GEORGES ELENCWAJG O. FORSTER

Vector bundles on manifolds without divisors and a theorem on deformations

Annales de l'institut Fourier, tome 32, nº 4 (1982), p. 25-51 <http://www.numdam.org/item?id=AIF_1982_32_4_25_0>

© Annales de l'institut Fourier, 1982, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

VECTOR BUNDLES ON MANIFOLDS WITHOUT DIVISORS AND A THEOREM ON DEFORMATIONS

by G. ELENCWAJG and O. FORSTER

Herrn K. Stein zum 70. Geburtstag gewidmet.

Introduction.

The motivation for this paper was to gather some information on holomorphic vector bundles on some non-algebraic compact complex manifolds, especially manifolds without divisors. As a first step, we treat the case of 2-bundles. Examples of such 2-bundles are given by extensions

$$0 \to \mathbf{L} \to \mathbf{E} \to \mathbf{M} \otimes \mathscr{I}_{\mathbf{Z}} \to 0 \tag{(*)}$$

where L and M are line bundles and \mathscr{I}_Z is the ideal sheaf of a 2codimensional locally complete intersection. On a projective algebraic manifold every 2-bundle is of this form, however L, M and Z are not uniquely determined by E. In sharp contrast to this, on a manifold without divisors, the «devissage» (*) is uniquely determined for an indecomposable bundle E (cf. Theorem 2.2). On the other hand, on such highly non-algebraic manifolds there might exist 2-bundles without any such devissage; we call them non-filtrable. More precisely, E admits a devissage if and only if there exists a line bundle L such that $E \otimes L^*$ has non-trivial sections.

In order to prove the existence of non-filtrable bundles on 2-tori with Picard number zero, we prove (in § 3) some general theorems on the deformation of vector bundles and projective bundles which might be of independant interest. Roughly speaking, any deformation of a vector bundle on a compact complex space is composed of a deformation of det (E) and a deformation of the associated projective bundle P(E); for a precise formulation see Theorem 3.4. As a corollary we get: If

dim H²(X, End E) = dim H²(X, \mathcal{O}_X), then the basis of the versal deformation of E is smooth. We use this last fact to deform a certain filtrable bundle on a 2-torus into a non-filtrable one (Proposition 4.9).

In an Appendix we gather some facts on algebraic dimension and Picard number of 2-tori.

Notations. – By a vector bundle on a complex space X we always mean a holomorphic vector bundle which we consider as a locally free \mathcal{O}_X -module of constant (finite) rank. The dimensions of cohomology groups are denoted by $h^q(X,\mathcal{F})$: = dim $H^q(X,\mathcal{F})$.

1. Filtration of bundles.

In this section we collect some more or less well known facts about vector bundles which are extensions of the form

$$0 \rightarrow L \rightarrow E \rightarrow M \otimes \mathscr{I}_Z \rightarrow 0$$
,

where L and M are line bundles and Z is a 2-codimensional locally complete intersection.

1.1. If E is a vector bundle of rank r on a smooth curve, then there exists a (not uniquely determined) filtration

$$0 = \mathbf{E}_0 \subset \mathbf{E}_1 \subset \ldots \subset \mathbf{E}_r = \mathbf{E},$$

where E_k is a subbundle of rank k (cf. Atiyah [1]). On a complex manifold of dimension > 1 this is no longer true. Instead of subbundles one has to consider coherent subsheaves $\mathscr{F} \subset E$. Such subsheaves are always torsion-free. The following facts are well known:

a) Let \mathcal{F} be a coherent sheaf on a complex manifold X. Then the set

Sing
$$(\mathcal{F}) = \{x \in X : \mathcal{F}_x \text{ is not a free } \mathcal{O}_{X,x}\text{-module}\}$$

is analytic of codimension ≥ 1 .

If \mathscr{F} is torsion-free, Sing (\mathscr{F}) is of codim ≥ 2 . If \mathscr{F} is reflexive, i.e. $\mathscr{F} = \mathscr{F}^{**}$, then codim Sing $(\mathscr{F}) \ge 3$. If \mathscr{F} is reflexive and has rank 1, it is locally free, i.e. a line bundle.

b) Let E be a vector bundle on a complex manifold X and $\mathscr{F} \subset E$ a coherent subsheaf. Then the set Sing (E/\mathscr{F}) is equal to the set

$$S = \{x \in X : \mathscr{F}_x \text{ is not a direct summand of } E_x\}$$

and $\mathscr{F}|X\setminus S$ is a subbundle of $E|X\setminus S$.

c) For every $\mathscr{F} \subset E$ we denote by \mathscr{F} the following coherent subsheaf of E: Let $p: E \to E/\mathscr{F}$ be the canonical projection and Tors (E/\mathscr{F}) the torsion submodule of E/\mathscr{F} . Define

$$\widehat{\mathscr{F}}$$
: = p^{-1} (Tors (E/ \mathscr{F})).

Then $\mathscr{F} \subset \widehat{\mathscr{F}} \subset E$ and $\widehat{\mathscr{F}}$ coincides with \mathscr{F} outside an analytic set of codimension ≥ 1 . The quotient $E/\widehat{\mathscr{F}}$ is torsion-free, hence $\widehat{\mathscr{F}}$ is a subbundle of E outside an analytic set of codimension ≥ 2 .

1.2. DEFINITION. – A vector bundle E of rank r on a complex manifold X is called filtrable if there exists a filtration

$$0 = \mathscr{F}_0 \subset \mathscr{F}_1 \subset \ldots \subset \mathscr{F}_r = \mathbf{E}$$

where \mathcal{F}_k is a coherent subsheaf of rank k.

Of course every vector bundle on a compact algebraic manifold is filtrable, but we will prove the existence of bundles on certain non-algebraic manifolds which are not filtrable.

Remark. – According to 1.1.*c*) we may assume all quotients E/\mathscr{F}_k to be torsion-free. In that case the $\mathscr{F}_k/\mathscr{F}_{k-1}$ are torsion-free of rank 1 and L_k : = $(\mathscr{F}_k/\mathscr{F}_{k-1})^{**}$ are line bundles. Moreover,

det
$$\mathbf{E} \cong \mathbf{L}_1 \otimes \ldots \otimes \mathbf{L}_r$$
.

This last formula comes from the fact that $0 \subset \mathscr{F}_1 \subset \ldots \subset \mathscr{F}_r = E$ is a filtration of subbundles outside a set of codimension ≥ 2 .

1.3. LEMMA. — Let $\mathscr{F} \subset E$ be a coherent subsheaf of rank 1 of a vector bundle on a complex manifold. If E/\mathscr{F} is torsion-free, then \mathscr{F} is locally free.

Proof. – It suffices to show that \mathscr{F} is reflexive. Let $\mathscr{F}^{**} \to E$ denote the bidual of the inclusion morphism $\mathscr{F} \to E$ and consider the sheaf $\widehat{\mathscr{F}} := \operatorname{Im}(\mathscr{F}^{**} \to E)$. Then $\widehat{\mathscr{F}}/\mathscr{F} \subset E/\mathscr{F}$ is a torsion sheaf, hence $\widehat{\mathscr{F}}/\mathscr{F} = 0$. Since $\mathscr{F}^{**} \to E$ is a monomorphism, $\mathscr{F}^{**} \cong \widehat{\mathscr{F}} \cong \mathscr{F}$, q.e.d. **1.4.** COROLLARY. – A vector bundle of rank 2 on a connected complex manifold X is filtrable if and only if there exists a line bundle L on X such that $\Gamma(X,L^* \otimes E) \neq 0$.

