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DE RHAM DECOMPOSITION THEOREMS
FOR FOLIATED MANIFOLDS

by R.A. BLUMENTHAL and J.J. HEBDA

1. Introduction.

Let ^F be a smooth foliation of a smooth manifold M. We study the
influence of the tangential and transverse geometry of ^ on the global
structure of the foliated manifold (M,^).

THEOREM A. — Let M be a complete Riemannian manifold and let ^
be a totally geodesic foliation of M mth integrable normal bundle. Then the
universal cover Kl of M is topologically a product L x H where

i) L is the universal cover of the leaves of ^ ,
ii) H is the universal cover of the leaves of the foliation ^ determined by

the normal bundle of ^ ,
iii) the lift of ^ to Kl is the foliation by leaves of the form L x {p},

p e H ,
iv) the lift of ^ to fA is the filiation by leaves of the form {p} x H,

p e L, and
v) the projection id -> L onto the first factor is a Riemannian

submersion.

From Theorem A we obtain the following corollary, originally proved
in [5].

COROLLARY B. — Let 3F be a codimension-one totally geodesic filiation
of a complete Riemannian manifold M . Then the universal cover of M is a
product L x R and the lift of ^ is the product filiation.
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In [9] it is shown that if M is a compact 3-manifold admitting a
codimension-1 totally geodesic foliation, then ^(M) is infinite. From
Corollary B we obtain.

COROLLARY C. — If M is compact with finite fundamental group, then no
codimension-1 foliation of M is geodesible.

Theorem A is closely related to the decomposition theorem of De
Rham [17], [11]. Indeed, if ^ is also totally geodesic then Theorem A
shows that M is a Riemannian product L x H from which De Rham's
theorem follows.

In [17] De Rham studies a Riemannian manifold M by considering the
subspaces of the tangent space T^(M) invariant under the action of the
linear holonomy group with reference point x e M. We apply similar
considerations to the study of Riemannian foliations. Let M be a smooth
manifold and let ^ be a smooth Riemannian foliation of M. Let Q be
the normal bundle of ^ and let g be a smooth metric on Q invariant
under the natural parallel transport along curves lying in a leaf of ^ . Let
V be the unique torsion-free metric-preserving basic connection on Q
and let ^(x) be the holonomy group of V with reference point x e M .
We say ^ is irreducible (reducible) if the action of ^(x) on Q^ is
irreducible (reducible).

THEOREM D. — Let ^ be a smooth codimension-q Riemannian foliation
of a smooth manifold M . There is a family c^o» ̂ i ? • • - -> ̂ \ of foliations

k

of M such that ^ == {\ ^ i -where e^o ls a ^le foliation (possibly of
1=0

codimension-0) modeled on an abelian Lie group and ^ ^ , . . . , ̂ \ are all
irreducible Riemannian foliations. The partition of q given by

k

q = ^ codim (^i) is unique up to order and depends only on (^,g).
1=0

Let R be the curvature of V . We say y has recurrent curvature if
there exists a base-like one-form a on M such that VR == R ® a.

THEOREM E. — Let M he a compact simply connected analytic manifold
and let ^ be an irreducible analytic Riemannian foliation of M with
recurrent curvature and codim (c^) ^ 3. Then M fibers over a compact
simply connected irreducible Riemannian symmetric space with the leaves of
^ as fibers.
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2. Totally geodesic foliations.

We begin with a few remarks concerning the sheaf ^ of germs of
isometries between two Riemannian manifolds L() and L ^ . Recall that
every germ of an isometry at XQ e L() is represented by an isometry from
an open neighborhood of XQ in L() onto some open subset of L ^ .
Furthermore, there exist two local homeomorphisms, the source map
KO '• ^ -> LQ , and the evaluation map n^ : ^ -> L ^ . Finally, every germ
/e ^ defines a linear isometry

A : T^(Lo) - T^(L,)

via the differential at 7io(/) of any isometry representing the germ /.
*

Let T : [a,b] -> LQ be a piecewise smooth path. A lift of T is a path
T : [a,b] -> ^ such that KQ o ̂  = T .

LEMMA 2.1. — If T has a lift ^ and X is a vector field parallel along T ,
then (r(s))^(X,) for a ^ s ^ b is a vector field parallel along the curve
n^o^ in L i .

