption, f; and F,.l-k are relatively prime. Hence
aiifk - aikfi = af;

for some a in O. Thus a;f, isin (f;,f). If fi is a unit, then
a; is in (f,-,fj). If f, is a non-unit, then by our assumption
ht(f,-,jj-,fk) = 3. Hence a;; isin (f,~,fi). Q.E.D.

(1.6) COROLLARY. — Under the assumption of (1.4) Lemma,
F,,....,E,)= N (f.f).
( 1> p) i#j (f; f))

(1.7) PROPOSITION. — If the assumption of (1.4) Lemma is satis-
fied and if df, n ... ndf, # O, thenwe have L(w) = (F,, ..., F,),
thus

UF) = (F,,..., ,,)/(S‘ NF;of,)

i=1

Proof. — IfwesetF =f. f,flf for i #j, we have

dwo= Y (\—\)Fydf adf,.

1<i<j<p

From this we see easily that

)\iFid(lJ = 2 ()\l _)\])F”df; AW,

i#*j
which shows that (F,, ..., F,) CI(w). Conversely, take any element
h in I(w). Thus
(1.8) hdw = A w

for some 1 in §. Let U be a small neighborhood of 0 on which
the germs f,,...,f,, h and n have representatives and let S be
the set of zeros of df; A ...\ df, in U. By our assumption, the
set S is an analytic set of codim = 1. As in the proof of [10](2.1)
Lemma, from (1.8), we may write
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P
(1.9) n=Y #.df,
i=1
(1.10) ()\7.—>\,.)h=)\i¢,-f,-—)\,¢ifj
for some holomorphic functions ¢,,...,¢, on U—S. Now we

show that ¢; can be extended to holomorphic functions on U.
From (1.9) and (1.10), we have

¢w=NEn+hn Y (N —N\)F;df
jEi
for each i=1,...,p. Since the right hand side is holomorphic
in U, this shows that ¢; is holomorphic in U — S(w). Therefore,
by the assumption that codim S(w) = 2, ¢; can be extended to a
holomorphic function on U. Thus from (1.10) and (1.6) Corollary,
we see that h isin (F,... ,Fp). Q.E.D.

For an element A in ©, we denote the corresponding element

p

in (9/ Z xiF,.af,.) by [h]. The following result follows from
i=1

(1.7) Proposition and the versality theorem in [7] (cf. the proof

of [10] (2.4) Theorem).

(1.11) THEOREM. — Let F = (w) be a codim 1 local foliation
at 0 in C" generated by agerm w of the form

P
w=fl...fpz )\f—f
i=1 i

for some f; in © and N\, in C. Suppose the conditions (a) \; + N
(#0) for i#j, (b) codimS(w)=2, (c) ht(f;,f;, fi)=3
for i#j#k+#i such that f;, f;, f. are non-units, and (d)
dfy A... A df #+ 0 are satisfied. If the dimension of the C-vector

space (F,,... F)/(S‘ NEof ,F,.=f,...f‘,.....f, is finite,

i=1
then F has a universal unfolding. In fact, if

4 P ]
[Z >‘i“§l)Fi] s e [ 2 7\,~u,§"’) F,J , u§’) € 0,
i=1 ~ Li=1

is a C-basis of (F,,...,F )/( NF; af then the unfolding
i=1
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g=(w) of F with parameter space C” = {(t;,...,t,)} generated
~ ~ ~ p d . ~
by @ =fi...f, X N\ -—f,i Where f; aregermsin ., 0 given by

i=1 i

~ m
fi=f+ Z u§k) t, , Isuniversal.

(1.12) CoroLLarY (Cerveau-Lins Neto [1] Th. E;, [2] Prop. 6,
see also [9] (3.2) Th.). — If F = (w) is the codim 1 local foliation at

. n n dZi
0 in C" = {(zy,...,2,)} generated by w=12z,...2z, ¥ N —
i=1 Z;

for some \; in C with \; # >‘i #+0 (i #j), then every unfolding
of F s trivial, in fact U(F) = 0.

Proof. — We have
F,,...,F)= Z 7\,.Fiaf,.) =(z,...2;...2,).

Hence U(F) =0.

(1.13) Remark. — The universal unfolding given in (1.11) Theo-
rem is infinitesimally versal. However, if the conditions in (1.11) are
not satisfied, U(F) may have obstructed elements (see (3.6) Example).

