Annales de l'institut Fourier

T. R. RAMADAS
 On the space of maps inducing isomorphic connections

Annales de l'institut Fourier, tome 32, nº 1 (1982), p. 263-276

http://www.numdam.org/item?id=AIF_1982__32_1_263_0
© Annales de l'institut Fourier, 1982, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE SPACE
 OF MAPS INDUCING ISOMORPHIC CONNECTIONS

by T.R. RAMADAS

1. Introduction .

In this paper we prove the following

Theorem. - Let M be a smooth compact manifold, P a principal bundle on M with the unitary group $\mathrm{U}(k)$ as structure group, A a smooth connection on P , and Aut A the group of gauge transformations [i.e., automorphisms of P which act trivially on $\mathrm{M}]$ which leave A invariant. Let B be the Grassmanian of k-planes in a separable Hilbert space He, E the Stiefel bundle of orthonormal k frames in He, and ω the canonical universal connection on E . Denote by $\Sigma(\mathrm{A})$ the space of maps $p: \mathrm{M} \longrightarrow \mathrm{B}$ such that the pull-back bundle $p^{*}(\mathrm{E})$, with the connection $p^{*} \omega$, is isomorphic to (P, A).

Then the space $\Sigma(\mathrm{A})$, with the C^{∞} topology, has the homotopy type of $\mathrm{B}_{(\mathrm{AutA})}$ where $\mathrm{B}_{(\mathrm{Aut} \mathrm{A})}$ is the base-space of a universal bundle for Aut A.

The connectedness of $\Sigma(\mathrm{A})$ is shown in [6]. We use some ideas from this paper.

To motivate this result, consider the case when P is a principal G-bundle with G a compact Lie group. Let Aut P denote the group of gauge transformations of P. Denote by \mathbb{C} the space of C^{∞} connections on P. The group Aut P acts on \mathbb{C}, though not freely in general. Denote by $\underset{\sim}{\mathcal{C}}$ the quotient.

By [4] there exists a finite dimensional principal G-bundle $\mathrm{E}(\mathrm{G}, \mathrm{M}) \longrightarrow \mathrm{B}(\mathrm{G}, \mathrm{M})$ with connection such that the following diagram commutes, and the map φ is onto:

Here $\operatorname{Mor}_{G}(\mathrm{P}, \mathrm{E}(\mathrm{G}, \mathrm{M})$) is the space of G -morphisms of P into E and $\operatorname{Mor}_{\mathrm{P}}(\mathrm{M}, \mathrm{B}(\mathrm{G}, \mathrm{M}))$ is the component of $\mathrm{C}^{\infty}(\mathrm{M}, \mathrm{B}(\mathrm{G}, \mathrm{M}))$ which induces pull-back bundles isomorphic to P. \mathcal{L} is the map given by pulling back the universal connection on $\mathrm{E}(\mathrm{G}, \mathrm{M})$.

We wish to investigate the fibres of the map φ. It is possible to do so when we consider instead of $\mathrm{E}(\mathrm{G}, \mathrm{M})$ a universal bundle E_{G} with connection such that E_{G} is contractible. Suppose then, that in the above diagram we replace $E(G, M)$ by E_{G} and $B(G, M)$ by B_{G}. Let $\mathrm{A} \in \mathbb{C}$ and $\underset{\sim}{A}$ its class in $\underset{\sim}{\mathbb{C}}$. We argue heuristically :

The spaces \mathfrak{e} and $\operatorname{Mor}_{G}\left(\mathrm{P}, \mathrm{E}_{\mathrm{G}}\right)$ are both contractible. This would imply that $\varphi^{-1}(\mathrm{~A})$ is contractible (all the mappings being assumed to be good fibrations). The group Aut A acts on $\varphi^{-1}(\mathrm{~A})$ to give ${\underset{\sim}{-1}}^{-1}(\underset{\sim}{A})$. If all goes well this implies
a) $\varphi^{-1}(\mathrm{~A}) \longrightarrow \underline{\varphi}^{-1}(\underset{\sim}{\mathrm{~A}})$ is a universal Aut A bundle. The fibre over A of the map $\underset{\sim}{\varphi}$ has the same homotopy type as $\mathrm{B}_{(\mathrm{AutA})}$.
b) If G has trivial centre and all connections are generic (i.e. Aut P acts freely on e) $\underset{\sim}{\varphi}$ has a section.

The quotient space \mathfrak{C} is relevant in studies of Yang-Mills theories, at present very popular in Physics. It has been pointed out [1] that the Universal Connection Theorem could possibly provide connections between Yang-Mills theories and so-called σ-models which concern themselves with the space $\operatorname{Mor}(\mathrm{M}, \mathrm{B})$. Also in the cases when $\underline{\varphi}$ has a section, it could give an alternative to "gaugefixing" which has been shown to be impossible in general [3, 7, 5].

The paper is organized as follows. In § 2 we imbed E and B as closed submanifolds of Hilbert spaces. In § 3 we describe a one parameter family of isometries $\mathrm{A}_{t}: \mathcal{H} \longrightarrow \mathcal{H}$, and also give the
C^{∞} topology to be used on the function spaces $\operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E})$ and $\operatorname{Mor}_{\mathrm{P}}(\mathrm{M}, \mathrm{B})$. In § 4 we prove that $\varphi^{-1}(\mathrm{~A})$ is contractible [Proposition 4.1] using the isometries A_{t}. Then we prove [Proposition 4.3] that $\varphi^{-1}(\mathrm{~A}) \longrightarrow{\underset{\sim}{\mid}}^{-1}(\underset{\sim}{A})$ is a locally trivial principal fibre space with Aut A as structure group. This involves, among other things, proving that the above projection is closed [Lemma 4.4], which is done by studying a certain differential equation. The completeness of the C^{∞} topology is crucial, and the imbeddings obtained in § 2 simplify proofs throughout.

I would like to thank M.S. Narasimhan for several suggestions and much encouragement. I also thank M.S. Raghunathan, S. Ramanan and V . Sunder for their help.