Proof. — Fix SQ e [a,fc]. Let / be an isometry from a neighborhood V
of x(so) in LQ onto an open subset of L^ that represents the germ
r(5o). Then for all s near SQ, r (5)eV,

^i(^)) = /(r(5)) and /JX,) = (^(s^^XJ.

The result is immediate since / is an isometry on V.

COROLLARY 2.2. — Suppose T has a lift ^ and fix SQ e [a,b]. If C^
denotes the development of T into T^ )(L()) and Cs denotes the
development of n^o^ into T^^(Li), then (i{So))^C, = C,.

Proo/. — C, is the curve in T^( )(L()) obtained by parallel translating
the tangent vector to T at 1(5) along T back to r(so). Likewise, C^ is
obtained by parallel translating the tangent vector to n^ o^c at TtiCcCs))
along Tii o ? back to ^(^(so)). Since ft(s))^ sends the tangent vector of
T to that of T I ^ O T , lemma 2.1 gives the conclusion.

The next lemma is a standard result.
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LEMMA 2.3. — Fix a germ /e^. If every path T : [a,b] -> LQ with
r(a) = 7to(/) has a lift ^ with ^(a) = /, then the connected component of
^ containing / 15 a covering space of LQ.

Let PQ : LQ -> LQ and p^\L^->L^ be the universal covering spaces
of Lo and Li respectively. To every germ / e ^ and every ^Cg e LQ and
^ e Li such that po(xo) = 7io(/) anc! Pi(^i) = 7ii(/)» one associates a
germ /r of an isometry from Lo to L^ by taking the germ at 'XQ of the
map p ^ o f o p o which is defined in a neighborhood of 5co where /
represents / and pj"x denotes the inverse of the local isometry defined by
restricting p^ to a small neighborhood of ^i. Clearly, if / e ^ has the
path lifting property described in lemma 2.3, then so does f in the sheaf V
of germs of isometries from Lo to L^.

LEMMA 2.4. — Suppose LQ and Li are complete Riemannian manifolds
and / e ^ is as in lemma 2.3. Then / defines an isometry from LQ onto L^.

Proof. — Let KQ and T^ denote the source and evaluation maps of .?
restricted to the connected component containing /. Since Lo is simply
connected, the above discussion and lemma 2.3 imply that KQ is a
homeomorphism. Thus n^ouo1 is a local isometry from the complete
manifold t.o into L^. Hence it is an isometry since it is a covering map
(p. 176 [11]) and L^ is simply connected.

Throughout the remainder of this section, ^ is a smooth codimension
k totally geodesic foliation of the connected Riemannian manifold (M,^).
An Jf-curve cr : [c,d\ -> M is a piecewise smooth curve all of whose
tangent vectors are perpendicular to the leaves of y .

Let /: U -+ R* be a submersion constant on the leaves of y restricted
to the open set U c: M. Given an ^f-curve o : [c,d] -> U, let
y = f o a. For all x 6 f'^y^)) near <j(c) there is a unique ^ -curve,
y^, such that /(y^(0) = y(0 and y^(c) = x. According to the proof of
proposition 1.4 of [10], this defines a family of isometries
(P( : Vc -> V( (c^t^d) where (p((x) = y^(t) and Y( is a neighborhood of
a(t) in the leaf of ^ through a(t).

These families of isometries can be pasted together along an ^f-curve
CT : [0,1] -^ M in the following way. Let

0 = to < ̂  < • • • < t, = 1

be a partition of [0,1] so that a/[rf_i,(J c: U, where f^: U; -^ R*" is a
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submersion constant on the leaves of .^7U,(i= 1, .. .,r). For each curve
^/^i-1» ^-]» the above construction gives a family of isometries. By cutting
down the domains of these isometries and composing them in the proper
order, one obtains a family of isometries

(*) (Pt :Vo-^V, (O^r^l)

where
(1) V, is a neighborhood of a(t) in the leaf of ^ through a(r),
(2) (p,(a(0)) = a(r) for all (,
(3) for each x e V o , the curve (p,(x) is an ^f-curve, and
(4) (po is the identity map of VQ.

We will call a family (^) satisfying (1)-(4) an element of holonomy
along the ^-curve a.

