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FINITELY GENERATED IDEALS IN A(Q)

by J. E. FORNASS and N. OVRELID

1. Let Q < C?(z,w) be a bounded pseudoconvex domain with
smooth boundary containing the origin and let A(Q) denote the set of
continuous functions on Q which are holomorphic in Q. In the special
case when Q is the unit ball, A. Gleason [4] asked the following :

The Gleason Problem : If fe A(Q) and f(0,0) = 0, does there exist g,
he A(Q) such that f = zg + wh?

This was solved affirmatively by Leibenzon, see [5], in the ball case and
by Henkin [5], Kerzman-Nagel [6], Lieb [9] and Qvrelid [12] in the strongly
pseudoconvex case. Beatrous[l] solved the problem for weakly
pseudoconvex domains under the extra hypothesis that there exists a
complex line through O which intersects the boundary of Q only in
strongly pseudoconvex points. In this paper we discuss the real analytic
case.

MAIN THEOREM. — Let 0 € Q < < C?(z,w) be a pseudoconvex domain
with real analytic boundary. If fe A(Q) and f(0) = 0, then there exist g,
he A(Q) such that f = zg + wh.

The main difficulty is that the Levi flat boundary points, w(dQ), can
be two-dimensional. This means that the projection of w(dQ2) into the
space of complex lines through 0 (a P!) can be onto. Thus no such
complex line avoids w(0Q) and therefore Beatrous’ theorem does not
apply. (On the other hand, if w(dQ) is one-dimensional, then of course the
Main Theorem is a direct consequence of Beatrous’ result.)

To handle this difficulty we study the structure of w(0Q). We show
(Proposition 3) that except for a one-dimensional subset, w(0Q) consists
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of R-points. The R-points were first studied by Range [11] who proved
sup norm estimates for 0 at such points. We give a precise definition of R-
points in the next section. Their main property is that they allow
holomorphic separating functions. In particular we thus show in this paper
that the Kohn-Nirenberg points [8] constitute an at most one-dimensional
subset of 0Q. Next we choose a complex line through 0 intersecting
w(Q) only in R-points. Then, one has good enough dJ-results to
complete the proof along the same line as Beatrous.

The Main Theorem can still be proved if we replace A(Q) by various
holomorphic Hoélder- and Lipschitz-spaces and if we replace z and w by
arbitrary generators of the maximal ideal at 0 in these spaces. This
requires several hard O-estimates. Therefore, in order to keep the length of
this paper down, the authors have decided to postpone these
generalizations to a later paper. We will then also show how these
techniques can be used to prove that bounded pseudoconvex domains with
real analytic boundary in C? have the Mergelyan property (see [3]).

2. We will make a detailed discussion of the weakly pseudoconvex
boundary points W = w(dQ) of a bounded pseudoconvex domain Q
with smooth real analytic boundary in C2. First we need a stratification of
W into totally real mainfolds.

LEMMA 1. — There exist pairwise disjoint real analytic manifolds
So,S:,S, « dQ with the following properties :

(i) Each S; consists of finitely many j-dimensional totally real real
analytic manifolds,

(i) W=S,uUS,US,,

(iii) S, is closed in dQ — Sy; S, is closed in dQ — (So v S,) and

(iv) Each connected component of S, consists of points of the same finite
type only.

Here finite type is in the sense of Kohn [7].

The sets Sy, S; and S, are actually semi analytic. During the proof
we will use repeatedly standard facts about semi-analytic sets. The reader
can consult Lojasiewicz [10] for details.

Proof. — Let r be a real analytic defining function for Q. (For
example, one can choose r to be the Euclidean distance to 0Q outside Q,
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but close to 0Q, and the negative of the Euclidean distance in Q close to
0Q.) Also let s be a real valued real analytic function defined on a
neighbourhood of 0Q vanishing at a p e 0Q if and only if p is a weakly
pseudoconvex boundary point. (One can for example let

s(z,w) = 0%r/0z 0z .|0r/0w|* — 2Re 0*r/0z OW . Or/ow .0r/0Z
+ 0%r/ow ow . |0r/0z|%).

Hence the weakly pseudoconvex boundary points, W, is the common zero
set {r=s=0} of global real analytic functions.

Using real coordinates, x + iy = z, u + iv = w, we can identify as
usual C2(z,w) with R*(x,y,u,v) with complex coordinates

X=x+ix, Y=y+iy, U=u+i/, V=ov+iv.

Then r, s have unique extensions to holomorphic functions R(X,Y,U,V)
and S(X,Y,U,V) respectively. The complexification M of 0Q is then
given by {R=0} which is a complex manifold since dr # 0. From now
on we will consider only points of M. In M,Z: = {S=0} "M is a
complex hypersurface, hence has (complex) dimension 2.

