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ON THE SPACE
OF MAPS INDUCING ISOMORPHIC CONNECTIONS

by T.R. RAMADAS

1. Introduction.

In this paper we prove the following

THEOREM. — Let M be a smooth compact manifold, P a prin-
cipal bundle on M with the unitary group U(fc) as structure group,
A a smooth connection on P, and Aut A the group of gauge
transformations [i.e., automorphisms of P which act trivially on
M] which leave A invariant Let B be the Grassmanian of k-planes
in a separable Hilbert space 3€, E the Stiefel bundle of orthonormal
k frames in 3€ , and a? the canonical universal connection on E.
Denote by 2 (A) the space of maps p : M —> B such that the
pull-back bundle p*(E), with the connectionp*a?, is isomorphic
to (P ,A) .

Then the space 2 (A), with the C°° topology, has the homo-
topy type of B^y^ where B(^^ is the base-space of a universal
bundle for Aut A.

The connectedness of S(A) is shown in [6]. We use some
ideas from this paper.

To motivate this result, consider the case when P is a prin-
cipal G-bundle with G a compact Lie group. Let AutP denote
the group of gauge transformations of P. Denote by fi the space
of C°° connections on P. The group Aut P acts on (°, though
not freely in general. Denote by (° the quotient.
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By [4] there exists a finite dimensional principal G-bundle
E(G,M)—> B(G,M) with connection such that the following
diagram commutes, and the map ^ is onto:

MorG(P,E(G,M)) ———^——> C

Aut P

Morp(M,B(G,M)) ——^———> Q

Here Mor^P, E(G, M)) is the space of G-morphisms of P into E
and Morp(M,B(G,M)) is the component of C°°(M, B(G, M)) which
induces pull-back bundles isomorphic to P. if is the map given by
pulling back the universal connection on E(G, M).

We wish to investigate the fibres of the map </?. It is possible to
do so when we consider instead of E(G,M) a universal bundle EQ
with connection such that E^ is contractible. Suppose then, that
in the above diagram we replace E(G,M) by E^ and B(G,M) by
BQ . Let A E e and A its class in Q. We argue heuristically :

The spaces (3 and Mor^P.E^) are both contractible. This
would imply that (^(A) is contractible (all the mappings being
assumed to be good fibrations). The group Aut A acts on (p'^A)
to give <p~ l (A). If all goes well this implies

a) (^(A) —> ^"^A) is a universal Aut A bundle. The fibre
over A of the map ^ has the same homotopy type as B/^^x.

b) If G has trivial centre and all connections are generic (i.e.
Aut P acts freely on (°) <p has a section.

The quotient space Q is relevant in studies of Yang-Mills
theories, at present very popular in Physics. It has been pointed out
[1] that the Universal Connection Theorem could possibly provide
connections between Yang-Mills theories and so-called a-models
which concern themselves with the space Mor(M,B). Also in the
cases when <p has a section, it could give an alternative to "gauge-
fixing" which has been shown to be impossible in general [3, 7, 5].

The paper is organized as follows. In § 2 we imbed E and B
as closed submanifolds of Hilbert spaces. In § 3 we describe a one
parameter family of isometries A^: !)€ —^ 3€ , and also give the
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C°° topology to be used on the function spaces MOT^^(P, E) and
Morp(M,B). In § 4 we prove that ^(A) is contractible [Propo-
sition 4.1] using the isometries A y . Then we prove [Proposition 4.3]
that {p^l(A)—^ (^^(A) is a locally trivial principal fibre space
with Aut A as structure group. This involves, among other things,
proving that the above projection is closed [Lemma 4.4], which is
done by studying a certain differential equation. The completeness
of the C°° topology is crucial, and the imbeddings obtained in § 2
simplify proofs throughout.

I would like to thank M.S. Narasimhan for several suggestions
and much encouragement. I also thank M.S. Raghunathan, S. Ramanan
and V. Sunder for their help.

