Annales de l'institut Fourier

Robert Kaufman

On the weak L^{1} space and singular measures

Annales de l'institut Fourier, tome 32, nº 1 (1982), p. 119-128

http://www.numdam.org/item?id=AIF_1982__32_1_119_0
© Annales de l'institut Fourier, 1982, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE WEAK L ${ }^{1}$ SPACE AND SINGULAR MEASURES

by Robert KAUFMAN

Introduction.

The class R of finite, complex measures μ on $(-\infty, \infty)$ such that $\hat{\mu}(\infty)=0$, has been intensively investigated (since 1916). For this class $o(1)$ is trivial and for absolutely continuous measures, we have the Riemann-Lebesgue Lemma. We investigate the corresponding $o(1)$ condition for the partial-sum operators

$$
\begin{aligned}
\mathrm{S}_{\mathrm{T}}(x, \mu) & \equiv \int \mathrm{D}_{\mathrm{T}}(x-t) \mu(d t) \\
\mathrm{D}_{\mathrm{T}}(t) & \equiv(\pi t)^{-1} \sin \mathrm{~T} t, \mathrm{~T}>0
\end{aligned}
$$

The $o(1)$ condition for S_{T} depends on the weak L^{1} norm, defined by

$$
\begin{aligned}
& \|u\|_{1}^{*} \equiv \sup \mathrm{Y} m\{|u|>\mathrm{Y}\} \\
& \left\|\mathrm{S}_{\mathrm{T}}(\mu)\right\|_{1}^{*} \leqslant \mathrm{C}\|\mu\|, \quad 0<\mathrm{T}<+\infty
\end{aligned}
$$

The weak estimate is an easy consequence of Kolmogorov's estimate for the Hilbert transform [2, Chapter II]. Elementary approximations show that when $\mu=f(x) d x$, then $\lim \left\|\mathrm{S}_{\mathrm{T}}(\mu)-f\right\|_{1}^{*}=0$. When μ is singular and $\lim \left\|\mathrm{S}_{\mathrm{T}}(\mu)-g\right\|_{1}^{*}=0$ for a certain measurable g, two conclusions can be obtained without great difficulty (see below):
a) $\left\|S_{k}(\mu)-S_{k+1}(\mu)\right\|_{1}^{*} \longrightarrow 0$ whence $\hat{\mu}(\infty)=0$;
b) $\mathrm{S}_{\mathrm{T}}(\mu) \longrightarrow 0$ in measure as $\mathrm{T} \longrightarrow+\infty$
whence $g=0$ a.e. This leads us to define:

[^0]W_{0} is the class of measures μ for which $\left\|\mathrm{S}_{\mathrm{T}}(\mu)\right\|_{1}^{*} \longrightarrow 0$ as $T \longrightarrow+\infty$.

We present an elementary structural property of W_{0}, and then show by example that
(A) There exist M_{0}-sets F carrying no measure $\mu \neq 0$ in W_{0}.

The sets F are defined by a purely metrical property, and they need not be especially small. Their construction is based on an idea from the theory of divergent Fourier series [3I, Chapter VIII].
(B) The set F_{θ} of all sums $\sum_{0}^{\infty} \pm \theta^{m}(0<\theta<1 / 2)$ carries a measure $\lambda \neq 0$ in W_{0}, provided F_{θ} is an M_{0}-set.

To elucidate example (B) and the next one we recall that F_{θ} fails to be an M_{0}-set (or even an M-set) unless $\mu_{\theta} \in R$, where μ_{θ} is the Bernoulli convolution carried by F_{θ} and that $\mu_{\theta} \in \mathrm{R}$ except for certain algebraic numbers θ [3II, p. 147-156]. Therefore the next example is somewhat unexpected.
(C) When $0<\theta<1 / 2$, then $\mu_{\theta} \notin W_{0}$, in fact

$$
\left\|\mathrm{S}_{\mathrm{T}}\left(\mu_{\theta}\right)\right\|_{1}^{*} \geqslant c(\theta)>0
$$

for large $T>0$. We observe in passing that μ is not known to be singular for $1 / 2<\theta<1$ except when $\mu_{\theta} \notin \mathrm{R}$, e.g., for $\theta^{-1}=(1+\sqrt{5}) / 2$.

1.

From the weak estimate for S_{T} it is clear that W_{0} is normclosed in the space of all measures. We shall prove that when $\mu \in W_{0}$ and $\psi \in \mathrm{C}^{1} \cap \mathrm{~L}^{\infty}$, then $\psi \mu \in \mathrm{W}_{0}$; consequently the same is true if only $\psi \in L^{1}(\mu)$. We need two lemmas; the first was already used implicitly.

