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FOLIATIONS OF SURFACES
I, AN IDEAL BOUNDARY

by JohnN.MATHER(*)

Consider a foliation F defined in V-p, where p is a point
in a surface S, and U is a neighborhood of p in S. The point
p is often called an "isolated singularity" of F. We will define
an "ideal boundary" j3 = P(Fp) associated in a topo logically inva-
riant way to the germ of F at p , in this paper.

In subsequent work, we will use f3 to study the topology of
F in a neighborhood of p .

For simplicity, we will suppose in most of this paper that F
is a foliation of the punctured plane, i.e., the plane with the origin
deleted. We will study the ideal boundary associated to the "singu-
larity" of F at the origin. Obviously, this involves no loss of gene-
rality.

Here is an outline of the definition of fS = j3(Fo) when F is
a foliation of the punctured plane. A leaf of F which is not compact
is homeomorphic to the real line, with respect to the foliation
topology. Hence, it has two ends (which we call leaf-ends). We let
& ==S(Fo) denote the set of all leaf-ends which converge to the
origin. The set & has a natural cyclic order (§ 2).

We will say that distinct elements e , e ' in a cyclicly ordered
set £ are neighbors if the orientation of e e ^ e ' with respect to the
cyclic order on 2 is independent of the choice of ^ e 2 — {e , e 9 } .

Example. — Consider the circle with the standard cyclic order.
Remove a small open interval. The endpoints of the interval are
neighbors in the resulting set.

(*) Partially supported by an NSF grant.
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We will construct ft by identifying neighbors in & and filling
in the holes by a process analogous to Dedekind's method of cons-
tructing the set of real numbers from the set of rational numbers.
The cyclic order on g induces a cylic order on j3 (§3).

Obviously, when S> is empty, so is j3. When 8> is finite, but
not empty, ft is one point. Part of the main theorem of this paper
(§ 12) states that when S> is infinite, there is a cyclic order preserv-
ing bijection of ft onto the circle.

We let P denote the punctured plane, and let
P = P(Fo) = PII^(Fo)

(disjoint union). We will define a topology on P, as follows. In the
case & is empty, we provide P with the same topology as P. In/^/
the case 6 is finite, there is a bijection of P onto the plane, whichi^^
is the identity on P and sends j3 to 0, and we topologize P so
that this bijection is a homeomorphism.

In the case § is infinite, we consider the set 9 of all Jordan
curves F (i.e., homeomorphic images of the circle in the plane) such
that:

a) O e r , and
b) there is an open arc V C r with 0 £ V such that each of

the two components of V — 0 is contained in a leaf of F. (The
leaves for the two components will usually be different.)

For r G 3, we let Up be the open subset of the plane bounded
by r . We define a subset Up of P, as follows. We let Up H P = Up .
Denote the ends of the components of V — 0 which converge to
0 by e ' and e " . By condition b), e ' , e"^S. To define Up n|8,
we consider two cases, depending on whether ^ T ( e f ) = ^ T ( e f f ) or
not, where TT : g —^ ft denotes the natural mapping. In either
case, we will need to consider an auxiliary element e E § satisfying:

c) all points sufficiently near e on the leaf of which e is an
end are in Up , and

d) 7r(6?) ̂  TT(^) and ir(e) ̂  Tr(^).

Case 1. — TT(^') = TT(^'). If ^€ & satisfying c) and d) exists,
we let Up 0 ft = ft — TT((?') . If nosuch e exists, we let Up 0 ft = 0.
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Case 2. - TT(^') =^ 7r(^'). If e G & satisfying c) and d) exists,
we let U p H j S be the set of x E j 3 such that Tr(^) x ^ ( e " ) has the
same orientation as 7 r ( e ' ) 7r(e) 7r(e"), with respect to the cyclic
order on j3. This orientation is independent of the choice of e (§ 5).
If no such e exists, we let Up ^ <3 == 0 .

(In fact, when T r ( e ' ) ̂  TT(^') , there always exists e G 8> satisfy-
ing c) and d), by the main theorem of this paper. However, this
fact will not be proved until we prove the main theorem of this paper,
and in the meantime we need a definition of Up .)

We provide P with the topology generated by all open sets in
P and all sets Up , F E ^ . Our main theorem (§12) states that
when 8> is infinite, there is a homeomorphism of topological pairs:
(P, P) = (S1 x [0,oo), s1 x 0), where S1 denotes the circle and
[0, oo) the set of non-negative numbers.

^ In Chapter I of this paper, we will give the definition of ft and
P in more detail.

The main tool we use in the proof of the main theorem is the
Poincare-Bendixson theory. Chapter II contains an outline of the
results we need from this theory. All the ideas of Chapter II come
from Bendixson's paper.

Chapter III contains the statement and proof of the main
theorem.

Our original motivation was to study foliations of the plane
in a neighborhood of infinity. Of course, our results apply to this
case. Haefliger and Reeb have made a beautiful study of planar
foliations in [2]. Even though we do not use any of their results
directly, their ideas inspired this paper.

Since our results are purely topological, they apply in many
cases. For example, if S is a surface of finite connectivity, and e
is an end of S, then there is a deleted neighborhood of e which
is homeomorphic to a punctured plane [3], [5]. If F is a foliation
of S, then our theorem applies to the germ of F in a neighborhood
of e .

I would like to thank the referee for numerous improvements
in the exposition.
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CHAPTER I

DEFINITION OF THE IDEAL BOUNDARY

1. Definition ofFoliations on Surfaces.

By a surface, we will mean a Hausdorff, second countable topo-
logical space, each point of which has a neighborhood homeomorphic
to the plane.

