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THE DEFICIENCY OF ENTIRE FUNCTIONS
WITH FEJER GAPS

par Takafumi MURAI

1. Introduction.

We say that a sequence n^ < n^ < . . . of positive integers
00

is a Fejer gap series if ,̂ l /^<oo. We say that an entire
k=l

function /(z) = ^ c^z" has Fejer gaps if S(/) = {n > 1 \c^ ^ 0}
n=0

is a Fejer gap series. There is a classical result by Fejer [4] and Biemacki
[ 1 J : An entire function with Fejer gaps takes any complex value infi-
nitely often. It is one of the themes of gap series to extend or improve
this result. We are concerned with extending this result from the point
of view of the Nevanlinna theory. The purpose of this paper is to show:

THEOREM. —An entire function with Fejer gaps has no finite
deficient value.

Our theorem improves the above result and Kovari's result [9]:
An entire function /(z) has no finite Borel exceptional value if
S(/) = (^)^=i satisfies lim n^r^(k)/log log k = oo for some
positive increasing function i?(r) in an interval (0,oo) with
/ r](r)dr < oo.^o

We say that an entire function f(z) has Fabry gaps if
S(/) = (^)^=i satisfies lim A: / / ^==0 . The Fabry gap condi-
tion is weaker than the Fejer gap condition. Hence it is natural to
ask whether the assertion of our theorem is valid when the Fejer
gap condition is replaced by the Fabry gap condition. We shall
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answer this question in the negative. Clunie [3] constructed a se-
00

quence S = (n^)^^ with ^ l/n^ = oo such that any entire
k=l

function /(z) with S(/) C S has no finite Borel exceptional value.
Hence it seems difficult to investigate the value-distribution of entire

00

functions with lim k/n^ = 0 and ^ 1 /n^ = oo.fc-'00 f c = i
For the deficiency of entire functions of finite lower order

with gaps, various results are known. It is interesting to compare
our theorem with the following result [6,11]: An entire function
f(z) satisfies A(/) < Cp(/) D(/), where A(/) denotes the sum
of deficiencies for complex values, C an absolute constant, p(f)
the lower order and D(/) the infimum over all D > 0 such that
(^"^escn ls incomplete in the space of square integrable functions
in an interval (— D, D). Let us note that an entire function f(z)
with Fejer gaps satisfies D(/) = 0. Hence this inequality gives the
assertion of our theorem under the additional condition p (•) < °°.
This remark was first given by Fuchs [6]. Our theorem gives a new
information about A(Q in the case ?(•) = °° and D(.) = 0.

2. Notation and lemmas.

2.1. Throughout the paper, we use C, C\ C", CQ for absolute
constants. The value of C, C' or C" differs in general from one
occasion to another. We denote by Dy, Sy (r > 0) the open disk
with center 0 and radius r, and its boundary, respectively. Let C
denote the complex plane.

For an entire function g ( z ) = ^ ^ n ^ > the maximum
«==0

modulus and the maximum term associated with r > 0 are
defined by

M(^)=max{ |g(z) | ;zGS,} .
^(r » g ) = max {\c^rn\\n > 1}, respectively. The characteristic
function is defined by m(r,g) = (l/27r) / log^ {g^re^^dt

^o
(r > 0), where log4^ x = max {log x , 0} (x > 0). The counting

f*r
function at f l E C is defined by N ( r , ^ , ^ ) = / n ( x , a , g ) / x dx^o



THE DEFICIENCY OF ENTIRE FUNCTIONS 41

( r > 0 ) , where n ( x , a , g ) denotes the number of roots (counted ac-
cording to the multiplicity) of g ( z ) = a in D^ — {0} . The deficiency
at a EC is defined by 8 (a , g ) = 1 — lim sup N( r , f l , g ) / m ( r , g ) .

y—*.oo

We say that a set E in (0,o°) is of finite logarithmic measure
if / 1/(1 + r) dr < °°. For two real-valued functions A(r), B(r)"E
in (0,°°), we say that A(r) < B(r) holds log-finely (l.f.) if this
inequality holds outside a set of finite logarithmic measure.

For a function P(t) in an interval [0,27r), we put
m(P) = (1/27T) f w log"" \P(t)\dt. The conjugate function of
P(0 is defined by

P(0 = lim (- 1/27T) r {P( r + s) - P(r - .?)} cot^/2) ̂
c-*-0 ^e

([16] p. 131).
For a sequence S = (^)^°^ of positive integers, we denote

by Cxj( r ,S) (r > 0) the number of all integers k with n^<r and
put ?2(r, S) = f (^(x , S)/x ri^ (r > 0). We easily see that S

0 /»oo

is a Fejer gap series if and only if / cj(x , S)/^2 dx < oo.-'0

2.2. Here are some lemmas necessary for the proof of our
theorem.

LEMMA 1 ([7] p. 1). —Let g(z) be an entire function with
g(0) ̂  0. Then

N(/ - ,0^)=( l /27r ) f^ \og\g{reit)\dt-\og\gW\
^o (1)

= m(r,g) - m(r, l/g) - log \g(0)\ (r > 0).