LEMMA 2.5. - Let a : [0,1] -+ M be an 3^-curve. Then there exists an
element of holonomy along a. Furthermore, if (p,1 and (p^O^r^l) are
two elements of holonomy along a, then ^(x) = n>f(x)(0^t^l) for all x
sufficiently near o(0). -^

Proof. — Existence has been shown already. To obtain uniqueness, take
a partition 0 == (o < ti < ' • ' < tr = 1 of [0,1] and submersions
fi: U, -> R1' constant on the leaves of e^/U, with a/[(;-i,rj c: U,. For
every i and x sufficiently near a(0),

M (x)) = fi(o(t)) == y,((p?(x)) for (e [r,. i, r,]

by properties (1) and (2) of an element of holonomy. Moreover, both
(p^x) and (p^Oc) are J^ -curves. Thus, by the uniqueness of ^f -curve lifts
ofy;.oa, if (p^. ,(x) = (p,2 ,(x) then (p^x) = (p?(x) for all te[(,_i,(,].
Finally, this holds for all te[0,l] by induction on i since
(p^(x) = x = (p^(x) for all x near a(0) by property (4).

Let a : [0,1] -> M be a fixed Jf-curve. For each (e [0,1], L, denotes
the leaf of ^ through a(t) with the induced metric and ^ denotes the
sheaf of germs of isometries from Lo into L,. Now, let T : [a,b] -> Lo be
a piecewise smooth curve with x(a) = a(0).

DEFINITION. — A continuation 0 of a along T is a finite sequence (p;
of elements of holonomy along ^-curves defined on open sets Vo c: Lo for
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i = 1, .. .,r and- a partition a == SQ < s^ < • - • < Sy = b of [a,b] such
that

(1) (p,1 is an element of holonomy along a,

(2) (p;-1 = (p; on Vo~1 nVo for all f , and

(3) T/[5,_i,5,] czVo /^ a« ^

Clearly, a continuation 0 of a along T gives a lift 0^ of T to ^
for all t e [0,1] by defining ^(s) to be the germ of the isometry (p; at
T (s) when 5 e [5; -1, sj.

LEMMA 2.6. — Suppose (M,g) is complete. Then for every J^-curve
cr : [0,1] -> M ^nrf ^y^ piecewise smooth curve T : [a,b] -> LQ with
r(a) = (7(0), r/i^r^ ^cf5r5 a continuation of a aton^ T.

Proof. — Set 5o = sup {5 e [a,b] : there exists a continuation of a
along x/[a,5]}. By lemma 2.5, So > a. We must show SQ = b. Hence,
suppose SQ ^ b. Let (p, be an element of holonomy along a and let C,
be the development of T into T^o)(Lo). Now, since M is a complete
Riemannian manifold, so is every leaf of ^ . Hence, for every t e [0,1],
there exists a curve ^ : [a,b] -> L( with ^(^) = o(t) whose
development in T^)(L,) is (p^(CJ (see [II], p. 172).

On the other hand, for each s < SQ , there exists a continuation <S> of
a along T/[a,s]. This gives rise to a family <I\ of lifts of T/[a,5] to ^\.
Letting n^ : ̂  -> L, be the evaluation map, it follows that for each
t e [0,1], 7ii(<I),(5)) = ^(5) for all 5 < SQ since these two curves have the
same developments by corollary 2.2. Now, by construction, for each fixed
5 < SQ, 7ii(0,(5)) is an J^ -curve in t . Hence for each s < 5o, ^(s) is
an Jf-curve in t . By continuity, so is ^(so). Therefore, there exists an
element of holonomy along ^(So) by lemma 2.5. Furthermore, since
^(5) = ^((^(.s)) for 5 < 5o with s near 5o, the uniqueness part of
lemma 2.5 implies that the element of holonomy along ^F^o) agrees with
that along n^^^s)) on the overlap of their domains. Hence there exists a
continuation of a beyond 5o. This contradiction implies 5o = b.

Taking S(t,s) = ^(5), one has the following result.

COROLLARY 2.7. — If (M,g) is complete, then for every J^-curve
a : [0,1] —> M and every piecewise smooth curve T : [a,b] —^ Lo with
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i(fl) = a(0), there exists a homotopy § : [0,1] x [a,b] -> M such that
(i) S(t,a)= a(Q /or all t ,
(ii) §(0,s) = 1(5) /or a« 5,
(iii) 8(?,s) e L^ /or aH ? anrf s, anrf
(iv) t ->• 8(t,s) is an J^-curve for every fixed s . In particular, t -> 6(t,fc)

15 an J^-curi^ starting at r(fc) anrf ending in L ^ .

