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UNIFORM BOUNDS FOR QUOTIENTS
OF GREEN FUNCTIONS ON C1 '-DOMAINS

by H. HUEBER and M. SIEVEKING

Consider a partial differential operator L on R" which has
the form

n n
LU = ^ ^j^n11 + S A'^f^ + cu '

( , /=1 /= !

We assume that L is strictly elliptic and has H61der continuous coef-
ficients. We will also assume c < 0. Hence every bounded domain
ft has a Green function which we will denote by G^ . As usual
A denotes the Laplace operator. The aim of our paper is to prove
the following theorem:

THEOREM. — For every bounded C1'1-domain ft there exists
a constant C such that we have

C-^ <G" <CG"A L A

on ft x ft. The constant C may be chosen depending only on
the ellipticity constant of L, on the Holder norms of the coeffi-
cients of L, on the diameter of f t , and on the curvature of 3ft.

We proceed as follows: In § 1 we introduce notations concern-
ing the geometry of ft and give two elementary lemmas. In § 2
we introduce the harmonic space and the adjoint harmonic space
associated to L and quote some results which we will use in our
proof. The proof is given in § 3. We finish our paper with some
remarks which include an application of our result to the Dirichlet
problem for Lu = f.
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1. The geometrical situation.
For r > 0 and x G R" let ByQc) denote the open ball with

radius r and center x and let Sy(x) := By(x)\Bi (x). Throughout
3^

this paper ft will denote a bounded domain in R" which is of
class C1'1 . The distance from x E R" to 9ft will be denoted by d^ .

For every XQ G 8ft there exists a unique inner normal n(,Xo)
at 3ft with \n(Xo)\ = 1 . By definition the mapping XQ——> n(Xo)
fulfills a local Lipschitz condition, and a simple compactness argu-
ment shows that there exists a constant C^ > 1 such that we have
\n(Xo) — n(yo)\ < C^ |Xo —^ | for all Xo ,^e3 f t . Furthermore
there exists r^ G ]0,1 [ such that we have By (^g 4- r^n^x^)) c ft
and By (XQ — r^n(Xo)) ̂  R" \ft for all Xg € 8ft . We may assume
C^n^ l -

For every x G ft with fi?^ < r^ there exists exactly one point
XQ G 3ft with x = JCo + d^(Xo). Hence for such a point ^ G ft
the following definitions make sense:

x^ := XQ 4- an(xQ) a€R

n(x) := n(Xo)
Z^(x) := { ^ E f t | (^ -x^ < 2~12a for some j3G ]—a, a[} AG R^..

LEMMA l.l.-Z^ ^ , z E f t wzT/z d x ^ d z < r s ^ f Let J 3 , a , X e R +

^c/z ^ar 0 < j 3 < a < y ^ a^d 0 < X < — • Assume further
\ZQ— x^\< ̂  -\- 2\a . Then one has \ZQ - XQ \ < 4a^X.

Proof. — Regarding the situation in a plane which contains XQ ,
Xy and ZQ the problem becomes a two-dimensional one. The state-
ment then follows from the theorem of Pythagoras and elementary
estimates which we will leave to the reader, n

LEMMA 1.2. - a) Let x € ft wrt d(x , 3ft) < r^ , let

a G j 0. — r^ | and let z G Z^QcT. Then we have \ ZQ —XQ \ < y. a.

b) Let x , ̂  € ft mrt d^ < r^ fl^d dy <r^ . Assume

Z^)nzjy)^(J)

for some o i E ] 0 , r ^ [ . Hence we have \x^—y^\< . a. for all
^[0,^].
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Proof. — a) Since z G Z ^ ( x ) there exists j 3 € ] — a , a [ such that
\x. — z | < 2~12a . Hence we have

\ZQ ~x^ < ^o ~z\ + \z ~x^< \XQ— z \ + \z —x^\

< \xo~x(3\ + 2 I 2 "~^1 < l ^ l + 2•2-12a.