Following Haefliger, we will define a foliation on a surface S
in the following way. A chart will mean a pair (U, 0), where
U is an open set in S, and 0 is a homeomorphism of U onto
an open set in the plane. We identify the plane with R2 . Two
charts (U,0) and (V, ^) will be said to be compatible if the
transition mapping f = 0^~1 : ^(V 0 U) —^ 0(V H U) satisfies
the condition that the germ of { at each point has the form
S(^?.y) == ( S i O ^ ? ^ ) ? £2^)) • ^n °ther words, the second compo-
nent of ^ ( x , y ) depends only on y locally in a neighborhood of
each point in the domain of { .

An atlas is a family {(U,, ^.)}^ of mutually compatible charts
such that U U, = S. Two atlases are said to be equivalent if their
union is an atlas; this is an equivalence relation. A foliation is an
equivalence class of atlases.

A foliation is said to be defined by an atlas if it is the equiva-
lence class of the atlas. In this case, any chart in the atlas is said to
be a chart for the foliation.

Let F be the foliation defined by an atlas {(U,,0,)},. By
the foliation topology, or F-topology, we mean the topology on
S in which a subset V is open if and only if 0^.(V H U,) intersects
each horizontal line {y = constant} in an open set. This topology
is independent of the atlas chosen to define the foliation.

A connected component of S with respect to the F-topology
is called a leaf of the foliation.
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2. Ends of leaves.

We will use the following terminology. An open arc, i.e., a topo-
logical space homeomorphic to an open interval, has two "ends".
A closed arc, i.e., a topological space homeomorphic to a closed
interval, has two "endpoints". A half open arc, i.e., a topological
space homeomorphic to a half-open interval, has one "end" and
one "endpoint". The use of the word "end" here agrees with the
usage in the topological "theory of ends".

Let F be a foliation of a surface S. Each non-compact leaf
L of F is homeomorphic to R with respect to the F-topology.
Hence, it has two ends. If u : R —> L is a homeomorphism, and
T G R , then { ^ ( r ) : r > T } and { u W ' . t ^ T } will be called
half-leaves. Each such half-leaf has just one end, which is one of
the ends of L. Thus, the end of {u(t): t > T} (resp. {u(t): t < T})
is the end of L which corresponds to 4- oo (resp. — oo).

By the Riemann sphere, we will mean the plane with oo adjoined,
topologized in the usual way.

Suppose F is a foliation of the punctured plane P. Suppose
L is a non-compact leaf of F, and e is an end of L. We define
the limit set lim e of e to be the set of x in the Riemann sphere
such that any neighborhood of x meets any half-leaf in L whose
end is e .

Obviously, lim e is a compact, connected, non-empty subset
of the Riemann sphere.

DEFINITION of S. — We will say that e converges to 0 (resp. °°)
if lim e = 0 (resp. ^ ) . We let & = &(F()) denote the set of all
ends of leaves of F "which converge to the origin.

In the rest of this section, we will show how to define a cyclic
order on &.

DEFINITION. — Let I, be a set. By a cyclic order on £ we will
mean a subset P of the set of ordered triples of distinct elements
of 2 , which satisfies the following conditions:

a) Let x ^ , x ^ , x ^ be three distinct elements of 2 and let
TT be a permutation of { 1 , 2 , 3 } . In the case TT is an even permu-
tation, ( x ^ , x ^ , x ^ ) e P if and only if (x^ , x^, x^) E P.
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In the case TT is an odd permutation ( x ^ , x^ , ̂ 3) G P if and only
tf (^7r(l) ' X7T(2) ' x^(3)) ̂  P •

b) Let x ^ , x ^ 3 ^3 ,^4 &^ a^ /OMr distinct elements of 2.
// ( ; ^ ,X2 ,^3)^P a^rf 0 ' i , ;C3 ,X4)GP, rA^2 (Xi,^^)^-

Relation with total orders. — If S is a set and x € 2 , then
we may define a one-one correspondence between cyclic orders on
S and total orders on 2 — x , as follows. If P is a cyclic order on
S , define a total order on 2 — x by setting y < z whenever
O c , ^ , z ) E P .

DEFINITION. — / / x , y , z are distinct elements of 2, we will
say that x y z has positive orientation (with respect to f) if
(x , y , z) G P ; otherwise, we will say x y z has negative orientation.

Example. — If x , y , z are three distinct points on the circle,
S1 , we will say that x y z has positive orientation if a point which
traverses the circle in the counter-clockwise direction meets x , y ,
and z in that order.

We will need the following classical result from plane topology.

LEMMA 2. — If L^, L ^ , . . . , L^ are closed arcs in the plane
which have a common end-point but no other intersections, the
plane can be mapped homeomorphically onto itself, so that the arcs
are mapped onto segments radiating from a point. Moreover, in any
two such homeomorphisms, the cyclic order of the image segments
is the same or reversed.

This is exercise 3 on p. 170 of [4]. It is an easy consequence
of the preceding material in [4]. This material includes the Schoenflies
theorem [4, Chapt. VII, Theorem 4.1], but the Schoenflies theorem
by itself does not seem to be enough to give this result.

Definition of the cyclic order on @. — Consider three distinct
elements e ^ , e^ , ^3 G S. Each e^ is the end of some half-leaf A,
and A, = 0 U A,. Each A, is a closed arc in the plane, having 0
as one endpoint. Two different A, do not intersect, unless they
lie on the same leaf. However, in the latter case, we can arrange that
they do not intersect by shrinking them suitably. Thus, in any case,
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we get three closed arcs A^, A^ , A^ , which intersect only at the
origin.

By Lemma 2, there is an orientation preserving homeomorphism
0 of the plane onto itself, such that 0(0) = 0, and 0(Ai), (f>(A^),
0(Ag) are segments of straight lines in the plane. One endpoint of
each such straight line segment is the origin, and we may choose 0
so that the other endpoint x, lies on the unit circle. We decree that
e^e^e^ has positive orientation if x ^ x ^ x ^ does. A well-known
argument shows that the orientation of x ^ x ^ x ^ is independent
of 0, as long as 0 is chosen to be orientation preserving.

