ROBERT KAUFMAN On the weak L¹ **space and singular measures**

Annales de l'institut Fourier, tome 32, nº 1 (1982), p. 119-128 <http://www.numdam.org/item?id=AIF_1982__32_1_119_0>

© Annales de l'institut Fourier, 1982, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE WEAK L¹ SPACE AND SINGULAR MEASURES

by Robert KAUFMAN

Introduction.

The class R of finite, complex measures μ on $(-\infty, \infty)$ such that $\hat{\mu}(\infty) = 0$, has been intensively investigated (since 1916). For this class o(1) is trivial and for absolutely continuous measures, we have the Riemann-Lebesgue Lemma. We investigate the corresponding o(1) condition for the partial-sum operators

$$S_{T}(x, \mu) \equiv \int D_{T}(x-t) \mu(dt),$$
$$D_{T}(t) \equiv (\pi t)^{-1} \sin T t, T > 0.$$

The o(1) condition for S_T depends on the weak L^1 norm, defined by

$$\| u \|_{1}^{*} \equiv \sup Y m\{ |u| > Y \};$$

$$\| S_{T}(\mu) \|_{1}^{*} \leq C \| \mu \|, \ 0 < T < + \infty.$$

The weak estimate is an easy consequence of Kolmogorov's estimate for the Hilbert transform [2, Chapter II]. Elementary approximations show that when $\mu = f(x) dx$, then $\lim ||S_T(\mu) - f||_1^* = 0$. When μ is singular and $\lim ||S_T(\mu) - g||_1^* = 0$ for a certain measurable g, two conclusions can be obtained without great difficulty (see below):

a)
$$\|\mathbf{S}_k(\mu) - \mathbf{S}_{k+1}(\mu)\|_1^* \longrightarrow 0$$
 whence $\hat{\mu}(\infty) = 0$;

b)
$$S_T(\mu) \longrightarrow 0$$
 in measure as $T \longrightarrow +\infty$

whence g = 0 a.e. This leads us to define:

^(*) Presented at the Italian-American Conference on harmonic analysis, Minnesota, 1981.

 W_0 is the class of measures μ for which $||S_T(\mu)||_1^* \longrightarrow 0$ as $T \longrightarrow +\infty$.

We present an elementary structural property of W_0 , and then show by example that

(A) There exist M_0 -sets F carrying no measure $\mu \neq 0$ in W_0 .

The sets F are defined by a purely metrical property, and they need not be especially small. Their construction is based on an idea from the theory of divergent Fourier series [31, Chapter VIII].

(B) The set F_{θ} of all sums $\sum_{0}^{\infty} \pm \theta^{m} (0 < \theta < 1/2)$ carries a measure $\lambda \neq 0$ in W_{0} , provided F_{θ} is an M_{0} -set.

To elucidate example (B) and the next one we recall that F_{θ} fails to be an M_0 -set (or even an M-set) unless $\mu_{\theta} \in \mathbb{R}$, where μ_{θ} is the Bernoulli convolution carried by F_{θ} and that $\mu_{\theta} \in \mathbb{R}$ except for certain algebraic numbers θ [3II, p. 147-156]. Therefore the next example is somewhat unexpected.

(C) When
$$0 < \theta < 1/2$$
, then $\mu_{\theta} \notin W_0$, in fact
 $\|S_{T}(\mu_{\theta})\|_{1}^{*} \ge c(\theta) > 0$

for large T > 0. We observe in passing that μ is not known to be singular for $1/2 < \theta < 1$ except when $\mu_{\theta} \notin \mathbb{R}$, e.g., for $\theta^{-1} = (1 + \sqrt{5})/2$.

1.

From the weak estimate for S_T it is clear that W_0 is normclosed in the space of all measures. We shall prove that when $\mu \in W_0$ and $\psi \in C^1 \cap L^{\infty}$, then $\psi \mu \in W_0$; consequently the same is true if only $\psi \in L^1(\mu)$. We need two lemmas; the first was already used implicitly.

LEMMA 1. – Let μ be a measure such that $S_k(\mu) - S_{k+1}(\mu) \longrightarrow 0$ in measure (over finite intervals). Then $\hat{\mu}(\infty) = 0$, i.e., $\mu \in \mathbb{R}$.