Let X = 2~12 . Since ZQ f. By (Xy ) the assertion follows from
Lemma 1.1 at least for j3 > 0 . For j3 < 0 the assertion is obviously
true.

b) Let z e Z^(x) H Z^CY") . By a) we have

1^0 ~XO\ ̂  \YO ~ zol + \ZQ ~XO\ < g- a '

Hence for j3 ̂  [0 , r^] we get

1^ ~~^1 == l^o + ̂ (^o)"-3;o "iS^^o)!

< l ^ o - ^ o l +^ l^o ) -^o ) l < l ^o -> ; o l (1 +<3C^)

< - i ^ ( l + ^ C ^ ) < ^ a .

2. Potential theory of L.

Following [2] we say that the operator

L = S ^^ + S 6 , D , + c
t,;=i < = i

belongs to the class A^, ̂ ) with X > l a n d a o G ] 0 , l [ i f i t fulfills
the following properties:

(i) For all x G R" and all { G R" we have

£ ^W^^-1!^2

' ,7=1

(ii) For all x , y € R» we have

£ |a,,(x)-^OQ| + ^ \b,(x)-b,(y)\
ij=l i=l a^

+ \c(x)-c(y)\<\\x-y\ °
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(iii) For all x E R" we have

£ 1^0c)l+ 1 \b,(x)\ + |c0c) |<\ .
ij=l i=l

From now on we will always assume L € ff(\, o^), and furthermore
we will assume c < 0 .

The sheaf 9^ °^ solutions of Lu = 0 is a harmonic sheaf
which gives rise to a Brelot space ([3], [4], [6]). Every bounded domain
V has a Green function G^ which may be characterized by the
following properties:

(i) G ^ ( - , y ) is a potential on V for every j ^ G V . Its support
is W.

(ii) For all y € V we have

lim G ^ ( x , y ) _ ^^det(^))(1).
—y (V(Jc-^)B(^)(^-^))2-" n v f,

Here B(jQ is the inverse of (ci^(y)\. and o?^ denotes as usual
the volume of the unit ball in R".

R.M. Herve [6] has shown that there exists a unique Brelot
space on R" such that the extrbmal potentials on V for this adjoint
harmonic space are just the functions G^ (x , • ) with x G ^2 . We
use the symbol L* to indicate this adjoint space. If the adjoint ope-
rator of L exists as a differential operator and is denoted by L*
the notation will stay consistent.

For every L-regular bounded open set V C R" and every
/E (3(8 V) we denote by H^/ the unique continuous function
on V which is equal to / on 3V and L-harmonic in V. For
L*-regular V the meaning of H^ / is obvious. For our purposes
it is enough to know that Lipschitz domains are L-regular and Ir-
regular (cf. [1] Theoreme 4.1), and we will use this without further
comment.

It is clear that A G K(n, a) for every a G ]0,1 [. To be able
to work with the same constants for L and A we will henceforth
assume X > n.

(1) For n < 2 this formula has to be modified in the usual way. The same
remark applies to the statement of Lemma 2.4.
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LEMMA 2.1. — There exists a constant C^ = Ci(X, o^, n) such
that for every x E R" , r G ]0,1 [ and /€ e^(3B/^)) rt^ /o/tow-
ing inequalities hold on B := By.(x):

C^H^H^ <C,H^/

C^H^Hf/^C^/.

Proo/ — The first inequality is due to Serrin and the second
one is due to Ancona. They can be found in [2] page 13 and page 20
(for r < 1 the constant C in Proposition 10 on page 20 does not
depend on r ) . D

LEMMA 2.2. — There exists a constant C^ := C^(\, c^, n) such
that for every x E R " , r € ]0,1 [, and every positive L-harmonic
or L*-harmonic function h on B/x) the following inequality holds
forall y , , y ^ B , (x): h(y,) < C, h(y^).

2 ^

Proof. — With the use of the ordinary Harnack inequality this
statement follows immediately from Lemma 2.1. D

LEMMA 2.3. - Let x G ft mth d^ < r^ and let a E j 0, -. r^ |.
Let h be a positive ^.-harmonic or \^-harmonic function in Z^(x)
which tends to zero at each y £ Z^(x) 0 Q^l. Then we have

C^1 ^ h(xj < h(x^) < €3 ^ h(x^)

for all 7 E [0, a] with a constant €3 depending only on \, OQ , n
and r^.