(1.14) Remark. — Let F = (w) be a codim 1 local foliation
at 0 in C" generated by a germ w of the form

pP
w=fi f, ST w0 D),

p i .
=1

with codim S(w) 2 2 and let & be an unfolding of F with para-
meter space C°. Then by a result of Cerveau and Moussu ([1] 4°
Partie, Th. C,, [4]), we have that

(1.15) 9 has a generator @ of the form
’ fiEnHZ@'

Moreover, if w has no meromorphic first integrals (Sec. 3), then
we may assume that ([1] 2° Partie, Ch. I, Prop. 1.5, [3])

(1.16)  fi(z,0)=f(z), i=1,...,p.
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The facts (1.15) and (1.16) also follow from (1.11) Theorem in
case the conditionsin (1.11) are satisfied.

(1.17) Remark. — If a foliation F is generated by a germ w
df,

p .
of the form w=/f,...f, ¥ N —, then F has a generator

ot .
i=1 i

of a similar form such that each function germ involved in the ex-
pression is a non-unit.

2. Multiform functions.

A germ of multiform function at 0 in C" is an expression
fl}\ v f:” for some germs f; in ,0 and non-zero complex
numbers A;. Two multiform functions f:\l o fp"p and g" ... g:q
are equal if they are equal as germs of multivalued functions, i.e.,
CULLEPe M g* =1, Let f=f'... f,° be a multi-
form function. By regrouping the factors of the f;’s, if necessary,
we may always assume that the conditions (1.1), (1.2) and (1.3)
are satisfied. Then the expression fl)\ o f: P is uniquely deter-
mined up to the order of the f;’s and units of ©. The critical set
C(f) of f=f:‘1...f:” is defined to be the singular set S(w)
P df,

of the l-form w=/f,...f, Y N — . In this section, we consi-

P
i=1 i
der only multiform functions f with codim C(f) = 2.

An unfolding of f=f1)\l . ..f:” is a germ ? of multiform
function at 0 in C" x C™ = {(z,¢)} which can be written as
~ ~)\ NA ~ . . ~ .

f =f11...fpp for f, in ,,,,0 Wlﬁl [i(z,00=f(2),i=1,...p.
We call C™ the parameter space of f .

(2.1) DEFINITION. — Let f = 7:“ .. .?p)\" and g = g)l\l .. .gz”
be two unfoldings of f= fl)\l..‘ fp)\ P with parameter spaces cm
and C%, respectively. A morphism from g to f consists of germs
of holomorphic maps & :(C* xC*,0) — (C" x C™,0) and
¢ :(C*,0) — (C™,0) such that
(a) the diagram

(C" x C*,0) > (C" x C™, 0)

v
(€*,00 - (c™,0
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is comnu tative, where the vertical maps are the projections,

(b) ®(z,0) =(z,0) and
© g=d*F, ie, g, g;\p

= @ )" @ T
(2.3) DEFINITION. — An unfolding ? of f is versal if for any
unfolding g of f, there is a morphism from g to f .

Note thatif 7 =7, ... f,” isanunfoldingof f=f;".. 1,7,
~ ~ ~ ~ p : . .
then & =(w), w=fi...f, ¥ N dvf' , is an unfolding of
i=1

df,

14
F=(w), w=f...f, 2N f—' , with the same parameter space

i

~ i=1 i
as that of f. For the definition of morphisms for unfoldings of
foliations, see [10] (1.2) Definition.

(2.4) Lemma. — Let f = }?‘ ... 7:” and g = g)l‘1 .. .g;"’ be
two unfoldings of f = f:\l - j;,}‘p with parameter spaces C" and
c, respectively. A pair (®,¢) of germs of holomorphic maps
$:(C"xC*,0) — (C"xC",0) and ¢:(C*,0) — (C™,0)
is a morphism from g to f if and only if it is a morphism from

P dg;
g =(0), 0=g...8, 2 N—,

i=1 &;
to P d?
F=@), d=f...[, L N= -
i=1 i
Proof. — We first note thatif £ =£,'...f,? and
b df;
w=f...f, 3 NI,
i=1 i
. df 1 )
we may write dlogf=—"=——— w. Suppose (®,¢) is a
_f S,
morphism from g to f. Then we have
(2.5) X0 = ®*3,
O*f, ... D*F,
where x = fy Ty Since the right hand side of (2.5)
g -8

is holomorphic and codim S(0) = 2, we see that x is in , 0.
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Moreover, since 7,.(2 ,0)=g,(z,0) =f,(z) and ®(z,0) =(z,0),
we have x(z,0) =1. Hence (®, ¢) is a morphism from & to %.