Proof. $|D_k(t) - D_{k+1}(t)| \le \min(1, |t|^{-1}) \equiv K(t)$, say, and $K \in L^2(-\infty, \infty)$. Thus the functions $|S_k(\mu) - S_{k+1}(\mu)|$ have a common majorant $\int K(x-t) |\mu| (dt)$ in L². The hypothesis on

 $S_k - S_{k+1}$ then yields $||S_k - S_{k+1}||_2 \longrightarrow 0$. This means that $\int_k^{k+1} (|\hat{\mu}(t)|^2 + |\hat{\mu}(-t)|^2) dt \longrightarrow 0$ so $\hat{\mu}(\infty) = 0$, because $\hat{\mu}$ is uniformly continuous.

LEMMA 2. - Let $\mu \in \mathbb{R}$ and $\psi \in \mathbb{C}^1 \cap \mathbb{L}^\infty$. Then as $\mathbb{T} \longrightarrow +\infty$ $\|S_{\mathbb{T}}(x, \psi \cdot \mu) - \psi(x)S_{\mathbb{T}}(x, \mu)\|_1^* \longrightarrow 0$.

Proof. – Since μ can be approximated in norm by measures $\mu_n \in \mathbb{R}$, each of compact support, we can suppose that μ itself has compact support, say $|t| \leq a$. Now $S_T(\psi \cdot \mu) - \psi S_T(\mu)$ converges to 0 uniformly on [-a-1, a+1], being equal to

$$\pi^{-1}\int\sin T(t-x)\cdot\varphi(x,t)\,\mu(dt),$$

with $\varphi(x, t) = (t - x)^{-1} [\psi(t) - \psi(x)]; \varphi(x, t)$ is jointly continuous. This is sufficient to obtain the uniform convergence claimed.

For |x| > a + 1 we write

$$x \operatorname{S}_{\mathrm{T}}(x, \mu) = \pi^{-1} \int \sin \mathrm{T}(t-x) \cdot \sigma(x, t) \, \mu(dt)$$

with $\sigma(x, t) = x(t - x)^{-1}$; now $|\sigma| \le a + 1$ and

$$\left|\frac{\partial}{\partial t}\sigma(x,t)\right| \leq a+1,$$

for $|t| \le a$. Therefore $xS_T(\mu, x) \longrightarrow 0$ as $T \longrightarrow +0$, uniformly for $|x| \ge a + 1$. The same applies to $xS_T(x, \psi \cdot \mu)$, because $\psi \cdot \mu \in \mathbb{R}$, and these inequalities show that $\psi S_T(\mu) - S_T(\psi \cdot \mu) \longrightarrow 0$.

2. Examples.

I. Let F be a compact set in $(-\infty,\infty)$, $0 < \alpha < 1$, (ϵ_j) a sequence decreasing to 0; for each j, let $F = \bigcup F_k^j$, where

diam
$$(\mathbf{F}_k^j) \leq \epsilon_j, d(\mathbf{F}_k^j, \mathbf{F}_k^j) \geq \epsilon_i^{\alpha}, k \neq \ell.$$

Then F carries no probability measure μ in W₀ (and hence no signed measure $\mu \neq 0$ in W₀).

We define the following property of a number β in [0,1), relative to μ and the sequence of partitions $F = \bigcup F_k^j$:

(**) The total μ -measure of the sets F_k^j , such that $\mu(F_k^j) > \epsilon_j^\beta$, tends to 0, as $j \longrightarrow +\infty$.

Plainly $\beta = 0$ has property (**), because μ , being an element of R, can have no discontinuities. We shall prove that if β has property (**), and $0 \le \beta < \alpha$, then $\gamma = \beta + (1 - \alpha)/2$ has property (**). This leads to a contradiction as soon as $\gamma > \alpha$, since the number of sets $F_k^j \ne \phi$ is $0(\epsilon_i^{-\alpha})$.

