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IMPROVEMENT OF GRAUERT-RIEMENSCHNEIDER^S
THEOREM

FOR A NORMAL SURFACE

by Jean GIRAUD

1. Vanishing theorem.

1.1. A surface is a noetherian, excellent, normal scheme of dimension 2.
A desingularization of X is a proper and birational map /: X -> X such
that X is regular. The set

(1) Sing (/) = {x e X, dim (/-1^)) > 0}

is made up of finitely many closed points and / is an isomorphism above

(2) Xf = X - Sing (/) c: X,g = {x e X, Ox,, is regular}.

We usually denote by E, the irreducible components of

(3) E(f)=f-l(Smg(f))

and for A = N, Z or Q, we let

(4) NS(/,A)= ©AE,.

We do not assume that Xy = Xreg, hence X itself may be regular. For
any V = ZVf.E, eNS(/,Q), we write

(5) V > 0 when all V. are ^ 0
(6) V » 0 when all - V.E, are ^ 0 .

Note that the minus sign is justified by

(7) V » 0 =o V ^0.

To prove (7) we let V = V + - V _ ; since V ^ O , we have
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0 < - V. V = - V, .V_ + V2 < V2 , hence V_ = 0, since the
intersection matrix is negative definitive. We introduce the dual basis of
NS(/,Q)

(8) E* defined by E*.Ej. = - 8,,

and we observe that

(9) E*»0 , dE*eNS(/,N)

where d is the absolute value of the determinant of the intersection matrix.

LEMMA 1.2. - For any VeNS(/,Q) there exists a unique
[V]eNS(/,Z) such that

(i) V « [V],
(ii) if WeNS(/,Z) and if V « W then [V] < W.

We will prove that [V] is the infimum for the usual order relation of
E(V)= {W6NS(/.Z), V « W } . Let N € Z be such that
dN < inf(V.E..); we have -dNSE*eE(V), hence E(V) is nonempty.
For (=1 .2 , let W. = £W;,,E, e E(V) and let Z = £Z,E, with
Zj,= inf(Wi^,,W^). By Artin's trick we prove that ZeE(V) as
follows. For any j, we have Z, = Wi,, or Z, = W^. By symmetry we
can assume that Z -̂ = W, and we get

Z.E, = Wi,,E,2 + Y ZA.E, ^ Wi.E, < V.E,
*^

hence Z » V. To conclude, we note that the coordinates of any
W = £ W , E , 6 E ( V ) are bounded from below since
W, = - W.E* ^ - V.E* since E* is ^ 0. Observe the obvious

(1) [V+W]<[V]+[W] ; [V+E]=[V]+Ei fEeNS( / ,Z) .

We also let

(2) [Y] = — [-V] in such a way that [V] « V « [V].

1.3. Let L be an invertible sheaf on X. We define

(1) c/(L) € NS(/,Q) by ^(L).E. = deg(L|E,) for any i.
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We also write L ^ 0 instead of Cf(L) >> 0 and this means L.E, ^ 0
for all i. We will often drop the subscript /. Sending V to Ox(V) we
identify NS(/,Z) to a subgroup of Pic(X) and since V = ^(Ox(V)),
Ox(V) ^ 0 is equivalent to V ^ O . Hence, when we write Pic(X)
additively, we can safely write V in place of Ox(V) and L -+- V in place
of L(V) = L g) Ox(V). We will sometimes write [L] insteated of [^y(L)].

1.4. We can also give an algorithmic description of [V] as follows.
Start with Z e NS(/,Z) such that Z ^ [V]. For instance, if V = £V,E,
let Z = ZV;.Ef where V;. is the smallest integer ^ V,. If Z + [V] there
must exist a ; such that Z.E, > V.E; and we still have Z + E, < [V]. In
fact, since V«[V], we have ([V]-Z). E,^ (V-Z).E, < 0, hence
([V]—Z) ^ Ef since [V] — Z is effective with integral coefficients. We
now replace Z by Z + E, and reach [V] in a finite number of steps.

VANISHING THEOREM 1.5. - Lei f: X -^ X be a desingularization of a
normal surface X, let E =/~1 (Singi (/)) and let L be an invertible
sheaf on X.