Conversely, suppose (P, ¢) is a morphism from &' to % . Then
thereisagerm x in ,,,0 with x(z,0) =1 satisfying x - 6 = ®* 3.

d*f ... D*f
-—L————fp. Once this is
g8

done, we_ have dlogg = dlog®*f . Since the restrictions of g
and ®*f to C" x {0} are both equal to f, we get g = &* f,
which shows that (®,¢) is a morphism from g to f. Let

s =(s,,...,8) be coordinates on c'. In general, for an
element 2 in ,,,0, consider the power series expansion of h

Now we prove that x is equal to

in s; H(z,5)= Y K™ (z)s’, where v denotes an L-tuple
lvi=0
(v,,...,v) of nonnegative integers, |[v|=vp, + - -+,
=51 ..5% and h® are germs in 0. If A9 #0,
(0)=(0,...,0), then for each v, there is a germ ¢ of
meromorphic functionat 0 in C” such that
A+u=v 0...IN>0.
1
Thus we have an expression <= Y ¢M s . If we set
h vi=0
g,...8
p=x- —S1fp
o*F, ... O*F,
we may write p(z,s)= Y p¥(2)s",

v|=20

where p® are germs of meromorphic functions at 0 in C" with
p® =1. For our purpose, it suffices to show that p® =0 if
[v| > 0. We may also write

2
dlog®* f = Y a®s+ Y 3 F®(2) spul"dsk ,
lv|=20 k=1 |v|=20

2
dlogg= Y Vs + Y Y 1,60z " *as, ,
lvi=0 k=1 v|=0
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where 1, denotes the KL-tuple with 1 in the k-th component and
0 in the others, the addition and substraction of two K-tuples are
done componentwise, o and 6(") are germs of meromorphic
lforms and F® and G® are germs of meromorphic functions
at 0 in C". Note that o = g®  Since dlog ®*f and dlogg
are both closed forms, we have

(2.6) dF(V) = a(”) and dG(V) — ﬁ(") .
On the other hand, from p dlogg = d log ®* f. we have

(2.7) a(v) — z p()\)ﬁ(“) and VkF(V) = z #’kp(k) G(I‘-)

A+ p=v A+u=v
for all v. From (2.6) and (2.7), it is not difficult to show that
p® =0 for |v|>0. Q.E.D.

In view of (1.14) Remark and (2.4) Lemma, the unfolding
theory for multiform functions f = f:" - f:p satisfying (1.1),
(1.2), (1.3) and codim C(f) = 2 (as well as other conditions des-
cribed in (1.14)) is equivalent to the unfolding theory for foliations

= (w) with codim S(F) = 2 generated by germs w of the form
» i
w=ffy 2 NL,
i=1 ft

(1.11) Theorem, we have the following

N F )‘i # 0 (i #7j). In particular, from

(2.8) THEOREM. — Let f = f:‘l o fp)"’ be a germ of multiform
function at 0 in C" satisfying (1.1), (1.2), (1.3), codim C(f) = 2
and the conditions (c) and (d) in (1.11) Theorem. If

dimg (F,, . . . F)/(S‘ )\Faf N SAES A U AN

i=1
is finite, then f has a versal unfolding. In fact if ]7, are the germs
in (1.11), then the unfolding f=T"1...7? of f is versal.

3. Foliations with holomorphic or meromorphic first integrals.

The following application of the results in section 1 was pointed
out by K. Saito. First we observe the following



UNFOLDINGS OF FOLIATIONS 109

(3.1) LEMMA. — Let f be a germ in © with f(0) =0 and
let g be a reduced germ in ©. If df = g0 for some 6 in K, then
f is divisible by g2 .

Proof. — From the condition, we see that f vanishes on the
zero set of g. Hence g divides f; f=f'g for some f' in ©.
Then we have df =gdf’ + f'dg. Thus f' must be also divisible
by g. Q.E.D.

Similarly we have

(3.2) LeMMA. — Let f be a germ in © with f(0) =0 and
“let g beagermin © of the form g = flk1 ... f,k' for some germs
fi in © and positive integers k; such that (a) f; are reduced, and
(b) f; and f; are relatively prime if i#j. If df =g0 for some
0 in Q, then f isdivisible by flk1+l . ..f,errl

Let F=(w) be a codim ! local foliation at 0 in C* with
codim S(w) 2 2. Suppose «w has a holomorphic first integral
f, ie., wadf=0 for some f in © ([5] p.470). Without
loss of generality, we may always assume that f(0) = 0. Since
codim S(w) = 2, we may write df=gw for some g in O.
If g is a unit in ©, F = (w) = (df) is a Haefliger foliation and
unfoldings of F are well understood [7,10]. We may write
g= lk o f,k’, where k; are positive integers with k; # k;
for i#j and f;, are (non-constant) germs in O satisfying the
conditions (a) and (b) in (3.2) Lemma. Then, from (3.2) Lemma,

we have f = l"‘”...frk’+1 f,+, forsome f,,, in ©. By comput-
ing df, we have
r+1 .
S S ki +1...1<i<r,
33) w=1f;... P T
( ) fl fr+l i:1 'fi i 1...i=r+1.