3. Dedekind completion.

It is obvious that the Dedekind process of filling in the holes
can be applied to cyclicly ordered sets as well as totally ordered
sets. In this section, we define this process in detail.

Given a total order on a set 2, we may define a cyclic order
on it by decreeing that x y z has positive orientation if x <y <z
or z <x <y or y < z < x . We will say that the cyclic order so
defined is induced from the total order on 2 .

Now suppose 2 is a cyclicly ordered set. Any total order on
2 which induces the given cyclic order will be said to be admissible.
A total order on 2 for which there is neither a greatest nor a least
element will be said to be unbounded. We define the Dedekind
completion 2 of 2 to be the disjoint union of 2 and all unbounded,
admissible total orders on 2 .

Relation mth Dedekind cuts. — Consider distinct admissible
total orders < and <' on 2 . Let

P = {x E 2 : 3y G 2 , x < y , y <' x}

P ' = { j c E 2 : 3^e2, y < x , x < ' y } .

LEMMA 3. — a) x <y and y <' x if and only if x GP and
y E P ' .

b) 2 = P U P ' (disjoint union).
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Proof. — a) "Only if" is obvious. To prove "if", we consider
x G P, y € P'. By hypothesis, there exists w , z E 2 such that
jc < w, w <! x , z < y , and ^ <' z . We wish to prove x < y .
Suppose the contrary, i.e., ^ < ̂ . Then z < ̂  < x < w , so zyw
and zxw have positive orientation. Since z y w has positive orien-
tation and y <' z , we obtain ^ <' w <' z. Since zxw has posi-
tive orientation and w <' x , we obtain w <' z <' x . Hence,
y <' w <' z <f x . Hence, y z x has positive orientation, which
contradicts z <y <x . This contradiction shows x < y . The same
argument (with the order reversed) shows y <' x .

b) The fact that P H P' = 0 follows immediately from the
fact that if x G P and y € P', then x < y .

To prove 2 = P U P', suppose there exists x G 2 — (P U P').
We will show that y < z ==> y <' z , for any y , z G 2 .

When either y or z is x , this follows immediately from
the definitions of P and P\ Otherwise, one of the following cases
holds: x < y < z , y < x < z , o r y < z < x . In the second case,
we obtain y <' x <' z . In the first case, x <' y , x <' z , and
x y z has positive orientation, so x <! y <1 z . The third case is
treated like the first. In any case we obtain y <' z .

Thus, y < z ==> y <' z , so < and <' are the same, con-
trary to assumption, a

Since 2 is the disjoint union of P and P' and x G P, y G P'
imply x < y , we obtain that (P, P') is a Dedekind cut for the
order <. Likewise, (P', P) is a Dedekind cut for the order <'.
Conversely, if (P, P') is any Dedekind cut for the admissible order
<, we can define a second admissible order <' on 2, by setting
x <' y if x C P', y E P, or x , y e P and x < y , or x , y € P'
and x < y . Thus, for any admissible total order < on 2 , the
other admissible total orders are in one-one correspondence with
the Dedekind cuts for <.

The cyclic order on 2 . - In § 2, we explained how to define
a total order on 2 — x for any x G 2 . We can extend this to a
total order on 2 in two ways: either make x the largest element
or the smallest element. The two total orders associated to x in
this way are admissible.
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Let x ^ , x ^ , ^3 be three distinct elements of 2 and let
<i, <2' <3 be three admissible total orders associated to x ^ , x ^ , x^
in the following way. Each x^ is either an unbounded, admissible
total order on 2 or an element of 2 . In the first case, we let
<, = Xf. In the second case, we let <^. be one of the two total
orders we just associated to ;c,. We will assume that these orders
are chosen so that they are distinct. This is always possible, but a
wrong choice may lead two of these orders to be the same in the
case two of the x / s are neighbors in 2 .

Let (P,P') (resp. (Q,Q')) be the Dedekind cut for the order
<^ defined by the order <^ (resp. <3). In other words,

P = {x E 2; : 3y E 2 , x <, y , y <^ x } ,

etc. We will say x^x^x^ has positive orientation if P C Q. Otherwise,
Q C P, since (P, P') and (Q, Q') are both Dedekind cuts for the
order <^ , and we will say x ^ x ^ x ^ has negative orientation. It is
easy to check that the conditions for a cyclic order are satisfied.

Properties of the Dedekind completion. — It is easily checked
that the inclusion 2 C 2 preserves cyclic order, and 2 = 2 .

4. Definition of ft.

Let 2 be a set provided with a cyclic order. If x , y € 2 , we
will say that y is the successor of x and x is the predecessor of
y if x y z has positive orientation for any z € 2 — {x , y } . In this
case, we will say x and y are neighbors.

We let 2 be the set obtained from 2 by identifying any two
neighbors in 2 . Two elements x , y G 2 project to the same ele-
ment of 2 if and only if there are at most finitely many z £ 2 such
that x y z is positively oriented or there are at most finitely many
z E 2 such that x y z is negatively oriented.

We define a cyclic order on 2 in the obvious way. Let ~x , V, z~
be three distinct elements of 2 and let x , y , z be elements of
2 which project onto them. We will say ~xy~z is positively oriented
if x y z is.

In general, 2 can have^ neighbors, so we can have 2 =^= 2.
Moreover, it may happen that 2 =^= 2 .
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DEFINITION. — If V is a foliation of the punctured plane, we
set ^ 3 = ^ ( F o ) = t(Fo).

From ourjriain theorem, it follows that there are no neighbors
in 6, so & = S.

We let TT : &——> j3 be the ^composition of the projection
&——> S with the inclusion §——> &.

5. Topology on P.

Let F be a foliation of P. When we defined the topology on
P = P(Fo) in the introduction, we remarked that the orientation
of TT(^') ir(e) TT(^") was independent of the choice of e as long
as conditions c) and d) of the introduction were satisfied. In this
section, we note a stronger result.