2. The bundle of orthonormal k-frames in a Hilbert space.

Fix an integer $k>0$. Let $\mathcal{H e}$ be an infinite dimensional separable Hilbert space over the complex numbers. Denote by E the space of orthonormal k-frames in \mathcal{H}. The group $\mathrm{U}(k)$ acts on E on the right and the quotient is the Grassmannian B of k-dimensional subspaces of $\mathcal{H e}$. In fact E is a universal principal bundle for $U(k)$. It also carries a natural connection, which is a universal connection for $U(k)$.

It will be useful, in the following, to have characterizations of E and B as closed submanifolds of Hilbert spaces.

We shall identify a point p in B with the orthogonal projector onto the corresponding subspace, denoted by $\mathrm{H}(p)$. Thus $\mathrm{H}(p)=\{x \in \mathcal{H} \mid p x=x\}$. For $p_{0} \in \mathrm{~B}$, define

$$
\mathscr{P}_{0}=\left\{p \in \mathrm{~B} \mid \mathrm{H}\left(p_{0}\right) \cap \operatorname{ker} p=\{0\}\right\} .
$$

Then we have a bijection $\mathrm{L}_{0}: \mathscr{P}_{0} \longrightarrow \mathscr{L}\left(\mathrm{H}\left(p_{0}\right)\right.$, $\left.\operatorname{ker} p_{0}\right)$ such that for $p \in \mathscr{P}_{0}$ its image $\mathrm{L} \equiv \mathrm{L}_{0}(p)$ has $\mathrm{H}(p)$ as graph.

Lemma 2.1 [2]. - The charts $\left\{\left(\mathscr{R}_{0}, \mathrm{~L}_{0}\right)\right\}$ give B the structure of a C^{∞} Hilbert manifold.

Let \mathcal{J}_{2} denote the Hilbert space of Hilbert-Schmidt operators on \%e.

Proposition 2.2. - Let ψ denote the injection $\mathrm{B} \longrightarrow \mathcal{J}_{2}$ given by associating to each k-dimensional subspace its orthogonal projector. Then ψ is a C^{∞} immersion, and a homeomorphism onto its image.

Proof. - Follows from Lemmas 2.3 and 2.4.
Remark. - This shows that B , with the manifold structure given in Lemma 2.1 is a submanifold of \mathscr{J}_{2}.

Lemma 2.3. - On a chart $\left(\mathscr{R}_{0}, \mathrm{~L}_{0}\right) \psi$ is given by $(1-3)$. It is a C^{∞} immersion.

Proof. - Let $\mathrm{L} \in \mathscr{L}\left(\mathrm{H}\left(p_{0}\right)\right.$, ker $\left.p_{0}\right)$ and let $\quad p=\psi \mathrm{L}_{0}^{-1}(\mathrm{~L})$. Write

$$
\begin{equation*}
p=\mathrm{A}+\mathrm{LA} \tag{1}
\end{equation*}
$$

where $\mathrm{A}: \mathcal{H} \longrightarrow \mathrm{H}\left(p_{0}\right)$. Then we claim that A satisfies

$$
\begin{equation*}
\mathrm{A}=p_{0}+\mathrm{L}^{+}\left(1-p_{0}\right)-\mathrm{L}^{+} \mathrm{LA} \tag{2}
\end{equation*}
$$

which can be solved to give

$$
\begin{equation*}
\mathrm{A}=\frac{1}{1+\mathrm{L}^{+} \mathrm{L}}\left(p_{0}+\mathrm{L}^{+}\left(1-p_{0}\right)\right) \tag{3}
\end{equation*}
$$

To see that p given by (2.1)-(2.3) is indeed equal to $\psi \mathrm{L}_{0}^{-1}(\mathrm{~L})$, we verify :
a) Image of $p=\left\{x+\mathrm{L} x \mid x \in \mathrm{H}\left(p_{0}\right)\right\}$. The map is clearly into this set. In fact it is onto since A is invertible on $H\left(p_{0}\right)$.
b) $p^{2}=p$. This follows since $\mathrm{A} p=p$, which in turn is clear because $\mathrm{A} p$ satisfies the same equation as p.

$$
\begin{aligned}
\mathrm{A} p=p_{0} p+\mathrm{L}^{+}\left(1-p_{0}\right) p-\mathrm{L}^{+} \mathrm{LA} p & =\mathrm{A}+\mathrm{L}^{+} \mathrm{LA}-\mathrm{L}^{+} \mathrm{LA} p \\
& =p_{0}+\mathrm{L}^{+}\left(1-p_{0}\right)-\mathrm{L}^{+} \mathrm{LA} p
\end{aligned}
$$

c) p is an orthogonal projector, for

$$
\operatorname{ker} p=\left\{y-\mathrm{L}^{+} y \mid y \in \operatorname{ker} p_{0}\right\}
$$

which is the orthogonal subspace to $\operatorname{Im} p$.
(i) ψ is C^{∞} : To see this split ψ into the steps:

ψ is in fact real-analytic.
(ii) It is enough to check the differential at $L=0$. Here $\delta p=\delta \mathrm{L}^{+}\left(1-p_{0}\right)+p_{0} \delta \mathrm{~L}$ which is clearly injective. Also the image, being defined by $p_{0} \delta p p_{0}=\left(1-p_{0}\right) \delta p\left(1-p_{0}\right)=0$ and $\delta p^{+}=\delta p$, is closed, and hence admits a supplement.

Lemma 2.4. - The inverse ψ^{-1} is given by (4) and is continuous.
Proof. - Consider a chart $\left(\mathscr{R}_{0}, \mathrm{~L}_{0}\right)$. Let $p \in \mathscr{R}_{0}$ and let $\mathrm{Q}=\left(\left.p_{0}\right|_{\mathrm{H}(p)}\right)^{-1} . \quad$ Then for $x \in \mathrm{H}(p), \mathrm{Q} x=x+\left(1-p_{0}\right) p \mathrm{Q} x$. This gives, for $\mathrm{L}=\left(1-p_{0}\right) \mathrm{Q}, \mathrm{L}=\left(1-p_{0}\right) p(1+\mathrm{L})$.