1.5. COROLLARY. – On a complex manifold X let E be a vector bundle, L a line bundle and α : L \rightarrow E a sheaf monomorphism. Then

Supp (Tors (E/Im (L \rightarrow E)))

is (empty or) of pure codimension 1.

Proof. – Set $\mathscr{F} := \text{Im} (L \to E)$ and define $\widehat{\mathscr{F}} \subset E$ as in 1.1.c). \mathscr{F} is isomorphic to L and $\widehat{\mathscr{F}}$ is locally free by Lemma 1.3. The inclusion map $\mathscr{F} \hookrightarrow \widehat{\mathscr{F}}$ may be considered as a section of the line bundle $\mathscr{F}^* \otimes \widehat{\mathscr{F}}$, hence Supp $(\widehat{\mathscr{F}}/\mathscr{F})$ has pure codimension 1. But

Tors (E/Im (L
$$\rightarrow$$
 E)) $\cong \widehat{\mathscr{F}}/\mathscr{F}$.

1.6. PROPOSITION. — For every filtrable 2-bundle E on a complex manifold X there exist line bundles L, M on X and a 2-codimensional (possibly empty) analytic subspace $Z \subset X$ such that E fits into an exact sequence

$$0 \to L \xrightarrow{\alpha} E \xrightarrow{p} M \otimes \mathscr{I}_{Z} \to 0.$$

Proof. – Let $0 \subset \mathscr{F} \subset E$ be a filtration such that E/\mathscr{F} is torsion free. By Lemma 1.3 the sheaf $L := \mathscr{F}$ is locally free of rank 1. Let $\alpha : L \to E$ be the inclusion map. Set $M := (E/\mathscr{F})^{**}$. The image of the natural inclusion map

$$E/\mathscr{F} \rightarrow (E/\mathscr{F})^{**} = M$$

is of the form $M \otimes \mathscr{I}_Z$, where \mathscr{I}_Z is the ideal sheaf of a subspace $Z \subset X$ of codimension ≥ 2 . But Z may also be defined by the vanishing of $\alpha \in \Gamma(X, L^* \otimes E)$, hence is a locally complete intersection of codimension = 2 (or empty). The morphism β is the quotient map $E \to E/\mathscr{F}$ composed with the isomorphism $E/\mathscr{F} \xrightarrow{\sim} M \otimes \mathscr{I}_Z$.

1.7. Notation. – We call an exact sequence

 $(*) \qquad 0 \to L \to E \to M \otimes \mathscr{I}_Z \to 0$

as in Proposition 1.6 a devissage of E. We have

det (E)
$$\cong$$
 L \otimes M,

in particular $c_1(E) = c_1(L) + c_1(M)$. The bundle $L^* \otimes E$ has a section vanishing on the subspace Z. Hence

$$c_2(L^* \otimes E) = \text{dual class of } [Z].$$

Since $E^* \cong E \otimes \det E^*$, we can tensor (*) by $L^* \otimes M^*$ to get the dual devissage

$$0 \rightarrow M^* \rightarrow E^* \rightarrow L^* \otimes \mathscr{I}_Z \rightarrow 0.$$

1.8. Recall that a vector bundle E on a compact complex connected manifold is *simple* if End (E) = C. This is equivalent to the fact that every non-zero endomorphism is invertible. If rank E = 2 and E is not simple, then E is filtrable. In fact, if $\sigma: E \rightarrow E$ is a non-zero, non-invertible endomorphism, then Ker $\sigma \subset E$ is a subsheaf of rank 1.

1.9. LEMMA. – Let E be an indecomposable 2-bundle on a compact connected complex manifold X and $\sigma \in \text{End } E$ a non-invertible endomorphism. Then $\sigma^2 = 0$.

Proof. – Consider the eigenvalues λ_1 , λ_2 of σ . (Since X is compact connected, the eigenvalues of σ in all fibres of E are the same.) Necessarily $\lambda_1 = \lambda_2$, otherwise the eigenspaces would define a decomposition of E. Since det (σ) = 0, we have $\lambda_1 = \lambda_2 = 0$, which implies $\sigma^2 = 0$.

1.10. In general, the devissage of a 2-bundle is not uniquely determined. However we shall discuss conditions which guarantee uniqueness.

Let X be a compact connected complex manifold and L, L' line bundles on X. Following Atiyah [1] we shall write $L' \leq L$ if there exists a non-zero morphism $L' \rightarrow L$.

We call a devissage $L \rightarrow E \twoheadrightarrow M \otimes \mathscr{I}_Z$ of a 2-bundle E maximal, if for every other devissage $L' \rightarrow E \twoheadrightarrow M' \otimes \mathscr{I}_Z$, we have $L' \leq L$.

1.11. PROPOSITION. – Let E be a non-simple, indecomposable 2-bundle on a compact connected complex manifold X. Then E admits a uniquely determined maximal devissage

$$0 \to \mathbf{L} \to \mathbf{E} \to \mathbf{M} \otimes \mathscr{I}_{\mathbf{Z}} \to \mathbf{0}.$$

This maximal devissage is characterized by the fact that $M \leq L$.

Proof. – Let $\sigma: E \to E$ be a non-zero, non-invertible endomorphism. Let $L: = \text{Ker } \sigma$. Since $E/\text{Ker } \sigma \cong \text{Im } \sigma$ is torsion-free, L is a line bundle by Lemma 1.3. We may write $\text{Im } \sigma \cong M \otimes \mathscr{I}_Z$, where M is a line bundle and $Z \subset X$ a subspace of codimension 2. By Lemma 1.9 we have $\text{Im } \sigma \subset \text{Ker } \sigma$, hence there exists a monomorphism $M \otimes \mathscr{I}_Z \to L$, which extends to a monomorphism $M \to L$. So we get a devissage

$$0 \to L \xrightarrow{\alpha} E \xrightarrow{\beta} M \otimes \mathscr{I}_7 \to 0$$

with $M \leq L$.

We will now show that a devissage with $M \leq L$ is the uniquely determined maximal devissage.

i) Maximality. Let $f: L' \to E$ be any non-zero morphism. If $\beta \circ f: L' \to M \otimes \mathscr{I}_Z$ is non-zero, then $L' \leq M \leq L$. If however $\beta \circ f = 0$, we have $L' \cong \operatorname{Im} f \subset \operatorname{Im} \alpha \cong L$, i.e. $L' \leq L$ in every case. ii) Uniqueness. Let

$$0 \to L' \xrightarrow{f} E \to M' \otimes \mathscr{I}_{T'} \to 0$$

be a second maximal devissage. Then $L' \leq L \leq L'$, hence $L' \cong L$. If $\beta \circ f \colon L' \to M \otimes \mathscr{I}_Z$ is non-zero, the composite map

$$L' \xrightarrow{\beta \circ f} M \otimes \mathscr{I}_7 \to M \to L$$

is non-zero, hence an isomorphism. This implies in particular $Z = \emptyset$ and $\beta \circ f : L' \to M$ is an isomorphism. But then $E = L \oplus L'$, which was excluded. So necessarily $\beta \circ f = 0$ and we get a factorization

Since $L' \cong L$, g is an isomorphism. This implies that the two devissages are isomorphic, q.e.d.