Let e^e" be distinct members'of §. Let A',A" behalf-
leaves whose ends are e9 and ^". We will think of e ' and e " as
the germs of A' and A" at the origin. Then e * U e^ separates
the germ at the origin of the plane into two germs of open sets, U
and V.

THEOREM 5. - Let e^& be distinct from e ' and e " . The
orientation of e1ee11 depends only on "whether e CU U 0 or
e C V U 0, and it is opposite in one case from what it is in the
other. Here, we think of e as the germ of A at the origin, where
A is half-leaf whose end is e.

Proof. — Immediate from Lemma 2. n
If x , y are elements of a cyclicly ordered set 2 , we define

the open interval ( x y ) to be the set of z G Z such that x z y is
positively oriented. The family of open intervals in S is the basis
of a topology, called the topology associated to the cyclic order
on S .

From the definition of the topology P and Theorem 5, it
follows easily that the topology on j3 induced from the topology
on P is the same as the topology associated to the cyclic order
on j3.
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CHAPTER II

POINCARE-BENDIXSON THEORY

6. Poincare index.

Let U be an open subset of the plane and let F be a foliation
of U. The well-known Poincare index /(F, 7) is defined for every
closed curve 7 in U (i.e., continuous mapping 7 of the circle S1

into U). We will sketch the definition in this section.
For the definition, we need the following result.

LEMMA 6. — / / F is an orientable foliation of a surface S,
then there is a flow a on S whose trajectories are the leaves of F.

Recall that a flow a on S is a continuous action a: R x S —^ S
of R on S. Its trajectories are the sets a ( R x x ) , for x ^ E S .

Proof. — We will consider measures jn defined on the a-algebra
d3 of Borel sets associated to the foliation topology. In other words,
d? is the smallest o-algebra which contains the F-open sets. We will
say such a measure is F-locally regular if it has no atoms, each
F-open set has positive measure, each F-compact set has finite
measure, and whenever (U ,0) is a chart for the foliations and
[a , b] x [c , d] C 0(U), we have that p-((t>~1 ([^» b] x t)) is a con-
tinuous function of t E [c , d}.

We can construct an F-locally regular measure p. on 0S by
using charts for the foliation to construct it locally, and using a par-
tition of unity to fit the locally constructed measures together. We
will say p. is ¥-regular, if in addition to being F-locally regular,
every half-leaf for F has infinite measure. It is easy to see that if
/i is F-locally regular, then there is a continuous function g on
S such that gfi is F-regular.

Thus, there is an F-regular measure ^ on S. To such a
measure and an orientation of F, we may associate a flow a, as
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follows. Consider u E U and let L be the leaf which contains u.
Then a is uniquely defined among possible actions by requiring
that a(u, t) move in the positive direction on L as t increases,
and for small e > 0, ^{a(u, t) : 0 < t < e} = e . In this way, we
may construct a continuous action a of R on S whose trajectories
are the leaves of F . n

The definition of the Poincare index may be given as follows. Sup-
pose there is a homotopy F : S1 x I —> U such that r(0, 0) = 7(0)
and for each fixed 6 , the mapping t —> F(0, t) is an embedding
of I into a single leaf of F. In this case, we define ;(F, 7) to be
the degree of the mapping

^ _^ 7(g) - r ( f l , l )
|l7(0)-r(0,l) | |

of S1 into S1 . It may be seen that this number is independent of
the choice of F , when F exists.

When F is orientable, F exists. It may be constructed by using
an action a of R on U whose trajectories are the leaves of U.

In general, let 72 be the closed curve obtained by tracing over
7 twice. Then z(F, 72) may be defined in the above way, i.e. F
exists for 72 in place of 7. In the case F is not orientable, this
may be seen by letting U be the two fold covering space of U such
that the pull-back F of F to U is orientable. Then 72 is the image/•</ /-^
of a closed curve in U and the leaves of F are the trajectories of
an action a of R on U. Using these data, one constructs F easily.

When ((F, 7) may be defined as above, it is easy to see that
i(F , 7) = z(F , 7^/2 . In general, we define i(F , 7) be this formula.

The Poincare index z(F, 7) depends only on F and the ho-
mology class of 7; it defines a homomorphism iy : H^(U, Z) —> Q,
whose values are integers, or half-integers.

7. The case when there is a leaf connecting 0 and °°.

Let F be a foliation of P. When &(Fo) = 0, any neighborhood
of the origin contains a compact leaf, which separates the origin from
infinity. This follows from the proof of Theoreme VI in [1]. See also
p. 256 of [3]. On p. 257 of [3], Kerekjarto gives a complete topological
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classification of germs FQ of foliations for which §(Fo) = 0 . We
will not discuss this case in this paper.

Suppose S = &(FQ) ̂  0 . Let e G & and let L be a leaf
whose end is e. Let F be a Jordan curve in the plane which encloses
the origin, and intersects L. Let U be the open subset of the plane
bounded by F. Let h be a homeomorphism of U onto the plane
which is the identity in a neighborhood of the origin. Let LQ be
the component of U 0 L which has e as an end. Then h^) is
a leaf of A»(F|U), one of whose ends converges to the origin, and
the other of whose ends co verges to <x>. We will say that such a leaf
connects 0 and °°.

We have equality of germs: (/^F)^ = Fo . Thus, we have shown
that if §(Fo) ̂  0 , then F() is the germ of a foliation having a leaf
connecting 0 and oo.

The following result is a consequence of the well known Poincare-
Bendixson theorem, suitably formulated. However, since it seems
to be slightly different from anything in the literature, it seems advis-
able to sketch a proof.

THEOREM 7. — If F has a leaf connecting 0 and oo then every
end of a leafof F converges to 0 or to °°.

Reduction of Theorem 7 to the orientable case. — Let F' be
the foliation of P obtained by pulling back F via the mapping
z——^ z2 of the Riemann sphere onto itself, where z denotes
the complex coordinate z = x + iy . The foliation F' is always
orientable, and it is easily seen that Theorem 7 for F' implies
Theorem 7 for F.