This can be solved to give $p \underset{\psi^{-1}}{\longmapsto} \mathrm{~L}$ such that

$$
\begin{equation*}
\mathrm{L} x=\left(1-p_{0}\right) \frac{1}{1-\left(1-p_{0}\right) p} x, x \in \mathrm{H}\left(p_{0}\right) \tag{4}
\end{equation*}
$$

The continuity of ψ^{-1} follows easily.
We turn now to E . This can be identified with a closed subset of $\mathscr{L}\left(\mathbf{C}^{k}, \mathscr{H}\right): \mathrm{E}=\left\{\mathrm{U}: \mathbf{C}^{k} \longrightarrow \mathscr{H} \mid \mathrm{U}^{+} \mathrm{U}=1\right\}$. Standard arguments show:

Lemma 2.5. - E is a closed submanifold of $\mathfrak{f}\left(\mathbf{C}^{k}, \mathcal{H}\right)$. It is a principal $\mathrm{U}(k)$ bundle on B . The $u(k)$-valued one-form $\mathrm{U}^{+} \mathrm{dU}$ is a connection on E .

Lemma 2.6. - E is contractible and hence a universal $\mathrm{U}(k)$ bundle. The connection is a universal $\mathrm{U}(k)$ connection.

Proof. - Both statements are well-known. The first follows also from the remarks after Lemma 4.2. The second is a consequence of the Universal Connection Theorem.

3. Some preliminary remarks and definitions.

(i) A one-parameter-family of isometries on He.

Following [6], we introduce, on \%e, a one-parameter family of isometries which we will use later. Define, for $t \in[0,1]$ an isometry $\mathrm{A}_{t}: \mathcal{H} \longrightarrow \mathcal{H}$ as follows. Fix an orthonormal basis, so that $\mathcal{H} \approx$ \{square-summable sequences in $C\}$. Then let $A_{0}=$ Identity

$$
\begin{aligned}
& \mathrm{A}_{t}\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{0}, a_{1} \ldots a_{n-2}, a_{n-1} \cos \theta_{n}(t), a_{n-1} \sin \theta_{n}(t)\right. \\
& \left.\qquad a_{n} \cos \theta_{n}(t), a_{n} \sin \theta_{n}(t) a_{n+1} \cos \theta_{n}(t), a_{n+1} \sin \theta_{n}(t) \ldots\right) \\
& \text { for } \frac{1}{n+1} \leqslant t \leqslant \frac{1}{n} \text { where } \theta_{n}(t)=\frac{\pi}{2} n[(n+1) t-1]
\end{aligned}
$$

The A_{t} are continuous in t w.r. to the strong operator topology. Note that

$$
\begin{aligned}
& \mathrm{A}\left(\frac{1}{2}\right)\left(a_{0}, a_{1}, \ldots\right)=\left(a_{0}, 0, a_{1} 0, \ldots\right) \in \mathcal{H}_{\text {even }} \\
& \mathrm{A}(1)\left(a_{0}, a_{1}, \ldots\right)=\left(0, a_{0}, 0, a_{1}, \ldots\right) \in \mathcal{Y}_{\mathrm{odd}}
\end{aligned}
$$

where $\mathcal{H}_{\text {even }}$ and $\mathscr{H}_{\text {odd }}$ denote obvious subspaces of \mathcal{H}.
(ii) The topology of the function spaces $\operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E})$ $\operatorname{Mor}(\mathrm{M}, \mathrm{B})$.

We topologize $\operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E})$ as a (closed) subset of

$$
\mathrm{C}^{\infty}\left(\mathrm{P}, \mathfrak{f}\left(\mathbf{C}^{k}, \mathcal{H}\right)\right)
$$

and $\operatorname{Mor}(\mathrm{M}, \mathrm{B})$ as a (closed) subset of $\mathrm{C}^{\infty}\left(\mathrm{M}, \boldsymbol{J}_{2}\right)$. The C^{∞} topology is described below :

Let X be a compact manifold and \mathcal{F} a Hilbert space. Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{q}$ be a set of vector fields on X which together span the tangent space at each point of X . For a multi index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{2}\right)$
set $\mathrm{D}^{\alpha}=\mathrm{X}_{1}^{\alpha_{1}}, \ldots, \mathrm{X}_{q}^{\alpha} q$. We make $\mathrm{C}^{\infty}(\mathrm{X}, \mathcal{F})$ a Frechet space w.r. to the seminorms $\|f\|_{\alpha}=\sup _{x}\left\|\mathrm{D}^{\alpha} f\right\|$ where the heavy bars $\|\|$ denote the Hilbert space norm. The topology is clearly independent of the choice of X_{1}, \ldots, X_{q}. If $N \subset \mathcal{F}$ is a closed submanifold then $C^{\infty}(X, N)$ is a closed subset of $C^{\infty}(X, \mathcal{F})$ and we give it the relative topology, which makes it a complete metric space.

We choose now, once and for all, a set of vector fields $\mathrm{X}_{1}, \ldots, \mathrm{X}_{p}$ spanning the tangent space of M at each point. Let $\hat{X}_{1}, \ldots \hat{X}_{p}$ be their lifts to P w.r. to some connection, and let $\hat{Y}_{1}, \ldots, \hat{Y}_{k^{2}}$ be vertical vector fields on P, the images of a fixed basis $Y_{1}, \ldots, Y_{k^{2}}$ in $u(k)$ by the group action. We will use these to determine the seminorms. Note that $\left[\hat{X}_{i}, \hat{\mathrm{Y}}_{\ell}\right]=0 \forall \mathrm{X}_{i}$ and Y_{ℓ}. We will let let $\alpha_{\mathrm{L}}=\left(\alpha_{1}, \ldots, \alpha_{k^{2}}\right)$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$, and write the seminorms as $\|f\|_{\alpha_{L}, \alpha}=\sup _{x \in \mathrm{P}}\left\|\mathrm{D}^{\alpha_{\mathrm{L}}} \mathrm{D}^{\alpha_{f}}\right\|$.