Lemma 1. - Let μ be a measure such that $S_{k}(\mu)-S_{k+1}(\mu) \longrightarrow 0$ in measure (over finite intervals). Then $\hat{\mu}(\infty)=0$, i.e., $\mu \in R$.

Proof. $-\left|\mathrm{D}_{k}(t)-\mathrm{D}_{k+1}(t)\right| \leqslant \min \left(1,|t|^{-1}\right) \equiv \mathrm{K}(t), \quad$ say, and $K \in L^{2}(-\infty, \infty)$. Thus the functions $\left|S_{k}(\mu)-S_{k+1}(\mu)\right|$ have a common majorant $\int \mathrm{K}(x-t)|\mu|(d t)$ in L^{2}. The hypothesis on
$\mathrm{S}_{k}-\mathrm{S}_{k+1}$ then yields $\left\|\mathrm{S}_{k}-\mathrm{S}_{k+1}\right\|_{2} \longrightarrow 0$. This means that $\int_{k}^{k+1}\left(\left.i \hat{\mu}(t)\right|^{2}+|\hat{\mu}(-t)|^{2}\right) d t \longrightarrow 0$ so $\hat{\mu}(\infty)=0$, because $\hat{\mu}$ is uniformly continuous.

Lemma 2. - Let $\mu \in \mathrm{R}$ and $\psi \in \mathrm{C}^{1} \cap \mathrm{~L}^{\infty}$. Then as $\mathrm{T} \longrightarrow+\infty$ $\left\|\mathrm{S}_{\mathrm{T}}(x, \psi \cdot \mu)-\psi(x) \mathrm{S}_{\mathrm{T}}(x, \mu)\right\|_{1}^{*} \longrightarrow 0$.

Proof. - Since μ can be approximated in norm by measures $\mu_{n} \in \mathrm{R}$, each of compact support, we can suppose that μ itself has compact support, say $|t| \leqslant a$. Now $\mathrm{S}_{\mathrm{T}}(\psi \cdot \mu)-\psi \mathrm{S}_{\mathrm{T}}(\mu)$ converges to 0 uniformly on $[-a-1, a+1]$, being equal to

$$
\pi^{-1} \int \sin \mathrm{~T}(t-x) \cdot \varphi(x, t) \mu(d t)
$$

with $\varphi(x, t)=(t-x)^{-1}[\psi(t)-\psi(x)] ; \varphi(x, t)$ is jointly continuous. This is sufficient to obtain the uniform convergence claimed.

For $|x|>a+1$ we write

$$
x \mathrm{~S}_{\mathrm{T}}(x, \mu)=\pi^{-1} \int \sin \mathrm{~T}(t-x) \cdot \sigma(x, t) \mu(d t)
$$

with $\sigma(x, t)=x(t-x)^{-1}$; now $|\sigma| \leqslant a+1$ and

$$
\left|\frac{\partial}{\partial t} \sigma(x, t)\right| \leqslant a+1
$$

for $|t| \leqslant a$. Therefore $x \mathrm{~S}_{\mathrm{T}}(\mu, x) \longrightarrow 0$ as $\mathrm{T} \longrightarrow+0$, uniformly for $|x| \geqslant a+1$. The same applies to $x \mathrm{~S}_{\mathrm{T}}(x, \psi \cdot \mu)$, because $\psi \cdot \mu \in R$, and these inequalities show that $\psi \mathrm{S}_{\mathrm{T}}(\mu)-\mathrm{S}_{\mathrm{T}}(\psi \cdot \mu) \longrightarrow 0$.

2. Examples.

I. Let F be a compact set in $(-\infty, \infty), 0<\alpha<1,\left(\epsilon_{j}\right)$ a sequence decreasing to 0 ; for each j, let $\mathrm{F}=\cup \mathrm{F}_{k}^{j}$, where

$$
\operatorname{diam}\left(\mathrm{F}_{k}^{j}\right) \leqslant \epsilon_{j}, d\left(\mathrm{~F}_{k}^{j}, \mathrm{~F}_{\ell}^{j}\right) \geqslant \epsilon_{j}^{\alpha}, k \neq \ell
$$

Then F carries no probability measure μ in W_{0} (and hence no signed measure $\mu \neq 0$ in W_{0}).

We define the following property of a number β in $[0,1)$, relative to μ and the sequence of partitions $\mathrm{F}=\cup \mathrm{F}_{k}^{j}$:
(**) The total μ-measure of the sets F_{k}^{j}, such that $\mu\left(\mathrm{F}_{k}^{j}\right)>\epsilon_{j}^{\beta}$, tends to 0 , as $j \longrightarrow+\infty$.