Proof in the orientable case.

DEFINITION. - Let F be a foliation of a surface S . By an open
(resp. half-open, resp. closed) transversal to F, we mean an open
(resp. half-open, resp. closed) arc r\ in S such that for each u G 7?,
there is a chart (U, 0) for F such that u € U and

0(U H T?) C XQ x R C R2 ,

for some XQ e R .
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Thus, 0 takes F to the horizontal foliation and 17 to an
interval in a vertical line.

We will need the following basic result due to Bendixson.

LEMMA 7. — Suppose F is an orien table foliation of a connected
open subset U of the plane. Let L* be any leaf of F and 17 any
transversal to F. Suppose L* meets 17 in more than one point.
Let A and B be two successive (on L * ) points of L* H 17. Let
LQ' and 170 be the closed arcs of L* and 17 with endpoints A
and B. Then i(F , L^ U 770) = ± 1 .

Proof. — By Lemma 6, there is a flow a on U whose trajec-
tories are the leaves of F. Let 7: S1 ——> L^ U 17̂  be a homeo-
morphism. Using a, we may construct a homotopy F : S1 x I —^ U
having the properties required for the definit i on of ?(F, 7) and
such that the image of F lies in R, where R is the open subset
of the plane bounded by L^ U 17̂  (see Fig. 7). By the

Fig. 7

Schoenflies theorem, there is an isotopy of R onto the unit disk
in the plane. Using this and the definition of i ( F , 7) in terms of
r, we see that ? ( F , 7 ) = + 1 or — 1 according to whether 7
traverses L^ U 17̂  in the positive or negative direction, o
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Now we return to the proof of Theorem 7 and suppose F is
an orientable foliation of P with a leaf L connecting 0 and oo.
Let e be an end of a leaf L* of F. Since lim e is connected and
non-void, it is enough to prove lim e H P = 0 .

Suppose the contrary. Let x G lim e H P. Let r] be a trans-
versal to F containing x . If x f. L, we choose 17 so 17 0 L = 0
and ^ is in the interior of 77. If ^ E L, we choose r] so x is an
endpoint of 77, 17 H L = x , and L* meets 17 infinitely often. Let
A and B be two successive points on L* of L* H r ] . Let L^
and 770 be the closed arcs of L* and 17 with endpoints A and
B. Then (L^ U 7^) H L = 0 , so L^ U 17 ̂  is null-homo topic in P,
and i(F , L^ U 17^) = 0. But, Lemma 7 implies ;(F, L^ U 7^0) = ± 1 .
This contradiction shows that lim e H P = 0 . D

8. Neighbors.

Let F be a foliation of P. Using the method of Bendixson
[1, Theor6me V], we may prove:

THEOREM 8.1. - Let e , e ' e & = g(Fo) be neighbors. There
exists a compact set D in the plane and a homeomorphism (j> of
D onto the rectangle {— 1 < x < 1 , 0 < y <!}, such that
0(0) = 0, 0(F|D — 0) is the foliation by horizontal lines, and e , e *
are the ends of the half-leaves, A, A\ where
A = 0-1 {- 1 < x < 0, y = 0} and A' = 0-1{0 < x < 1 , y = 0} .
(See Fig. 8.1.)

Fig. 8.1
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The statement that 0(F|D-0) is the foliation by horizontal
lines means that for each point x € D - 0, there is a chart (U, ^)
for F such that 0|U n (D - 0) = ^ |U n (D - 0).

Proof. — Let A and A' be half-leaves whose ends are e and
e'. Then A' U A U 0 separates any sufficiently small neighborhood
for the origin into two open sets U and V , such that the origin
is adherent to both of them. It follows from Theorem 5 and the hypo-
thesis that e and e ' are neighbors, that one of these open sets, say
U, has the property that there is no half-leaf in U whose end con-
verges to the origin.

Let 77 and 77' be half-open transversals to F such that the
endpoint of 77 (resp. 77') is the endpoint of A (resp. A'). We
suppose in addition that 77 (resp. 77') is on the same side of A
(resp. A') as U (Fig. 8.1).

Let u € 77 and let X be the half-leaf on the same side of rf
and A , having u as endpoint. Bendixson shows [1, Th6oreme V]
that for u sufficiently near to the endpoint of A, X intersects
77' in a point v . Moreover, he shows that as u tends to the end-
point of A , v converges to the endpoint of A'.

Here, we sketch Bendixson's proof. We choose a closed arc 7
joining a point of 77 to a point of 77' and not otherwise meeting
7 7 U A U O U A ' U 7 7 ' . Let 770 (resp. 7?o) be the arc of 77 (resp.
77') between the endpoint of A (resp. A') and the point 7707
(resp. 77' n 7). Let R be the open subset of the plane bounded
by the Jordan curve A U 0 U A' U 770 U 7 U 770 . We will suppose
there is a neighborhood of the origin in the plane which has the
same intersection with R as with U. It is always possible to
choose 7 so this holds.

We will suppose F has a leaf joining 0 and oo. There is no
loss of generality in supposing this, by the discussion at the beginning
of § 7, since S(Fo) =^ 0 , and Theorem 8.1 is an assertion about
the germ FQ .

Choose u E 77^ . The first step in Bendixson's argument is to
show X intersects 7 U 770. For, if not, it follows from Theorem 7
that the end of X converges to the origin. Since X C R in the case
X 0 (7 U 770) = 0 , it follows that points on X near the end of X
lie in U . But this contradicts the defining property of U.
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Let v be the point where X intersects 7 U T^ . As u
approaches the endpoint of A on T^ , the point v moves mono-
tonically on 7 U ̂  towards the endpoint of A'. Thus, v approaches
some limit w in 7 U 7?o. The last step in Bendixson's argument is
to show that w is the endpoint of A ' .