When there is no need to distinguish between the vertical and horizontal vectors we simply denote $\left(\alpha_{\mathrm{L}}, \alpha\right)$ by γ.

Lemma 3.1.- $\operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E})$ and $\operatorname{Mor}(\mathrm{M}, \mathrm{B})$ are closed subsets of $\mathrm{C}^{\infty}\left(\mathrm{P}, \mathfrak{f}\left(\mathrm{C}^{k}, \mathcal{H}\right)\right)$ and $\mathrm{C}^{\infty}\left(\mathrm{M}, \boldsymbol{y}_{2}\right)$ respectively. The map $\operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E}) \longrightarrow \operatorname{Mor}(\mathrm{M}, \mathrm{B})$ is continuous.

Proof. - For $g \in \mathrm{U}(k)$ the map $\mathrm{C}^{\infty}(\mathrm{P}, \mathrm{E}) \longrightarrow \mathrm{C}^{\infty}(\mathrm{P}, \mathrm{E})$ given by $f \longmapsto g f^{g}, f^{g}(x) \equiv f(x g) g^{-1}(x \in \mathrm{P})$, is continuous. This follows since

$$
\begin{aligned}
\left\|f_{1}^{g}-f_{2}^{g}\right\|_{\alpha_{\mathrm{L}}, \alpha} & =\sup _{x \in \mathrm{P}}\left\|\mathrm{D}_{x}^{\alpha_{\mathrm{L}}} \mathrm{D}_{x}^{\alpha}\left(f_{1}(x g) g^{-1}-f_{2}(x g) g^{-1}\right)\right\| \\
& =\sup _{x \in \mathrm{P}}\left\|\mathrm{D}_{x}^{\alpha_{\mathrm{L}}} \mathrm{D}_{x}^{\alpha}\left(f_{1}(x g)-f_{2}(x g)\right)\right\| \\
& =\sup _{x g \in \mathrm{P}}\left\|\mathrm{D}_{x g}^{\left[\alpha_{\mathrm{L}}, g\right]} \mathrm{D}_{x g}^{\alpha}\left(f_{1}(x g)-f_{2}(x g)\right)\right\| \\
& =\left\|f_{1}-f_{2}\right\|_{\left[\alpha_{2}, g\right], \alpha}
\end{aligned}
$$

where $\mathrm{D}^{\left[\alpha_{L}, g\right]}$ denotes the differential operator

$$
\mathrm{D}^{\left[\alpha_{L}, g\right]}=\left(\widehat{g}^{-1} \mathrm{Y}_{1} g\right)^{\alpha_{1}} \ldots\left(\widehat{g}^{-1} \mathrm{Y}_{k^{2}} g\right)^{\alpha_{k}}
$$

Here $\widehat{g}^{-1} \mathrm{Y}_{i} g$ is the image of the Lie algebra element $\widehat{g}^{-1} \widehat{Y}_{i} g$. This proves the first statement. To prove the second statement, let $f_{n} \longrightarrow f$ in $\operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E})$ and let $p_{n}=f_{n} f_{n}^{+}$. Then

$$
\begin{aligned}
\left\|p_{n}-p\right\|_{\alpha} & =\sup _{x \in \mathrm{~B}}\left\|\mathrm{D}^{\alpha}\left(p_{n}-p\right)\right\| \quad\left(\text { where } \quad \mathrm{D}^{\alpha}=\mathrm{X}_{1}^{\alpha} \ldots \mathrm{X}_{n}^{\alpha}{ }^{\alpha}\right) \\
& =\sup _{x \in \mathrm{P}}\left\|\mathrm{D}^{\alpha}\left(p_{n}-p\right)\right\| \quad\left(\text { where } \quad \mathrm{D}^{\alpha}=\hat{\mathrm{X}}_{1}^{\alpha} \ldots \hat{\mathrm{X}}_{n}^{\alpha_{n}}\right) \\
& =\sup _{x \in \mathrm{P}}\left\|\sum_{\beta \leqslant \alpha}\binom{\alpha}{\beta}\left(\mathrm{D}^{\alpha-\beta} f_{n} \mathrm{D}^{\beta} f_{n}^{+}-\mathrm{D}^{\alpha-\beta} f \mathrm{D}^{\beta} f^{+}\right)\right\| \\
& \leqslant \alpha \mid \sum_{\beta<\alpha}\left\|f_{n}\right\|_{\beta}\left\|f_{n}-f\right\|_{\alpha-\beta}+\|f\|_{\alpha-\beta}\left\|f_{n}-f\right\|_{\beta}
\end{aligned}
$$

This proves $p_{n} \longrightarrow p$ in $\operatorname{Mor}(\mathrm{M}, \mathrm{B})$.

4. The topology of the fibres.

We will be interested in the fibres of the map $\underset{\sim}{\varphi}$. Consider first a fibre of φ.

Proposition 4.1. - Let $\mathrm{A} \in \mathbb{C}$. Then $\varphi^{-1}(\mathrm{~A})$ is contractible. In other words th space of morphisms $\mathrm{P} \rightarrow \mathrm{E}$ which induce a fixed connection on P is contractible.

Proof. - The proof proceeds in two steps.
(i) Define a map

$$
\xi: \varphi^{-1}(\mathrm{~A}) \times[0,1 / 2] \longrightarrow \varphi^{-1}(\mathrm{~A})
$$

by

$$
\xi_{t}(f)(x)=\mathrm{A}_{t} \circ f(x)\left\{\begin{array}{l}
f \in \varphi^{-1}(\mathrm{~A}) \\
x \in \mathrm{P} \\
t \in[0,1 / 2]
\end{array}\right.
$$

The map is into $\varphi^{-1}(\mathrm{~A})$ since,
a) $\xi_{t}(f)(x g)=\mathrm{A}_{t} \circ f(x g)(g \in U(k))=\mathrm{A}_{t} \circ f(x) \circ g$

$$
=\xi_{t}(f)(x) \circ g U
$$

b) $\xi_{t}(f)^{+} d \xi_{t}(f)=f^{+} d f=\mathrm{A}$.