COROLLARY 2.8. — 7f (M,g) is complete, then any two leaves of ^ are
connected by an ^-curve.

Proof, — Define an equivalence relation on the leaves of ^ by saying
L ^ L' if they are connected by an ^f-curve. This relation is clearly
reflexive and symmetric. To show it is transitive suppose that
<7o : [0,1] -> M and CTI : [1,2] -> M are ^f-curves with

(Jo(O)eLo, ao( l )eLi , O i ( l ) eL i and a^(2)eL^.

Let T be any curve in L^ joining <7o(l) to Oi ( l ) . The homotopy of
corollary 2.7 applied to a^ and T gives an Jf-curve c^ : [1,2] -> M with
(72(1) = cyo(l) and a^(2)eL^. The union of OQ and a^ is an c^f-curve
connecting LQ to L^. Now, since equivalence classes are clearly open
saturated sets and M is connected, there is only one equivalence class.

Remark. — In the terminology of Hermann [7], corollary 2.7 proves
that every c^f-curve is regular, while corollary 2.8 shows that every pair of
leaves of ^ are regularly connected. Hence, by theorem 2.1 of[7], any two
leaves of ^ have diffeomorphic universal covers. In fact, more is true.

COROLLARY 2.9. — If (M,^) is complete, then any two leaves of ^ have
isometric universal covering spaces.

Proof. — By 2.8, any two leaves are connected by an e^f-curve. This
defines a germ of an isometry between them by lemma 2.5. By lemma 2.6
this germ has the path lifting property described in lemma 2.3. Hence the
universal covering spaces of the two leaves are isometric by lemma 2.4.

From this point on, we assume that the normal distribution to ^ is
integrable and thus defines a foliation ^ of codimension n — k
(n = dim M) orthogonal to ^F .

Another consequence of corollary 2.7 is the following theorem first
proved by Johnson and Whitt using a different method.
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THEOREM 2.10 [10]. — If (M,g) is complete, every leaf of ^ meets every
leaf of ^ .

Proof. - Let H be a leaf of ^ and L a leaf of ^ . Let Lo be a leaf
of y that meets H at x. By corollary 2.8 there exists an J^-curve o
joining Lo to L. Let T be a curve in Lo joining a(0) to x. The
homotopy of corollary 2.7 gives an e^f-curve joining x to a point in L.
This curve must lie in H. Thus there is a point in the intersection of H
and L.

We now begin the proof of theorem A.

Fix a leaf Lo of y . If x e M, let L^ denote the leaf of ^ through
x . There is a neighborhood U of x in M and a Riemannian
submersion /u '- U -> L^ n U constant along the leaves of ^/U [10].
Now, since (M,^) is complete, theorem 2.10 implies the leaf H^ of ^
through x meets Lo. Thus there exist Jf-curves a:[0,l]-^M with
<j(0) = x and a(l) e Lo. If (pi is the isometry from a neighborhood of
x in L^ to a neighborhood of o(l) in Lo defined by an element of
holonomy along a, then / = (pi o/u : U -+ Lo is a Riemannian
submersion which is constant along the leaves of ^/U. Thus we can find
an Lo-cocycle {(U,,/,,^p)}^p^ on M where

(i) {HjaeA ls an open cover of M,
(ii) /a : U, -> Lo is a Riemannian submersion whose level sets are the

leaves of ^/U,,
(iii) g^ : /p(U,nUp) -> /JU,nUp) is an isometry satisfying

L = g^ ° /p on U, n Up.

Furthermore, by construction each g^ is an isometry defined by an
element of holonomy along an Jf-curve a : [0,1] -> M with both a(0)
and a(l) lying in Lo. Hence, by lemma 2.6 the germs of the isometry
g^ have the path lifting property described in lemma 2.3. By cutting down
the U,, we may suppose that/a (UJ is contained in a neighborhood over
which the universal cover to of Lo is trivial. Thus we may lift the /, to
obtain Riemannian submersions /, into Lo and an to^ocycle
{(U,,7a,i«p)}a,peA where

(i) {UoJ^gA ls an open cover of M,
(ii) 7a : U, -> Lo ls a Riemannian submersion whose level sets are the

leaves of ^/U,,
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(m) tap •'7a(Uo(nUp) -> 7p(U,nUp) is an isometry satisfying
7a = tap 0 7p •

Without loss of generality, we may assume U, n Up is connected
whenever it is non-empty. Hence, by construction and lemma 2.4, each g^
extends to an isometry of LQ.