VECTOR BUNDLES ON MANIFOLDS

2. Vector bundles of rank 2 on manifolds without divisors.

2.1. Let L and L' be two line bundles on a complex connected manifold and $f: L' \to L$ a non-zero morphism. Let D be the zero divisor of f. Then $L \cong L' \otimes [D]$, where [D] denotes the line bundle associated to D. Therefore, if X is a complex connected manifold without divisors, the relation $L' \leq L$ implies $L' \cong L$.

Recall that a compact connected complex manifold without divisors has algebraic dimension zero, i.e. the only meromorphic functions are constant. The converse is not true (think of blow-ups!), however a torus has algebraic dimension zero if and only if it admits no divisors.

We will now give a rough classification of 2-bundles on manifolds without divisors.

2.2. THEOREM. – Let X be a compact connected complex manifold without divisors. Then we have the following classification of vector bundles of rank 2 on X:

I. Filtrable bundles.

1) Indecomposable bundles.

A filtrable 2-bundle is indecomposable if and only if its devissage is uniquely determined.

i) Simple bundles. They have a devissage

$$0 \to \mathbf{L} \to \mathbf{E} \to \mathbf{M} \otimes \mathscr{I}_{\mathbf{Z}} \to \mathbf{0}$$

with $L \ncong M$ and endomorphism ring End $E \cong C$.

ii) Non-simple bundles. Their devissage is

 $0 \rightarrow L \rightarrow E \rightarrow L \otimes \mathscr{I}_{Z} \rightarrow 0$

and End $E \cong C[\varepsilon]$, $\varepsilon^2 = 0$, is the ring of dual numbers.

2) Decomposable bundles

i) Bundles of the form $E \cong L \oplus M$ with $L \ncong M$.

In this case End $E \cong C \oplus C$ with componentwise multiplication.

ii) Bundles of the form $E \cong L \oplus L$.

In this case End $E \cong M_2(C)$ is the full matrix ring.

II. Non-filtrable bundles.

These bundles are all simple, i.e. End E = C.

Proof. -a) Let E be an indecomposable 2-bundle on X with a devissage

$$0 \to L \xrightarrow{\alpha} E \xrightarrow{\beta} M \otimes \mathscr{I}_{Z} \to 0.$$

We will show that the devissage is uniquely determined and that the assertions in 1i), ii) hold.

i) Suppose $M \ncong L$. Let $f : L' \to E$ be any monomorphism of a line bundle L' in E. We claim that

$$\beta \circ f : L' \to \mathbf{M} \otimes \mathscr{I}_{\mathbf{Z}}$$

is zero. Otherwise Z would be empty (since X has no divisors) and $\beta \circ f : L' \to M$ an isomorphism. But this would imply $E \cong L \oplus M$, contradicting the indecomposability of E. Therefore f factorizes as follows

and g is necessarily an isomorphism. This implies the uniqueness of the devissage.

Tensoring the dual devissage $M^* \rightarrow E^* \rightarrow L^* \otimes \mathscr{I}_Z$ by E, we get an exact sequence

$$0 \to \mathbf{M}^* \otimes \mathbf{E} \to \mathbf{E}^* \otimes \mathbf{E} \to \mathbf{L}^* \otimes \mathbf{E} \otimes \mathscr{I}_Z \to 0,$$

which implies

dim End
$$E \leq \dim \Gamma(X, M^* \otimes E) + \dim \Gamma(X, L^* \otimes E \otimes \mathscr{I}_Z)$$
.

The uniqueness of the devissage of E implies

 $\Gamma(X, M^* \otimes E) = 0$ and $\Gamma(X, L^* \otimes E \otimes \mathscr{I}_Z) \subset \Gamma(X, L^* \otimes E) \cong C$,

hence dim End E = 1, i.e. E is simple.

ii) If $M \cong L$, denote by ε the composed morphism

 $E \rightarrow M \otimes \mathscr{I}_{z} \hookrightarrow M \xrightarrow{\sim} L \rightarrow E.$

Obviously $\epsilon \neq 0$ and $\epsilon^2 = 0$. In particular E is non-simple and the uniqueness of the devissage follows from Proposition 1.10. Since $C[\epsilon] \subset End E$, it remains to be shown that dim End $E \leq 2$. To see this, we use the same inequality as above

dim End $E \leq \dim \Gamma(X, M^* \otimes E) + \dim \Gamma(X, L^* \otimes E \otimes \mathscr{I}_Z)$.

Since $M \cong L$, the uniqueness of the devissage implies dim $\Gamma(X, M^* \otimes E) = 1$ and dim $\Gamma(X, L^* \otimes E \otimes \mathscr{I}_Z) \leq 1$, hence dim End $E \leq 2$. Therefore End $E \cong C[\varepsilon]$.

b) It is clear that the devissage of a decomposable bundle $E \cong L \oplus M$ is not uniquely determined. Furthermore

End (E) \cong End (L) \oplus End (M) \oplus Hom (L,M) \oplus Hom (M,L),

which gives the endomorphism rings as asserted in 2i), ii).

c) That non-filtrable 2-bundles are simple follows from 1.7. This completes the proof of Theorem 2.2. We now look at a relative situation.

2.3. THEOREM. – Let X be a compact complex manifold without divisors, S a Stein manifold with $H^2(S,Z) = 0$ and E a vector bundle of rank 2 on X × S. For $s \in S$ denote by i_s the inclusion map

$$i_s: X \xrightarrow{\sim} X \times \{s\} \hookrightarrow X \times S$$

and $E_s := i_s^*E$. Suppose that E_s is filtrable and indecomposable for all $s \in S$ (i.e. belongs to class I.1 in the classification of Theorem 2.2). Then there exist line bundles $L \to X \times S$, $M \to X \times S$ and a subspace $Z \subset X \times S$ of codimension 2 which is flat over S, such that E fits into

an exact sequence

$$0 \to L \to E \to M \otimes \mathscr{I}_Z \to 0$$

whose restriction to every fibre $X \times \{s\}$ is the uniquely determined devissage of E_s .

Proof. – Let $L \rightarrow X \times Pic(X)$ be the universal line bundle. Consider the bundle

$$L^* \boxtimes E \rightarrow X \times (Pic(X) \times S).$$

Let $p: X \times (Pic(X) \times S) \rightarrow Pic(X) \times S$ be the projection. By the semicontinuity theorem the set

$$\mathbf{S}' := \{(\xi,s) \in \operatorname{Pic}(\mathbf{X}) \times \mathbf{S} : \operatorname{H}^{0}(p^{-1}(\xi,s), \mathbf{L}_{\xi}^{*} \otimes \mathbf{E}_{s}) \neq 0\}$$

is analytic. Since the devissage of every bundle E_s is uniquely determined, the projection $q: S' \to S$ is bijective, hence biholomorphic if we provide S' with the structure of a reduced subspace of $Pic(X) \times S$. Let $\varphi: S \to S' \subset Pic(X) \times S$ be the inverse map of q and define the line bundle $L \to X \times S$ by

$$L:=(\mathrm{id}_{X}\times \varphi)^{*}L.$$

For every $s \in S$, the vector space Hom (L_s, E_s) is one-dimensional, hence the direct image sheaf

$$\pi_{\star}$$
 Hom (L,E),

where $\pi: X \times S \to S$ is the projection, is locally free of rank 1 on S. The hypothesis $H^2(S,Z) = 0$ implies $\pi_* Hom(L,E) \cong \mathcal{O}_S$. Let $\alpha: L \to E$ be the morphism corresponding to a global non-vanishing section of $\pi_* Hom(L,E)$. The restriction $\alpha_s: L_s \to E_s$ of α to any fibre $\pi^{-1}(s)$ is up to a constant factor the unique monomorphism of a line bundle into E_s . The image $\alpha(L)$ is a direct summand of E outside a set of codimension 2. Corollary 1.5 implies that $E/\alpha(L)$ is torsion free. Define the line bundle $M \to X \times S$ by

$$M := (E/\alpha(L))^{**}$$
.