By lemma 4.2 below ξ is continuous.
(ii) There exists a $f_{0} \in \varphi^{-1}(\mathrm{~A})$ s.t. $\forall x \in \mathrm{P}, f_{0}(x)$ maps C^{k} into $\mathcal{H}_{\text {odd }}$ [Apply A_{1} to any $f \in \varphi^{-1}(\mathrm{~A})$ to get such an f_{0}]. Define for $t \in[1 / 2,1]$ a map $\eta: \varphi^{-1}(\mathrm{~A}) \times[1 / 2,1] \longrightarrow \varphi^{-1}(\mathrm{~A})$ by

$$
\eta_{t}(f)(x) v=(\sin t \pi) \mathrm{A}_{1 / 2} f(x) v-\cos t \pi f_{0}(x) v
$$

Again the map is into $\varphi^{-1}(\mathrm{~A})$. Note that $\mathrm{A}_{1 / 2} f$ maps into $\mathcal{H e}_{\text {even }}$. This means that $\forall(x, t), \eta_{t} f(x)$ defines an isometry of \mathbf{C}^{k} into $\mathcal{H e}$, for, given $v, v^{\prime} \in \mathrm{C}^{k}$,

$$
\begin{aligned}
\left(\eta_{t} f(x) v, \eta_{t} f(x) v^{\prime}\right) & =\sin ^{2} t \pi\left(\mathrm{~A}_{1 / 2} f(x) v, \mathrm{~A}_{1 / 2} f(x) v^{\prime}\right) \\
& +\left(\cos ^{2} t \pi\right)\left(f_{0}(x) v, f_{0}(x) v^{\prime}\right)=\left(v, v^{\prime}\right)
\end{aligned}
$$

where (,) denotes the inner product.
The points a), b) above can be checked easily. Lemma 4.2 gives continuity.
(iii) Compose ξ and η to get the contraction

$$
\psi: \varphi^{-1}(\mathrm{~A}) \times[0,1] \longrightarrow \varphi^{-1}(\mathrm{~A}) . \text { (See diagram) }
$$

Lemma 4.2. - The maps ξ, η constructed in the proof of Proposition 4.1 are continuous (in the product topology).

Proof. - Consider the map ξ. Let $\left(f_{n}, t_{n}\right)$ be a sequence in $\varphi^{-1}(\mathrm{~A}) \times[0,1 / 2]$. Then

$$
\begin{aligned}
\left\|\xi_{t_{n}}\left(f_{n}\right)-\xi_{t}(f)\right\|_{\gamma} & =\sup _{x \in \mathrm{P}}\left\|\mathrm{~A}_{t n} \circ \mathrm{D}^{\gamma} f_{n}-\mathrm{A}_{t} \circ \mathrm{D}^{\gamma} f\right\| \\
& =\sup _{x \in \mathrm{P}}\left\|\mathrm{~A}_{t n} \circ \mathrm{D}^{\gamma}\left(f_{n}-f\right)+\left(\mathrm{A}_{t_{n}}-\mathrm{A}_{t}\right) \circ \mathrm{D}^{\gamma} f\right\| \\
& \leqslant\left\|f_{n}-f\right\|_{\gamma}+\left\|\left(\mathrm{A}_{t_{n}}-\mathrm{A}_{t}\right) f\right\|_{\gamma}
\end{aligned}
$$

This shows continuity of ξ. The continuity of η follows similarly.
Remark. - The proof of Proposition 4.1 can be extended to prove contractivility of $\mathrm{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E})$. In particular, taking $\mathrm{P}=\mathrm{U}(k)$, we see that E itself is contractible.

We turn now to the fibres of the map φ. Note that if $A \in C$ and $\underset{\sim}{A} \in \mathbb{C}$ is its class, then $\varphi^{-1}(\mathrm{~A})$ projects onto $\mathscr{L}^{-1}(\underset{\sim}{A})$. Also if Aut A is the subgroup of Aut that leaves A fixed $\operatorname{Aut}(\mathrm{A})$ acts freely on $\varphi^{-1}(\mathrm{~A})$, the quotient being in bijection with ${\underset{\sim}{\varphi}}^{-1}(\underset{\sim}{A})$.

Aut A is the space of maps $\hat{g}: \mathrm{P} \longrightarrow \mathrm{U}(k)$ such that
(i) $\hat{g}(x h)=h^{-1} g(x) h \quad x \in P, h \in U(k)$
(ii) $\mathrm{A}=\hat{g}^{-1} \mathrm{~A} \hat{g}+\hat{g}^{-1} d \hat{g}$.

Since $\hat{g} \in$ Aut A is determined by its value at a fixed point in P , we shall, fixing $y_{0} \in \mathrm{P}$ (projecting onto $x_{0} \in \mathrm{M}$) identify Aut A $\ni \hat{g} \sim \hat{g}\left(y_{0}\right) \in \mathrm{U}(k)$.

Thus Aut A is a closed subgroup of $\mathrm{U}(k)$ [This is seen either from the equation (ii) above, or noting the fact that under the above identification Aut A is the centralizer of the holonomy group at y_{0}] and hence a Lie subgroup.

From now on we assume that the vector fields $\hat{\mathrm{X}}_{1} \ldots \hat{\mathrm{X}}_{p}$ have been lifted to P w.r. to A. Note that then $\hat{X}_{i}(\hat{g})=0$ for $\hat{g} \in$ Aut A.

Proposition 4.3. $-\varphi^{-1}(\mathrm{~A}) \longrightarrow{\underset{\sim}{1}}^{-1}(\underset{\sim}{\mathrm{~A}})$ is a locally trivial principal fibre space with Aut A as structure group.