Assuming that β has property (**), we form $\lambda = \lambda_j$, by omitting from F_k the intervals F_k^j of μ -measure $> \epsilon_j^{\beta}$. By Kolmogorov's estimate, $||S_T(\lambda_j)||_1^* \longrightarrow 0$, as $j \longrightarrow +\infty$ and $T \longrightarrow +\infty$, independently. Let now $\int_{-\infty}^{+\infty} denote an integral over the domain$ $<math>|x - t| > \epsilon_j^{\alpha}/2$. Then

$$\int_{-\infty}^{\infty} |x - t|^{-1} \lambda_j(dt) = 0(\epsilon_j^{-\alpha}), \text{ if } \beta = 0,$$

$$\int_{-\infty}^{\infty} |x - t|^{-1} \lambda_j(dt) = 0(\epsilon_j^{\beta - \alpha}) (\log \epsilon_j), \ 0 < \beta < \alpha.$$

The first of these is obvious; the second is obtained by packing the subsets F_k^j as close to x as is consistent with the condition $d(F_k, F_{\mathfrak{L}}) \ge \epsilon_i^{\alpha}$.

For each k such that $\lambda_j(\mathbf{F}_k^j) > \epsilon_j^{\gamma}$, we let ξ_k belong to \mathbf{F}_k^j and consider the set defined by

$$(\mathbf{S}_{k}^{j}): \frac{1}{2} \lambda(\mathbf{F}_{k}^{j}) \epsilon_{j}^{\sigma} < |x - \xi_{k}| < \lambda(\mathbf{F}_{k}^{j}) \epsilon_{j}^{\sigma},$$
$$|\sin \epsilon_{j}^{-\tau} (x - \xi_{k})| > \frac{1}{2}$$

where $\sigma = -\beta + 3\alpha/4 + 1/4$, $\tau = (1 + \gamma + \sigma)/2$.

The number $\lambda(\mathbf{F}_k^j) \, \epsilon_j^{\sigma}$ lies between $\epsilon_j^{\beta+\sigma}$ and $\epsilon_j^{\gamma+\sigma}$; we note that $\beta + \sigma > \alpha$, and $\gamma + \sigma = 3/4 + \alpha/4 < 1$. Moreover $\epsilon_j^{-\tau} \, \epsilon_j = o(1)$, while $\epsilon_j^{-\tau} \, \lambda(\mathbf{F}_k^j) \, \epsilon_j^{\sigma} \longrightarrow + \infty$.

For each k in question, the Lebesgue measure of S_k^j is asymptotically $c\lambda(F_k^j) \epsilon_j^{\sigma}$, and the different sets are disjoint, because $\lambda(F_k^j) \epsilon_j^{\sigma} = o(\epsilon_j^{\alpha})$. We shall prove that $|S_T(\lambda_j)| > c' \epsilon_j^{-\sigma}$ for a certain c' > 0, with $T = \epsilon_j^{-\tau} \longrightarrow +\infty$. This will prove that the total μ -measure of the subsets F_k^j , such that $\epsilon_j^{\gamma} < \epsilon_j \le \epsilon_j^{\beta}$, is o(1).

When $x \in S_k^j$,

$$|\mathbf{S}_{\mathrm{T}}(x) - \int_{\mathbf{F}_{k}^{j}} \mathbf{D}_{\mathrm{T}}(x-t) \,\lambda(dt)| \leq \int^{*} |x-t|^{-1} \,\lambda(dt),$$

and the error term on the right is $o(\epsilon_i^{-\sigma})$, because $\sigma > \alpha - \beta$.

When $t \in F_k^j$, $t - \xi_k = o(x - \xi_k)$ because $\gamma + \sigma < 1$, and sin $T(t - x) = \sin T(\xi_k - x) + o(1)$ because $\tau < 1$. This easily leads to the lower bound on $|S_T(x)|$.

Our construction is adapted from Kolmogorov's divergent Fourier series [31, Chapter VIII].

To complete our example, we must present a set F that is also an M_0 -set. This is known for various M_0 -sets, but seems to occur explicitly in [1]: there exists a closed set $E \subseteq [0,1]$ and a sequence of integers $N_k \longrightarrow +\infty$ such that

(1) $|N_k x| < N_k^{-1}$ (modulo 1) for $x \in E$, $k \ge 1$,

(2) The mapping $y = e^x$ transforms E onto an M_0^{-} -set. Then y(E) is covered by intervals of length $\leq 2eN_k^{-2}$, whose distances are at least $(N_k^{-1} - 2N_k^{-2})$.