Then $E/\alpha(L) \cong M \otimes \mathscr{I}_Z$ for a certain 2-codimensional subspace $Z \subset X \times S$. Since Z is locally a complete intersection whose intersection

with every fibre $\pi^{-1}(s)$ is 2-codimensional, Z is flat over S. The morphism $\alpha: L \to E$ together with the quotient map $E \to E/\alpha(L) \cong M \otimes \mathscr{I}_Z$ gives the desired exact sequence

$$0 \to \mathbf{L} \to \mathbf{E} \to \mathbf{M} \otimes \mathscr{I}_{\mathbf{Z}} \to 0.$$

2.4. Theorem 2.3 implies the following: Let $E \rightarrow X \times S$ be a vector bundle as in Theorem 2.3 and

$$0 \rightarrow L_s \rightarrow E_s \rightarrow M_s \otimes \mathscr{I}_{Z_s} \rightarrow 0$$

the unique devissage of E_s . Then

$$s \mapsto [L_s] \text{ and } s \mapsto [M_s]$$

define holomorphic maps $S \rightarrow Pic(X)$. Moreover there is a holomorphic map

$$S \rightarrow D(X), s \mapsto Z_s,$$

where D(X) denotes the Douady space of all compact analytic subspaces of X, cf. [4].

3. Deformations of vector bundles and projective bundles.

3.1. Holomorphic fibre bundles with fibre P_{r-1} and structure group PGL(r, C) on a complex space X (we will call them briefly projective (r-1)-bundles or P_{r-1} -bundles) are classified by $H^1(X, PGL(r, \mathcal{O}))$. Every vector bundle E of rank r on X gives rise to a projective (r-1)-bundle P(E). The relevant exact sequence is

$$0 \to \mathcal{O}^* \to \operatorname{GL}(r, \mathcal{O}) \to \operatorname{PGL}(r, \mathcal{O}) \to 0,$$

to which is associated the exact cohomology sequence

$$\mathrm{H}^{1}(\mathrm{X},\mathrm{GL}(r,\mathcal{O})) \rightarrow \mathrm{H}^{1}(\mathrm{X},\mathrm{PGL}(r,\mathcal{O})) \rightarrow \mathrm{H}^{2}(\mathrm{X},\mathcal{O}^{*}).$$

Thus if $H^2(X, \mathcal{O}^*) = 0$ (in particular if X is a curve or P_n) every projective bundle is of the form P(E) where E is a vector bundle (cf. Atiyah [1]).

For general X this is no longer true. However we will show that if P_0 is a projective bundle associated to a vector bundle, then any small deformation of P_0 also comes from a vector bundle.

3.2. THEOREM. – Let E_0 be a vector bundle of rank r on a compact complex space X. Let $P \rightarrow X \times S$ be a deformation of $P(E_0)$ over the germ (S,0). Then there exists a deformation $E \rightarrow X \times S$ of the vector bundle E_0 such that $P \cong P(E)$. Moreover one can choose E such that det E is a trivial deformation of det E_0 . With this supplementary condition E is uniquely determined.

Proof. - The deformation P is given by a cocycle

 $\xi \in H^1(X \times S, PGL(r, \mathcal{O}))$

which can be represented by a cochain

$$(g_{ii}) \in C^1(\mathscr{U} \times S, GL(r, \mathcal{O})),$$

where $\mathscr{U} = (U_i)_{i \in 1}$ is a suitable open covering of X. We may assume all intersections $U_i \cap U_j$ to be simply connected. We may further assume that

$$(g_{ij}(0)) \in \mathrm{C}^1(\mathcal{U},\mathrm{GL}(r,\mathcal{O}))$$

is a cocycle defining the vector bundle E_0 . Therefore there exists a cochain

$$(c_{iik}) \in C^2(\mathscr{U} \times S, \mathscr{O}^*)$$

with

 $c_{ijk}(0) = 1$

and

$$g_{ij}g_{jk} = c_{ijk}g_{ik}$$
 on $(U_i \cap U_j \cap U_k) \times S$.

Since the $U_i \cap U_j$ are simply connected, there exist functions

 $\gamma_{ij} \in \mathcal{O}^*((\mathbf{U}_i \cap \mathbf{U}_j) \times \mathbf{S})$

with

det $g_{ij} = \gamma_{ij}^r$.

We define

$$\widetilde{g}_{ij} := g_{ij} \frac{\gamma_{ij}(0)}{\gamma_{ii}} \in \operatorname{GL}(r, \mathcal{O}((\mathbf{U}_i \cap \mathbf{U}_j) \times \mathbf{S})).$$

We have then

$$g_{ij}(0) = g_{ij}(0)$$

and

det
$$\tilde{g}_{ij}(s) = \gamma_{ij}(0)^r$$
 for all $s \in S$.

We will show that (\tilde{g}_{ij}) is a cocycle, i.e.

$$(*) \qquad \qquad \tilde{g}_{ij}\tilde{g}_{jk}=\tilde{g}_{ik}.$$

Indeed, we have $\tilde{g}_{ij}\tilde{g}_{jk} = \tilde{c}_{ijk}\tilde{g}_{ik}$ with a cochain

$$\tilde{c}_{ijk} \in \mathbf{C}^2(\mathscr{U} \times \mathbf{S}, \mathscr{O}^*), \qquad \tilde{c}_{ijk}(0) = 1.$$

Then taking determinants we get

$$\gamma_{ij}(0)^{\mathbf{r}}\gamma_{j\mathbf{k}}(0)^{\mathbf{r}} = (\tilde{c}_{ij\mathbf{k}})^{\mathbf{r}}\gamma_{i\mathbf{k}}(0)^{\mathbf{r}}.$$

On the other hand $\gamma_{ij}(0)^r \gamma_{jk}(0)^r = \gamma_{ik}(0)^r$, hence

$$(\tilde{c}_{ijk})^r = 1$$
.

Since $\tilde{c}_{ijk}(0) = 1$, this implies $\tilde{c}_{ijk} = 1$ as an element of $\mathcal{O}^*((U_i \cap U_j \cap U_k) \times S)$. Thus we have proved the cocycle relation (*). The cocycle

$$(\tilde{g}_{ii}) \in \mathbb{Z}^1(\mathscr{U} \times S, \operatorname{GL}(r, \mathcal{O}))$$

defines the desired deformation E of E_0 for which $P(E) \cong P$ and det E is the trivial deformation of det E_0 .

Uniqueness. Let $E' \to X \times S$ be another deformation of E_0 with $P(E') \cong P$. Then $E' \cong E \otimes L$, where $L \to X \times S$ is a deformation of the trivial line bundle. If both det E and det $E' = (\det E) \otimes L'$ are trivial deformations of det E_0 , it follows that L' is trivial. Since L_0 is trivial, L must be trivial itself.