Proof. — In the following the symbol L has to be replaced by
L* if h is L*-harmonic.

Let j3 := S-^-^a and let

r := {z | \z-x^\ = P ' , \z-x^\ <ft}.

By Lemma 2.2 we have h (x^) < C^ inf h(T) .

By [1] Theoreme 2.2 and Thtorfeme 4.1 there exists a constant
C = C(X, OQ , n , r^) such that

supA(B^Oco)nn)<CA(^).
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Using the maximum principle we get

C2-1A(^)HW ^(^X^^XC^X^H^^ Ic^Oc,/^)

for all 7 G [0, j3]. Using Lemma 2.1 we get

^(^ 1^^7)>C71H^(^) ̂ (^^ ^ r '• ^ , /^ 'Y
> F-1 /?-! | Y — Y | = C~1 -—
^ ^1 P 1^-y ^Ol ^1 n

with C^ = C ^ ( X , OQ , n). A standard transportation argument toge-
ther with Lemma 2.1 shows

T ^ T
^^.-^ ^Ba^x,^)^) ^C^ ^-

with C^ = C^(\, OQ , n) (cf. [2^ Theoreme 2).
Thus we have

C,1 C,-1 1 h(x^) < h(x^) < C C - h(x^)

for aU 7 G [0 , j3].

Lemma 2.2 implies that there exists a constant €3 such that
we have h(x^ ) < €3 h(x^^) for all 7^, ̂  G [j3, a]. Thus for
7 E [0 ? j3] we have

5.212 C,-1 C,-1 C3-1 ^ A(xJ </z(^) < S^^CC, €3 ^ /z(x,),

and for 7 G [j3, a] we have

70-1 C^1 A(xJ < C^1 h(x^) < h(x^) < €3 h(x^)

< T^-1^-1)^ A^) = ja-1 5-212 €3 /z(^).

This shows that the assertion is thie with €3 := 5 -l^C C^ C^ C^ €3. n

LEMMA 2.4. — There exists a constant €4 = C4(X, OQ , n) such
that we have

C^jx-^ l2-" < G^(;c,^)<C4|x-^|2-"

for all x , ^ C n wfr/z | x -^ |<^-^ or | x - ^ | < — d^.

Proo/; —This Lemma is essentially due to Gilbarg/Serrin [5].
It can be found in [2] on page 14.
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3. Proof of the theorem.

Let K :=} x € S2 | d^ > — r^ . Using Lemma 2.4 one can

see that C ^ G ^ ^ G ^ ^ C^ G^ is true at least in a neighbourhood
of the diagonal of K x K. Since G^ and G^ are strictly positive
and continuous off the diagonal there exists a constant Cs such
that we have

(*) C,-1 G^ (x , y ) < G?(x , y) < C, G^(x , y)

for all x , y G K . Looking very carefully at Lemma 2.2 and Lemma
2.4 it is obvious that €5 may be chosen depending only on
X , UQ , n, r^ and the diameter of Sl.

Now let x , y € S2. Since all arguments which we will use in
the following proof are also true if one interchanges the role of 9^
and S^,* we may assume d^ <d . The proof is divided into three
cases:

l d x > 16"̂  ; dy> '4 rn

n ̂  < ]jr" ; dy> ̂ r ^

III ̂  < ^ ^.

Case L - In this case we have x , y G K and our statement
follows from (*).

Ca^ //. - In this case we have y ^ Z ^ (x). With j3 := d^
we get rn

G^Oc^)<C3^G^Oc, ,y)<C,C, ^G^x, , y)
rS^ '8^ r^ "8^

< C^ Cs G^(x , ̂ ) < C^Cs ^tL G^(x, , y )
ra ^n

<^C| ^G^(x, ^XC^C^G^,^).
''n 8'''"

Here we have used (*), and we have applied Lemma 2.3 to the L-
harmonic function G^(* , j0 and the A-harmonic function G^(- , y )
on Z^ (^).