In the remaining examples it is occasionally convenient to write $S_T(y)$ in place of $S_T(y, \mu)$, when $\mu = \mu_{\theta}$.

II. We present example (C) first, because (B) is based on an improvement in one of the inequalities used in (C). For each $n = 0, 1, 2, 3, \ldots, F_{\theta}$ is a union of 2^{n+1} sets E_k of diameter $2\theta^{n+1}(1-\theta)^{-1}$, and mutual distances at least

$$2\theta^{n+1}(1-2\theta) \ (1-\theta)^{-1} \equiv c_1 \theta^{n+1}; \ \mu(\mathbf{E}_k) = 2^{-n-1}.$$

The lower bound on the mutual distances gives a Hölder condition on $\mu: \mu(B) \le c_2 (\text{diam B})^{\alpha}$, where $\alpha = -\log 2/\log \theta < 1$. If ξ_k is the center of E_k , we have an identity

$$\int_{\mathbf{E}_{k}} f(t) \, \mu(dt) = 2^{-n-1} \, \int f(\xi_{k} + \theta^{n+1} t) \, \mu(dt).$$

For each set E_k , we define the set E_k^{\sim} by the inequality $d(x, E_k) < c_1 \theta^{n+1}/3$, so the sets E_k^{\sim} have distances at least $2c_1 \theta^{n+1}/3$. If $x \in E_k^{\sim}$, then

$$|S_{\mathrm{T}}(x, \mu) - \int_{\mathrm{E}_{k}} D_{\mathrm{T}}(x-t) \, \mu(dt)| < \int_{\mathrm{R}-\mathrm{E}_{k}} |x-t|^{-1} \, \mu(dt),$$

and in the last integral, $|x - t| \ge 2c_1 \theta^{n+1}/3$. Hence, by the Hölder condition, the integral is $\le c_3 (\theta^n)^{\alpha-1} = c_3 2^{-n} \theta^{-n}$. The principal term can be evaluated by the identity above, and simplified to the form $2^{-n} \theta^{-n-1} S_{\pi n^{n+1}} (\theta^{-n-1} x - \theta^{-n-1} \xi_k)$.

We observe that

$$\lim \int S_{T}(x, \mu) f(x) dx = \int f(x) \mu(dx),$$

for suitable test functions f; for example, this is true if f and \hat{f} are integrable. Since μ is singular, we can find a test function f, such that $||f||_1 < 1$ and $|\int f(x) \mu(dx)| > 2c_3 + 2c_1^{-1}$. Hence $\max |D_T(\mu)| > 2c_3 + 2c_1^{-1}$ for large T, say for $T > T_0$.

Let $T > \theta^{-1} T_0$, and let $n \ge 0$ be chosen so that $T^* = \theta^{n+1} T$ satisfies the inequalities $T_0 \le T^* \le \theta^{-1} T_0$. Suppose that

$$|D_{T^*}(\theta^{-n-1}x - \theta^{-n-1}\xi_k)| > c_3 + c_1^{-1}.$$

Then $d(\theta^{-n-1}x - \theta^{-n-1}\xi_k, F_{\theta}) < c_1/3$, since $\pi > 3$, or $d(x, \xi_k + \theta^{n+1}F_{\theta}) < c_1\theta^{n+1}/3$, so $x \in E_k^{\sim}$. Hence

$$|D_{T}(x, \mu)| > c_{3} \cdot 2^{-n-1} \theta^{-n-1} - c_{3} 2^{-n} \theta^{-n} = c_{4} 2^{-n} \theta^{-n}$$

But it is easy to see that the set of x's in question has measure at least $c_5 2^n \theta^n$, because $T_0 \leq T^* \leq \theta^{-1} T_0$, and the functions D_{T^*} have derivatives bounded by $\theta^{-2} T_0^2$. Hence $\|D_T(\mu)\|_1^* \geq c_4 c_5$.