Suppose otherwise. Let £ be the arc on X joining u and v .
Let ^ be the half-leaf emanating from w in the same direction as
£ from v . (This is meaningful, since v approaches arbitrarily close
to w.) We have ^ " C R , since £ C R , and any neighborhood of
any point in ? meets £, if u is sufficiently close to the endpoint
of A . Hence, Theorem 7 implies that the end of ^ converges to
the origin. Since ^ C R , it follows that points on ^ near the end
of ^ are in U. This contradicts the defining property of U .

This contradiction shows that v converges to the endpoint
of A ' . This completes Bendixson's argument.

Choose u so that v^.^. Let 7^ (resp. T][) be the arc of
77 (resp. 17') whose endpoints are the endpoint of A and u (resp.
the endpoint of A' and v). Let Do be the open subset of the
plane bounded by the Jordan curve C U r][ U A' U 0 U A U 7?^ .
Let D = Do .

We may choose a simply connected open neighborhood U
of D — 0 in the punctured plane. Then F|U is orientable, so by
Lemma 6, there is a flow of a in U whose trajectories are the
leaves of F | U.

To construct 0 , we choose a homeomorphism 0 of 7^ onto
{x = — 1 , 0 < ̂  < 1} which takes the endpoint of A to ( — 1 , 0 ) .
We construct a How ft on { - 2 < x < 2 , 0 < ^ < ! } — (0,0),
whose trajectories are the horizontal lines y = const. =^= 0, and
the two sets { — 2 < x < 0 , y = 0 } and {0 < x < 2 , y = 0} .
We construct ft so the x coordinate is increasing for the flow and
a point in r]^ (other than the endpoint of A) takes the same time
to reach r][ under a as the corresponding point in {x = — 1 ,
0 < y < 1} takes to reach {x = 1 , 0 < y < 1} under ft. We
then extend 0 to a homeomorphism of D onto the rectangle
{— 1 < x < 1 , 0 < ^ < 1 } , which takes the flow a into the flow
ft. It is easily seen that 0 has the required properties, n
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THEOREM 8.2. - // & is finite, but non-empty, then the number
\&\ of elements in S uniquely determines the topological type of
the germ of F at the origin.

Proof. - If |&| > 3, this is a corollary of Theorem 8.1, and
the other cases may be deduced by taking a finite covering of the
punctured plane. D

The topological type of F for 181 == 1 , 2 , 3 , 4 is indicated
in Fig. 8.2.

Theorems 8.1 and 8.2 are stated in [3], pp. 257-258.

| E | = 1

|E|= 2

|E| =3

Fig. 8.2

| E ( = 4
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9. Nodal regions.

Let F be a foliation of P. Let L be a leaf both of whose ends
converge to the origin. Then L U 0 is a Jordan curve. Let R be the
open subset of the plane which it bounds. Bendixson [1] calls R
a closed nodal region.

THEOREM 9.1 (Bendixson [I], p. 19). — Every end e9 of a leaf
L' in a closed nodal region converges to the origin.

Proof. — Let L be the leaf which bounds the closed nodal
region R. Let F be a simple closed curve in the plane enclosing
the origin, and touching L in exactly one point. Let U be the open
subset of the plane bounded by F. By Theorem 7, any end of any
leaf of F | U converges to the origin or to F. For a leaf in R, the
second case is obviously excluded, a

Let 77 be a transversal to F. Let A and B be two points on
17, and let A^ and Ag be two half-leaves whose endpoints are
A and B and which lie on the same side of 17. Suppose that A^
and Ag do not meet 77 except in their endpoints and that their
ends converge to 0. Let 7?o be the closed arc in 17 bounded by
A and B. Bendixson [1] called the region R in the plane bounded
by A^ U 0 U AB U 770 an open nodal region.

THEOREM 9.2. — Let C be a point on 770 and let A^ be the
half-leaf whose endpoint is C and which lies on the same side of 170
as A^ and Ag. Then A^ does not meet 170 except in C, and
the end of A^ converges to the origin. Both ends of a leaf which
lies entirely in R converge to the origin.

In Fig. 9, we show an example where a leaf lies entirely in R.

Proof. — Suppose to the contrary that A^ does meet 170 a
second time. Let D be the first such point of intersection. Let £
be the closed arc in A^ joining C and D; let 77^ be the closed
arc in 770 joining C and D . Then i(F , 77^ U S.) = ± — , but 7^ U S.
is null-homo topic in P, a contradiction.

The remaining statements follow from Theorem 7. Q
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Fig. 9

10. On the structure of 8 > .

Let F be a foliation of P, and let 8> = @(Fo).
Let A and A' be half-leaves whose ends e and e ' converge

to the origin. Let ^ be an arc in the plane, joining the endpoints
of A and A' and not otherwise meeting A U 0 U A'. Let U be
the open subset of the plane which the Jordan curve A U 0 U A' U ?
bounds. We will suppose that if A" is a half-leaf not meeting
A U 0 U A' U ?, with end e" G & , then e e ' e has positive orien-
tation if and only if A" C U.

THEOREM 10. — One of the following alternatives holds:

a) There are (at most) finitely many e " E g such that ee^e'
has positive orientation, or

b) U contains an (open or closed) nodal region.
In case b), U may contain both open and closed nodal regions.

Proof. — Let 2 be the set of points a on ^ such that a is
the endpoint of a half-leaf lying in A U U U A' U {' and meeting
^ only in a , whose end converges to the origin.

Suppose 2 is infinite. Let r be a point of accumulation of
S and let 77 be a transversal through r. Then 17 crosses infinitely
many leaves which pass through 2 near their point of intersection
with 77. Two such leaves and a suitable arc of 77 determine an open
nodal region. By shrinking it suitably, we may arrange that it is in
U. Hence, b) holds when 2 is infinite.



FOLIATIONS OF SURFACES 255

Suppose 2 is finite. Let a'1 and a'" be two successive points
of 2 on ?, counting from the endpoint of A to the endpoint of
A'. Let A" and A'" be the half-leaves in A U A' U U U ? of which
a " and a 1 1 ' are the endpoints. Let e" and e ' " be the ends of A"
and A"'.