Let p be any point in W < X. Since ¥ and M are closed under
complex conjugation, there exists a holomorphic function
h = h,(X,Y,U,V) defined in a neighbourhood of p in C* which, when
restricted to M, generates the ideal of X at every point of X in that
neighbourhood, and such that h is real valued at pointsin C> = R*. The
function h has a nonvanishing gradient (on M) at regular points of XZ.
Since Imh = 0 on dQ it follows that W is given by {r=Re h=0} near
such regular points of ¥ and that dQ nregX is a pure 2-dimensional
real analytic manifold. By Diederich-Fornass [2] dQ cannot contain a
complex .manifold. This implies that dQ nregX is totally real at a
(relatively) dense set of points. A point in 0Q N reg X is totally real if and
only if A:= (0r),w A 0(Reh,); ., # 0 there. Here derivatives are taken
in C?. This condition does not depend on p since different (Re h,)’s
only differ by real multiples on Q.

Let S’ =« W be the (at most) one-dimensional closed real analytic set
consisting of 0Q N sing ¥ and the zeroes in W of the coefficient of A.
By Lojasiewicz [10], W — S’ consists of finitely many connected, pairwise
disjoint semi-analytic sets, C,, ...,C,. Each C; is a two dimensional
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totally real real analytic manifold whose closure C ; is also a semi analytic
set, and C; — C;c §'.

Locally, there exists a holomorphic vector field
L =adloz+ bdlow # 0

with real analytic coefficients tangent to the boundary, i.e. L(r) =0 on
0Q. The type of a point pe 0Q is then given as the smallest integer 2k
for which (or,L* " *L* ![L,L]())(p) # 0. This number is independent
of the choices of r and L. Let n; be the maximum type of points in C;,
and let T; consist of all boundary points of type > n;. Then T; is a real
analytic set. In particular, C; N T; is a semi analytic set of dimension at
most one. Then S, := u C; — T; is a pure 2-dimensional totally real real
analytic manifold with finitely many connected components on each of
which the type is constant. Also, W — S, is a closed semi analytic set in
C? of dimension at most one, and can hence be written as S, U S; where
S, is a finite set of points and S, is a relatively closed 1-dimensional real
analytic manifold in W — S, with finitely many connected components.
This completes the proof of Lemma 1.

Range [11] introduced a convexity condition which is satisfied by many
weakly pseudoconvex boundary points.

DErINITION 2. — Let D = {p<0} c= C* be a domain with C®
boundary. A point pe dD is an R-point (of order m) if there exists a
neighbourhood U of p and a C*® function

F(,2): (0DNU)() x U(z) » C
such that
(i) F is holomorphic in z,
(i) FG8) =0 and d,F #0 and

(iii) p(2) > €lz—C|™ whenever F((,z) =0, € > 0 some constant.

Using the Levi polynomial

n 5 n 2
Fa) = ¥ o OG-z - Y ) 52 5 OG=2)C-2)
J= J L= i J

one immediately obtains that strongly pseudoconvex boundary points are
R-points of order 2.
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ProposiTION 3. — Every point in S, is an R-point.

In the proof of the proposition we will need two elementary
inequalities.

LeMMA 4. — Let py(s,t): = (s+1t)%* — s2* — 2kts?*~! for s, teR,
ke{1,2,...}. Then there exists a constant c, > 0 such that

pe(s,t) = ¢ (s* 22+t for all s,t.

Proof. — For each fixed s, q,(t) = (s+1t)** is a convex function of ¢
and T,(t) = s** + 2ks?* "'t is an equation for the tangentline through
(0,5%*%). Hence,

pk(s’t) = qs(t) - Ts(t) >0

whenever t # 0. Since

p(s,t) = tz[(22k>s2"' 24 O(t)] and s%*72¢% 4+ 12F = 2[s2*+0O(1)]

it follows that there exists a ¢, > 0 such that
p(s,t) > ¢ (s*e> +12%)

for all (s,t) on the unit circle and hence by homogeneity for all (s,t).

LemMA 5. — Let ke{1,2,...} and 8 >0, & < 4~ be given. Then
y* + 3 Re(z%) > 27% 8|21 for every complex number z = x + iy.

Proof. — Expanding Re z?*, we get
y** + 8Re(z%*) > y** + 8x** — R(2)

with R(z) = 2%~ ! §y? max (|x|,|y))**~2. Elementary computation gives
y?* > 2R(z) when |x| < 24y|, while 8x%* > 2R(z) otherwise. In any
case,

y* + 0Re(z%) > g(xz" + ¥y = 275 8(x2+yH)t,

so the lemma follows.

" To simplify our computations it is convenient to change coordinates
locally so that S, becomes a plane.
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LEMMA 6. — Let py€S,. There exist local holomorphic coordinates
z=Xx+ iy, w=u + iv in a neighbourhood U of p,, such that in U,

(i) S, is given by y=v=0, and

(i) 0Q is tangent to the plane v =0 along S,.
As a consequence T, 0Q is given by w = 0 along S,.