LEMMA 2 ([7] p. 22). — Let g ( z ) be the same as above and
b ^ , . . . , by^ all its zeros (counted according to the multiplicity) in
DR . Then, for any 0 < r < R,

— l o g j g O O l = Re$(z ;R ,^ )
61

+ ^ {Re<^(z;&fc) +ReV/ (z ;R,6 fc ) } (z = re'^ , (2)
where k =1
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< S > ( z , R , g ) = OZ/27T) f v log |g(Re")| {2Rels/(Rel5 - z)2} ds
Jo _ (3)

0(z;a) = zz/(z -a), V / ( z ; R , f l ) = ;za/(R2 - oz) .

LEMMA 3 ([15]). - For an entire function g ( z ) and e>0,

log^(r,g) > (1 - 6)logM(r,g) (l.f.) . (4)

LEMMA 4. — £^ A(r) 6^ a non-decreasing function in (0,°°)
with A(r) > 1 (r > 0) and let p(r) be a positive function in
(0, oo) such that f p(r)dr < oo ^rf p(r + /z) < Cp(r)17 o
(r > 0, 0 < h < 1) /or ^om^ 00. Then, for any q > 1 ,

A { r + rp(log A(r))} < qA(r) (l.f.). (5)

This lemma is analogous to Lemma 3 in [10] and hence we omit
the proof.

LEMMA 5. — Let A(r) be the same as above and let 7(r) (=^ 0)
be a non-negative non-decreasing function in (0, oo) such that

I 7(r)/r2^<oo. We put F(r) = F\(x)/x dx (r > 0) and,J o "or - y ( r ) / r 2 dr<^. We put r(r) = fJ o "o
for every r > 0 , define Vy by F(Vy) = A(r). Then, for any q > l ,

A{r + rrd;,)/^} < <7A(r) (l.f.). (6)

Since F(r) is continuous and increasing in (ro , oo) (r(ro) = 1)
and lim r ( A - ) = o o , Uy. is well-defined. We define a(r) by

r->oo
F(a(r))=r and put p(r) = ^/a(^). We have

r ? ( r ) d r = r\/a(r)dr= F -y(x)/x2 dx < oo .
^O ^1 ^a(l)

Since a(r) is increasing, we have p (r + /z) < ep (r) (r > 0,0 < h < 1).
Hence p ( r ) satisfies the conditions in Lemma 4. Since

p(logA(r)) = A(r)/a(A(r)) = F(^)/^ ,
Lemma 4 gives (6).

LEMMA 6 ([16] p. 134). -For an integrable function P(t) in
[0,27r) and x >0 ,

measO ̂  [0,27r); |P(r)| > x) < (C/x) f27" |P(5) | ̂  , (7)
^o
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where «meas» denotes the l-dimensional Lebesgue measure and C
a constant.

LEMMA 7. - For any non-constant polynomial g(z),
m(l,g'/(gdg))<C, where dg denotes the degree of g(z) and
C a constant.

Given a non-constant polynomial g ( z ) , we write

g ( z ) = a JI^ (z - ̂  e-'611) (d = ̂ , ̂  > 0, 6^ £ [0,27r)).

For a while, we assume that y^ -^ 1 (1 < A: < d). Put

P( / )= f l / ( d{ l -^e'^-^}).
t=i

Then w( l , g ' / ( g d ) ) = w(P). Let us express P(f) as follows:

P(f) = f = 2i + 2, + £3 = P,(r) + p,(/) + p ( ( ) ,
k=i

where 2, denotes the summation over all k with j/^ < 1/2 or
j \>2 , £, the summation over aU k with 1 /2<^<1 and

^3 = ^ - £1 - 2:2 . Then
k=l

m(f)<m(P^ +m(P,) + w(P3) + log 3

([7] p. 5). Since |Pi(f)|<2 (t(E[0,2^)), we have w(Pi)<log2.
To estimate m(P^), let us write:

P^t) = S^l -^)/(rfPt(D) + Sz^d - cos(r - e^)}/(dP^t))

+ 222>fcSin(?- e^)/(dP.(t))
= ̂ (t) + P^(t) + iP^(t),

where
W = QC^^"^) = 11 -j^-^i2 .