3.3. Given a vector bundle E of rank r on a complex space X, we have a canonical injection

$$\mathcal{O}_{\mathbf{X}} \rightarrow End \mathbf{E}, f \mapsto f.id_{\mathbf{E}}.$$

This injections splits by the map

$$\varphi \mapsto \frac{1}{r} \operatorname{trace}(\varphi)$$

and we get a direct sum decomposition

End
$$\mathbf{E} \cong \mathcal{O}_{\mathbf{X}} \oplus End_{\mathbf{0}} \mathbf{E}$$
,

where $End_0 E$ is the sheaf of endomorphisms of trace zero. In particular, we have for any $q \in \mathbb{N}$

$$H^{q}(X, End E) \cong H^{q}(X, \mathcal{O}_{X}) \otimes H^{q}(X, End_{0} E).$$

Consider the projective bundle P(E) associated to E. If X is compact, the versal deformation of P(E) exists and the tangent space of the basis of the versal deformation is $H^1(X, End_0 E)$.

3.4. THEOREM. — Let E_0 be a vector bundle on the compact complex space X. Let $E' \rightarrow X \times \Sigma$ be a deformation of E_0 such that $P(E') \rightarrow X \times \Sigma$ is the versal deformation of $P(E_0)$. Let $L \rightarrow X \times \Pi$ be the versal deformation of the trivial line bundle on X. Then the exterior tensor product

$$L \boxtimes E' \rightarrow X \times (\Pi \times \Sigma)$$

is the versal deformation of E_0 .

Remarks. - a) The deformation $E' \rightarrow X \times \Sigma$ exists by Theorem 3.2.

b) The versal deformation $L \to X \times \Pi$ of the trivial line bundle can be obtained as follows: Choose cocycles $(h_{ij}^{\mu}) \in \mathbb{Z}^1(\mathcal{U}, \mathcal{O}_X), \ \mu = 1, \ldots, m$ whose cohomology classes form a basis of $H^1(X, \mathcal{O}_X)$. Then $\Pi = (\mathbb{C}^m, 0)$ and

$$g_{ij}$$
: = exp $\left(\sum_{\mu=1}^{m} t_{\mu} h_{ij}^{\mu}\right)$,

where t_1, \ldots, t_m are the coordinates in \mathbb{C}^m , is the cocycle defining L.

Proof of Theorem 3.4. - Let

 $E \rightarrow X \times S$

be the versal deformation of E_0 . Then $P(E) \rightarrow X \times S$ is a deformation of $P(E_0)$, hence there exists a map $\alpha : S \rightarrow \Sigma$ such that

$$\mathbf{P}(\mathbf{E}) \cong \alpha^* \mathbf{P}(\mathbf{E}') = \mathbf{P}(\alpha^* \mathbf{E}').$$

Then there exists a deformation $M \rightarrow X \times S$ of the trivial line bundle such that

$$E \cong M \otimes \alpha^* E'$$
.

By the versal property of $L \to X \times \Pi$, there exists a map $\beta: S \to \Pi$ such that $M \cong \beta^*L$. Thus, letting

$$f:=(\beta,\alpha): S \rightarrow \Pi \times \Sigma,$$

we have

$$\mathbf{E} \cong f^*(\mathbf{L} \otimes \mathbf{E}').$$

On the other hand, by the versal property of $E \rightarrow X \times S$, there exists a map $g: \Pi \times \Sigma \rightarrow S$ such that

$$L \boxtimes E' \cong g^*E$$
.

Therefore $E \cong (g \circ f)^*E$, which implies

$$(dg)_0 \circ (df)_0 = d(g \circ f)_0 = id_{T,S}.$$

Consider the diagram

$$T_0S \xrightarrow{(df)_0} T_{(0,0)}(\Pi \times \Sigma) \xrightarrow{(dg)_0} T_0S.$$

Since $T_0\Pi = H^1(X, \mathcal{O}_X)$, $T_0\Sigma = H^1(X, End_0 E)$ and $T_0S = H^1(X, End E)$, we have

$$\dim T_0 S = \dim T_{(0,0)}(\Pi \times \Sigma),$$

hence $(df)_0$ and $(dg)_0$ are isomorphisms. This implies that $f: S \to \Pi \times \Sigma$ is an isomorphism of germs and

 $L \boxtimes E' \to X \times (\Pi \times \Sigma)$ isomorphic to the versal deformation $E \to X \times S$, q.e.d.

3.5. COROLLARY. – Let E be a vector bundle on a compact complex space X such that

dim H²(X, End E) = dim H²(X, \mathcal{O}_X).

Then the basis S of the versal deformation of E is smooth.

Proof. – The hypothesis implies $H^2(X, End_0 E) = 0$. Therefore the basis Σ of the versal deformation of P(E) is smooth, so $S = \Pi \times \Sigma$ is also smooth.

3.6. COROLLARY. – Let X be a smooth compact complex surface with trivial canonical bundle (for example a torus or a K3-surface) and E be a simple vector bundle on X. Then the basis of the versal deformation of E is smooth.

Proof. – By Serre duality

 $H^{2}(X, End E) \cong H^{0}(X, End E)^{*} \cong C$

and

$$\mathrm{H}^{2}(\mathbf{X}, \mathcal{O}_{\mathbf{X}}) \cong \mathrm{H}^{0}(\mathbf{X}, \mathcal{O}_{\mathbf{X}})^{*} \cong \mathbf{C}.$$

Therefore we can apply Corollary 3.5.

4. Vector bundles on tori with trivial Néron-Severi group.

4.1. Recall the theorem of Riemann-Roch for a (smooth, compact complex) surface X. If E is a vector bundle of rank r on X, we have

$$\begin{split} \chi(\mathbf{X},\mathbf{E}) &= r\chi(\mathbf{X},\mathcal{O}_{\mathbf{X}}) + \frac{1}{2} \left(c_1(\mathbf{X}) c_1(\mathbf{E}) + c_1(\mathbf{E})^2 \right) - c_2(\mathbf{E}), \\ \chi(\mathbf{X},\mathcal{O}_{\mathbf{X}}) &= \frac{1}{12} \left(c_1(\mathbf{X})^2 + c_2(\mathbf{X}) \right). \end{split}$$

In particular we can apply Riemann-Roch to the endomorphism bundle End E. Since

$$c_1 (\text{End E}) = 0,$$

 $c_2 (\text{End E}) = r^2 c_2 (\text{E}) - (r-1)c_1 (\text{E})^2,$

we get

$$\chi(\mathbf{X}, \text{End } \mathbf{E}) = r^2 \chi(\mathbf{X}, \mathcal{O}_{\mathbf{X}}) + (r-1)c_1(\mathbf{E})^2 - r^2 c_2(\mathbf{E}).$$

4.2. The Néron-Severi group of a surface X is defined by

$$NS(X) := Im \left(H^{1}(X, \mathcal{O}_{X}^{*}) \xrightarrow{c_{1}} H^{2}(X, \mathbb{Z}) \right).$$

In the following we shall deal with surfaces X (especially tori) having NS(X) = 0. If in addition X is Kähler, then X has no divisors, in particular its algebraic dimension is zero. (Hopf surfaces always have NS(X) = 0, whereas their algebraic dimension may be zero or one.)

4.3. PROPOSITION. – Let X be a Kähler surface with NS(X) = 0. Then for any vector bundle E of rank 2 on X we have $c_2(E) \ge 0$.