'̂'n
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Case HI. — Let j3 := dy apd 7 := d . By assumption we have

0 < j3 < 7 < -j r^ . By a we will denote the minimum of all posi-
tive numbers 5 for which we have Zg (x) H Zg (y) ^= 0 . We will
consider four subcases.

Subcase 1: a > -. r^ =: jn.

We have ^ ,x^eK and Z^(x) H Z^(^) = 0. With (*) and
Lemma 2.3 we get

G^(x,y)<C^ ^ G^(x^y)

<Cl^G^,^)

<C^C, ^G^x^y,)

<CiCs ^G^,^)

<C^C5 G^(^,^)

<C^CJG^(x,^),

where the dots indicate that we must repeat our arguments in the
inverse order.

Subcase 2: . r^ > a > 7.

Obviously we have Z^(x) H Z^(^) ̂  0, and hence Lemma 1.2
implies \ x ^ — y ^ \ < - . a < — d . We apply Lemma 2.3 and
Lemma 2.4 and get

G^x,y)<C2, ^G^(x,,^)

<C^ ^G?(^,^)

<C^C^G^^)

< p6 p2 P ^ r'^^v i, ^
3 4 a a ^L^^)
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<W ^G^y^)a a

<C^C^G^(x,y).
Subcase 3: j3 > a.

If | x — y | < — j3 the desired inequalities follow from Lemma
2 12.4. Hence we may assume \x — y | > ^- j3. Since j3 < 7 we have

2 1^^Z.(^). From Lemma 1.2 we get \x. — y . \ < ~ 7 P , and
1 . i^ 2 ^ •

I ̂  "~" ̂  i I ^ TT j3 is clear. Hence we get
2^ 2

G^(jc,3/)<C3 2G^(x^ ,>/)
y^

<C^C,2G^(y,_ y)

<C2CJ2r-^G^ ^)
2 7

<C,C^C^27-^G^(^^)

<C,(%2G^ ^)
y^

<C^C|C^2G^(x^,^)

<C^C^C^ G^(x,y)

<C^C^ G^(x,y).

To derive the first of these inequalities we applied Lemma 2.3 to the
A-harmonic function G ^ ( ' , y ) on ZQ(X). In the second line we
applied Lemma 2.2 to the same function in B^ (y ^ ) . In the third

2^ 2^
inequality we used Lemma 2.3 on Z, (y) observing that y f. Z < ( y ) .

y7 y7
The fourth inequality followed from Lemma 2.4. Then we applied
again Lemma 2.3, then Lemma 2.2, then Lemma 2.3 once more, and
the dots indicate that we must repeat all our arguments in the
inverse order.

Subcase 4: 7 > a > j 3 .
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We apply subcase 3 to the points x^ , y and get

C^-4 C,-2 G^,, jQ < G^(x^y) < C^C^ G^(^,^).

Since y f. Z^(x) we may apply Lemma 2.3 to Z^(x), and we get

G^(x,y)<C, ̂  G^(x^y)

< C^CiC2^ G^ y)

<C^C^G?(x^)

<C^C^G^^)

< r4^1^4 -^ 0,"̂  ^^^2^3 ^4 ^A^a'^)

^C^C^G^x^).

Now we see that with C := C^C^C^Cg the statement of the theorem
is true. a

4. Remarks.

4.1. Obviously our theorem is true if the Laplace operator is replaced
by any L' G &(\, c^) with c < 0 . Hence

C(L, L') := inf {c > 0 I c-1 G^ < G^ < c G^}

is a well defined real number > 1. We can show that for sufficiently
smooth domains C(L, L') depdnds continuously on the coefficients
of L, L' with respect to uniform convergence. The proof is by a
modification of a method presented in [7]. n

4.2. For Lipschitz domains our theorem is not true:
Let n := {x = ( x ^ x ^ G R 2 ) 0<x, < 1; 0 < X 2 <x,}; fix

^ G f t and let V denote the intersection of ft and a small ball
around zero whose closure does not contain y . Hence there exists
a constant C^ such that

C^^x^-x^XG^x^yXC^x^-x^)
for all x = (jc^jc^ev.
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a2 a a2
Let A := —— + 2 ;—-—4- 3 ——. Then there exists a

9x^ Qx^Qx^ 9x^
constant C^ such that

CA^I - ̂ 2) < G^ . ̂ ) < C^Oc2 - x , x ^ ) .