Then wCP^) < w(P2^ + w(P^) + w(P^) + log 3 . Note that

f i7/(T?2 + r2) dr = n/2 (r) > 0).
Since °

<1 - ̂ )/Pfc(/) < (1 - ̂ )/{(1 - ̂ t)2 + Vl sin^t - Q^}
<v^l{r^+(t-6^}

(^ = 7r(l - J't)/(2^), |/ - 0J < ̂ 2)
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for all k occuring in 2 2 » we 1̂ ^

m(P2i)<log{( l /27r) / 7 ^ |P^O) |d^+ 1} < log(7r + 1).
Since
y^{l-cos(t-e^)}lf^t)

<3^{1 - cosO - ^)}/{2^(1 - cos(r - 6^))} = 1/2

for all k occuring in 2^ , we have w(P^) = 0. Note that, for
any 0E[0 ,27r ) , V(z) = V(r^) = 2rsin(r - 0)/Q(z^-10) is a
conjugate harmonic function in D^ of

U(z) = U(r^) = (1 - ̂ /QCz^).
We have
V '̂O = (- 1/27T) /7r {U(^ l< f + 5 )) - UC^^^-^)} cot(5/2)rf5

( 0 < r < l ) ([16] p. 103).

Hence, putting R(t) =( l /2d) S^l - j^)/P^(r), we have
P 2 3 ( 0 = R ( 0 . Note that J* 7r | R(r)| dt < TT. Lemma 6 shows
that, with a constant C', meas(E? < C'2^ ( ;>1), where
B, = { r E [ 0 , 2 7 r ) ; 2 / ~ l < \R(t)\ <2 /}, and hence

mCP^) = m(R) = (1/27T) § y log |R(r) | ̂  < C' ^ /2-7 .
,=i E/ ,^i

Consequently, we obtain m(P2)<C". We have similarly m^P^^C^,
in estimating ?33 (t) analogously to P^ ( t ) , we use

y sin(r - ̂ /Q^1^-^) = - (\ly) sin(0 - 0/Q((1/^) e^6-^) ,

so that the estimate for ?33(r) follows from that for P^(t). Thus
m (1, g ' l ( g d ) ) < C for some constant 00.

To remove the assumption that J ^ = ^ = l ( l < f e < r f ) , we
choose a sequence (SpJ^^ of positive numbers tending to 1 so
that 5^ ̂  1 (1 < k < d, / > 1) and put

^.(z)=a n (z-6,^^-^).

Then w( l ,g / (^ ) )== lim m(l,^/(^)) < C .
J—>00 I I

LEMMA 8. — For any trigonometric polynomial f(t) = 2 ̂ (^e1^
with n non-zero coefficients,
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m(P) > log" max | P(k)\ - Cn , (8)
where C is a constant.

Let C' be the constant in Lemma 7. We put C = C1 + log 2
and inductively prove (8). In the case n = 1 , (8) evidently holds.
Suppose that (8) holds in the case n — 1 . Let P(t) be a trigo-
nometric polynomial with n non-zero coefficients. Considering
e^P^t) with a suitable w > 0 if necessary, we may assume
that P(fc) = 0 ( k < 0 ) and P(0)^0. Choose 7 so that
|P(y) | = max |P(fc) | . Considering e^P^-t) (d = dp) if

k
necessary, we may assume that 2; > d . Then we have

m(P7/) = m {P(P7(P^)) W/)} < m(P) + m(P7(Pd)) + log 2 .

Since m(Pf/(Pd)) == m(l ^ g ' K g d ) ) (g(z) = ^ PW^) , Lemma 7
v fc^O /

gives m(P) > m ^ P ' / j ) — C. Since P\t)/j is a trigonometric poly-
nomial with ^ — 1 non-zero coefficients such that

max|P'(A:)/7l > |P(;)| = max|P(A:) | ,
k k

the assumption of our induction gives
^(P)^^ maxIPW/l -C(n - 1)} -Olog" max |P(fc)| - Cn .

k K

LEMMA 9. — For any Fejer gap series T, there exists a Fejer
gap series S which contains T as a subsequence such that, with a
constant C > 0,

^/7<Cx;(r,S), co(r,S)<Cn(r,S) (r > 2). (9)

We easily see that T U U [2^1 , 27"1 + [2772]) is also a Fejer
gap series, where [ x ] denotes the integral part of x . From the
beginning, we may assume that o}(r, T) > ^/F (r > 2). Hence
it is sufficient to construct a Fejer gap series S(D T) satisfying the
second inequality in (9). Let o .̂ (;>10) denote the number of
integers in TH^ 7 " 1 ^ 7 ) . We may also assume that or. > 100

(7>10) . Put ^ .=min a, + [^ ^a^l^7-1} 03=2/5) .
Then we have L^1 J )

00 00 00 00 f——10

^ T,2-i< ^ 2-' S ^Of^= E 0,2-' 2: (2^
/=io /=io fi=o /=io e=o

< 5 ^ a, 2-/ < 5 r (1/r) d(J(r, T)* _ - ̂  ' "o/=io
= 5 f°° w(r, T)/r2dr<°°. (10)
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Let us prove that r^OTy ( />10) . If .̂ == 2 /~ l , then