Proof. — Local coordinates satisfying (i) are constructed by choosing a
real analytic parametrization F: W — S, near p,, with W openin R2.
Since S, is totally real, the prolongation F of F to complex arguments is
invertible near p,, and we set (z(p),w(p)) = F~1(p). Then (ii) means that
the vector field —a— =] 2 is tangential to 0Q on S,, i.e. (_3_) €T 0Q

dy 0x , ox), F
when peS,. Now L =TS, nT¢0Q is a real analytic line field on S,,
and we just have to choose a parametrization F where the curves u = const.
are integral curves of L to complete the proof.

When v = — V(x,y,u) is a local parametrization of 0Q, Q is given
near p, by p = v + V(x,y,u) < 0, provided d/0v points out of Q. We
may write

p =v+ g(xayau) =0+ Z a/(x’u)yl
=2k

for some k> 1 and a, >0, since Q is weakly pseudoconvex of
constant type on S,.

After these preliminary remarks we can prove Proposition 3. To show
that poeS, is an R-point, choose at first a neighbourhood U = U (p,)
of p, on which a,(xu) >a>0. We will shrink U whenever
necessary without saying so each time.

For § = (z9,wo)eUN0Q, we write z=2z4+2, w=wy+ W,
w = u + iv’ etc., and Taylor-expand p around (. Since p({) = 0 we
get

p=10 + gOx + g Q) + 8.0 + ax(xo,uo)Pr(y0,y) + R
where the remainer R satisfies an estimate
IR < C(IZ]+IWD(Iyol + 2] + W]~ *

in U with C independent of (.
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The linear function W = (g,(0)+ig,(0)z' + (1+ig,(§))w’ has
imaginary part ¥ equal to the linear part of p, so by Lemma 4
p=7b+ ac(y3t2y?+y*) — IR| in U.

Set F,(z,w) = iw + e(y3* 222 +2'?%), with 0 < &€ < 4-¥c,a. On the
zero set of F,

= ig(y3* 222 +2'?%), and in particular

M = g(y3* 2Re(z'?) +Re(z'?¥)).

ST

Applying Lemma 5 this gives p = 2 *(y2*2|y|> +|2/|**) — |R]|.

Since g,, g, and g, are small near the origin, it follows from (1) and
the definition of W that |w/| <|z| on {F,=0} " U whenever {eU.
Thus

p = 2758 2P +121%) — 122 (lyol + 12D
= B0 221 +1217Y)
> 27%g|(z,w) — )%k,

It follows that F((,(z,w)):= F/(z,w) satisfies Range’s condition in
Definition 2 with order = 2k. This completes the proof of
Proposition 3.

3. We can now prove the Main Theorem. Let Q be-a bounded
pseudoconvex domain in C? with real analytic boundary : By Lemma 1
the weakly pseudoconvex points w(0€2) can be stratified by real analytic
sets Sy, S; and S, where S; has dimension j, j = 0,1,2. Proposition 3
gives that S, consists only of R-points. We need the following J-result by
Range [11].

THEOREM 7. — Let D = < C? be a pseudoconvex domain with C®
boundary. Assume that D has a Stein neighbourhood basis. If \ is a 0-
closed (0,1)-form with uniformly bounded coefficients on D whose support
clusters on 0D only at R-points, then there exists a continuous function g
on D with dg =\ on D.

This theorem applies as it is shown in [2] that ©Q has a Stein

neighbourhood basis.

By rotation of the axis we may assume that the z-axis does not intersect
SouS,. In particular, if €& >0 is small enough,
F, := {(z,w) € 0Q;e/2<|w| <&} consists only of R-points.
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Following Beatrous [1], if feA(Q) and f(0) =0, we can write
f=zg' + wh! in a small neighbourhood of 0. On the set
{(z,w) € Q;|z|>€} we can write f = zg®> + wh®? with g?> = f/z and
h = 0, ¢ arbitrarily small. Solving an additive Cousin problem we obtain
the decomposition f = zg> + wh® on the set:

Q, = {(z,w) e Q;|w| <¢},
with g3, h3® holomorphic and continuous up to the boundary. On the set
Q, = {(z,w) € Q;|w|>¢/2}

we have the decomposition f = zg* + wh* where g* =0 and
h* = f/w. Where the two sets overlap, we get the equation

G:=(g*—gY)w = (h*—h)z.

We need holomorphic functions G,, G, with continuous boundary
values on Q, Q, respectively so that G = G, — G, on the intersection.
This reduces in a standard way to solving a J-problem for a form with
support in Q; N Q,. Hence Theorem 7 shows that such G,, G, exist.

We then obtain the decomposition f = zg + wh, g,he A(Q) by
letting

_ [g* — wG, on Q - h® + zG, on Q,
= 1¢* —wG,on 0, ~|h* —2G,on Q,’

This completes the proof of the Main Theorem.
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