Plainly $\beta=0$ has property (**), because μ, being an element of R , can have no discontinuities. We shall prove that if β has property $\left(^{* *}\right.$), and $0 \leqslant \beta<\alpha$, then $\gamma=\beta+(1-\alpha) / 2$ has property (**). This leads to a contradiction as soon as $\gamma>\alpha$, since the number of sets $\mathrm{F}_{k}^{j} \neq \varnothing$ is $0\left(\epsilon_{j}^{-\alpha}\right)$.

Assuming that β has property (**), we form $\lambda=\lambda_{j}$, by omitting from F_{k} the intervals F_{k}^{j} of μ-measure $>\epsilon_{j}^{\beta}$. By Kolmogorov's estimate, $\left\|\mathrm{S}_{\mathrm{T}}\left(\lambda_{j}\right)\right\|_{1}^{*} \longrightarrow 0$, as $j \longrightarrow+\infty$ and $\mathrm{T} \longrightarrow+\infty$, independently. Let now \int^{*} denote an integral over the domain $\mid x-t_{\mid}>\epsilon_{j}^{\alpha} / 2$. Then

$$
\begin{aligned}
& \int^{*}|x-t|^{-1} \lambda_{j}(d t)=0\left(\epsilon_{j}^{-\alpha}\right), \text { if } \beta=0, \\
& \int^{*}|x-t|^{-1} \lambda_{j}(d t)=0\left(\epsilon_{j}^{\beta-\alpha}\right)\left(\log \epsilon_{j}\right), 0<\beta<\alpha
\end{aligned}
$$

The first of these is obvious; the second is obtained by packing the subsets F_{k}^{j} as close to x as is consistent with the condition $d\left(\mathrm{~F}_{k}, \mathrm{~F}_{\ell}\right) \geqslant \epsilon_{j}^{\alpha}$.

For each k such that $\lambda_{j}\left(\mathrm{~F}_{k}^{j}\right)>\epsilon_{j}^{\gamma}$, we let ξ_{k} belong to F_{k}^{j} and consider the set defined by

$$
\begin{gathered}
\left(\mathrm{S}_{k}^{j}\right): \frac{1}{2} \lambda\left(\mathrm{~F}_{k}^{j}\right) \epsilon_{j}^{\sigma}<\left|x-\xi_{k}\right|<\lambda\left(\mathrm{F}_{k}^{j}\right) \epsilon_{j}^{\sigma} \\
\left|\sin \epsilon_{j}^{-\tau}\left(x-\xi_{k}\right)\right|>\frac{1}{2}
\end{gathered}
$$

where $\sigma=-\beta+3 \alpha / 4+1 / 4, \quad \tau=(1+\gamma+\sigma) / 2$.
The number $\lambda\left(\mathrm{F}_{k}^{j}\right) \epsilon_{j}^{\sigma}$ lies between $\epsilon_{j}^{\beta+\sigma}$ and $\epsilon_{j}^{\gamma+\sigma}$; we note that $\beta+\sigma>\alpha$, and $\gamma+\sigma=3 / 4+\alpha / 4<1$. Moreover $\epsilon_{j}^{-\tau} \epsilon_{j}=o(1)$, while $\epsilon_{j}^{-\tau} \lambda\left(\mathrm{F}_{k}^{j}\right) \epsilon_{j}^{\sigma} \longrightarrow+\infty$.

For each k in question, the Lebesgue measure of S_{k}^{j} is asymptotically $c \lambda\left(\mathrm{~F}_{k}^{j}\right) \epsilon_{j}^{\sigma}$, and the different sets are disjoint, because $\lambda\left(\mathrm{F}_{k}^{j}\right) \epsilon_{j}^{\sigma}=o\left(\epsilon_{j}^{\alpha}\right)$. We shall prove that $\left|\mathrm{S}_{\mathrm{T}}\left(\lambda_{j}\right)\right|>c^{\prime} \epsilon_{j}^{-\sigma}$ for a certain $c^{\prime}>0$, with $\mathrm{T}=\epsilon_{j}^{-\tau} \longrightarrow+\infty$. This will prove that the total μ-measure of the subsets F_{k}^{j}, such that $\epsilon_{j}^{\gamma}<\epsilon_{j} \leqslant \epsilon_{j}^{\beta}$, is $o(1)$.

When $x \in S_{k}^{j}$,

$$
\left|\mathrm{S}_{\mathrm{T}}(x)-\int_{\mathrm{F}_{k}^{j}} \mathrm{D}_{\mathrm{T}}(x-t) \lambda(d t)\right|<\int^{*}|x-t|^{-1} \lambda(d t)
$$

and the error term on the right is $o\left(\epsilon_{j}^{-\sigma}\right)$, because $\sigma>\alpha-\beta$.