2» The bundle of orthononnal fc-frames in a Hilbert space.

Fix an integer k > 0. Let S€ be an infinite dimensional sepa-
rable Hilbert space over the complex numbers. Denote by E the space
of orthononnal ^-frames in 96 . The group V(k) acts on E on the
right and the quotient is the Grassmannian B of ^-dimensional sub-
spaces of 3€ . In fact E is a universal principal bundle for U(fe).
It also carries a natural connection, which is a universal connection
for U(fe).

It will be useful, in the following, to have characterizations of
E and B as closed submanifolds of Hilbert spaces.

We shall identify a point p in B with the orthogonal pro-
jector onto the corresponding subspace, denoted by H(p). Thus
H(p) = {x € ge I px = x} . For po € B , define

%o = { p e B | H ( p o ) n k e r p = { 0 } } .

Then we have a bijection Lo:%o—^ J?(H(po), kerp^) such that
for p G ^ Q its image L=Lo(p) has H(p) as graph.

LEMMA 2.1 [2]. - The charts {(^o^o)} ^ive B restructure
of a C°° Hilbert manifold.

Let ^ d^ote the Hilbert space of Hilbert-Schmidt operators
on 3€.
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PROPOSITION 2.2. — Let \p denote the injection B —>ff̂
given by associating to each k-dimensional subspace its orthogonal
projector. Then \p is a C°° immersion, and a homeomorphism onto
its image.

Proof. — Follows from Lemmas 2.3 and 2.4.

Remark. — This shows that B, with the manifold structure
given in Lemma 2.1 is a submanifold of ^ .

LEMMA 2.3. - On a chart (^o^o) ^ is ^iven ̂  0 - 3)-
It is a C°° immersion.

Proof. - Let Le^(H(po), ker po) and let p = y/L^O).
Write

p = A + LA (1)

where A : 9€ —> H(po). Then we claim that A satisfies

A = p o +L^1 -p^-LUA (2)

which can be solved to give

A = YTl^L (po +L+(1 -po))- (3)

To see that p given by (2.1)-(2.3) is indeed equal to ^L^^L),
we verify:

a) Image of p = [x + Lx | x G H(po)}. The map is clearly into
this set. In fact it is onto since A is invertible on H(po).

b) p2 = p . This follows since Ap = p , which in turn is clear
because Ap satisfies the same equation as p .
Ap = p ^ p 4- L^l -po) p - L^LAp = A + L"LA - L+LAp

=po + L^l -po)-L+LAp.

c) p is an orthogonal projector, for

kerp = {y - L^ l^ekerp^}

which is the orthogonal subspace to Im p .

(i) ^ is C°° : To see this split ^ into the steps:



MAPS INDUCING ISOMORPHIC CONNECTIONS 267

/?(ge, H(po)) <—> f?oc, ge)
^ {po + L^l -po)} {Po + L^l -Po)}v

\
^(H(po),kerpo) J?(9e,9e)

0} ^
\ ("Positive, hermitian ' }

^operators on H(po)J

'^•'•(H^oLIKpo)) ——> ^(H(po), H(po)) ——> e(S€,9€)

{L^} po TTTTi: po1 +L + L

^ is in fact real-analytic.

(ii) It is enough to check the differential at L = 0. Here
5p = SL^l - po) 4- po6L which is clearly injective. Also the image,
being defined by po6ppo = (1 - po) 8p(l - po) = 0 and 8p+ = 6p,
is closed, and hence admits a supplement.

LEMMA 2.4. — 77^ inverse V/"1 f5 ̂ n^n 6^ ( 4 ) and is continuous.

Proof. - Consider a chart (%o,Lo) . Let p^^o and let
Q = ^olH(p))"1 • Then for ^HOO. Q^ = x + (l -po)pQ^-
This gives, for L = ( l -po)Q. L = (1 - p o ) p ( l + L).