III. The example (B) requires a complicated construction, but relies in essence on small improvements on estimates already used. To estimate $S_T(\mu, x)$ we divide the range of integration into the subsets $\{|x - t| < T^{-1}\}$ and $\{|x - t| > T^{-1}\}$. The second yields an integral $O(T^{1-\alpha})$, by the Hölder condition, and the first yields $T \cdot O(T^{-\alpha}) = O(T^{1-\alpha})$ for the same reason (and the inequality $|D_T| < T$).

We give another estimate on $S_T(x, \mu)$ for large T, supposing that $\mu \in \mathbb{R}$.

LEMMA 3. – To each $\epsilon > 0$ there is a T₀ such that

$$|S_T(x, \mu)| < \epsilon d(x, F_A)^{-1}$$

whenever $T \ge T_0$ and $d \equiv d(x, F_{\theta}) \ge \epsilon$.

Proof. – Let $\delta = d(x, F)$ and observe that

$$\delta S_{T}(x,\mu) = \pi^{-1} \int \sin T(x-t) \cdot \delta \cdot (x-t)^{-1} \mu(dt).$$

The function $g(t) = \delta \cdot (x - t)^{-1}$ is bounded by 1 on F, and

 $|g(t_1) - g(t_2)| \le \delta^{-1} |t_1 - t_2|$ for numbers t_1, t_2 in F_{θ} . Hence the conclusion follows from our assumption that $\mu \in \mathbb{R}$ and the Tietze extension theorem.

The inequality of the Lemma can be written in a more useful way. When $t \in F_{\theta}$, then $|x - t| \leq d + 2 \leq d(1 + 2\epsilon^{-1})$. Hence $d(x, F_{\theta})^{-1} \leq (1 + 2\epsilon^{-1}) \int |x - t|^{-1} \mu(dt)$. Suppose now that $x \notin E_k^{\sim}$ so that $d(\theta^{-n-1}x - \theta^{-n-1}\xi_k, F_0) \geq c_1 \theta^{n+1}/3$. Using the identity for integrals over E_k , we find the following estimate:

If
$$x \notin \mathbf{E}_{k}^{\sim}$$
 and $\mathbf{T}\theta^{n+1} > \mathbf{T}_{00}$, then
$$\left| \int_{\mathbf{E}_{k}} \mathbf{D}_{\mathbf{T}}(x-t) \, \mu(dt) \right| < \epsilon \, \int_{\mathbf{E}_{k}} |x-t|^{-1} \, \mu(dt) \, .$$

Consequently, when $x \in E_{\varrho}^{\sim}$ and $T\theta^{n+1}$ is sufficiently large (depending on $\epsilon > 0$)

$$|S_{\mathrm{T}}(x,\mu)-2^{-n-1}\theta^{-n-1}S_{\mathrm{T}\theta^{n+1}}(\theta^{-n-1}x-\theta^{-n-1}\xi_{\varrho})| \leq \epsilon \,\theta^{n(\alpha-1)}\,.$$

LEMMA 4. – To each $\epsilon > 0$ there is a $\delta > 0$ so that, when $\theta^{-1} < Y < \delta T^{1-\alpha}$ then $Ym\{|S_T(x, \mu)| > Y\} < \epsilon$.

Proof. – We choose $n \ge 0$ so that $1 < \theta^{n+1} Y^{1/1-\alpha} < \theta^{-1}$; this leads to the inequalities $\theta^{n(\alpha-1)} > Y$, and $T\theta^{n+1} > \delta^{-1}$. For fixed ℓ , we must estimate the Lebesgue measure of the set defined by

$$|S_{T\theta^{n+1}}(\mu, \theta^{-n-1}x - \theta^{-n-1}\xi_{\varrho})| > \frac{1}{2} \cdot 2^{n+1}\theta^{n+1}Y.$$

The right hand side exceeds $\frac{1}{2} \theta^{-1}$; when $T\theta^{n+1}$ is large, the measure of the set is at most $\epsilon \theta^{n+1}$; the total for all ℓ is at most $\epsilon 2^{n+1}\theta^{n+1} < \epsilon Y^{-1}$. Hence $Ym\{|S_T(x, \mu)| > Y\} < \epsilon$.