T.^ < 27 < 3r,. If r, = ̂  + [ § ^ a,^ 1 , then
L fi=l J

3T ,>3[ t ^(7,^1>(5/2) ^ ^e>T,^ .
^ f i = i J c=i

Thus T^OT^. (;>10). Now, to T, we add T ^ H l l ^ 9 ) and
add arbitrarily r̂ . - (̂ . integers in V H [2 ;~ l , 27) for all 7 > 10,
and call the resulting sequence S. Then (10) shows that S is a
Fejer gap series. Let us write simply o?(r) = (j^(r, S), S2(r) = i20, S)
( r > 0 ) . If 27"1 < r < 2 7 (;>10), then

cj(r) < G;(27) < co(2;"•3) + r^2 4 r^^ + .̂ < a;(27-3) + 39^,3

<40cD(2/"'3)<40co(r^)<40 f o)(x)/^ rfx < 40ft(r).
^r/e

If 2 < r < 2 9 , then o(r) < 29 < 210n(2) < 210n(r). Hence
S satisfies the second inequality in (9) with C = 210 .

3. Proposition.

3.1. For the proof of our theorem, we show the following pro-
position, which is interesting in itself.

PROPOSITION. — For an entire function f(z) with Fejer gaps
and e > 0 ,

m(r, /) > (1 - e) log M(r, /) (l.f.). (11)

In this section, we shall prove our proposition. Given an entire
function /(z) with Fejer gaps, we express /(z), with the aid of
Lemma 9, as follows:

/(z)= § a^ ( 0 = = ^ < ^ <^ < • • • ) , (12)
k=0

where S = (n^)^^ is a Fejer gap series satisfying (9). Without
loss of generality, we may assume that OQ = 1. We write simply

m(r) = m(r , /), M(r) = M(r, /), ^(r) = ̂ (r, /)

co(r) = G;(r,S), n(r) = i2(r,S) (r > 0) .
(13)
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We need

LEMMA 10. — Let CA)*(r) be a non-negative non-decreasing
function in (0, °°) such that 4c^(r) < cj*(r) 0 > 0),

lim cj*(r)/G;(r) == oo and / c^*(r)/r2 dr < oo .^-»oo ^o

^ pî r i2*(r) = F ^(x)/xdx (r > 0) a^d, /or 6?î ry r>0,

define u, by K*(^) = 5 log^i(r). H^ p^r A(r) = 2* \a^\ r^
( r > 0 ) , \^here S* denotes the summation over all k with n ^ > U y .
Then A(r) < 1 l.f. .

Applying Lemma 5 to A(r) = 5 log iJi(r), 7(r) ^= co*(r), ^ = 2,
we have ^0 + ro^) < ^t(r)2 l.f., where of == S l * ( U y ) / U y . Hence

A(r) < 2* |^| (r + ra^ (1 + a,*r̂  < ^(r)2 S^l + a*)"^

< {^(r)2/^*} exp {(- 1 + o(l)) ft*(^)} < ̂ (rF^^^ u,

^MW^0^ u, (r—^oo) (l.f.). (14)

Since u, < o;(^)2 < C^l(u,)2 = o {n*(u,)2} = o {M(r)} , (14)
gives the required inequality.

3.2. Since A(r)<l l.f., we have max{|^|/^;^ <^} = M(^)
l.f.. Put /^(z)==2^^, P,(r)=^(r^) ( r > 0 ) , where S^
denotes the summation over all k with n^ < ̂  . Then Lemmas 3
and 8 show that
w(P,) > ̂  max{|^| r^; ̂  < M,} - Co;(^) ^

= logM(^) - o{^*(^)} = (1 - o(l))logM(r) (r —> oo) (l.f.).

Let e > 0. Then Lemma 10 and (15) show that
m(P,)>(l -e^logd^+l),

A(r) < 1 and (M(r) + 1)1^6 > l^Kr)^26 + 1 hold outside a set F
of finite logarithmic measure. Put

H, = {reiO^Tr^log^P^OIXl -e ) log(M(r)+l )} (r > 0).

Then, for any r ^ F,

2 7 ^ ( l - e 2 ) l o g ( M ( / - ) + l ) < 2 7 ^ m ( P , ) = i f + f \\Q^\V,(t)\dt
{J\^, ^ }

< meas(H,) log(M(r) + 1) + meas(H^) (1 - e) log(M(r) + 1) ,
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and hence meas(H^) > 27r(l — e). This shows that, for any
rEH, ( r^F) ,

^ \f(reit)\ > log^ {|P,0)| - A(r)} > log{(M(r) + I)1-6 - 1}
>(1 - 2e)logM(r) .

Consequently,

m(r)>(l/27r) f log^A^Ql^Xl^eHl^logMW (r^F) .^H,
This completes the proof of our proposition.