When $t \in \mathrm{~F}_{k}^{j}, \quad t-\xi_{k}=o\left(x-\xi_{k}\right) \quad$ because $\quad \gamma+\sigma<1$, and $\sin \mathrm{T}(t-x)=\sin \mathrm{T}\left(\xi_{k}-x\right)+o(1)$ because $\tau<1$. This easily leads to the lower bound on $\left|\mathrm{S}_{\mathrm{T}}(x)\right|$.

Our construction is adapted from Kolmogorov's divergent Fourier series [3I, Chapter VIII].

To complete our example, we must present a set F that is also an \mathbf{M}_{0}-set. This is known for various M_{0}-sets, but seems to occur explicitly in [1]: there exists a closed set $\mathrm{E} \subseteq[0,1]$ and a sequence of integers $\mathrm{N}_{\boldsymbol{k}} \longrightarrow+\infty$ such that
(1) $\left|\mathrm{N}_{k} x\right|<\mathrm{N}_{k}^{-1}$ (modulo 1) for $x \in \mathrm{E}, k \geqslant 1$,
(2) The mapping $y=e^{x}$ transforms E onto an M_{0}-set.

Then $y(\mathrm{E})$ is covered by intervals of length $\leqslant 2 e \mathrm{~N}_{k}^{-2}$, whose distances are at least $\left(\mathrm{N}_{k}^{-1}-2 \mathrm{~N}_{k}^{-2}\right)$.

In the remaining examples it is occasionally convenient to write $\mathrm{S}_{\mathrm{T}}(y)$ in place of $\mathrm{S}_{\mathrm{T}}(y, \mu)$, when $\mu=\mu_{\theta}$.
II. We present example (C) first, because (B) is based on an improvement in one of the inequalities used in (C). For each $n=0,1,2,3, \ldots, \mathrm{~F}_{\theta}$ is a union of 2^{n+1} sets E_{k} of diameter $2 \theta^{n+1}(1-\theta)^{-1}$, and mutual distances at least

$$
2 \theta^{n+1}(1-2 \theta)(1-\theta)^{-1} \equiv c_{1} \theta^{n+1} ; \mu\left(\mathrm{E}_{k}\right)=2^{-n-1}
$$

The lower bound on the mutual distances gives a Hölder condition on $\mu: \mu(\mathrm{B}) \leqslant c_{2}(\operatorname{diam} \mathrm{~B})^{\alpha}$, where $\alpha=-\log 2 / \log \theta<1$. If ξ_{k} is the center of E_{k}, we have an identity

$$
\int_{\mathrm{E}_{k}} f(t) \mu(d t)=2^{-n-1} \int f\left(\xi_{k}+\theta^{n+1} t\right) \mu(d t)
$$

For each set E_{k}, we define the set E_{k}^{\sim} by the inequality $d\left(x, \mathrm{E}_{k}\right)<c_{1} \theta^{n+1} / 3$, so the sets E_{k}^{\sim} have distances at least $2 c_{1} \theta^{n+1} / 3$. If $x \in \mathrm{E}_{k}^{\sim}$, then

$$
\left|\mathrm{S}_{\mathrm{T}}(x, \mu)-\int_{\mathrm{E}_{k}} \mathrm{D}_{\mathrm{T}}(x-t) \mu(d t)\right|<\int_{\mathrm{R}-\mathrm{E}_{k}}|x-t|^{-1} \mu(d t)
$$

and in the last integral, $|x-t| \geqslant 2 c_{1} \theta^{n+1} / 3$. Hence, by the Hölder condition, the integral is $\leqslant c_{3}\left(\theta^{n}\right)^{\alpha-1}=c_{3} 2^{-n} \theta^{-n}$. The principal term can be evaluated by the identity above, and simplified to the form $2^{-n} \theta^{-n-1} \mathrm{~S}_{\mathrm{T} \theta^{n+1}}\left(\theta^{-n-1} x-\theta^{-n-1} \xi_{k}\right)$.

We observe that

$$
\lim \int \mathrm{S}_{\mathrm{T}}(x, \mu) f(x) d x=\int f(x) \mu(d x)
$$

for suitable test functions f; for example, this is true if f and \hat{f} are integrable. Since μ is singular, we can find a test function f, such that $\|f\|_{1}<1$ and $\left|\int f(x) \mu(d x)\right|>2 c_{3}+2 c_{1}^{-1}$. Hence $\max \left|\mathrm{D}_{\mathrm{T}}(\mu)\right|>2 c_{3}+2 c_{1}^{-1}$ for large T , say for $\mathrm{T}>\mathrm{T}_{0}$.