This can be solved to give p I——> L such that^-1

L x = ( l - p o ) 1——71————x,xGH(po). (4)1 — (1 — p o ) p
The continuity of V/"1 follows easily.

We turn now to E. This can be identified with a closed subset
of ^(C\ge): E = {U : C^ —> ge| U^ = 1} . Standard arguments
show:

LEMMA 2.5. - E is a closed submanifold of ^(C^,^). It is
a principal U(fc) bundle on B. The u(k)-valued one-form U'^dU
is a connection on E.



26^ T.R. RAMADAS

LEMMA 2.6. - E is contractible and hence a universal V(k)
bundle. The connection is a universal V(k) connection.

Proof. - Both statements are well-known. The first follows
also from the remarks after Lemma 4.2. The second is a conse-
quence of the Universal Connection Theorem.

3. Some preliminary remarks and definitions.

(i) A one-parameter-family of isometries on 9€.
Following [6], we introduce, on 36, a one-parameter family

of isometries which we will use later. Define, for /£ [0 , 1] an iso-
metry A,: 3€ —> 9€ as follows. Fix an orthonormal basis, so that
9€ w {square-summable sequences in C}. Then let A(, = Identity

A , ( a o , a i , f l 2 , . . . ) = (flo,^ ... a^_^,a^_^ cos6^(t) , a,,_isin 6^(t)
an cos0^0,a^ sin0,,(/) a^ cos6^(t),a^ sin^(f). . .)

for ^-^- < / < ̂  where 9^t) = •J- n[(n + 1) / - 1 ] .

The A, are continuous in / w.r. to the strong operator topo-
logy. Note that

A^) (^'a^...)=(a^,0,a^0,...)eg€^

A(l) (flo , fli,...) = (0, a,,, 0, ̂ ...) e ge^

where 9€^en and S^xid denote obvious subspaces of 9€ .
(ii) The topology of the function spaces MorT,/,^(P E)

Mor(M,B). ( ) '

We topologize Mor^) (P, E) as a (closed) subset of
C-CP.^C^ge)),

and Mor(M,B) as a (closed) subset of C"(M,^). The C°° topo-
logy is described below:

Let X be a compact manifold and 3 a Hilbert space. Let
X, , . . . , X, be a set of vector fields on X which together span the
tangent space at each point of X. For a multi index a = (a,,..., a,)
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set 0°' = X^, . . . ,X^. We make C°° (X,3) a Frechet space w.r.
to the seminorms ||/||̂  = sup H D ^ / H where the heavy bars || ||
denote the Hilbert space norm. The topology is clearly independent
of the choice of X ^ , . . . , X^ . If N C ̂  is a closed submanifold then
C°°(X,N) is a closed subset of C°°(X,9) and we give it the relative
topology, which makes it a complete metric space.

We choose now, once and for all, a set of vector fields X ^ , . . . , X
spanning the tangent space of M at each point. Let X ^ , . . . X be
their lifts to P w.r. to some connection, and let Y \ , . . . , Y ^ be
vertical vector fields on P, the images of a fixed basis Y ^ , . . . , Y ^
in u(k) by the group action. We will use these to determine the
seminorms. Note that [X,, YJ = 0 VX, and Yg . We will let
let o^ = (c^ , . . . , a ^ ) and a = (a^ , . . . , Op), and write the semi-
norms as 11/H ^supHD^D^H.L > jeep

When there is no need to distinguish between the vertical and
horizontal vectors we simply denote (o^ , a) by 7 .

LEMMA 3.1. - Mory^)(P,E) and Mor(M,B) are closed sub-
sets of C^P.^C^^e)) and C°°(M, ̂ ) respectively. The map
Moru^(P,E)—^Mor(M,B) is continuous.