4. Proof of Theorem.

4.1. In this section, we shall give the proof of our theorem.
Given an entire function f(z) with Fejer gaps, we express /(z) in
the form (12) with a Fejer gap series S = (^)^°^ satisfying (9).
Without loss of generality, it is sufficient to prove 6 ( 0 , / ) = 0 .
We may assume that OQ = 1 . We write simply n(r) = ^ ( r , 0 , / ) ,
N(r) = N ( r , 0 , / ) (r > 0). We use the notation in (13) and the
functions co*(r), ?2*(r), Uy, A(r) in Lemma 10. Let c3(r) be
a non-negative non-decreasing function in (0, °°) such that
4o;(r) < 2S(r) < c^*(r) (r > 0) and

lim S?(r)/a;(r) = lim cx;*(r)/S(r) = oo.
y->oo y-»-oo

We put o, = n(u,)/u,, '0, = ^(M,)/M,, ff,* = n!!!(^)/M, (r > 0),
^/ f*r

where ?2(r) = / Q(x)lx dx. With every r > 0 , we associate^o
7s" = r + ro^, r = r + 2rVy, r* = r + ra^. Then r < 7 < r < r*
(r > 0). Our method requires us to study the lower bound of f(z).
To do this, we show

LEMMA 1 1 . — ^ have, v^ith a constant CQ > 0,

^ = maxd/C^'^))!; |r| < or,} > exp{-C^(u,)} for all
0e[0 ,27T) (l.f.). (16)

Let x(0 be the even function in (—°0,00) defined by
X ( 0 = = l - ^ ( 0 < r < l ) and x(0 = 0 ( r > l ) . For U > 0 and
a positive integer n, we put Xun(^) = Xu(^ 4" (l/^Xu^ where

X u ( 0 = U x ( U D . Then r Xvn(t)dt=\, r e^^Wdt == 0,
»/—— 00 »/—— 00
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J_<» ^un^)! dr ^ l + 2U/M and the support of Xu«(0 is contained
in [- 1/U, 1/U]. Given r > 0, we put

^(O = Xu»i * Xun, * • • • * Xun'CO (U > 0) ,

where «' denotes the largest integer in S with n' < u^. Then
f^W)dt=\, f^eintX^t)dt=Q ( n£S , n < n') , '

f_JW)\dt<^(l +2U/^)=exp{j^"''log(l +2U/^)^(^)}

= exp{o;(M,)log(l + 2U/M,)

+ 2U f"' u(x)/(x(x + 2V)) dx}

< exp{o)(M,.)log(l + IV/u,) + ft(M,)}
<exp{Cn(M,)( l + U/^)}

and the support of Xu(0 is contained in [- 2w(u,)/V, 2u(u,)/V].
We recaU the polynomial f^(z) = 2,^z"fc in the section 3.

For any Q £ [0,2-ir), we have, with a constant C' > 0,
1= './.l.^^'^^XuO)^)
< max {1/^(7^) |; \t - Q\ <2o)(^)/U} f < ° |X„(f) | r f^

'—oo

< max { I f^W) |; 1 1 - Q | < C'n<M,)/U} exp {Cn(u,) (1 + U/M,)} .

Putting U = C'M,. , we have, with a constant C" > 0,

max {1/^(7^^)1; l / -0 |<o,}>exp{-C"S2(u,)}. (17)
Since

A(7) = S* |a^| {r*(l + o',)/(l + o*)}^
<^(r)2 S * { 1 -(1 -od))^*}"*
< {^('•)2/<y,*}exp{-(l -o(l))n*(M^)}<^(r)-3+o( l)

< MCr)-2^0 l.f. ,

we have A(7) = o{l/M(r)} = o(exp{- C"Sl(u,)]) l.f.. Hence (17)
gives (16).

Proposition, Lemmas 5 and 11 show that
m(r*)<2m(r). logM(r) < 2m (r ) , ̂  > exp{- C^(u,)}

(0e[0,27r)) (18)
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hold outside a set G of finite logarithmic measure. Let (Ry, v ,
(r > 0) denote all zeros (counted according to the multiplicity)
of f(z) in D,. and in D^ - Dy, respectively. Put

( /,(z) = f(z) n {(r2 - az)/(r(z - a))}
aerr (19)

( g,(z) = /,(z) exp{C^(u,)} (r > 0) .

Since | /, (z) | > | /(z) | (z € Sy), we have
inaxd^Pe'Ql;!/ -0| < a,} > ̂ ,exp{C^(u^)} > 1

(0G[0,2ir), rfG). (20)

LEMMA 12. - //
Urn w(7,l/g,)/w(r)= 0, (21)

r->oo,y^G
rte« 6(0, /)=0.

Note that ^(M,) = o[m(r)} (r—> oo,r^G). Since

wCr'.l/^XwC/'.l/g^+Cond^,) and m(7,f,)>m(7) > m(r) ,
(21) gives

limsup w(7,l//,)/w(7,^)< lim m(7 , l / g ) / m ( r ) = 0 . (22)
r-*o»,r^G r->°°,»-tG

We have
log I f,(0)\ = ^ log(r/|a|) < n(r) log(r/r) < Cn(r) ̂

aer,
< C { / ' n(x)/x dx} ^/log(r*/r) < C'N(r*) (^/o,*)

=o{m(r*)} =o{m(7,f,)} (r—><»,r^G). (23)

By Lemma 1, (22) and (23), we have

lim N(7,0,/,)/w(7,/,)
»'-»'°°,r^G

= 1 - lim {w(7,l//,) + log \f,(0)\}lm(7,f,) = 1 .
r->°°,r^G

Since N(7, O,/,,) < N(7) and m(7,/,) > w(7), this gives
6 (0 , / )=0 .