Let ^Q be the closed arc in ? whose endpoints are a " and
a'". Let R be the open subset of the plane bounded by the Jordan
curve A" U 0 U A'" U ^o . Obviously, R C U.

Suppose there exists e^eg such that e " e^ e ' " has po-
sitive orientation. Let L^ be the leaf of which ^iv) is the end.
Points on L0^ near ^(iv) lie in R, since e^e^e"' has positive
orientation. Furthermore, L^ does not meet ^o, for otherwise
2 would have a point between a " and a'" on ?. Thus L0^
lies in R. By Theorem 7, applied to F|U for a suitable open
disk U, the limit set of both ends of L0^ is the origin. Hence,
L^^ determines a closed nodal region contained in R. Thus,
b) holds in this case.

Suppose, on the other hand, that for each pair a " , a ' " of
successive points on 2, there is no ^(iv) as above. Then each
e19 G (b such that ee" e^ has positive orientation corresponds to
a point of 2 . It follows that the set of such e" is finite, i.e.
a) holds, n

11. Extensions of leaf-ends.

Let F be a foliation of P and let ^ G g = @ ( F o ) . We will
define the extension Ext(^) of e , as follows.

Let L be the leaf whose end is e . Consider an open trans-
versal 77 meeting L in a single point x . Let A be the half-leaf
in L whose endpoint is x and whose end is e . Let U be the
union of all half-leaves which have an endpoint on 77 and which
emanate from the same side of 17 as A. Let Exi(e) == 0 U ,
where the intersection is taken over all open transversals meeting
L in exactly one point, and the closure is taken in the Riemann
sphere.

Obviously, Ext(e) is a closed, connected set in the Riemann
sphere, and 0 E Exi(e).
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For any e € &, let L^ denote the leaf whose end is e .

THEOREM 11 [1, p. 25]. - Let K be a compact subset of P.
There are at most finitely many e € § such that L^ meets K a^d
Ext(^) afao meets K .

Proof. — Let F be a Jordan curve which separates the origin
from K. For each e € § such that L^ intersects F, let x^ be
the first such point of intersection on L^, counting from e . Let
2 be the set of such x^ for which L^ and Exi(e) meet K.

Were the conclusion of the theorem false, then 2 would be
infinite. Suppose this is the case and let x be an accumulation
point of 2. Let 17 be an open transversal containing x . Let
xe(l) » xe(2)' xe(3) ^e ^IG^ points of 2 near x , and let A, (for
i = 1,2 ,3) be the half-leaf whose end is ^., whose endpoint y^
is on 77, and which does not otherwise intersect 17. Suppose y^
lies between y^ and ^3 on 17. Let 170 be the subarc of rf whose
endpoints are >^ and ^3. Then A^ U 0 U A3 U 7^ bounds an
open nodal region R. We may suppose R H K = 0 , by taking
r small enough.
_ By Theorem 9.2, U ^ C R . Since Ext(^) C U^ and
R H K = 0 , it follows that Ext(^) n K = 0 , which contradicts
the assumption that x^ )G2. This contradiction proves the
theorem, a

COROLLARY 11.1. - There are (at most) countably many e^.8>
such that Ext(e) =^ 0. a

COROLLARY 11.2. — There are at most countably many e^&
which have neighbors.

Proof. - Immediate from Theorem 8.1 and Corollary 11.1. a
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CHAPTER III

PROOF OF THE MAIN THEOREM

12. Main theorem.

/ /F is a foliation of the punctured plane, and S(Fo) is infinite,
then there is a homeomorphism of top ological pairs

(P(Fo), <?(Fo)) ̂  (S1 x [0 , oo), s1 x 0),

whose restriction to <3(Fo) is cyclic order preserving.

In this section, we will construct a homeomorphism

A O : P —^ S^O.oo).
In § 13, we will show that A o extends to a homeomorphism

h: P —> S^O.oo).

Construction of A Q . — Let K be the set of leaves of F having
ends which are members of & and have neighbors in §. By Corollary
11.2, G is (at most) countable. Hence there exists a countable set
B9 of leaves of F , disjoint from 8>, such that U B1 is a dense subset
of P. Let &' be the set of ends of members of ^ which converge
to the origin. No member of §' has a neighbor in 6.

From Theorem 10 and the hypothesis that § is infinite, it
follows that there exists at least one (open or closed) nodal region.
Every leaf meeting a nodal region has at least one end which converges
to the origin. Since U e' is dense in P, we obtain that &' is infinite.
Obviously, &' is countable. Let &' = {^ , e^ , e^ ,...} be an enume-
ration of the members of S'.

We construct a sequence F\ , 1̂  ,... of Jordan curves enclosing
the origin and a sequence A ^ , A^ ,... of half-leaves, as follows. We
let I\ be a Jordan curve enclosing the origin, and A^ a half-leaf
whose end is e ^ , whose endpoint lies on 1̂  , and which does
not otherwise intersect r\ . Suppose, for the inductive step, that
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r\ , . . . , r, _ ^ , A ^ , . . . , A,_ ^ have been chosen, the various A.,
1 < / < i — 1 , are mutually disjoint, and that e. is the end of
A.. We then choose a Jordan curve r, enclosing the origin, contained
in the intersection of the disk of radius i~1 centered at the origin
with the open set bounded by r^._^ , such that F, meets each A.,
1 < / < i — 1 in exactly one point and meets the leaf whose end
is ^,. Such a Jordan curve exists by the Lemma 2 applied to
'-.i —
U A,. We define A, to be the half-leaf whose end is e. and which/ = i 7 ' *
meets 1̂ . in just one point, its endpoint.