Let $\mathrm{T}>\theta^{-1} \mathrm{~T}_{0}$, and let $n \geqslant 0$ be chosen so that $\mathrm{T}^{*}=\theta^{n+1} \mathrm{~T}$ satisfies the inequalities $\mathrm{T}_{0} \leqslant \mathrm{~T}^{*} \leqslant \theta^{-1} \mathrm{~T}_{0}$. Suppose that

$$
\left|\mathrm{D}_{\mathrm{T}^{*}}\left(\theta^{-n-1} x-\theta^{-n-1} \xi_{k}\right)\right|>c_{3}+c_{1}^{-1}
$$

Then $d\left(\theta^{-n-1} x-\theta^{-n-1} \xi_{k}, \mathrm{~F}_{\theta}\right)<c_{1} / 3$, since $\pi>3$, or $d\left(x, \xi_{k}+\theta^{n+1} \mathrm{~F}_{\theta}\right)<c_{1} \theta^{n+1} / 3$, so $x \in \mathrm{E}_{k}^{\sim}$. Hence

$$
\left|\mathrm{D}_{\mathrm{T}}(x, \mu)\right|>c_{3} \cdot 2^{-n-1} \theta^{-n-1}-c_{3} 2^{-n} \theta^{-n}=c_{4} 2^{-n} \theta^{-n} .
$$

But it is easy to see that the set of $x^{\prime} s$ in question has measure at least $c_{5} 2^{n} \theta^{n}$, because $\mathrm{T}_{0} \leqslant \mathrm{~T}^{*} \leqslant \theta^{-1} \mathrm{~T}_{0}$, and the functions $\mathrm{D}_{\mathrm{T}^{*}}$ have derivatives bounded by $\theta^{-2} \mathrm{~T}_{0}^{2}$. Hence $\left\|\mathrm{D}_{\mathrm{T}}(\mu)\right\|_{1}^{*} \geqslant c_{4} c_{5}$.
III. The example (B) requires a complicated construction, but relies in essence on small improvements on estimates already used. To estimate $\mathrm{S}_{\mathrm{T}}(\mu, x)$ we divide the range of integration into the subsets $\left\{|x-t|<\mathrm{T}^{-1}\right\}$ and $\left\{|x-t|>\mathrm{T}^{-1}\right\}$. The second yields an integral $\mathrm{O}\left(\mathrm{T}^{1-\alpha}\right)$, by the Hölder condition, and the first yields $\mathrm{T} \cdot \mathrm{O}\left(\mathrm{T}^{-\alpha}\right)=\mathrm{O}\left(\mathrm{T}^{1-\alpha}\right)$ for the same reason (and the inequality $\left.\left|D_{T}\right|<T\right)$.

We give another estimate on $\mathrm{S}_{\mathrm{T}}(x, \mu)$ for large T , supposing that $\mu \in \mathrm{R}$.

Lemma 3. - To each $\epsilon>0$ there is a T_{0} such that

$$
\left|\mathrm{S}_{\mathrm{T}}(x, \mu)\right|<\epsilon d\left(x, \mathrm{~F}_{\theta}\right)^{-1}
$$

whenever $\mathrm{T} \geqslant \mathrm{T}_{0}$ and $d \equiv d\left(x, \mathrm{~F}_{\theta}\right) \geqslant \epsilon$.
Proof. - Let $\delta=d(x, F)$ and observe that

$$
\delta \mathrm{S}_{\mathrm{T}}(x, \mu)=\pi^{-1} \int \sin \mathrm{~T}(x-t) \cdot \delta \cdot(x-t)^{-1} \mu(d t)
$$

The function $g(t)=\delta \cdot(x-t)^{-1}$ is bounded by 1 on F , and
$\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right| \leqslant \delta^{-1}\left|t_{1}-t_{2}\right|$ for numbers t_{1}, t_{2} in F_{θ}. Hence the conclusion follows from our assumption that $\mu \in \mathrm{R}$ and the Tietze extension theorem.

The inequality of the Lemma can be written in a more useful way. When $t \in \mathrm{~F}_{\theta}$, then $|x-t| \leqslant d+2 \leqslant d\left(1+2 \epsilon^{-1}\right)$. Hence $d\left(x, \mathrm{~F}_{\theta}\right)^{-1} \leqslant\left(1+2 \epsilon^{-1}\right) \int|x-t|^{-1} \mu(d t)$. Suppose now that $x \notin \mathrm{E}_{k}^{\sim}$ so that $d\left(\theta^{-n-1} x-\theta^{-n-1} \xi_{k}, \mathrm{~F}_{0}\right) \geqslant c_{1} \theta^{n+1} / 3$. Using the identity for integrals over E_{k}, we find the following estimate:

If $x \notin \mathrm{E}_{k}^{\sim}$ and $\mathrm{T} \theta^{n+1}>\mathrm{T}_{00}$, then

$$
\left|\int_{\mathrm{E}_{k}} \mathrm{D}_{\mathrm{T}}(x-t) \mu(d t)\right|<\epsilon \int_{\mathrm{E}_{k}}|x-t|^{-1} \mu(d t) .
$$

Consequently, when $x \in \mathrm{E}_{\ell}^{\sim}$ and $\mathrm{T} \theta^{n+1}$ is sufficiently large (depending on $\epsilon>0$)

$$
\left|\mathrm{S}_{\mathrm{T}}(x, \mu)-2^{-n-1} \theta^{-n-1} \mathrm{~S}_{\mathrm{T} \theta^{n+1}}\left(\theta^{-n-1} x-\theta^{-n-1} \xi_{\ell}\right)\right|<\epsilon \theta^{n(\alpha-1)}
$$

Lemma 4. - To each $\epsilon>0$ there is $a \delta>0$ so that, when $\theta^{-1}<\mathrm{Y}<\delta \mathrm{T}^{1-\alpha}$ then $\mathrm{Ym}\left\{\left|\mathrm{S}_{\mathrm{T}}(x, \mu)\right|>\mathrm{Y}\right\}<\epsilon$.

Proof. - We choose $n \geqslant 0$ so that $1<\theta^{n+1} \mathrm{Y}^{1 / 1-\alpha}<\theta^{-1}$; this leads to the inequalities $\theta^{n(\alpha-1)}>\mathrm{Y}$, and $\mathrm{T} \theta^{n+1}>\delta^{-1}$. For fixed ℓ, we must estimate the Lebesgue measure of the set defined by

$$
\left|\mathrm{S}_{\mathrm{T} \theta^{n+1}}\left(\mu, \theta^{-n-1} x-\theta^{-n-1} \xi_{\ell}\right)\right|>\frac{1}{2} \cdot 2^{n+1} \theta^{n+1} \mathrm{Y}
$$

The right hand side exceeds $\frac{1}{2} \theta^{-1}$; when $\mathrm{T} \theta^{n+1}$ is large, the measure of the set is at most $\epsilon \theta^{n+1}$; the total for all ℓ is at most $\epsilon 2^{n+1} \theta^{n+1}<\epsilon \mathrm{Y}^{-1}$. Hence $\operatorname{Ym}\left\{\left|\mathrm{S}_{\mathrm{T}}(x, \mu)\right|>\mathrm{Y}\right\}<\epsilon$.

In view of the inequality $\left|\mathrm{S}_{\mathrm{T}}(\mu, x)\right|=\mathrm{O}\left(\mathrm{T}^{1-\alpha}\right)$, the conclusion of the last lemma holds when $\mathrm{Y}>\delta^{-1} \mathrm{~T}^{1-\alpha}, \mathrm{T}>1$, for a certain $\delta>0$.

In preparation for the next lemma, we recall the identity ($n=1,2,3, \ldots$)

$$
\int f(t) \mu(d t) \equiv 2^{-n} \sum_{k=1}^{2^{n}} \int f\left(\xi_{k}+\theta^{n} t\right) \mu(d t)
$$

We define $\int f(t) \sigma_{n}(d t) \equiv 2^{-n} \sum_{k} \int f\left(\xi_{k}+\theta^{n+k} t\right) \mu(d t)$. Then
$\sigma_{n}=g_{n} \cdot \mu$, where $g_{n} \geqslant 0, g_{n}$ is continuous on F_{θ} and takes the values 0 and $2^{k}\left(1 \leqslant k \leqslant 2^{n}\right)$. Using the formula for σ_{n} we get an identity

$$
\mathrm{S}_{\mathrm{T}}\left(x, \sigma_{n}\right)=2^{-n} \theta^{-n} \sum_{k} \theta^{-k} \mathrm{~S}_{\mathrm{T} \theta^{n+k}}\left(\theta^{-n-k} x-\theta^{-n-k} \xi_{k}\right)
$$

Lemma 5. - To each $\epsilon>0$, there is an $\mathrm{N}>1$ such that $\limsup _{\mathrm{T} \rightarrow+\infty}\left\|\mathrm{S}_{\mathrm{T}}\left(\sigma_{n}\right)\right\|_{1}^{*}<\epsilon$, if $n \geqslant \mathrm{~N}$.