4.2. By Lemma 12, it is sufficient to prove (21). Given r ^ G ,
we put W = Ue[0,2ir); \g,('rei1)\ < 1}. We may assume that W
is not empty. Then W is a finite union of open intervals each of
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which has length at most la, by (20). We write W = l!j I ,
where 1^'s are mutually disjoint open intervals. Put I = C^",1^ )
7^ = (^ + ^)/2 (1 < ^ < v). Then M ^ ^ 5

1^(^^)| =1^(7^)1=1 ( 1 < ^ < ^ ) .

By Lemma 2, we have

2irm(7,l/g,)=-f log\g^7eit)\clt=- f f log\g,(7eit)\ dt
M = i ^

=- I f, (^-7^)^-log|/,(7^)|dr^=1 i^ or
=- t ^ 0-7^0)^^=1 *M

"X .£. ̂  (/-^)^)^- i I: J; 0-7,)^)rfrM — 1 a &x.y M ^ = 1 a etfl 1(1

(= L^ + 4, + 43, say), (24)

where $(/) = Re ̂ W; r , f,), ̂ (t) = Re 0(7^^; a) and

^(/) = ReV/C^e'^r.a).

First we estimate \L^\. By Lemma 1 and |/,.(z)| = |/(z)|
(z € S y ) , we have

|LJ<o, f | $(Q| dt

^ °r X {(7r/ff) X * I ̂ l^^1')! l/l^11 - ̂ "l2 ds} ̂

< (a,7r/ir) f^ " |log| ./W)|| {/21r l/ire" - 7^|2 dt} ds

<(Co,/^,) y " | log | fCre^) \\ds

< 4ffCw(r) (o,/^,) < C'w(/-) (0,1'a,) . (25)

Next we estimate | L^ I . We have

1 4 2 1 = I £ i f (t-i)^(t)dt\
aeaiy ^1=1 'it
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= 1 I t {(1/2) / ( t - ^ ^ ( t ) d t
ae^ n=i "l^ -,-(II^/SK^)-.^))}!

< Z S (11J/2)2/ |^(/)|d/
ae^y. ^=l ^

<^ i r \^)\dt
a ea^ "

<0? 1: f^ ̂ iW-a^dt
aG(!i 0

< Cn(r) a?/o, < CN(7) a?/{^ log(7/r)} < Cm(r) (a,/^)2 .
(26)

We have analogously as in (26)

143|<Cm(r)(a,/^)2 . (27)

By^(24), (25), (26) and (27), we have, with a constant C">0 ,
w(7\ l/^)/m(r) < C"a^/o^ . Letting r —^ oo (r ^ G), we have
(21). This completes the proof of our theorem.

5. An entire function with Fabry gaps such that 6 (0, •) = 1 .

5.1. In this section, we shall show that the assertion of our
theorem is not valid when the Fejer gap condition is replaced by
the Fabry gap condition. We construct an entire function g^(z)
with Fabry gaps such that 6(0,g^) == 1 .

00

For an entire function g ( z ) = ^ c^z" and a non-negative
n==0
d

integer d, we put p r ( g , d ) ( z ) = ^ c^z". The outline of our
n=0

construction is as follows. An entire function e^ (p > 1) does
not take zero and S(^) = {pn , n > 1} . When d > 0 is suffi-
ciently large, g(z) = p r ( e z p , d ) (z) behaves like e^ in a given
disk D^ . Let g*(z) = g ( z ) expd/r^ (q > d ) . Then
p r ( g * , d ) ( z ) = g ( z ) . We choose q sufficiently large. Then
g * ( z ) behaves like e^ in D^ since lim {exp^/^ - 1} = 0
( r< ro ) , and ^*(z) behaves like expdz/r^ in (D, Y in the
sense of the deficiency since lim exp^/r^ = oo ( r > r o ) . Re-
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peating this discussion, we construct an entire function which
locally behaves like exp(l7z)p for some 17 > 0 and some integer
p > 1 in the sense of the deficiency.

To express this argument concretely, we inductively define two
sequences r^ < r^ < r^ < r\ • ' ' , q^ < q^ < • • • and two sequences
(g^(z))^Q, (/2^(z))^Q of entire functions such that, for every
k>0, h^z)^0 ( z € S ^ U . . . U S ^ U D ^ ) . Let ^ = 1 , ^ = 2 ,
q^ = 1, ^ (z )=0 , Vz) = ^ .