We will construct a sequence Q ^ , 0 ^ , . . . of distinct points in
S1 such that the following properties hold.

a) The one-one correspondence 0. <-^ A. H r, between
{ 6 ^ , . . . , 0,} and {A^ H r,,..., A, H FJ preserves cyclic order,
where the first set is provided with the cyclic order induced from
that on the circle, and the second set is provided with the cyclic
order induced from that on r,.

b) 0, bisects the component of S1 — { 0 ^ , . . . , 0,_i} which
contains it.

The construction is by induction. Let Q^ be any point of S1 .
Let 02 be the diametrically opposed point. Assuming 0 ^ , . . . , 0,_^
have been constructed, 0, is uniquely determined by conditions
a) and b). The existence of 0, satisfying a) and b) is a consequence
of the following remark: The one-one correspondence

A,.nr,_i <-> A^.nr,
between {A, 0 F ,_ i , . . . ,A,_i 0 F,_i} and {A^ 0 F,,. . . , A,_^ n F,}
preserves cyclic order. This follows from plane topology and the
following facts: F, is a Jordan curve in the open set bounded by
the Jordan curve F , _ ^ , and each A., 1 < / < i— 1 , intersects
both r\._^ and F, in exactly one point.

Using the Schoenflies theorem, one sees easily that there is a
homeomorphism h^ of P onto S^^.oo) which sends F, onto
S1 x i~1 and A, onto 0, x (0, i~1], for each i = 1 ,2 , . . . .

In § 13, we will show that any such homeomorphism h^ extends
to a homeomorphism h of P onto S1 x [0,oo).
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13. Extension of h^ .

LEMMA 13.1.- { 0 i , 0 2 , . . . } is dense in S1.

Proo/ — In view of the condition b) in the definition of the
sequence 0 i , 0 2 , . . . , it is enough to prove that each component
of S1 — { ^ i , . . . , 0,} contains some 0g, for each f = l , 2 , . . . .
In view of condition a) in this definition, we may restate the exis-
tence of such 0fi in terms of the F, and A,, as follows.

Consider a component F? of 1̂ . — {A^ H F, , . . . , A, OF,}.
Let x = A^ H r, and ^ = A^ H F, be the endpoints of T\° . We
will suppose x and y are chosen so that x z y has positive orien-
tation, with respect to the cyclic order on F,, for any z G F 0 .
It is enough to prove that there exists ^ G &' with e. e^ e^ posi-
tively oriented. For, then (A .̂ H Fg , Ag 0 Fg , A^ 0 I\) has posi-
tive orientation, with respect to the cyclic order on Fg , and so
0g lies in the component of S1 — { 6 ^ , . . . , 0,} bounded by 0.
and 0^ .

There are an infinite number of e e g such that ^, ̂  has
positive orientation. For, if there were only a finite number, then
^ would have a successor and ^ a predecessor, contrary to the
fact that no member of &' has a neighbor in &. Thus, alternative
b) in Theorem 10 (for .̂ and e^ in place of e and ^') holds.
Consider the nodal region R whose existence is guaranteed by al-
ternative b) in Theorem 10.

Since U^' is dense in P, it intersects the open set R. Let
z e (U e1) n R . Let L be the leaf which contains z . By Theo-
rems 9.1 and 9.2 there is a half-leaf A C L, with endpoint z , such
that A C R and its end e converges to the origin. Since L E K9

and e converges to the origin, ^Gg\ Let e = e ^ . In view of
the property of R stated in Theorem 10, e^e^ is positively
oriented. D

Since no member of &' has a neighbor in &, TT:§ '—> ft
isinjective.

LEMMA 13.2. - Tr(S') is dense in <3.

Proof. - Since j3 is the Dedekind completion of g=7r (S) ,
this amounts to the assertion that if e , e ' €7r(g) and n(e) + 7r(^'),
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then there exists ^€g ' such that 'n(e) Tr(^) T r ( e ' ) is positively
oriented.

Since TT(^) =7^ Tr(^), there are an infinite number of ^"€g
such that ee^e^ has positive orientation. Exactly the same argu-
ment as in the proof of Lemma 13.1 then shows that there exists
^.Gg' such that ee^ has positive orientation. Since no element
of &' has a neighbor in g, it follows that 7r(e) 7r(^.) T r ( e ' ) has
positive orientation. D

For ^.G &', we define A(7r(^.)) = 0,. This defines a cyclic-
order preserving bijection between 71(6') and { ^ i , ^ ? - * * } - Since
TT(§') is dense in the Dedekind complete set f3, and { 0 ^ , 0 ^ , . . . }
is dense in S1, it follows that h extends uniquely to a cyclic order
preserving bijection h: j3 —^ S1.

We let h: P—> S1 x [0, oo) be h^ on P and as just defined
on j3.

Proof that h is a homeomorphism. — Given three positive
integers i , / , k we define V,^ to be the set of ( Q , t) e S1 x [0 , oo)
such that Offf&Ok ls positively oriented and 0 < t < i~1. We
let U,,̂  ^o^^W- Then ^/fc ̂ r for a suitable reg (cf.
the definition of the topology on P in the introduction). We let
<^w /<w

U,,, = Up .
Choose £ > < such that 0.0^0^ is positively oriented. The

half-leaf Ag = A.^^e x (0, £~1]) lies in U,^ , and e.e^ is po-- ' ^ ' ^^
sitively oriented. It follows from the definition of LL.̂  that LL.^ H (3
consists of all x€ j3 such that Tr(e.) xiT(e^) is positively oriented.
On the other hand, ^"^(V,^) H j3 is the same set, since h |j3 is cyclic/^/
order preserving. Hence, A(U,..^) = V,y^ .

From the fact that the 0, are dense in S1, it follows that the
collection of sets V,.^ , together with the open subsets of S1 x (0, oo),
form a basis of the topology of S1 x [0, oo). From the factjthat
7r(S') is dense in j3, it follows that the collection of sets U,^ ,
together with the open subsets of P, form a basis of the topology
of P. Hence A is a homeomorphism. a
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