Proof. - Since NS(X) = 0, we have $c_1(X) = c_1(E) = 0$, hence

$$\chi(X,E) = \frac{1}{6}c_2(X) - c_2(E),$$

$$\chi(X,\mathcal{O}_X) = \frac{1}{12}c_2(X).$$

Since for a surface with algebraic dimension zero we have $\chi(X, \mathcal{O}_X) \ge 0$ (cf. [3], part 6, Prop. 1.5), it follows $c_2(X) \ge 0$. We consider first the case that E is not filtrable. Then

$$H^{0}(X,E) = 0$$
 and $H^{2}(X,E)^{*} \cong H^{0}(X,E^{*}\otimes K_{X}) = 0$,

hence

$$0 \leq h^{1}(X,E) = -\chi(X,E) = c_{2}(E) - \frac{1}{6}c_{2}(X) \leq c_{2}(E).$$

If E is filtrable we have a devissage

$$0 \rightarrow L \rightarrow E \rightarrow M \otimes \mathscr{I}_Z \rightarrow 0.$$

Since $c_1(L) = c_1(M) = 0$, $c_2(E)$ is the dual class of Z, hence non-negative.

4.4. We consider now bundles on a two-dimensional torus X. Since the tangent bundle of X is trivial, we have

$$\chi(\mathbf{X},\mathcal{O}_{\mathbf{X}})=0.$$

Serre duality gives

$$h^2(\mathbf{X},\mathbf{E}) = h^0(\mathbf{X},\mathbf{E}^*)$$

for every vector bundle E on X.

4.5. PROPOSITION. – Let E be a simple vector bundle of rank r on a two-dimensional torus X with

$$c_1(\mathbf{E}) = c_2(\mathbf{E}) = 0$$
.

Then E is homogeneous, i.e. invariant under translations.

Proof. – Since $h^0(X, \text{End } E) = h^2(X, \text{End } E) = 1$, we have by Riemann-Roch $h^1(X, \text{End } E) = 2$, hence

$$h^{1}(X, End_{0} E) = h^{1}(X, End E) - h^{1}(X, \mathcal{O}_{X}) = 0.$$

By Theorem 3.4 the versal deformation of E is given by

$$E \boxtimes L \rightarrow X \times \Pi$$
,

where $L \rightarrow X \times \Pi$ is the versal deformation of the trivial line bundle.

We now construct a family $F \rightarrow X \times X$ in the following way: Let

$$a: X \times X \rightarrow X$$

be the addition map a(x,y) := x + y and define

$$\mathbf{F} := a^* \mathbf{E}.$$

By versality, we get a map

$$\varphi:\,(X,0)\,\,\rightarrow\,\,\Pi$$

of space germs such that

$$F|X \times (X,0) \cong \phi^*(E \boxtimes L).$$

Let $\tau_x \colon X \to X$ be the translation $y \mapsto x + y$. Then for x in a sufficiently small neighborhood of $0 \in X$ we have

$$\tau_x^* \mathbf{E} \cong \mathbf{E} \otimes \mathbf{L}_{\mathbf{o}(x)}.$$

Taking determinants, we get

$$\tau_x^*$$
 (det E) \cong (det E) \otimes $L^2_{\varphi(x)}$.

Since det E is a topologically trivial line bundle, it is homogeneous, which shows that $L^2_{\varphi(x)}$ is the trivial line bundle. Since $L_{\varphi(0)}$ is trivial, $L_{\varphi(x)}$ itself is trivial. Hence $\tau^*_x E \cong E$ for all sufficiently small x. Since every neighborhood of zero generates X, the bundle E is homogeneous.

4.6. COROLLARY – Every 2-bundle E on a 2-dimensional torus with $c_1(E) = c_2(E) = 0$ is filtrable.

Proof. – By (1.8) we may assume that E is simple. Then E is homogeneous by Proposition 4.5. By a theorem of Matsushima ([5], Prop. 3.2) E is filtrable.

4.7. PROPOSITION. – Let X be a two-dimensional torus with NS(X) = 0. A two-bundle E on X is induced by a representation

$$\sigma: \pi_1(\mathbf{X}) \to \mathrm{GL}(2,\mathbf{C})$$

if and only if $c_2(E) = 0$.

Remark. – If one drops the hypothesis NS(X) = 0, the result does not necessarily hold. Oda [7] has constructed a 2-bundle E on an algebraic 2-dimensional torus with $c_1(E) = c_2(E) = 0$ which does not admit a connection, hence is not induced by a representation.

Proof of Proposition 4.7. A bundle induced by a representation of $\pi_1(X)$ possesses an integrable connection, hence all its Chern classes are zero (cf. Atiyah [2]).

Conversely suppose $c_2(E) = 0$. Then by Corollary 4.6, E is filtrable (since automatically $c_1(E)=0$). We now distinguish two cases.

i) If E is decomposable, it is a sum of two topologically trivial line bundles, hence induced by a representation (Appell-Humbert).

ii) If E is indecomposable, we have a devissage

$$0 \to L \to E \to M \otimes \mathscr{I}_Z \to 0$$

with L, M \in Pic₀(X). Since $c_2(E) = 0$, Z must be empty. We have (by Riemann-Roch)

$$\dim H^{1}(X, M^{*} \otimes L) = \begin{cases} 2 & \text{if } L \cong M, \\ 0 & \text{if } L \cong M. \end{cases}$$

Since E is indecomposable, the second possibility is excluded and we have an exact sequence

 $0 \rightarrow L \rightarrow E \rightarrow L \rightarrow 0.$

The extensions of L by L are classified by

$$\mathrm{H}^{1}(\mathrm{X},\mathrm{Hom}\,(\mathrm{L},\mathrm{L}))=\mathrm{H}^{1}(\mathrm{X},\mathcal{O}).$$

Now the translations operate trivially on $H^1(X, \mathcal{O})$, which shows that E is homogeneous, hence induced by a representation [5].

4.8. Example of a non-filtrable bundle. – Let X be a two dimensional torus with NS(X) = 0. Let L, $M \in Pic_0(X) = Pic(X)$ be two line bundles on X with $L \not\cong M$ and $Z \subset X$ a subspace consisting of two simple points. Consider a 2-bundle E_0 on X which is an extension

$$0 \rightarrow L \rightarrow E_0 \rightarrow M \otimes \mathscr{I}_Z \rightarrow 0.$$

We will show that in the versal deformation of E_0 there occur nonfiltrable bundles.

Let us first convince ourselves that there is such a bundle E_0 . The extensions of $M \otimes \mathscr{I}_Z$ by L are classified by the group $Ext^1(M \otimes \mathscr{I}_Z, L)$. There is an exact sequence

$$\begin{array}{l} 0 \ \rightarrow \ \mathrm{H}^{1}(\mathrm{X}, \, Hom \, (\mathrm{M} \otimes \mathscr{I}_{\mathrm{Z}}, \mathrm{L})) \ \rightarrow \ \mathrm{Ext}^{1} \, (\mathrm{M} \otimes \mathscr{I}_{\mathrm{Z}}, \mathrm{L}) \ \rightarrow \\ \ \rightarrow \ \Gamma(\mathrm{X}, \, Ext^{1} \, (\mathrm{M} \otimes \mathscr{I}_{\mathrm{Z}}, \mathrm{L})) \ \rightarrow \ \mathrm{H}^{2}(\mathrm{X}, \, Hom \, (M \otimes \mathscr{I}_{\mathrm{Z}}, \mathrm{L})) \,. \end{array}$$

Since Z has codimension 2, we have

Hom
$$(M \otimes \mathscr{I}_{Z}, L) \cong M^* \otimes L$$
.