Suppose that ^ < r^ < • • • < r^_ ^ < r^_ i , ^ < • • • < ^m-1 >

(^(z))^^ , (A^(z))^^ are defined so that, for any 0 < k < m - 1,
A^(z) satisfies the above condition. Then r^, r^, ^(z), ^^(z) are
defined in the following manner. Let r^ = r^_^ 4- 1 . We choose a
positive integer d^ so that, with g^(z) = pr(h^_ i , rf^) (z):

^> ̂ -1+^-1 (28)

\g^z)-h^z)\<2-m (zCD^) (29)

^(re,0,/2^i) = n(r^0,g^) = Urn ^(r , O.gj (0 < i < w) . (30)
y 4. rg

Such a choice is possible, since p y ( . ^ y n - i ' ^) (z) converges uniformly
to ^_i(z) in D^ when d tends to infinity. Let r^ (r^ > r^)
be a number such that ^(z) ^= 0 in D^ . We choose a positive
integer q^ so that, with A^(z) = ̂ (z) exp(z/^_l)qm :

^/^< (1/10) 2-^ (31)

M(^_, ,^) {exp(r^,/^_,)^ - 1} < 2- (32)

{ ^ G [ 0 , 2 7 r ) ; |A^(r^)|>exp(2^r)} contains [qj(\0d^)}
intervals of length 7r/(2^) (r > r^). (33)

To see that such a choice is possible, we show that (33) holds as
long as q^ is sufficiently large. Put A^(z) = l^(z) exp(z/r^_^|
(^ > 1). Given r > r^ , we choose ^ € [0,27r) so that

M(^,^)= 1^(^)1 01).

Since g^(z) is a polynomial of degree d^ ,

1^(^)1 > 1/2 ( r E [ ^ - l/(2dj, ^ + 1/(2^)]).
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Let q^ = 100^. Then

{t e [t, - 1/(2^), t, + l/(2^)]; cos^r > ly?}
contains [ql^d^)} - 1 (> [<7/(10^)]) intervals of length 7r/(2^)
0?><,). Hence { r e [0,27r); h^re^) > (1/2) exp{(r/^_^V?}}
contains [ql(\0d^)} intervals of length 7r/(2^) (q>q^). Let
^ (> ^m) be an integer such that

(1/2) exp{(^_^V2} > exp(2rf^) (^ > r^, ^ > ̂ ).

Then /^(z) satisfies the property in (33) for all q > q^. Hence
the above choice of q^ is possible. Thus we define the above four
sequences.

5.2. Now we show that g^(z) = lim g^(z) exists and satisfies
w-»-00

the required conditions. First we prove that g^(z) is an entire func-
tion. Given k > 1 , we have, for any z G D^ , m > k + 1 ,

l^ i^)-^(z)l<lg^(z)-^(z) | 4- |^(z)-^(z)|
< 2——1 + M(^_, ,^) {exp^^/r;^)^ - 1} < 2-"'1,

according to (29) and (32). Hence ^(z) = § {^^(z) -^(z)}
w==0

converges uniformly in D^. Since k > 1 is arbitrary, ^(z) is
an entire function. Next we prove that gjz) has Fabry gaps, that
is' J",".^)/^ 0, where c^(r) = a>(r, S(gJ) ( r>0) . By (28)
and (31), we have

pr(g^,d^) (z) = g^ (z) = pr(^ , rf^i) (z)
(34)

S(^)={^ + " ; » > 0 , M £ S ( ^ ) } U { £ ^ ; e > l } (^>1) .

Let r be a number such that d^<r<d^ for some w > 2 and
let £ be a positive integer such that d +(S.— 1 )q < r < d + £o
If £ > 1 , then m »• "• •

u>(r)/r= o?(r,S(^))/r<£(^ + !)/{(£-1) ̂ }< 2-"'-1,

according to (31).^ Since d^ > d^ + q^ , we have, in particular,
u(•clm-^l)ldm-n < 2 m ' . This inequality is valid with m replaced
by any positive integer. If £ = 1 , then

u(r)lr = u>(dj/r < (o(^)/^ < 2-'" .
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Thus co(r)/r < 2-'" (^ < r < ̂ +,). This shows that

lim u(r)/r = 0 .r-> oo

Finally, we prove 5(0 ,^J=1. Let r be a number such that
^w ^ r ^ ^m+i ^or some w > 1 . Rouche's theorem shows
"(/", 0, gj < lim sup n(r, 0, g^}. Since zeros of h,,(z) equal

fc-+00

those of ^(2) for all k > 1, (30) gives
«(r,0,^)<w(r,^i,0,^)=n(^i,0,^,)=d,. ( fc>w).