Proof. - In calculating $\underset{\mathrm{T} \rightarrow+\infty}{\lim \sup }\left\|\mathrm{S}_{\mathrm{T}}\left(\sigma_{n}\right)\right\|_{1}^{*}$ we can omit $x^{\prime} s$ outside $(-3,3)$, because $\sigma_{n} \in \mathrm{R}$. In an obvious notation we write $\sigma_{n}=\sum_{k} \sigma_{n, k}$, and observe that, for $\mathrm{T}>\mathrm{T}_{n, \epsilon}$

$$
\left|\mathrm{S}_{\mathrm{T}}\left(\sigma_{n}\right)\right|<\max _{k}\left|\mathrm{~S}_{\mathrm{T}}\left(\sigma_{n, k}\right)\right|+\epsilon / 12
$$

When $Y>\epsilon / 6$ (the others are trivial, since we suppose that $|x|<6$),

$$
\begin{aligned}
m\left\{\left|\mathrm{~S}_{\mathrm{T}}\left(\sigma_{n}\right)\right|>2 \mathrm{Y}\right\} \leqslant \sum_{k} m & \left\{\left|\mathrm{~S}_{\mathrm{T}}\left(\sigma_{n, k}\right)\right|>\mathrm{Y}\right\} \\
& =\sum_{k} \theta^{n+k} m\left\{\left|\mathrm{~S}_{\mathrm{T} \theta^{n+k}}(x, \mu)\right|>2^{n} \theta^{n+k} \mathrm{Y}\right\}
\end{aligned}
$$

Each summand is $\mathrm{O}\left(2^{-n} \mathrm{Y}^{-1}\right)$ by Kolmogorov's inequality; if $\mathrm{T} \theta^{n+k}>1$, then the k-th term exceeds $\epsilon 2^{-n} \mathrm{Y}$ only if

$$
\delta\left(\mathrm{T} \theta^{n+k}\right)^{1-\alpha}<\mathrm{Y}<\delta^{-1}\left(\mathrm{~T} \theta^{n+k}\right)^{1-\alpha}
$$

by Lemma 4 and the remark after it, and this inequality occurs for at most $2(1-\alpha)^{-1} \cdot \log \delta / \log \theta$ indices $k=1, \ldots, 2^{n}$. (We assume that $\mathrm{Y}>\theta^{-1}$, since $\mathrm{S}_{\mathrm{T}}\left(\sigma_{n}\right) \longrightarrow 0$ almost everywhere as $\mathrm{T} \longrightarrow+\infty$.) This proves our lemma.

A further property of σ_{n}, obtained simply by increasing n, is the inequality $\left|\sigma_{n}(\mathrm{I})-\mu(\mathrm{I})\right|<\epsilon$ for all intervals I.

The next lemma establishes a property of the functional $\left\|\|_{1}^{*}\right.$ to simplify the remaining calculations.

$$
\begin{aligned}
& \text { LEmmA 6. - Let } a_{i}=\left\|f_{i}\right\|_{1}^{*} \quad 1 \leqslant i \leqslant \mathrm{~N} . \text { Then } \\
& \qquad\left\|\Sigma f_{i}\right\|_{1}^{*} \leqslant\left(\Sigma a_{i}^{1 / 2}\right)^{2} \\
& \text { Proof. - Let } 0 \leqslant t_{i} \leqslant 1 \text {, and } \Sigma t_{i}=1 . \text { Then } \\
& \qquad m\left\{\left|\Sigma f_{i}\right| \geqslant \mathrm{Y}\right\} \leqslant \Sigma m\left\{\left|f_{i}\right| \geqslant t_{i} \mathrm{Y}\right\} \leqslant \Sigma t_{i}^{-1} \mathrm{Y}^{-1} a_{i}
\end{aligned}
$$

The minimum of the sum is $\mathrm{Y}^{-1}\left(\Sigma a_{i}^{1 / 2}\right)^{2}$. With a little more effort, we can obtain the bound $c(1-p)^{-1}\left(\Sigma a_{i}^{p}\right)^{1 / p}, 0<p<1$.

We are now in a position to construct the measure λ. We shall find probability measures $\lambda_{k}=f_{k} \mu$, with $f_{k} \geqslant 0, \int f_{k} d \mu=1$, such that $\left\|\mathrm{S}_{\mathrm{T}}\left(\lambda_{k}\right)\right\|_{1}^{*}<k^{-1}$ for $\mathrm{T}>\mathrm{T}_{k}>\mathrm{T}_{k-1} \ldots$ and $\left|\hat{\lambda}_{k}(u)\right|<k^{-2}$ for $u>\mathrm{T}_{k}$. Lemma 5 provides λ_{1}; let us suppose that λ_{k} and T_{k} are known. We find σ_{k} so that $\left|\sigma_{k}(\mathrm{I})-\lambda_{k}(\mathrm{I})\right|<k^{-1}\left(1+\mathrm{T}_{k}\right)^{-2}$ and $\left\|\mathrm{S}_{\mathrm{T}}\left(\sigma_{k}\right)\right\|_{1}^{*}<k^{-4} / 25$, and $\left|\hat{\sigma}_{k}(u)\right|<k^{-1}$, for $u>\mathrm{T}_{k+1}^{0}>\mathrm{T}_{k}$. (The construction of $f_{k+1} \mu$ from $f_{k} \mu$ follows Lemma 5). We now set $\lambda_{k+1}=\left(1-k^{-1 / 2}\right) \lambda_{k}+k^{-1 / 2} \sigma_{k}$; by Lemma 6, we have for $\mathrm{T}>\mathrm{T}_{k+1}^{0}$