By Serre duality $H^2(X,M^*\otimes L) \cong H^0(X,M\otimes L^*)^* = 0$, hence by Riemann-Roch $H^1(X,M^*\otimes L) = 0$. On the other hand, since Z is a locally complete intersection consisting of discrete points.

$$Ext^{1}(M \otimes \mathscr{I}_{Z}, L) \cong \mathscr{O}_{Z},$$

which proves

$$\operatorname{Ext}^{1}(\operatorname{M}\otimes \mathscr{I}_{Z}, \operatorname{L})\cong \Gamma(\operatorname{X}, \mathscr{O}_{Z})\cong \operatorname{C}\oplus \operatorname{C}.$$

By Serre [8], the sheaf corresponding to an extension $\xi \in \text{Ext}^1 (M \otimes \mathscr{I}_Z, L)$ is locally free if and only if its image in $C \oplus C$ under the above isomorphism has both coordinates different from zero. Extensions ξ_1, ξ_2 which differ only by a constant factor $\lambda \in C^*$ give rise to isomorphic sheaves.

4.9. PROPOSITION. – On a two-torus X with NS(X) = 0 there exist non-filtrable vector bundles E of rank 2 with $c_2(E) = 2$.

Proof. – Let E_0 be a 2-bundle with devissage $0 \rightarrow L \rightarrow E_0 \rightarrow M \otimes \mathscr{I}_Z \rightarrow 0$

as in 4.8. By Theorem 2.2 this bundle is simple, hence the basis (V,0) of its versal deformation $E \rightarrow X \times V$ is smooth (Corollary 3.6). The dimension of V equals $h^1(X, \text{End } E_0)$ and can be calculated by Riemann-Roch: We have $\chi(X, \mathcal{O}_X) = 0$ and $c_1(E_0) = 0$, hence

$$h^{1}(X, \text{End } E_{0}) = h^{0}(X, \text{End } E_{0}) + h^{2}(X, \text{End } E_{0}) + 4c_{2}(E) = 2 + 8 = 10.$$

Since small deformations of simple bundles are simple and have the same Chern classes, this dimension is invariant under small deformations. This implies that the versal deformation of E_0 is also versal in neighboring points.

Suppose now that all bundles $E_s, s \in V$, are filtrable. Then they belong all (for s sufficiently close to 0) to class I.1.i) of the classification of Theorem 2.2. By Theorem 2.3 there exist deformations $\mathscr{L} \to X \times V$ and $\mathscr{M} \to X \times V$ of L resp. M and a two-codimensional subspace $\mathscr{L} \subset X \times V$, flat over V, such that E fits into an exact sequence

$$0 \to \mathscr{L} \to E \to M \otimes \mathscr{I}_{\mathscr{X}} \to 0.$$

Since $Z = \mathscr{Z}_0$ consists of two simple points, also \mathscr{Z}_s consists of two simple points for s sufficiently near 0. We can define a holomorphic map

$$\varphi: V \rightarrow \operatorname{Pic}_0(X) \times \operatorname{Pic}_0(X) \times \operatorname{S}^2 X$$

by

 $s \mapsto (\mathscr{L}_s, \mathscr{M}_s, \mathscr{Z}_s).$

Since dim $(\operatorname{Pic}_0(X) \times \operatorname{Pic}_0(X) \times S^2 X) = 8$,

$$\mathbf{S} := \boldsymbol{\varphi}^{-1}(\mathbf{L}, \mathbf{M}, \mathbf{Z})$$

is a subgerm of V of dimension ≥ 2 and we get a family

 $0 \to q^* L \to E | X \times S \to q^* M \otimes \mathscr{I}_{Z \times S} \to 0,$

where $q: X \times S \rightarrow X$ is the projection. This family of extensions defines a holomorphic map

$$\psi: S \to \operatorname{Ext}^1(M \otimes \mathscr{I}_Z, L) \cong \mathbb{C}^2.$$

Since $0 \notin \psi(S)$, we have an associated map

$$\bar{\Psi}: S \rightarrow \mathbf{P} (\mathrm{Ext}^1 (\mathbf{M} \otimes \mathscr{I}_Z, \mathbf{L})) \cong \mathbf{P}_1.$$

If $\overline{\Psi}(s) = \overline{\Psi}(s')$, then $E_s \cong E_{s'}$. Since dim $S \ge 2$, the fibres of $\overline{\Psi}$ have dimension ≥ 1 . Thus there exists a 1-dimensional subgerm $C \subset S$, such that $E|X \times C$ is a trivial deformation of E_0 . But this is a contradiction to the versality of the deformation $E \rightarrow X \times V$. Hence there must exist non-filtrable bundles E_s in this deformation, q.e.d.

Appendix

Picard number and algebraic dimension of tori.

1. Generalities. Let X be a compact complex connected manifold of dimension n. Its algebraic dimension a(X) is defined as the transcendence degree of its field of meromorphic functions. As is well known, $a(X) \leq n$. We denote by $Pic(X) = H^1(X, \mathcal{O}^*)$ the group of isomorphism classes of holomorphic line bundles on X, and by

$$\operatorname{Pic}_{0}(X) = \operatorname{Ker} \left(\operatorname{H}^{1}(X, \mathcal{O}^{*}) \xrightarrow{\iota_{1}} \operatorname{H}^{2}(X, \mathbb{Z}) \right)$$

the subgroup of line bundles with vanishing first Chern class. The Néron-Severi group NS(X) is defined by the exact sequence

$$0 \rightarrow \operatorname{Pic}_0(X) \rightarrow \operatorname{Pic}(X) \rightarrow \operatorname{NS}(X) \rightarrow 0$$
.

Hence we can write

$$NS(X) = Im (H^{1}(X, \mathcal{O}^{*}) \xrightarrow{c_{1}} H^{2}(X, \mathbb{Z})).$$

The rank of NS(X) is called the Picard number of X and is denoted by $\rho(X)$:

$$\rho(\mathbf{X}) = \operatorname{rank}_{\mathbf{Z}} \operatorname{NS}(\mathbf{X}).$$

Assume now that X is a Kähler manifold and consider the Hodge decomposition

$$H^{2}(X,C) = H^{20}(X,C) \oplus H^{11}(X,C) \oplus H^{02}(X,C)$$

Denote by $j: H^2(X,\mathbb{Z}) \to H^2(X,\mathbb{C})$ the map induced by the inclusion $\mathbb{Z} \hookrightarrow \mathbb{C}$. Then the famous Lefschetz Theorem on (1,1)-classes reads

$$NS(X) = j^{-1}(H^{11}(X,C)).$$

So, denoting as usual $\dim_{\mathbb{C}} H^{11}(X,\mathbb{C})$ by $h^{11}(X)$, we have

(i)
$$\rho(\mathbf{X}) \leq h^{11}(\mathbf{X}).$$

Equality does not necessarily hold, however we have

(ii)
$$\rho(X) = h^{11}(X) \Rightarrow X$$
 projective algebraic
(iii) $\rho(X) = 0 \Rightarrow a(X) = 0$.

2. The case of tori. Suppose now X is a torus,

$$X = V/\Gamma$$
,

where V is a vector space of dimension n over C and $\Gamma \subset V$ a lattice of rank 2n. One has a natural isomorphism

$$\mathrm{H}^{2}(\mathbf{X},\mathbf{Z})\cong\mathrm{Alt}^{2}_{\mathbf{Z}}(\Gamma,\mathbf{Z})$$

of $H^2(X,\mathbb{Z})$ with the space of alternating integer-valued 2-forms on Γ . Let

 $H(V,\Gamma) = \{H : H \text{ hermitian form on } V \text{ with } Im H(\Gamma \times \Gamma) \subset Z\}.$

Since the imaginary part Im H of a hermitian form H is an alternating 2form which determines completely H, we may consider $H(V,\Gamma)$ as a subgroup of $Alt_z^2(\Gamma, \mathbb{Z}) \cong H^2(X, \mathbb{Z})$. With this identification one has by the theorem of Appell-Humbert (cf. Mumford [6])

$$NS(X) = H(V,\Gamma)$$
.