Proof. - For ge\J(k) the map C°°(P,E) —> C°°(P, E) given
by / -̂7-̂  f8 , f^x) = f(xg)g~1 (x C P), is continuous. This follows
since

\\fi-fi\\a, a = SUP||D^D^(X^-1 -f^Xg)g-^)\\L* xGP

= ̂  || D^ D^(xg) -^(xg))\\

= ̂  ||D '̂D^(/i(^) -f^xg))\\

= ll/i ~ ^2\\[a^.g},a

where D011''^ denotes the differential operator

D[^•s}=(g^^...(g^^g)^.

Here g^^^g is the image of the Lie algebra element ^Y^. This
proves the first statement. To prove the second statement, let
/, -^ / in Mor^(P, E) and let ^ = ̂ /;. Then
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\\Pn -P\\a == sup HD^p, -p)H (where D" = X^... X^)
jcGB

= sup || D01 (^ - p) || (where D" = X^ . .. X^")

= sup || S (a) (D^D^-D^/D^nil
^P ^<a ^

< ^ i S ||/j|̂  ||̂  - / IL_^+ H/ii^^ u/,, -/||^.
0<0t

This proves py, —^ p in Mor(M, B).

4. The topology of the fibres.

We will be interested in the fibres of the map ^. Consider first
a fibre of <^.

PROPOSITION 4.1. - Let A G ( ° . Then (^(A) is contractible.
In other words th space of morphisms P —^ E which induce a
fixed connection on P is contractible.

Proof. — The proof proceeds in two steps.
(i) Define a map

S: (^-^xtO, 1/2] —^ ^(A)

by /e^(A)
S, ( / ) (x )=A,o / (^ ) ^ e p

^[0,1/2].

The map is into (^(A) since,

a) Sr (/) (^) = A, o f(xg) (g G U(fc)) = A, o f(x) o ^

= £,(/) (^c) ° ^U

b) ^(/r^^/^/^A.

By lemma 4.2 below ^ is continuous.

(u) There exists a /^e^-^A) s.t. V;c€P,/oOc) maps C^
into S^odd [Apply AI to any /G^'^A) to get such an /o]. Define
for re [1/2,1] a map T? : ̂ - l(A)x [1/2, 1]—> (^(A) by

r]t(f) (x)v = (smt7r)A^^f(x)v - cos r7r/o(x)i;.
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Again the map is into (^(A). Note that A^/ n^aps into S^even •
This means that V (x , t ) , r]^f(x) defines an isometry of C^ into
96 , for, given u . i /EC" ,

(r?,/(x) v , V(x) v') = sin2 r7r (A^/00 ̂  , A^/(x) v')

+ (cos2^)(^(Jc)t;,^(x)^;')= (^^')

where ( , ) denotes the inner product.

The points a), b) above can be checked easily. Lemma 4.2 gives
continuity.

(iii) Compose { and 17 to get the contraction

V/ : ̂ "^x [0,1] —> ^(A). (See diagram)

Identity

^"'(A)
,-1^-'(A)

LEMMA 4.2. — The maps S, T? constructed in the proof of Pro-
position 4.1 are continuous (in the product topology).

Proof. —Consider the map ^. Let (fn,t^) be a sequence
in (p-^x [0, 1/2]. Then

1 1 ̂ (/.) - Sr(/)ll^ = s^ IIA^ o DV, - A, o DVH

= sup || A^ o D^ (/„ - /) 4- (A, - A,) o DV||
JCGP •*

< ll^-/ll<y+ ||(A^-A,)/||^.

This shows continuity of ^ • The continuity of 77 follows similarly.

Remark. — The proof of Proposition 4.1 can be extended to
prove contractivility of Moru^(P,E). In particular, taking P = U(fc),
we see that E itself is contractible.
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We turn now to the fibres of the map ^. Note that if A G Q
and AE(S is its class, then ^(A) projects onto ^ ^ A ) . Also
if Aut A is the subgroup of Aut that leaves A fixed Aut(A) acts
freely on (^(A), the quotient being in bijection with (^(A).<^» /^

Aut A is the space of maps g : P —> \J(k) such that

(i) gW == h^gWh x E P , hE\J(k)

(ii) A = i - l A ^ + i - l r f i .