In view of the inequality $|S_T(\mu, x)| = O(T^{1-\alpha})$, the conclusion of the last lemma holds when $Y > \delta^{-1}T^{1-\alpha}$, T > 1, for a certain $\delta > 0$.

In preparation for the next lemma, we recall the identity (n = 1, 2, 3, ...)

$$\int f(t)\,\mu(dt) \equiv 2^{-n}\,\sum_{k=1}^{2^n}\,\int f(\xi_k\,+\,\theta^n t)\,\mu(dt)\,.$$

We define $\int f(t) \sigma_n(dt) \equiv 2^{-n} \sum_k \int f(\xi_k + \theta^{n+k} t) \mu(dt)$. Then

 $\sigma_n = g_n \cdot \mu$, where $g_n \ge 0$, g_n is continuous on F_{θ} and takes the values 0 and $2^k (1 \le k \le 2^n)$. Using the formula for σ_n we get an identity

$$S_{T}(x, \sigma_{n}) = 2^{-n} \theta^{-n} \sum_{k} \theta^{-k} S_{T\theta^{n+k}}(\theta^{-n-k}x - \theta^{-n-k}\xi_{k}).$$

LEMMA 5. – To each $\epsilon > 0$, there is an N > 1 such that $\limsup_{T \to +\infty} \|S_T(\sigma_n)\|_1^* < \epsilon$, if $n \ge N$.

Proof. - In calculating $\limsup_{T \to +\infty} ||S_T(\sigma_n)||_1^*$ we can omit x's outside (-3,3), because $\sigma_n \in \mathbb{R}$. In an obvious notation we write $\sigma_n = \sum_k \sigma_{n,k}$, and observe that, for $T > T_{n,\epsilon}$ $|S_T(\sigma_n)| < \max_k |S_T(\sigma_{n,k})| + \epsilon/12$.

When
$$Y > \epsilon/6$$
 (the others are trivial, since we suppose that $|x| < 6$),
 $m\{|S_T(\sigma_n)| > 2Y\} \le \sum_k m\{|S_T(\sigma_{n,k})| > Y\}$
 $= \sum_k \theta^{n+k} m\{|S_{T\theta^{n+k}}(x, \mu)| > 2^n \theta^{n+k}Y\}.$

Each summand is $O(2^{-n} Y^{-1})$ by Kolmogorov's inequality; if $T\theta^{n+k} > 1$, then the k-th term exceeds $\epsilon 2^{-n} Y$ only if

$$\delta(\mathrm{T}\theta^{n+k})^{1-\alpha} < \mathrm{Y} < \delta^{-1}(\mathrm{T}\theta^{n+k})^{1-\alpha},$$

by Lemma 4 and the remark after it, and this inequality occurs for at most $2(1 - \alpha)^{-1} \cdot \log \delta / \log \theta$ indices $k = 1, \ldots, 2^n$. (We assume that $Y > \theta^{-1}$, since $S_T(\sigma_n) \longrightarrow 0$ almost everywhere as $T \longrightarrow +\infty$.) This proves our lemma.

A further property of σ_n , obtained simply by increasing n, is the inequality $|\sigma_n(I) - \mu(I)| < \epsilon$ for all intervals I.

The next lemma establishes a property of the functional $|| ||_1^*$ to simplify the remaining calculations.

LEMMA 6. - Let
$$a_i = \|f_i\|_1^* \quad 1 \le i \le \mathbb{N}$$
. Then
 $\|\Sigma f_i\|_1^* \le (\Sigma a_i^{1/2})^2$.

Proof. – Let $0 \le t_i \le 1$, and $\Sigma t_i = 1$. Then

$$m\{|\Sigma f_i| \ge Y\} \le \Sigma m\{|f_i| \ge t_i Y\} \le \Sigma t_i^{-1} Y^{-1} a_i$$

126

The minimum of the sum is $Y^{-1}(\sum a_i^{1/2})^2$. With a little more effort, we can obtain the bound $c(1-p)^{-1}(\sum a_i^p)^{1/p}$, 0 .