Following Weil [9], let us call Riemann form of X any hermitian form $H \in H(V,\Gamma)$ which is positive semi-definite. Then the algebraic dimension of X is given by

$$a(\mathbf{X}) = \max \{ \operatorname{rank} \mathbf{H} : \mathbf{H} \operatorname{Riemann} \text{ form of } \mathbf{X} \}.$$

In order to be able to make explicit calculations, we introduce coordinates. Let $V = \mathbb{C}^n$ and let Γ be the lattice generated by the vectors $\gamma_1, \ldots, \gamma_{2n} \in \mathbb{C}^n$, which we consider as column vectors. Define the $n \times 2n$ period matrix

$$\Pi := (\gamma_1, \ldots, \gamma_{2n}).$$

Then $H(V,\Gamma)$ is identified with the space of all hermitian $n \times n$ matrices A for which

(*)
$$\operatorname{Im}({}^{t}\Pi A \overline{\Pi}) \in \mathbb{Z}^{2n \times 2n}.$$

3. Examples. In this section we consider two-dimensional tori. We want to give examples for all possible pairs $(a(X),\rho(X))$. For these examples we consider tori determined by period matrices of the form

$$\Pi = \begin{pmatrix} 1 & 0 & ip & ir \\ 0 & 1 & iq & is \end{pmatrix} = (\mathbf{I}, i\mathbf{P}); \quad \mathbf{P} = \begin{pmatrix} p & r \\ q & s \end{pmatrix} \in \mathbf{R}^{2 \times 2}.$$

An hermitian 2×2 matrix can be written as

$$\mathbf{A} = \begin{pmatrix} x & u + iv \\ u - iv & y \end{pmatrix}, \quad x, y, u, v \in \mathbf{R}.$$

The condition (*) above becomes

- (i) $v \in \mathbb{Z}$, $(ps qr)v \in \mathbb{Z}$.
- (ii) $px + qu \in \mathbb{Z}$, $pu + qy \in \mathbb{Z}$, $rx + su \in \mathbb{Z}$, $ru + sy \in \mathbb{Z}$.

Obviously the conditions (i) are independent of (ii) and yield a contribution of 1 or 0 to the Picard number of X, according as ps - qr is rational or not. Since $ps - qr \neq 0$, the system

(iii) $px + qu = n_1$, $pu + gy = n_3$, $rx + su = n_2$, $ru + sy = n_4$,

has at most one solution for fixed $(n_1, n_2, n_3, n_4) \in \mathbb{Z}^4$. Hence the group of triples (x, y, u) satisfying (ii) is isomorphic to the group of those $(n_1, n_2, n_3, n_4) \in \mathbb{Z}^4$ for which (iii) has a solution. But this system has a solution if and only if the value of u deduced from the first pair of equations is the same as that deduced from the second pair, that is if and only if

(iv)
$$n_1r - n_2p + n_3s - n_4q = 0$$
.

The subgroup of \mathbb{Z}^4 defined by this equation has rank equal to

$$4 - \operatorname{rank}_{\mathbf{Q}}(p,q,r,s).$$

Summing up, we have proved

PROPOSITION. – Let Γ be the lattice in \mathbb{C}^2 spanned by the columns of the matrix

$$\begin{pmatrix} 1 & 0 & ip & ir \\ 0 & 1 & iq & is \end{pmatrix}, \qquad p, q, r, s \in \mathbf{R}.$$

Then the Picard number of the torus $X = C^2/\Gamma$ is given by the formula

$$\rho(\mathbf{X}) = 4 - \operatorname{rank}_{\mathbf{Q}}(p,q,r,s) + \begin{cases} 1 & \text{if } ps - qr \in \mathbf{Q}, \\ 0 & \text{if } ps - qr \notin \mathbf{Q}. \end{cases}$$

Since for a two-torus X we have $h^{11}(X) = 4$, from (App. 1), (i) - (iii) follow the following restrictions for the Picard number:

 $\begin{array}{ll} 0 \leqslant \rho(\mathbf{X}) \leqslant 3, & \text{if} \quad a(\mathbf{X}) = 0, \\ 1 \leqslant \rho(\mathbf{X}) \leqslant 3, & \text{if} \quad a(\mathbf{X}) = 1, \\ 1 \leqslant \rho(\mathbf{X}) \leqslant 4, & \text{if} \quad a(\mathbf{X}) = 2. \end{array}$

Besides these there are no other restrictions as is shown by the following examples. In the table we give the matrix P determining the period matrix $\Pi = (I,iP)$ of the required torus.

ı.

	a = 0	a = 1	<i>a</i> = 2
ρ = 0	$\begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{3} & \sqrt{5} \end{pmatrix}$	impossible	impossible
$\rho = 1$	$\frac{1}{\sqrt{6}-\sqrt{5}} \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{3} & \sqrt{5} \end{pmatrix}$	$\begin{pmatrix} 1 & \sqrt{2} \\ 0 & \sqrt{3} \end{pmatrix}$	$\begin{pmatrix} -\sqrt{2} & 1 \\ 1 & \sqrt{3} \end{pmatrix}$
ρ = 2	$\begin{pmatrix} 1 & -\frac{3}{\sqrt{2}} \\ \frac{3}{\sqrt{2}} & 1 \end{pmatrix}$	$\begin{pmatrix} 3\sqrt{2} & 1 \\ 0 & 3\sqrt{2} \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & \sqrt{2} \end{pmatrix}$
ρ = 3	$\begin{pmatrix} 1 & -\sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 3\sqrt{2} & 0 \\ 0 & 3\sqrt{2} \end{pmatrix}$
ρ = 4	impossible	impossible	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

The values of $\rho(X)$ follow from the proposition. We leave it as an exercise to the reader to verify the values of a(X) by determining the maximal rank of a Riemann form.

BIBLIOGRAPHY

- [1] M. ATIYAH, Vector bundles on elliptic curves, Proc. London Math. Soc., 7 (1957), 414-452.
- [2] M. ATIYAH, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., 85 (1957), 181-207.
- [3] E. BOMBIERI and D. HUSEMOLLER, Classification and embeddings of surfaces, In : Algebraic Geometry, Arcata 1974, AMS Proc. Symp. Pure Math., 29 (1975), 329-420.
- [4] A. DOUADY, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier, 16 (1966), 1-95.
- [5] Y. MATSUSHIMA, Fibrés holomorphes sur un tore complexe, Nagoya Math. J., 14 (1959), 1-24.
- [6] D. MUMFORD, Abelian varieties, Oxford Univ., Press 1970.
- [7] T. ODA, Vector bundles on abelian surfaces, Invent. Math., 13 (1974), 247-260.

- [8] J.-P. SERRE, Sur les modules projectifs, Séminaire Dubreil-Pisot 1960/1961, Exp. 2.
- [9] A. WEIL, Variétés Kählériennes. Paris, 1971.

Manuscrit reçu le 10 décembre 1981.

O. FORSTER, Mathematisches Institut Theresienstr. 39 8000 München 2 (West Germany). G. ELENCWAJG, Université de Nice Institut de Mathématiques et Sciences Physiques Mathématiques Parc Valrose 06034 Nice Cedex (France).