Since ^ G A u t A is determined by its value at a fixed point in
P, we shall, fixing YQ^P (projecting onto jCo^M) identify
AutA3i- i (^)GU(fe) .

Thus Aut A is a closed subgroup of \J(k) [This is seen either
from the equation (ii) above, or noting the fact that under the above
identification Aut A is the centralizer of the holonomy group at
YQ ] and hence a Lie subgroup.

From now on we assume that the vector fields X ^ . . . X have
been lifted to P w.r. to A. Note that then X,(i) = 0 for g G Aut A.

PROPOSITION 4.3. - (^(A) —> ^(A) is a locally trivial
principal fibre space with Aut A as structure group.

Proof - The proof proceeds in four steps.

a) Aut (A) acts continuously on (^(A). For suppose
(fn ' 8n) ̂  <^~' (A) x Aut A and (/„ , ij ——> (/, g ) . Then for
any o^, a.

\\fn ° Sn -/o g\\a^ < IK/n -/) ° iĵ ,a + II/0 (1. - g)\\^a

= s^p IID^aD^-/)]^)!! 4- s^p HD^OD^] (i,-i))||
(since D^g = 0)

=sup | S (^^D^-^D-a-/)^^
x II /i rf^ .̂ " Lx \\^L PL

n J / *-' 6n\

+sup|| I; (^D^-^D^D^-i)!
" II^L-'^L L

< "L'l S 11/n -/llaL-^.- 11^ Ik + ^""L-^L « lli" "^'k-
| PL^-^L
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Now, for any Y, , g E Aut A

Y, (A - Un; i^^'^-iW . ̂  Y, 1 .

Also, if g^g^ are in Aut A, d(rTT(g^ - g^y ( g ^ - g ^ ) ) = 0 , so
that \\g,(x)-g^(x)\\ == l l i i(^o)-i2^o)ll-

So, we have

\\fn°8n-f°g\\a^<^ S II/, - /ll^-^ ll^'k
^L^L

4- 11/11^-^ c^lli.(Po)-i(Po)ll
where C^ is a constant depending on the multiindex f3^ .

b) Denote by G the graph of the equivalence relation defined
by Aut A on <p~1 (A). Then the map G —> Aut A is continuous.
This follows since the map is given by (/i,^)'—^ /l+(>o)^0;o)
which is clearly continuous.

c) The projection ^~1(A)——^ (P~1(A) is continuous and
closed. Continuity follows from lemma 3.1 and lemma 4.4 shows
that it is closed. Thus (^"^(A) has the quotient topology w.r. to
the projection.

d) Thus we have shown that (^^(A)—^ ^p~l(A) is a prin-
cipal fibre space. Now note that there is a Aut A-morphism

^(A)——————> E

(^(A) ——————> E/Aut A

given by /*—> /(.Vo)' Since E —> E/Aut A is locally trivial,
the proof is complete.

LEMMA 4.4. — The map (^(A) —> (^"^(A) is closed.

Proof-Let f^^-^A) s.t. p^f^f^—^p in ^(A).

It is enough to prove that { /„} contains a convergent sub-
sequence. Since pn(^o) —> P(xo) and E has compact fibres one
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can assume fn(Yo)—> 80 e ̂  without loss of generality. Note
that the /„ satisfy

^=/,A+d^. (5)

We now prove that the /„ are Cauchy in the C° norm so that 3
a C° function / such that /„ —> f. Put D = /„ - f^ . Then
from (5) we have
d(W} = Wdp, + dp^W + d(p, - p^) ̂ ,D+ + Df^d(p, -p^).
Evaluating on a vector field X,, taking the trace and then absolute
value of both sides we get