$$
\left\|\mathrm{S}_{\mathrm{T}}\left(\lambda_{k+1}\right)\right\|_{1}^{* 1 / 2} \leqslant\left(1-k^{-1 / 2}\right)^{1 / 2} k^{-1 / 2}+k^{-2} / 5
$$

When $k=1$, the last bound is $1 / 5$, while $(k+1)^{-1}=\frac{1}{2}$. For $k \geqslant 2$, we need the inequality

$$
\left(1-k^{-1 / 2}\right)^{1 / 2} k^{-1 / 2}+k^{-2} / 5<(k+1)^{-1 / 2}
$$

which can be verified with the aid of calculus. Clearly, we have $\left|\hat{\lambda}_{k+1}(u)\right|<(k+1)^{-2}$ for $\mathrm{T}>\mathrm{T}_{k+1}^{00}$; we take $\mathrm{T}_{k+1}=\mathrm{T}_{k+1}^{0}+\mathrm{T}_{k+1}^{00}$.

By the construction, and integration by parts,

$$
\left|\hat{\lambda}_{k}(u)-\hat{\lambda}_{k+1}(u)\right| \leqslant k^{-3 / 2}\left(1+\mathrm{T}_{k}\right)^{-2}|u|
$$

consequently $\quad\left|\hat{\lambda}_{k}(u)-\hat{\lambda}_{k+1}(u)\right| \leqslant k^{-3 / 2} \quad$ unless $\quad|u|>1+\mathrm{T}_{k}$. However, if $|u|>\mathrm{T}_{k+1}>\mathrm{T}_{k}$, then $\left|\hat{\lambda}_{k}(u)-\hat{\lambda}_{k+1}(u)\right|<2 k^{-2}$. Since $\left|\hat{\lambda}_{k}-\hat{\lambda}_{k+1}\right| \leqslant 2 k^{-1 / 2}$, we have a limit $\varphi(u)$, with

$$
\left|\varphi-\hat{\lambda}_{k}\right|=O\left(k^{-1 / 2}\right)
$$

Hence $\varphi=\hat{\lambda}$, with λ carried by F_{θ} and $\lambda \in R$.
In verifying that $\lim \left\|\mathrm{S}_{\mathrm{T}}(\lambda)\right\|_{1}^{*}=0$ we can calculate the weak norms over $(-3,3)$. Suppose that $\mathrm{T}_{k-1} \leqslant \mathrm{~T} \leqslant \mathrm{~T}_{k}$; then

$$
\left|\mathrm{S}_{\mathrm{T}}\left(\lambda_{k}\right)-\mathrm{S}_{\mathrm{T}}(\lambda)\right|=\mathrm{O}\left(k^{-1 / 2}\right)
$$

Since $\mathrm{T} \geqslant \mathrm{T}_{k-1},\left\|\mathrm{~S}_{\mathrm{T}}\left(\lambda_{k-1}\right)\right\|_{1}^{*}<(k-1)^{-1}$; and finally

$$
\left\|\mathrm{S}_{\mathrm{T}}\left(\lambda_{k}\right)-\mathrm{S}_{\mathrm{T}}\left(\lambda_{k-1}\right)\right\|_{1}^{*}=\mathrm{O}\left(k^{-1 / 2}\right)
$$

Hence $\left\|\mathrm{S}_{\mathrm{T}}(\lambda)\right\|_{1}^{*}=\mathrm{O}\left(k^{-1 / 2}\right)$ over $(-3,3)$.

BIBLIOGRAPHY

[1] R. Kaufman, On transformations of exceptional sets, Bull. Greek Math. Soc., 18 (1977), 176-185.
[2] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.
[3] A. Zygmund, Trigonometric Series, I, II, Cambridge, 1959 and 1968.

Manuscrit reçu le 23 février 1981.

Robert Kaufman,
University of Illinois at
Urbana-Champaign
Department of Mathematics
Urbana, Ill. 61801 (U.S.A.).

[^0]: ${ }^{(*)}$ Presented at the Italian-American Conference on harmonic analysis, Minnesota, 1981.