Proof. - The proof proceeds in four steps.
a) Aut (A) acts continuously on $\varphi^{-1}(\mathrm{~A})$. For suppose $\left(f_{n}, \hat{g}_{n}\right) \in \varphi^{-1}(\mathrm{~A}) \times$ Aut A and $\left(f_{n}, \hat{g}_{n}\right) \longrightarrow(f, \hat{g})$. Then for any α_{L}, α

$$
\begin{aligned}
\| f_{n} \circ \hat{g}_{n} & -f \circ \hat{g}\left\|_{\alpha_{L}, \alpha} \leqslant\right\|\left(f_{n}-f\right) \circ \hat{g}_{n}\left\|_{\alpha_{L}, \alpha}+\right\| f \circ\left(\hat{g}_{n}-\hat{g}\right) \|_{\alpha_{L}, \alpha} \\
& =\sup _{x}\left\|\mathrm{D}^{\alpha_{\mathrm{L}}}\left(\left[\mathrm{D}^{\alpha}\left(f_{n}-f\right)\right] \hat{g}_{n}\right)\right\|+\sup _{x} \| \mathrm{D}^{\alpha} \begin{array}{l}
\mathrm{L}\left(\left[\mathrm{D}^{\alpha} f\right]\left(\hat{g}_{n}-\hat{g}\right)\right) \| \\
\left(\text { since } \mathrm{D}^{\alpha} \hat{g}=0\right)
\end{array} \\
& =\sup _{x}\left\|\sum_{\beta_{\mathrm{L}} \leqslant \alpha_{\mathrm{L}}}\binom{\alpha_{\mathrm{L}}}{\beta_{\mathrm{L}}} \mathrm{D}^{\alpha_{\mathrm{L}}-\beta_{\mathrm{L}}} \mathrm{D}^{\alpha}\left(f_{n}-f\right) \mathrm{D}^{\beta_{\mathrm{L}}} \hat{g}_{n}\right\| \\
& +\sup _{x}\left\|\sum_{\beta_{\mathrm{L}} \leqslant \alpha_{\mathrm{L}}}\binom{\alpha_{\mathrm{L}}}{\beta_{\mathrm{L}}} \mathrm{D}^{\alpha_{\mathrm{L}}-\beta_{\mathrm{L}}} \mathrm{D}^{\alpha} f \mathrm{D}^{\beta_{\mathrm{L}}}\left(\hat{g}_{n}-\hat{g}\right)\right\| \\
& \leqslant \alpha_{\mathrm{L}}!\| \|_{\beta_{\mathrm{L}} \leqslant \alpha_{\mathrm{L}}}\left\|f_{n}-f\right\|_{\alpha_{\mathrm{L}}-\beta_{\mathrm{L}}, \alpha}\left\|\hat{g}_{n}\right\|_{\beta_{\mathrm{L}}}+\|f\|_{\alpha_{\mathrm{L}}-\beta_{\mathrm{L}}, \alpha}\left\|\hat{g}_{n}-\hat{g}\right\|_{\beta_{\mathrm{L}}} .
\end{aligned}
$$

Now, for any $\hat{\mathrm{Y}}_{i}, \hat{g} \in$ Aut A

$$
\hat{Y}_{i}(\hat{g})=\lim _{t \rightarrow 0} \frac{\hat{g}\left(x \exp t Y_{i}\right)-\hat{g}(x)}{t}=\left[\hat{g}(x), Y_{i}\right]
$$

Also, if \hat{g}_{1}, \hat{g}_{2} are in Aut A, $d\left(\operatorname{Tr}\left(\hat{g}_{1}-\hat{g}_{2}\right)^{+}\left(\hat{g}_{1}-\hat{g}_{2}\right)\right)=0$, so that $\left\|\hat{g}_{1}(x)-\hat{g}_{2}(x)\right\|=\left\|\hat{g}_{1}\left(y_{0}\right)-\hat{g}_{2}\left(y_{0}\right)\right\|$.

So, we have

$$
\begin{aligned}
\left\|f_{n} \circ \hat{g}_{n}-f \circ \hat{g}\right\|_{\alpha_{\mathrm{L}}, \alpha} & \leqslant \alpha_{\mathrm{L}}!\sum_{\beta_{\mathrm{L}} \leqslant \alpha_{\mathrm{L}}}\left\|f_{n}-f\right\|_{\alpha_{\mathrm{L}}-\beta_{\mathrm{L}}, \alpha}\left\|\hat{g}_{n}\right\|_{\beta_{\mathrm{L}}} \\
& +\|f\|_{\alpha_{\mathrm{L}}-\beta_{\mathrm{L}}, \alpha} \mathrm{C}_{\beta_{\mathrm{L}}}\left\|\hat{g}_{n}\left(p_{0}\right)-\hat{g}\left(p_{0}\right)\right\|
\end{aligned}
$$

where $C_{\beta_{L}}$ is a constant depending on the multiindex β_{L}.
b) Denote by \mathbf{G} the graph of the equivalence relation defined by Aut A on $\varphi^{-1}(\mathrm{~A})$. Then the map $\mathbf{G} \longrightarrow$ Aut A is continuous. This follows since the map is given by $\left(f_{1}, f_{2}\right) \longmapsto f_{1}^{+}\left(y_{0}\right) f_{2}\left(y_{0}\right)$ which is clearly continuous.
c) The projection $\varphi^{-1}(\mathrm{~A}) \longrightarrow{\underset{\sim}{\varphi}}^{-1}(\underset{\sim}{\mathrm{~A}})$ is continuous and closed. Continuity follows from lemma 3.1 and lemma 4.4 shows that it is closed. Thus ${\underset{\sim}{~}}^{-1}(\underset{\sim}{A})$ has the quotient topology w.r. to the projection.
d) Thus we have shown that $\varphi^{-1}(\mathrm{~A}) \longrightarrow{\underset{\sim}{\varphi}}^{-1}(\underset{\sim}{\mathrm{~A}})$ is a principal fibre space. Now note that there is a Aut A-morphism

given by $f \longmapsto f\left(y_{0}\right)$. Since $\mathrm{E} \longrightarrow \mathrm{E} /$ Aut A is locally trivial, the proof is complete.