\X,rTT(DD+)\ < iTrCDD^pJI + |Tr(X,(pJ DD^I

+ ITrCX^----^)/^)! + |Tr(D/;X,(p^-^))|

<2{||D||2 |lX,pj|+ ||D|| ||X,(p^-p^)||}
or,

|X, HDII2! < 2 {||D||2 ||X,pj| + ||X,(p^ -^)||}. (6)

Consider now the set {X,, Yg} which we collectively denote
by {Z.}. They give a map from P x RN (where N = k2 4- p ) to
the tangent bundle TP which is onto:

Oc,^...^))^ ( x , I^Z.Oc)).
i

Take the obvious metric on the vector bundle P x R". This induces
a splitting of the above map as well as a Riemannian metric on P.
Then we have the following obvious result: if X is a vector field
on P of norm < 1 and we express X = 2 a, Z, with respect to
the above splitting then | a^ \ < 1 Vf .

Now let y^=.P and let F(y) be a minimal geodesic joining
Vo ^° V [suc!1 a geodesic exists for P compact] parametrized
with respect to arc-length. Then the length of F(y) < T for some
constant T independent of y . Now let X, be the tangent vector
field to r (which is necessarily of norm one). This gives

WPn-Pm)\\ = S \\Pn-Pm\\i where Hpll, = sup ||Z,p||
i x

= S \\Pn-Pm\\a'
la|=l

Thus we have, from (6)
|XJ|D||2 |=2{^||D||2 +6||D||}
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with a = Z H p l L + c , c > 0
lal=l

and b= ^ IIPn-PjL.
a

Consider the ordinary differential equation

du2

^r = W + bu)
u(0) =D(^).

The solution is clearly:

u(t) == D(^) ̂  + i^-^6.

Consider the set K = { r > 0 | ||D(r)|| > ^(r)} . K is open, and hence
a union of disjoint open intervals. Let ^ be its least boundary point.
Clearly D ( ^ ) = M ( r o ) . From the polygonal approximations to
|| DC^) ||2 and u2^) it is clear that in an interval (^o^o + e) we

have ||D(0|| < u(t). Thus K = 0 . We have finally,
(e^ — 1}

1|D(^)|| < D(^) e^ 4- •^————^ b

which clearly shows that {/„} are Cauchy in the C° norm.
Let / be the C° limit. We now turn back to (5) and 'bootstrap'

the above result to show that / is C°° and /„ —> f in the C°°
topology. Assume, therefore, that / is Ck and /„ —> / i n Ck.
For any multi-index 7 ( l 7 l > 1) define 7' and X^ [here X^
is one of the vector fields Z, ] by D7 = D71 X(7) so that D7' is
of order l 7 l ~ 1 . Let J7 | = k + 1 . Then
DV^ = D^XM(^) = D^(^A(X^) 4- X<^(^)/^)

= S (Z)[D^-6^D6A(X^)+D^-6X^(p„)D6/J.
6<V

Then

Wn - Z (Z ) [D^-6/ D^CX^)) + D^^X^tp)?6/]!!
6<7y

<7! Z ^ 11^- /11,-5 1|A(X<^)||, + IIPĵ )̂ \\fn-f\\,

+ II P"-^I^.X(T) 1 1 ^ 1 1 6

where II/H^_^^) = sup HD^-^X^/H.
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This shows D7/^, tends uniformly to a C° function, and hence
/ is C^. By induction / is C°° and /„—>f in C°°(P,E).
The proof also shows df = /A 4- pf.

Since Moi\j-JP, E) is closed, /GMoi\j^(P, E) and p = ff^
by continuity of the projection Moiy^JP.E)—^Morp(M,B) .
(One can now easily show that f+df= A, thus showing that the
fibre (^^(A) is closed. This is because we have nowhere in the
proof used the fact that p £ ̂ T 1 (A)).

The Theorem stated in the Introduction now follows.
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