(i) // [L] ^ 0 then H^(X,L) = 0.
(ii) If [L] ^ 0 ^w /^(L) ^ reflexive.
(iii) Z^r K te ^ dualizing sheaf of X. 7/* [K-L] » 0 then

Ry,(L)=0.

1.5.1. To prove (i) we let M = [L] and L' = L(-M) in such a way
that [L'] = 0 and M » 0, M e NS(/,N). For any V e NS(/,N), V + 0,
there exists an E, such that (L'+V). E» < 0 . Otherwise we would have
L' + V ^ 0 hence L' ^ - V, hence 0 = [L'] ^ - V < 0 which is
impossible. We observe that E, must be contained in the support of V,
otherwise we would have V.E,^ 0, hence

(L'+V).E, ^ ([L']+V).E, = V.E, > 0.

Furthermore, since M ^ 0, we have

(L+V).E, = (L'+M+V).E, ^ (I-/+V).E, < 0.

As a consequence we get

(1) V-E,eNS(/,N) and ( L + V ) . E , < 0 .

As a consequence we get H°(Ef, L(V)|E,) = 0 hence the map

(2) H°(V-E,; L(V-E,)|(V-E,)) -. H°(V; L(V)|V)
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is surjective. By induction on V, we conclude that, if [L] ^> 0, we have

(3) H°(V,L(V)|V) = 0 for any VeNS(/,N)

hence H^(X;L) = limH°(V;L(V)|V) = 0. This proves (i) and we get (iii)
by duality.

1.5.2. To prove (ii), we can assume that [L] = 0 since /^(L) reflexive
implies that, for any VeNS(/,N), the map /^(L) -^/»(L(V)) is an
isomorphism. Let u :/^(L) -^(Ly be the map from /^(L) to it's
bidual. Since L is invertible, we know that u is an isomorphism over the
open subset Xy of X. Since X is normal, we know that coker(M) Is finite
and since / is proper, this implies the existence of some V e NS(/;N) such
that /^L)" =/+(L(V)). Since [L] = 0, we know that
H°(V,L(V)|V) = 0 hence /^(L) -^(L(V)) is an isomorphism and this
concludes the proof.

1.5.3. We do not really need duality for surfaces to state and prove (iii).
In fact, we can define

(1) K^ e NS(/,Q) by (K^ + E,). E, = - 2^) for all i,

and write the hypothesis [Ky—^(L)] >> 0. As for the proof it runs
parallel to the proof of (i) and uses the fact that H^E^M) = 0 if M is an
invertible sheaf on the reduced and irreducible Gorenstein curve E, with
deg(M) > - 2%(0^); details are left to the reader. We define C(f) and
C+ in NS(/,N) by

(2) [K^]=C^ -C(/).

Observe that if we denote by Kx and Kx the dualizing sheaves of X and
X we have

(3) Kf = ^(Kx) and Kx = f^(C(f))).

The first formula comes from (1). For the second observe that
[Kx(C(/))] = Kx] + C(f) = C+ > 0 hence its direct image is reflexive
by (1.5(ii)) and coincide with Kx over X^-, hence it must beKx.

COROLLARY 1.6. — Under the hypothesis of (1.5), let L be an invertible
sheaf on X such that [L] = 0. Then f^(L) is reflexive and the map
u : RV^L) -^ H^CCO.LICC/)) is an isomorphism.
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We know that u is surjective. Let us introduce V e NS(/,Z) such that
[Kf + C (/) - Cf (L) - V] = 0 . We claim that V ̂  0 . In fact
0 = [K^+C(/)-^(L)-V] » K^ + C(/) - ^(L) - V hence
^(L) 4- V 2> K^. + C ( / ) hence V = [^ (L) + V] ^
[K^-hC(/)] = C+ ^ 0. We have a diagram

^/*(L) ——— R^LICC/))

R^(L(V)) ———— Ry,(L(V)|C(/)).

By (1.5.1(3)), the morphism v is injective hence it is enough to show that
w is injective. This follows from RV^LCV—CG/*))) = 0 which comes
from (1.5 (iii)) since [K^-^(L)-V+C(/)] = 0.

COROLLARY 1.7. - We have R^Ox) ̂  H^CC/^Oc^) and
py^Ox) = 0 is equivalent to C(f) = 0.