Note that, since codim S(w) = 2, f,,; is reduced and that f,,,
and f; are relatively prime for i =1,...,r. Let p =r and replace
N, by f,.. N if f,,, is a constant and let p =r + 1 otherwise.
Then from (1.11) Theorem, we have

(3.4) THEOREM. — Let F = (w) be a codim 1 local foliation at
0 in C" with codimS(F)=2. If wadf=0 forsome f in O,
then w can be written as (3.3). Moreover, if (a) ht(f, f;, fi) =3
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for distinct indexes i,j,k=1,...,p such that f, f;» fr are non-
units, (b) dfy A ...adf, #0 and (c)

dimg(F, , . .. F)/( Faf Fo=fi...fio . f,,
i=1

is finite, then F has a universal unfolding. In fact, a universal unfold-
ing is constructed explicitly asin (1.11) Theorem.

(3.5) Example. — Let F = (w) be the foliation at 0 in
2 = {(x, y)} generated by

w=yBx + 2y dx + 2x(x + 2y¥)dy.
For f=x?y%(x + y?) and g =xy, we have df =gw. Letting

fi=F,=xy, f,=F =x+y* X\ =2 and N\, =1, we see
that the complex vector space

(F,,F, )/(5‘ NEDS) = (x + 72,0/ Gx + 23, x(x + 23)
i=1

is three dimensional and we may choose [x + y?] = [% A, Fl],

[xy] = [\,F,] and [x%] = [% N xFp — A, sz] as its basis. Thus
by (3.4) Theorem, we see that the unfolding % = (&) of F with
parameter space C> = {(¢,,7,,%;)} given by
® =27, df, + fdf;,
1

~ 1 ~
fi=xy+ o0+ 5, fr=x+y*+1t, —yt,

is universal. Note that df =g& for f= fif, and Z =1 .
Here is an example of F = (w) with a holomorphic first integral

~ which has obstructed elements in U(F).

(3.6) Example. — Let F = (w) be the foliation at 0 in
2 = {(x,y)} generated by

w=y@B3x +2y)dx + x(3x + 4y)dy.

For f=x2y3(x +y) and g =x2y3, we have df = gw. Thus in
the previous situation, we have f, =x, f, =y, fy=x+y, \, =2,
A, =3 and Ay =1. Note that ht(f,,f,,f;) =2. If we set
h=3x+4y, then hdw=nmnArw for n=3dx. Hence [h] is
in U(F) and " = (@),
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@ =yBx +2y)dx + 3x% + 4xy + t)dy + 3x + 4y)dt

is a first order unfolding of F corresponding to [#]. However,
it is not difficult to show that there is no unfolding corresponding
to [A].

Next we consider a foliation F = (w) (codim S(w) = 2) with
a meromorphic first integral, i.e., we suppose that w A d (g) =0

for some relatively prime germs f and g in ©. In what follows
we assume that g is reduced. Since codim S(w) = 2, we may write

(3.7) gdf — fdg = hw
or

(3.8) d( ) =gi

for some 4 in ©. Note that if 4 is a unit, F is generated by
gdf — fdg and unfoldings of such an F are well understood [10].
Since f and g are relatively prime and g is reduced, from (3.7),

we see that g and & are relatively prime. Thus by (3.8), g =

is a constant on the zero set of 4. If we write h = flk LI f,k' ,

where k; are positive integers with k; # k; for i#j and f; are
non-constant germs in © satisfying the conditions (a) and (b) in

(3.2) Lemma, then we have f — gc = klﬂ ..frk’+l f,+, for some

f,ep in O. We set f,,, =g. By computing d(gi), we have

kot 1. 1<i<r,
N=—1loi=r+1,
l...i=r+2.
Note that, since codim S(w) =2, f,,, is also reduced and
that f; and f] are relatively prime for distinct indexes i, j with
1<i, j<r+2. Let p=r+1 and replace N\, by f,,, N\ if

f,+, 1is a constant and let p =r + 2 otherwise. Then from (1.11)
Theorem, we have

r+2 f
B w=Ff1-frg 2N — 7
i=1 i

(3.10) THEOREM. — Let F = (w) be a codim 1 local foliation
at 0 in C" with codim S(F) = 2. Suppose w Ad(g‘.) =0 for

some f and g in © such that f and g are relatively prime and
that g isreduced.
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Then w can be written as (3.9). If (a) ht(f;, f;, f) = 3 for
distinct indexes i,j,k =1,...,p suchthat f;, f,, f, are non-units,

(b) dfy n...ndf, #0 and (c) dimg(F,,...,F,) S“xFaf

N l‘l
F,=f,...fi...f,, is finite, then F has a universal unfoldmg.

In fact, a universal unfolding is constructed as in (1.11) Theorem.
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