Lemma 4.4. - The map $\varphi^{-1}(\mathrm{~A}) \longrightarrow{\underset{\sim}{\varphi}}^{-1}(\underset{\sim}{\mathrm{~A}})$ is closed.
Proof. - Let $f_{n} \in \varphi^{-1}(\mathrm{~A})$ s.t. $p_{n}=f_{n} f_{n}^{+} \longrightarrow p$ in $\underline{\sim}^{-1}(\underset{\sim}{\mathrm{~A}})$.
It is enough to prove that $\left\{f_{n}\right\}$ contains a convergent subsequence. Since $p_{n}\left(x_{0}\right) \longrightarrow p\left(x_{0}\right)$ and E has compact fibres one
can assume $f_{n}\left(y_{0}\right) \longrightarrow g_{0} \in \mathrm{E}$ without loss of generality. Note that the f_{n} satisfy

$$
\begin{equation*}
d f_{n}=f_{n} \mathrm{~A}+d p_{n} f_{n} \tag{5}
\end{equation*}
$$

We now prove that the f_{n} are Cauchy in the C^{0} norm so that \exists a C^{0} function f such that $f_{n} \longrightarrow f$. Put $\mathrm{D}=f_{n}-f_{m}$. Then from (5) we have
$d\left(\mathrm{DD}^{+}\right)=\mathrm{DD}^{+} d p_{n}+d p_{n} \mathrm{DD}^{+}+d\left(p_{n}-p_{m}\right) f_{m} \mathrm{D}^{+}+\mathrm{D}_{m}^{+} d\left(p_{n}-p_{m}\right)$.
Evaluating on a vector field X_{t}, taking the trace and then absolute value of both sides we get

$$
\begin{aligned}
\left|\mathrm{X}_{t} \operatorname{Tr}\left(\mathrm{DD}^{+}\right)\right| & \leqslant\left|\operatorname{Tr}\left(\mathrm{DD}^{+} \mathrm{X}_{t} p_{n}\right)\right|+\left|\operatorname{Tr}\left(\mathrm{X}_{t}\left(p_{n}\right) \mathrm{DD}^{+}\right)\right| \\
& +\left|\operatorname{Tr}\left(\mathrm{X}_{t}\left(p_{n}-p_{m}\right) f_{m} \mathrm{D}^{+}\right)\right|+\left|\operatorname{Tr}\left(\mathrm{D} f_{m}^{+} \mathrm{X}_{t}\left(p_{n}-p_{m}\right)\right)\right| \\
& \leqslant 2\left\{\|\mathrm{D}\|^{2}\left\|\mathrm{X}_{t} p_{n}\right\|+\|\mathrm{D}\|\left\|\mathrm{X}_{t}\left(p_{n}-p_{m}\right)\right\|\right\}
\end{aligned}
$$

or,

$$
\begin{equation*}
\left|\mathrm{X}_{t}\|\mathrm{D}\|^{2}\right| \leqslant 2\left\{\|\mathrm{D}\|^{2}\left\|\mathrm{X}_{t} p_{n}\right\|+\left\|\mathrm{X}_{t}\left(p_{n}-p_{m}\right)\right\|\right\} \tag{6}
\end{equation*}
$$

Consider now the set $\left\{\mathrm{X}_{i}, \mathrm{Y}_{\ell}\right\}$ which we collectively denote by $\left\{\mathrm{Z}_{j}\right\}$. They give a map from $\mathrm{P} \times \mathbf{R}^{\mathrm{N}}$ (where $\mathrm{N}=k^{2}+p$) to the tangent bundle TP which is onto:

$$
\left(x,\left(t_{1} \ldots t_{\mathrm{N}}\right)\right) \longmapsto\left(x, \sum_{i} t_{i} Z_{i}(x)\right)
$$

Take the obvious metric on the vector bundle $\mathbf{P} \times \mathbf{R}^{n}$. This induces a splitting of the above map as well as a Riemannian metric on P. Then we have the following obvious result: if X is a vector field on P of norm $\leqslant 1$ and we express $\mathrm{X}=\Sigma a_{i} \mathrm{Z}_{i}$ with respect to the above splitting then $\left|a_{i}\right| \leqslant 1 \forall i$.

Now let $y \in \mathrm{P}$ and let $\Gamma(y)$ be a minimal geodesic joining y_{0} to y [such a geodesic exists for P compact] parametrized with respect to arc-length. Then the length of $\Gamma(y)<\mathrm{T}$ for some constant T independent of y. Now let X_{t} be the tangent vector field to Γ (which is necessarily of norm one). This gives

$$
\left\|\mathrm{X}_{t}\left(p_{n}-p_{m}\right)\right\|=\sum_{i}\left\|p_{n}-p_{m}\right\|_{i} \text { where } \begin{aligned}
\|p\|_{i} & =\sup _{x}\left\|\mathrm{Z}_{i} p\right\| \\
& =\sum_{|\alpha|=1}\left\|p_{n}-p_{m}\right\|_{\alpha}
\end{aligned}
$$

Thus we have, from (6)

$$
\left|\mathrm{X}_{t}\|\mathrm{D}\|^{2}\right|=2\left\{a\|\mathrm{D}\|^{2}+b\|\mathrm{D}\|\right\}
$$

with

$$
a=\sum_{|\alpha|=1}\|p\|_{\alpha}+c, c>0
$$

and

$$
b=\sum_{\alpha}\left\|p_{n}-p_{m}\right\|_{\alpha}
$$

Consider the ordinary differential equation

$$
\begin{aligned}
& \frac{d u^{2}}{d t^{2}}=2\left(a u^{2}+b u\right) \\
& u(0)=\mathrm{D}\left(y_{0}\right)
\end{aligned}
$$

The solution is clearly:

$$
u(t)=\mathrm{D}\left(y_{0}\right) e^{a t}+\frac{\left(e^{a t}-1\right)}{a} b
$$