We get the isomorphism by (1.6) applied to L = Ox. Hence C(f) = 0
implies R^Ox) = 0. Conversely, if R^Ox) = 0 and C(f) + 0, we
have x(Occn) > 0 which means

0 > (Kx+C(/)).CCn = (K^+C(/)).C(/)
^ ([K^]+C(/)).C(/) = C^.C(/) ^ 0

a contradiction.

PROPOSITION 1.8. — Let f\ X -»• X 6^ a desingularization of a normal
surface X a^rf fe^ M A^ a reflexive sheaf of rank one on X. TT^r^ ^x^^ a
pair (L,M) wA^r^ L is an invertible sheaf on X such that [^y(L)] = 0 and
u: /^(L)|Xy r^ M|Xj- ^ ^» isomorphism. The pair (L,M) ^ unique up to a
unique isomorphism. Furthermore M =/^(L).

1.8.1. It is clear that there exists a pair (L',M'), where L' is invertible
on X and u' :/^(L')|Xy ̂  M|Xy is an isomorphism. If (L",u") is another
solution, we canonically have L" = L'(V), VeNS(/,Z), hence we get
existence and uniqueness since [^(L'(V))] = [^-(L/)] -h V. By (1.5(ii)),
/^(L) is reflexive since [^y(L)] = 0, hence /^(L) ̂  M since both are
reflexive and coincide over Xy.
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1.8.2. We denote by/"(M) the invertible sheaf on X characterized by
[/"(M)] = 0 and /^(/^M)) = M. We observe that we have

(1) ^CT(M)) e NS(/,Q), e^f^M)) « 0,

but this element is not necessarily zero. However, if M is invertible, we
obviously have /"(M) ==/*(M) since ^(/*(M)) = 0. More generally, it
is useful to compare /^(M) with another lifting ]v[ defined as follows

(2) M' =/*(M)/torsion IvI = M^ = bidual of M'.

COROLLARY 1.8.3. — Let M be a reflexive sheaf of rank one on X.
Then M « 0 and [lv[] ^ 0. We have /"(M) = M(-[M]).

Since M' is torsion free of rank one it is invertible except at finitely
many closed points; hence IvI is invertible. To prove that K t ^ O , assume
that there exists E, such that IvI.E, < 0 . Then
/^(lCl(—E,)) =/^(lvl) = M. In a neighborhood U of the generic point
of Ef , we have M' = lv[, hence IvI is generated on a possibly smaller
neighborhood U' by sections of M, hence we cannot have
/^(Kl(-E;)) =/^(lvl). By definition of [IvI], we get [IvI] ^ 0 out of
lv[ « 0. We deduce /"(M) = ^(-[IvI]) from []%(-[M])] = 0.

COROLLARY 1.8.4. Assume that X dominates some desingularization X'

of X. We have f = gh with X ——>X' ——*-X. For any reflective sheaf

of rank one M on X we have /'(M) = A*(^(M)).

Since X and X' are regular and h proper and birational, we have
h^h*(gv(M)) == ^(M) hence /^*(^(M))) = M, hence we only have to
prove that [ey(A*(g1'(M))] = 0. We use the map

(1) A* : NSte.Q) ̂  NS(/,Q)

which preserves integrality, positivity and the intersection numbers. We still
have to prove that we have, for any VeNS(^,Q)

(2) A*([V])=[A*(V)].

F o r a n y E e NS ( / , N ) , we h a v e A * ( V ) .
E = V.^(E) ^ [V].VE) = A*([V]).E, hence A*(V) « A*([V]), hence
[h*m] ^ A*([V]), in other words A*([V]) = [A*(V)] -h A, AeNS(/,N).
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From A*(V) « [/i*(V)], we deduce V « ^([/l*(V)])=/l^'lc([V])-^(A)
=[V]-^(A). By definition of [V], we deduce that [VK[V]-^(A),
hence ^(A)=0, hence AeNS(fc,N). We get 0=/i*(V). A^[/i*(V)].
A^^EV]). A - A 2 = - A 2 , hence A = 0.

PROPOSITION 1.9. — Let f: X -> X awrf assume that R^^Ox) = 0.
(i) L^ M 6^ a reflexive sheaf of rank one on X. We have

f\M) =f*(M)/torsion and R^C/^L)) = 0.
(ii) Let L be an invertible sheaf on X such that L <K 0. 77^ wfl?/?