Let I(C-o) be the isometry group of LQ. Define

P = { [ g o / J , : x e U , , aeA,g6l ( to)}

where [g o /J^ denotes the germ of g o /, at x . Let n : P -> M be the
source map. Then n : P -» M is a smooth principal I(to)-bundle where
I (to) has the discrete topology. Let Po be a connected component of P.
Then Po is a regular covering of M and the evaluation map F : Po -> LQ
is a Riemannian submersion constant along the leaves of n'1^). Since
the metric on Po is complete and bundle-like for n"1^) we have that
F : Po -> LQ is a locally trivial fiber space [8].

Let Lejt"1^). Then L is a complete Riemannian manifold and
F/L : L -> LQ is an isometric immersion. Hence L is a covering space of
LQ with projection F/L [11]. Hence F/L : L -> LQ is an isometry.

Fix HoeTt"^^). Let pePo . The leaf Lp of n ~1^) through p
meets Ho (Theorem 2.10). Suppose z ^ , z^ e Lp n Ho. Then
F(zi) = F(z2). Since F/Lp : Lp -> LQ is injective we have z^ = z^ . Thus
Lp n Ho consists of a single point (p(p). Define

0 : PO -^ Ho x to
by

^^(P), F(p)).

Suppose 0(pi) = (S>(p2)' Then (p(pi) = (p(?2) and so L^ = Lp^. Since
F(pi) = F(?2) we have that pi = p2- Let (a,b)eHo x LQ. Then

L, n F- ̂ b} = {p} and <D(p) = ((p(p), F(p)) = (a,b).

Thus <I> is a diffeomorphism and the following diagrams commute :

PO -> Ho x Lo

This completes the proof of Theorem A.
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We now consider totally geodesic foliations for which every leaf is flat.

THEOREM 2 . 1 1 . — If M is a compact Riemannian manifold with a
co dimension-one totally geodesic transversely oriented foliation ^ by flat
leaves, then M fibers over S1 and the universal cover of M is R".

Proof. — Recall one of Planters [14] characterizations of the growth of a
leaf L of ^F . Let p e L and define the growth function of L at p by
g ^ ( r ) = vol (Bp(r)) where Bp(r) denotes the open ball in L of radius r
centered at p . The growth type of L is then the growth type of the
function gp : R+ -> R+ and depends only on L. Since each leaf of ^ is
a complete flat Riemannian manifold, it follows that the universal cover of
each leaf is R" ~ 1 with its standard metric. Hence each leaf of ^ has
polynomial growth of degree ^ n — 1. In particular, all the leaves of ^
have non-exponential growth. Hence either ^ has a compact leaf or else
^ is without holonomy [15]. If ^ has a compact leaf, then M fibers
over S1 [10]. If ^ is without holonomy, then ^ is topologically
conjugate to a foliation defined by a non-vanishing closed one-form [18].
Hence M fibers over S1 by Tischler's Theorem [19]. Finally
M ^ R" -1 x R = R".

COROLLARY 2.12. — Let M be a compact, orientable, 3-dimensional
Riemannian manifold with a codimensionA totally geodesic transversely
oriented foliation ^ by flat leaves. Then

1) M fibers over S1,
2) the universal cover of M is R 3 ,
3) 7ii(M) f5 solvable,
4) Hi(M,Z) + 0, and
5) if ^ has no closed orbits, then 7ii(M) is abelian and M fibers over

T2 .

Proof. — (1) and (2) follow from the previous Theorem. Since ^ is a
codimension-2 Euclidean foliation, it follows that 7ti(M) is solvable and
H^(M,Z) + 0 [1]. Suppose ^ has no closed orbit. Then all the leaves of
^ are simply connected and hence K^(M) is abelian [1]. Moreover, since
^ is without holonomy, M fibers over T2 [2].