Consider the set $\mathrm{K}=\{t \geqslant 0 \mid\|\mathrm{D}(t)\|>u(t)\}$. K is open, and hence a union of disjoint open intervals. Let t_{0} be its least boundary point. Clearly $\mathrm{D}\left(t_{0}\right)=u\left(t_{0}\right)$. From the polygonal approximations to $\left\|\mathrm{D}\left(t_{0}\right)\right\|^{2}$ and $u^{2}(t)$ it is clear that in an interval $\left(t_{0}, t_{0}+\epsilon\right)$ we have $\|\mathrm{D}(t)\| \leqslant u(t)$. Thus $\mathrm{K}=\varnothing$. We have finally,

$$
\|\mathrm{D}(y)\| \leqslant \mathrm{D}\left(y_{0}\right) e^{a \mathrm{~T}}+\frac{\left(e^{a \mathrm{~T}}-1\right)}{a} b
$$

which clearly shows that $\left\{f_{n}\right\}$ are Cauchy in the C^{0} norm.
Let f be the C^{0} limit. We now turn back to (5) and 'bootstrap' the above result to show that f is C^{∞} and $f_{n} \longrightarrow f$ in the C^{∞} topology. Assume, therefore, that f is C^{k} and $f_{n} \longrightarrow f$ in C^{k}. For any multi-index $\gamma(|\gamma| \geqslant 1)$ define γ^{\prime} and $\mathrm{X}^{(\gamma)}$ [here $\mathrm{X}^{(\gamma)}$ is one of the vector fields Z_{i}] by $\mathrm{D}^{\gamma}=\mathrm{D}^{\gamma^{\prime}} \mathrm{X}^{(\gamma)}$ so that $\mathrm{D}^{\gamma^{\prime}}$ is of order $|\gamma|-1$. Let $|\gamma|=k+1$. Then

$$
\begin{aligned}
\mathrm{D}^{\gamma} f_{n} & =\mathrm{D}^{\gamma^{\prime}} \mathrm{X}^{(\gamma)}\left(f_{n}\right)=\mathrm{D}^{\gamma^{\prime}}\left(f_{n} \mathrm{~A}\left(\mathrm{X}^{(\gamma)}\right)+\mathrm{X}^{(\gamma)}\left(p_{n}\right) f_{n}\right) \\
& =\sum_{\delta \leqslant \gamma^{\prime}}\binom{\gamma^{\prime}}{\delta}\left[\mathrm{D}^{\gamma^{\prime}-\delta} f_{n} \mathrm{D}^{\delta} \mathrm{A}\left(\mathrm{X}^{(\gamma)}\right)+\mathrm{D}^{\gamma^{\prime}-\delta} \mathrm{X}^{(\gamma)}\left(p_{n}\right) \mathrm{D}^{\delta} f_{n}\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
\| \mathrm{D} f_{n} & -\sum_{\delta \leqslant \gamma^{\prime}}\binom{\gamma^{\prime}}{\delta}\left[\mathrm{D}^{\gamma^{\prime}-\delta} f \mathrm{D}^{\delta} \mathrm{A}\left(\mathrm{X}^{(\gamma)}\right)+\mathrm{D}^{\gamma^{\prime}-\delta} \mathrm{X}^{(\gamma)}(p) \mathrm{D}^{\delta} f\right] \| \\
& \leqslant \gamma!\sum_{\delta<\gamma^{\prime}}\left\|f_{n}-f\right\|_{\gamma-\delta}\left\|\mathrm{A}\left(\mathrm{X}^{(\gamma)}\right)\right\|_{\delta}+\left\|p_{n}\right\|_{\gamma^{\prime}-\delta, \mathrm{x}}(\gamma)
\end{aligned}\left\|f_{n}-f\right\|_{\delta} \quad \text { } \quad+\left\|p_{n}-p\right\|_{\gamma^{\prime}-\delta, \mathrm{x}(\gamma)}\|f\|_{\delta} \quad l
$$

where $\|f\|_{\gamma^{\prime}-\delta, \mathrm{X}^{(\gamma)}} \equiv \sup _{x}\left\|\mathrm{D}^{\gamma^{\prime}-\delta} \mathrm{X}^{(\gamma)} f\right\|$.

This shows $\mathrm{D}^{\gamma} f_{n}$ tends uniformly to a C^{0} function, and hence f is C^{k+1}. By induction f is C^{∞} and $f_{n} \longrightarrow f$ in $\mathrm{C}^{\infty}(\mathrm{P}, \mathrm{E})$. The proof also shows $d f=f \mathrm{~A}+p f$.

Since $\operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E})$ is closed, $f \in \operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E})$ and $p=f f^{+}$ by continuity of the projection $\operatorname{Mor}_{\mathrm{U}(k)}(\mathrm{P}, \mathrm{E}) \longrightarrow \operatorname{Mor}_{p}(\mathrm{M}, \mathrm{B})$. (One can now easily show that $f^{+} d f=\mathrm{A}$, thus showing that the fibre ${\underset{\sim}{\varphi}}^{-1}(\mathrm{~A})$ is closed. This is because we have nowhere in the proof used the fact that $\left.p \in{\underset{\sim}{\mid}}^{-1}(\underset{\sim}{A})\right)$.

The Theorem stated in the Introduction now follows.

BIBLIOGRAPHY

[1] M. Dubois-Violette and Y. Georgelin, Gauge Theory in terms of projector valued fields, Physics Letters, 82B, 251 (1979).
[2] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, séminaire, Collège de France (1964-65).
[3] V.N. Gribov, Quantization of nonabelian gauge theories, Nuclear Physics, B 139 (1978), 1.
[4] M.S. Narasimhan and S. Ramanan, Existence of universal connections, Amer. J. Math., 83 (1961), 573-572.
[5] M.S. Narasimhan and T.R. Ramadas, Geometry of SU(2) gaugefields, Commun. Math. Phys., 67 (1979), 121-136.
[6] R. Schlafly, Universal Connections, Inventiones Math., 59 (1980), 59-65.
[7] I.M. Singer, Some remarks on the Gribov ambiguity, Commun. Math. Phys., 60 (1978), 7-12.

Manuscrit reçu le 17 août 1981.

T.R. Ramadas, School of Mathematics Tata Institute of Fundamental Research
Homi Bhabha Road Bombay 400005 (India).