/*/*(L) -^ L ^ surjective and R^L) = 0.

We first prove (ii). We let M =/^(L), Lo = Im (/*(M)-^ L),
Li = bidual of Lo and we get Lo c: L^ c= L and
Mc=^(Lo)c= /^ (LOc= / JL)=M. Since R^(Lo) = 0, we get
/^(LJLo) = 0 and this implies L^/Lo = 0 since L^/Lo has finite
support. Let us define VeNS(/,N) by L = Lo(V). We have
/„ ( L | V ) = 0 , h e n c e X ( K y ) = X ( L | V ) - L . V
= - /^(LIV) - L.V ^ - L.V. Since L « 0, we get - L.V ^ 0
hence x(0v) ^ 0» hence V = 0 since /^(Ov) = 0. This means that
Lo = L, from which R^L) = 0 follows.

To prove (i) we let L = /"(M) and apply (ii) to L (see (1.8.3)); recall
that M.=/^(L) by (1.8).

As an exercise, we now deduce some well known facts about rational
singularities.

PROPOSITION 1.10. Let f: X -> X be a desingularization and assume that
RV^Ox) = 0. Let I be an ideal of Ox. The following conditions are
equivalent

(i) I is integrally closed and I0x is invertible,
(ii) I=/^((IOxr),
(in) There exists an effective divisor D on X, with Ox(—D) ^0 such

that I=/^(Ox(-D)).
Furthermore, if we have (in), we necessarily have 10̂  = Mx(—D).

If I0x is invertible, then X dominates the normalized blowing up of
I, hence /^,(IOx) is the integral closure of I. Hence (i) => (ii), since in
that case 10̂  = 10 .̂ Since (lOx)^ ^ 0, we have 10̂  = Ox(-D),
with D effective (not necessarily vertical) and D ^ 0; hence (ii) => (iii). If
we assume (iii), then I is integrally closed and (1.9(ii)) implies that
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I0x = Ox(—D), hence (iii) => (i) and we have also proven the last
assertion.

It follows that we have a 1-1-correspondance between ideals I of Ox
which satisfy the above conditions and effective divisors D on X with
D ^ 0. We have that I is primary if and only if D is vertical
(dim/(D) = 0) and I is reflexive (i.e. the ideal of a Weil divisor) if and
only if [D] = 0. Observe that (1.9(i)) tells us that a reflexive I satisfy (i).
Observe that if I is the maximal ideal of some closed point x, then we
must have (ii), hence the corresponding D must be the connected
component of the fundamental cycle corresponding to x . To complete the
picture, recall Lipman's result saying that the set of ideals satisfying (i) is
stable by multiplication, which means that /^(Ox(—D—E))
=/*(Ox(-D))/^(Ox(-E)) if D and E are effective and D»0, E » 0.

Example 1.11. — We now assume that /: X -> X is the minimal
desingularization and that X is the spectrum of a local ring R with
algebraically closed residue field, in such a way that Kx << 0; this implies
[Kf] = — C(/). Assume that Kx is invertible which means that R is a
Gorenstein ring. Since /*(Kx) = K^(V) for some vertical V and
^.(/*(Kx)) = 0 , we conclude that V = Ky, hence Ky has integral
coefficients, hence K^. = - C(/) and Kx(C(/)) =/*(Kx) % Ox.

If we have rational singularity, we know that C(/) ='0, hence
K^ = 0, hence we get the well known result that E? = —' 2 for all ;. If
C(/) + 0 , we still have that the dualizing sheaf
KC(/) = K^(C(/)) ® QC(/) is isomorphic to QC(/). The converse is also
true, see for instance [2].