PROPOSITION 2.13. — Let M be a compact 3-dimensional Riemannian
manifold with a codimension-1 totally geodesic foliation ^ by leaves of
constant negative curvature. Then 7ii(M) has exponential growth.
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Proof. — In this case ^ is a codimension-two hyperbolic foliation and
hence 7ii(M) has exponential growth [1].

See [5] for a more complete description of codimension-1 totally
geodesic foliations of 3-dimensional manifolds.

Example. — This example uses the method of suspension of [6]. Let L
be a compact manifold and let n : L -> L be the universal cover of L.
Let H be a manifold and let (p : 7ii(L) -> Diff(H) be a homomorphism.
The foliation of L x H by leaves of the form L x {pt.} passes to a
foliation ^F of the associated fiber bundle M = L x „ (^)H transverse to
the fibers. Let ^ be the foliation of M by the fibers of the bundle. Let
T(^) and T(^) be the subbundles of T(M) tangent to ^ and ^,
respectively. Then T(M) = T(^) @ T(^). Put any Riemannian metric
on L. This induces a metric on T(^). Put any metric on T(^). By
decreeing T(^) and T(^) to be orthogonal, »we obtain a Riemannian
metric on M. This metric is bundle-like for ^. Hence ^ is totally
geodesic [10].

e.g. Let L = T^, the two-holed torus, and let H = S1. Then 7ii(L)
is a subgroup of SL(2,R) and hence acts in a natural way on S1. Endowing
L with the hyperbolic metric, we obtain a codimension-1 foliation of M
with totally geodesic leaves of constant negative curvature.

Example. — Let G be a connected Lie group admitting a bi-invariant
metric < — , — > . Since the 1-parameter subgroups of G are geodesies, the
left cosets of a connected subgroup H form a totally geodesic foliation of
G. Let ^ be the Lie algebra of left invariant vector fields on G, let ^ be
the subalgebra associated to H, and let A1 be the orthogonal
complement of A in ^. Since <[X,Y],Z> = <X,[Y,Z]> for every
X, Y, Z e ̂ , on taking X, Y e ̂  and Z e ^ it follows that ^ is
integrable if and only if ^ is an ideal of ^, i.e. H is a normal subgroup
of G. If this is the case, the same argument shows ^ to be an ideal
which thus defines a connected normal subgroup K of G that is
orthogonal to H. Therefore on passing to the universal covers of G, H
and K we have G == H x K as a group product. An irrational flow on
the torus is a particular case of this example.

Example. — Let (L,^) and (H,/i) be two Riemannian manifolds and let
p : H -> H be the universal cover of H and Ji the lifted metric on H.
Let p : 7ii(H) -> Iso (L) be a representation. Finally let ^ : L -> (0,oo) be



194 R. A. BLUMENTHAL AND J. J. HEBDA

a smooth positive function invariant under 7Ci(H),

i.e. ^(p(y)(x)) = 5i(x) for all y e 7ii(H) and x e L.

Define an action of 7ti(H) on L x fl by

y(^) = (P(y)00,y(}0) tor Y€7Ci (H) and (x,^) e L x fl.

This action is properly discontinuous. The foliation of L x fl by leaves of
the form L x {pt.} passes to a foliation 3^ of (Lxfl)/7ii(H), while that
by leaves of the form {pt.} x fl passes to a foliation ^. Furthermore
this action operates as isometrics when L x fl has the warped product
metric g = g ( Q ' > J i . In this metric the leaves L x {pt.} are totally
geodesic and are othogonal to the leaves {pt.} x fl. Thus ^ is a totally
geodesic foliation with the orthogonal complementary foliation ^.
(Choosing \ to be non-constant prevents the foliation ^ from being
totally geodesic.)

e.g. Let L = S2 with the canonical metric and let H = S1. Let
p : 7Ci(H) -> Iso (L) = 0(3) be defined by letting the generator of 7ti(H)
go to some (perhaps irrational) rotation of S2 around the north-south
polar axis. Finally, \ can be any smooth positive function constant on the
lines of latitude.