Hence

N(r ,0 ,gJ<«( r ,0 ,gJ log r< lim n(r , 0,^)logr < rf^ logr .
fc^" (35^

Since \g^z) - g^(z)\ < ^ l^i(z) - ̂ (z)| < 1 and
fc=»l+2

l^m+2^)-^+i(z)l<i (zes,),
we have

'n(r,gj>m(r,g^^) -\og2> m(r ,h^^) -log4. (36)

Now we study the lower bound of m(r, A^+i ) . Since

\g^i(z)-h^(z)\<l (z€S,) ,
(33) holds with h^(z), exp(2d^r) replaced by ^+i(z), exp(d^r),
respectively. Note that, for any interval Y* in [0,27r) of length
ff/(2^), {t<E^*;cosq^,^t>0} contains [<?^i/(4^)] - 1 in-
tervals of length v/(]ni.n . Since
Y = {fG[0,2ir); l^+i(r^)|>exp(^r)}

^{/e[0,21r);|^^(re f t)|>exp(^r), cos^^f>0},

Y contains [qj(\0d^)} {[^+i/(4<7^)] - 1} intervals of length
^/Oni-n • This shows that meas(Y) > C/rf^ for some constant 00.
Thus

w(r ,^^)>(l /2ir) ̂  log^^i^'Ql^X^r^ir). (37)

By (35), (36) and (37), we have
N(r, 0 , g J / m ( r , gj < d^ log rl{(Cd^ r/2Tf) - log 4}

(r^<r<r^^).

This gives lim N(r , 0 , g J / m ( r , g J = 0 and hence 5(0, gj = 1 .
Thus we know that the assertion of our theorem does not hold with
Fejer gaps replaced by Fabry gaps.
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6. Application of our method.

Our method also yields that:
(*) An entire function with Fejer gaps takes any complex

value infinitely often in a given sector.

This assertion improves Hayman's result [8]: An entire function
/(z) takes any complex value infinitely often in a given sector if
S(/)=(^)^ satisfies k (log/:) (log log fc)°7^ =0(1) for some
a > 2. Our method is applicable to the equidistribution theory in
sectors.

In this section we prove (*). Let f(z) be an entire function
with Fejer gaps. In the case of p(/) < oo, the required assertion is
already known [8]. Hence we may assume that p(/) = oo. Without
loss of generality, it is sufficient to show that f(z) takes 0 infinitely
often in 1̂  = {z ; | arg z \ < a} (0 < a < 1). For the sake of sim-
plicity, we work only with /(O) = 1 .

Now we assume that /(z) takes 0 a finite number of times
in F^ and show a contradiction. Let G^(z) (0 < j3 < TT , r > 0)
be Green's function of 1^0) = 1̂  n D^ with pole at r/2. Then
our assumption gives

N(a,r) = (1/27T) f^^ ^-G^(z)log |/(z)| \dz\ - log|/(r/2)|
=0(1) (r—^oo), (38)

where 9/9n denotes the inner normal derivative and 3I\(A-) the
boundary of FJr). Note that N(j3, r) < N(a,r) (0 < P < a). We
have, with two positive constants 77*, H* depending on a,

0<^-G^(z)<H*/r (zEBiyr))
3 (39)
^G^(z)>r?*/r (zEar^(r), jargzK^/2)

for all P with a /4</?<a/2 [12]. Hence we have
^/2 /.^/*^/2 /.fi

NO?, r) > r? J ^ |/(r^)| ̂  - H / ^ \|\f(reit)\ dt^—ff/i ^-^
-(H/r) ^ W l/IAxe'")! + ̂  \|\f(xe-i!i)\}dx - logM(r/2)

(= 2^/5, r) - S_ ( j3,r)-^(0,r)- log M(r/2), say) (40)

1 - _+ I -Z* /• -I'^\l » , TT * • » -1- 4 < , /. / . '*v.
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for all P with a/4<j3<a/2, where T? = 7?*/(27r) and H=H*/(27r).
Our proposition shows that S+(a/4,r) > (0^/8) log M(r) l.f. . The
argument given in the section 4 yields that S_(a/2, r) = o {log M(^)}l.f..
Since
r^(<3,r)rfj8=(27rH/r)rm(jc,l/ /)rfx<(27rH/r) FlogM(x)^,

^O "O ^0

we can choose j3^ (a/4 < ̂  < a/2) so that

W^r) <(87rH/ar) FlogM(x)^.
«/o

Thus we have
N(a, r) > N(^, r) > S^a/4 , r) - S,(a/2 , r) - ̂ (j3,, r) - log M(r/2)

> (7?a/8) log M(r) - o {log M(r)}

- (87rH/ar) f log M(;c) dx - log M(r/2) (l .f.). (41)
^o

Let e = Tyc^^STrH). Since p( / )=°° , there exists a set U of
infinite logarithmic measure in (0, °°) such that

lim log M((l - e) r)/log M(r) = 0 .
r-*^, rGU

Then lim sup (1/r) f^log M(x)^x/log M(r)
r-»°°,reU ^O

< lim sup {(1 - e) log M((l - e) r) + e log M(r)}/log M(r) < e .
r-^oo.reU

Hence (41) gives lim sup N(a,r) = oo, which contradicts (38). This
y-^w

completes the proof of(*).
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