2. Genus formula.

2.1. Let A: be a field and X be a proper ^-scheme of dimension 2
which is normal. We want to study Weil divisors of X, or equivalently
reflexive sheaves of rank one on X. Such a sheaf M is determined by the
invertible sheaf (*(M) since M -»i^(M) is an isomorphism where
i: Xreg ->• X is the inclusion of the open set Xygg made up of regular points
of X. In other words, we study Pic(Xreg). Let /: X -^ X be a
desingularization of X, we have an exact sequence

(1) 0 -^ NS(/,Z) ——-^Pic(X) —— Pic(X,eg) -^ 0
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where a(D) is the class of 0^(D) and b is induced by the inclusion
j: Xreg -^ X. The canonical lifting /"(M) of a reflexive sheaf of rank one
M on X defined in (1.8.2) gives us a non-linear section of b. By
composition with the usual map

(2) Of: Pic(X) ̂  NSC/;Z)* <= ^NSC/;Z) c= NSC/.Q), (1.3)

we get a class

(3) ^(AM))e^NS(/,Z)

which can only take a finite number of values since [^/(/"(M))] = 0. Of
course, this is still non linear. To recover the classical linear theory of [6],
we recall that, for A = Z or Q, the quadratic module NS(/, A) lies
inside the Neron-Severi group NS(JC,A) and we define

(4) NS(X,A) = orthogonal of NS(/,A) inside NS(X,A)

which gives an orthogonal decomposition

(5) clCr(M)) = cl(M) + ^(/-(M))

inside NS(X,Q) = NS(X,Q) ® NS(/,Q). We also have another linear
invariant

(6) df(M) = class of e^f(M)) in NS(/,Z)*/NS(/,Z).

It is clear that the two linear invariants cl(M) and d^(M) can be
computed with any lifting L of M, namely cl(M) is the orthogonal
projection on NS(X,Q) of cl(L) and ^(M) is the image of ^y(L);
proof: L^/^MHD) for some DeNS(/,Z). For instance, if Kx and
K^ are the dualizing sheaves of X and X we have an orthogonal
decomposition

(7) cl(Kx) = cl(Kx) + K^ (1.5.3)

and
(8) ^(Kx) = Kf - [Kf] .

If we introduce the effective divisor C(f) = [Ky]_ as in (1.5.3) we know
that the multi-degree of /"(M^CC/') can only take a finite number of
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values, hence the same holds for the length of

(9) RW(M)) = H^CCO; /WICCO), (1.6).

THEOREM 2.2. - Let M bea reflexive sheaf of rank one on X. We have

(1) x(M) = j(cl(M),cl(M)-cl(Kx)) + x(0x) + \ e(M) d(M)

where the scalar product is computed in NS(X,Q) and for any
desingularization f: X -> X of X we have

(2) e(M) = (^ (/-(M)), Of CT(M)) - K^)

(3) rf(M) = Ig R^HM)) - Ig RV^Ox)
= WCO; /-(M^C^)) - WCO; Oc^) (1.5.3).

Proo/ - Apply the usual Riemann-Roch formula to /^(M) = L.
Since M =f^fv(M}), we get

X(M) = x(L) + IgR^^L) = (L,L-K^)/2 + ^(Ox) + IgR^L)
= x(L,L-K^)/2 + 7(0x) + IgR^L) - IgR^^O^)

and split the scalar product (L,L-Kx) according to the orthogonal
decomposition NS(X,Q) = NS(X,Q) 4- NS(/,Q).

According to (1.8.4), the terms e(M) and d(M) do not depend on the
choice of the desingularization. Furthermore we have

(4) e(M)= ^ ^(M,x), rf(M)= ^ d(M,x)
^SingCX) .x:6Sing(X)

where e(M,x) and d(M,x) are defined by replacing X by Spec (Ox J,
or even by Spec(6x,J as is easily seen. Furthermore
e(M,x) = d(M,x) = 0 if M is invertible in a neighborhood of x.
Furthermore d(M,x) = 0 if 0^ is a rational singularity (1.7). We also
know that e(M) and d(M) can only take a finite number of values.

For neZ, we let M" = 4(/*(M)") = bidual of M0" and we have

n2

(5) ^(M") = y (cl(M), cl(M)) - ̂  (cl(M), cl(Kx))

+ X(0x) ^e(Mn)/2-^d(Mn).
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Observe that ^(M") = 0 if the determinant of the intersection matrix
divides n. In fact, in that case, we have dy (M") == 0 hence
^(/'(M)) = [<?yCT(M))] = 0. For instance, if X is the Satake
compactification of some Hilbert-Bliimenthal surface and M = Kx, we
can get an a priori proof of the formula for the rank of the vector spaces
H°(X,Ky of automorphic forms [3].
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