3. Riemannian foliations.

Let M be a smooth manifold and let 3F be a smooth codimension-^
Riemannian foliation of M. Let T(M) be the tangent bundle of M and
let E c: T(M) be the subbundle tangent to ^F . Choose an imbedding of
the normal bundle Q of 3F as a subbundle of T(M) satisfying
T(M) = E © Q. Since ^ is Riemannian, there is a smooth metric g on
Q invariant under the natural parallelism along the leaves. This is
equivalent to the existence of a bundle-like metric in the sense, of
Reinhart [16]. Let r(E), r(Q), and J'(M) denote the spaces of smooth
sections of the vector bundles E, Q, and T(M) respectively. Recall that
a connection V : ̂ (M) x F(Q) -^ F(Q) is basic if it induces the natural
parallelism along the leaves. Equivalently, VxY = [X,YJQ for all
Xer(E), Yer(Q) where [X,Y]o denotes the Q-component of the Lie
bracket of X and Y [4]. Let V be the unique metric-preserving basic
connection on Q with zero torsion (VXYQ—VYXQ=[X,Y]Q for all
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X,Y e ̂ "(M)) [12], [13]. Let x e M and let C(x) be the loop space at x .
For each reC(x), the parallel transport along T is an isometry of Q^.
The set of all such isometries of Q^ is the holonomy group ^(x) of V
with reference point x .

We now prove Theorem D. If ^F is irreducible, we are done. Assume
^ is reducible. Let Q^ be a non-trivial subspace of Q^ invariant by
^(x). Let yeM. Choose a curve T from x to y and let Qy c= Qy be
the image of Q^ by the parallel translation along T . Then Qy depends
only on the point y and so we obtain a smooth distribution
Q 'c :QcT(M) .

LEMMA 3.1. — The distribution E ® Q' is involutive.

Proof. - If X ,Yer (E) , then [X,Y] e F(E) since E is involutive.
Suppose X e F(E), Y e r(Q'). Then [X,Y]o ^= VxY e r(Q') and hence
[X,Y] e r(E®Q'). Finally, suppose X , Y e r ( Q ' ) . Then
[X,Y]Q = VxY - VyX € r(Q') and so [X,Y] € r(E©Q').

LEMMA 3.2. - Let ^ ' be thefoliation integral to E ® Q'. Then ^ ' is
a Riemannian foliation and the restriction of V to the normal bundle of ^ '
is the unique torsion-free metric-preserving basic connection for ^ ' .

Proof. — Let Q" be the orthogonal complement of Q' in Q. Then
Q" is the normal bundle of ^ ' . If Xe^(M) and Y e F(Q") then, since
,Q" is holonomy invariant, VxY e r(Q") and V determines a connection
on Q". Let Xer(E®Q'), Yer(Q"). Then

VxY = Vx,Y + Vx^Y == [XH,Y]Q» + VXQ,Y.

But [XQ,,Y]Q = Vx^Y - VyXQ, and so Vx^Y = [XQ,,Y]Q.. Hence

VxY = [XE,Y]Q. + [XQ,,Y]Q. = [X,Y]Q»

which shows that V is a basic connection for ^ F ' . Since V is metric-
preserving and induces the natural parallelism along the leaves of 3 F ' , it
follows that the restriction of g to Q" is invariant under the natural
parallel transport along y and so 3^' is a Riemannian foliation
completing the proof of the lemma.

We may decompose Q^ as a direct sum Q^ = Q$ ® Qji ® • " © QS
of mutually orthogonal subspaces invariant under ^(x) where Q$ is the
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set of vectors in Q^ which are fixed by ^V(x) and Q^, . . . , Q^ are all
irreducible. For each i = 0, 1, . . . , k let ^\ be the foliation of M
which is integral to the distribution E © Q° © • • • © Q1 © • • • © Q^
where Q1 indicates that Q1 is omitted. By lemma 3.2 each J .̂ is a
Riemannian foliation and clearly ^i, . . . , ̂  are irreducible. If
codim (^o) == ^ we are done. Assume codim (c^o) == m > 0. Let
Y^, . . . , Y,^ be a basis of Q^. Since Y,^, . . . , Y,̂  are fixed by ^(x),
these vectors can be extended to vector fields Y ^ , . . . , Y^ e r(Q°) which
are parallel with respect to V. In particular, Y ^ , . . . , Y^ are parallel
along the leaves of ^o. For i,j == 1, . . . , m we have

[Y, Y,]Q = VyY, - VyY, = 0 and so [Y, Y^o - 0.