We are now in a position to construct the measure λ . We shall find probability measures $\lambda_k = f_k \mu$, with $f_k \ge 0$, $\int f_k d\mu = 1$, such that $\|S_T(\lambda_k)\|_1^* < k^{-1}$ for $T > T_k > T_{k-1} \dots$ and $|\hat{\lambda}_k(u)| < k^{-2}$ for $u > T_k$. Lemma 5 provides λ_1 ; let us suppose that λ_k and T_k are known. We find σ_k so that $|\sigma_k(I) - \lambda_k(I)| < k^{-1}(1 + T_k)^{-2}$ and $\|S_T(\sigma_k)\|_1^* < k^{-4}/25$, and $|\hat{\sigma}_k(u)| < k^{-1}$, for $u > T_{k+1}^0 > T_k$. (The construction of $f_{k+1}\mu$ from $f_k\mu$ follows Lemma 5). We now set $\lambda_{k+1} = (1 - k^{-1/2})\lambda_k + k^{-1/2}\sigma_k$; by Lemma 6, we have for $T > T_{k+1}^0$

$$\|\mathbf{S}_{\mathrm{T}}(\lambda_{k+1})\|_{1}^{*1/2} \leq (1 - k^{-1/2})^{1/2} k^{-1/2} + k^{-2}/5.$$

When k = 1, the last bound is 1/5, while $(k + 1)^{-1} = \frac{1}{2}$. For $k \ge 2$, we need the inequality

$$(1 - k^{-1/2})^{1/2} k^{-1/2} + k^{-2}/5 < (k+1)^{-1/2}$$

which can be verified with the aid of calculus. Clearly, we have $|\hat{\lambda}_{k+1}(u)| < (k+1)^{-2}$ for $T > T_{k+1}^{00}$; we take $T_{k+1} = T_{k+1}^{0} + T_{k+1}^{00}$.

By the construction, and integration by parts,

$$|\hat{\lambda}_{k}(u) - \hat{\lambda}_{k+1}(u)| \leq k^{-3/2} (1 + T_{k})^{-2} |u|;$$

 $\begin{array}{ll} \text{consequently} & |\hat{\lambda}_k(u) - \hat{\lambda}_{k+1}(u)| \leq k^{-3/2} \quad \text{unless} \quad |u| > 1 + \mathrm{T}_k \ . \\ \text{However, if} & |u| > \mathrm{T}_{k+1} > \mathrm{T}_k \ , \quad \text{then} \quad |\hat{\lambda}_k(u) - \hat{\lambda}_{k+1}(u)| < 2k^{-2} \ . \\ \text{Since} & |\hat{\lambda}_k - \hat{\lambda}_{k+1}| \leq 2k^{-1/2} \ , \text{ we have a limit } \varphi(u) \ , \text{ with} \end{array}$

$$|\varphi - \hat{\lambda}_k| = O(k^{-1/2}).$$

Hence $\varphi = \hat{\lambda}$, with λ carried by F_{θ} and $\lambda \in \mathbb{R}$.

In verifying that $\lim \|S_T(\lambda)\|_1^* = 0$ we can calculate the weak norms over (-3,3). Suppose that $T_{k-1} \leq T \leq T_k$; then

$$|\mathbf{S}_{\mathrm{T}}(\boldsymbol{\lambda}_{k}) - \mathbf{S}_{\mathrm{T}}(\boldsymbol{\lambda})| = \mathbf{O}(k^{-1/2}).$$

Since $T \ge T_{k-1}$, $\|S_T(\lambda_{k-1})\|_1^* < (k-1)^{-1}$; and finally $\|S_T(\lambda_k) - S_T(\lambda_{k-1})\|_1^* = O(k^{-1/2}).$

Hence $\|S_T(\lambda)\|_1^* = O(k^{-1/2})$ over (-3,3).

BIBLIOGRAPHY

- [1] R. KAUFMAN, On transformations of exceptional sets, Bull. Greek Math. Soc., 18 (1977), 176-185.
- [2] E.M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.
- [3] A. ZYGMUND, Trigonometric Series, I, II, Cambridge, 1959 and 1968.

Manuscrit reçu le 23 février 1981.

Robert KAUFMAN, University of Illinois at Urbana-Champaign Department of Mathematics Urbana, Ill. 61801 (U.S.A.).