Hence ^o can be defined by local submersions to R^ which on overlaps
differ by translations thus showing that c^o is a Lie foliation modeled on

k

R'". Clearly ^ = [\ ^ [ and the proof of Theorem D is complete.
1 = 0

COROLLARY 3.3. — Let ^ be a Riemannian foliation of a compact
manifold M. Let m = codim (c^o) (possibly m==0). Then

i) M fibers over the m-dimensional torus T"1.

ii) The universal cover of M is a product L x R"1 where L is the
universal cover of the leaves of ^Q and the lift of ^Q is the product
foliation.

Proof. — Let Y ^ , . . . , Y^ be as in the proof of Theorem D. Let
coi, . . . , co^ be smooth one-forms on M which vanish on vectors tangent
to ^Q and satisfy co,(Y^) = 8^. Fix 1 ^ i ^ m. If

X,Zer(E©Q 1 ® • • • ©Q^),

then rfo^.(X,Z) = - co^X.Z] = 0 since E @ Q1 © • • • © Q^ is
involutive. If X e r(E@Q1 © • • • © Q^) and 7 ' e { l , . . . , m } , then
dWi(X,Yj) = - (o;[X,Yy] = 0 since Vj is parallel along the leaves of ^o •
If 7 \ , 7 2 e { l , . . . , m } , then Ao,(Y,^) = - co,[Y .̂J = 0 since
[Y.,Y.]QO = 0. Thus d^i = 0 and so C0i, . . . , co^ are closed linearly
independent one-forms. By Tischler's theorem [19], M fibers over T'".
The second statement follows from Corollary 2 in [1].

We now prove Theorem E. Let R : ̂ (M) xJ'(M) x r(Q)-^r(Q) be
the curvature of V, that is, R(X,Y)Z==VxVYZ-VYVxZ-V^Y]Z. Recall
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that a differential r-form co on M is base-like [16] if i^w = i^dw = 0 for
all X e r(E) where i'x denotes the interior product. Since ^ has
recurrent curvature, there is a base-like one-form a on M such that
VR = R (x) a. Let x e M . Let /: U -> V be a submersion whose level
sets are the leaves of j^/U where U is a neighborhood of x in M and
V is an open set in R4 , q = codim (J^). There is a unique Riemannian
metric g on V such that f*(g) = g . Let V be the Riemannian
connection on V. Then /^(V) = V/U. Let R be the curvature of V.
Since a is base-like, there is a unique one-form a on V such that
/*oc = a. Then we have V = R ® a and so V is a Riemannian
manifold with recurrent curvature tensor.

Let 7i : 0(Q) -> M be the orthonormal frame bundle of Q, a principal
0(g)-bundle. Let r be the connection in 0(Q) corresponding to V and
let Fu be the connection in 0(Q)/U = TI'^U) induced by F. Let
u e n ' ^ x ) . Let ^(u) (respectively, ^¥°(u)) be the holonomy group
(respectively, restricted holonomy group) of F with reference point u.
Let ^(u.U) (respectively, ^(i^U)) be the holonomy group (respectively,
restricted holonomy group) of F^j with reference point u. Let
7i : 0(V) -> V be the orthonormal frame bundle of V and let F be the
connection in 0(V) corresponding to V. Let u = f^(u) and let ^(u)
(respectively, ^(u)) be the holonomy group (respectively, restricted
holonomy group) of F with reference point u. Since M is simply
connected, we have T0^) = ^¥(u). By choosing U and V to be simply
connected, we have T°(M,U) = ^(^.U) and ^°(u) = V(u). Since r is a
real analytic connection in the real analytic principal fiber bundle 0(Q),
we have (shrinking U if necessary) ^°(u) = ̂ (^U) [11]. Since

0(Q)/U = /^(CKV)) and F^ = /-^r),

we have ^(^U) c ̂ (u) and hence ^V(u) cz ^(u). Since ^ is
irreducible, it follows that the restricted linear holonomy group of V is
irreducible. Since V has recurrent curvature tensor and dim (V) ^ 3, its
curvature tensor is parallel [11]; i.e., VR = 0. Thus VR = 0. Hence M
fibers over a simply connected Riemannian symmetric space N with the
leaves of ^ as fibers [3]. Clearly N is compact and is necessarily
irreducible.
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