This shows that G^( • , ^)/G^( • , y ) is unbounded near zero. n

4.3. Let X be a locally compact space with countable base, and
assume that we have two harmonic sheafs 9€ 1,3^2 on ^ suc!1

that (X.3^.) i •= 1,2 is a y-Brelot space. Assume that S2 is
a bounded domain in X which is regular for both structures and
happens to have Green functions G^ 0' = 1,2). Let / := BS2 —> R
be continuous and positive, and let u^ denote the solution of the
Dirichlet problem for / with respect to the sheaf 96,. We know
that u^ is the limite of an increasing sequence (pn\^ °f 3^i-
potentials, and we may even assume that the potential theoretic
carrier of ?„ is contained in ?2\U^ where (U^)^^N is an exhaus-
tion of t2.

Hence /,
PnW-J G^(x,y)^(dy)

with ^ (U^)=0 .

Let /*
^nW- JG^(x,y)^(dy).

Assume now that there exists a constant C such that

C—l r^S^l ^ (-^^i ^ f-\ r^^l
(Jr^ -s (J.. ^ L Lr^ •d- •j j(. f\ <f\-1

Hence
C^q^p^Cq^.

By Azela-Ascoli a subsequence of (q^ )^^ is locally uniformly
convergent and therefore we may assume that (qn\ itself converges
locally uniformly to an 3€ ̂ -harmonic function q .

Obviously we have C~1 q < u^ < Cq and from this we derive
C-1 q < u^ < C-1 q . Thus we have C~2 u^ < u^ < C2 u^ .

This shows that our theorem implies the statement of Lemma
2.1. In a similar way we may also derive the other statements of § 2
from the theorem. This shows that our paper characterizes in a
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certain way all Brelot spaces on R" for which the comparability
statement of our theorem is true with a constant C which depends
only on the diameter of ft and the curvature of 3ft .

4.4. For L^L^ Gj?(X, a^) the following comparability statement
is an easy conclusion of 4.1 and 4.3:

For any ^, u^ G (°(ft) 0 (^(ft) with u^ = u^ > 0 on 3ft
and Li^ = L^ < 0 in ft we have u^ <Cu^ with a constant
C = C ( X , a o , ^ , f t ) . D

BIBLIOGRAPHY

[1] A. ANCONA. Principe de HArnack a la fronti^re et thtoreme de
Fatou pour un operateur elliptique dans un domaine Lipschitzien,
Ann. Inst. Fourier, 28, 4 (1978), 169-213.

[2] A. ANCONA. Principe de Harnack a la frontiere et problemes de
fronti^re de Martin, Lecture Notes in Mathematics, 787 (1980),
9-28.

[3] N. BOBOC. P. MUSTATA, Espaces harmoniques associes aux ope-
rateurs differentiels lineaires du second ordre de type elliptique,
Lecture Notes in Mathematics, 68 (1968).

[4] C. CONSTANTINESCU, A. CORNEA, Potential theory on harmonic
spaces, Berlin-Heidelberg-New York, 1972.

[5] D. GILBARG, J. SERRIN. On isolated singularities of solutions of
second order elliptic differential equations, J. d'Anai Math.,
4 (1954-1956), 309-340.

[6] R.M. HERVE, Recherches ^xiomatiques sur la theorie des fonc-
tions surhamoniques et du potentiel, Ann. Inst. Fourier, 12
(1962), 415-571.

[7] H. HUEBER. M. SffiVEKiNG, On the quotients of Green functions
(preliminary version), Bielefeld, September 1980 (unpublished).

[8] J. SERRIN, On the Hamack inequality for linear elliptic equations,
J. d'Anal. Math., 4 (1956), 292-308.



QUOTIENTS OF GREEN FUNCTIONS 117

[9] J.-C. TAYLOR, On the Martin compactification of a bounded
Lipschitz domain in a Riemannian manifold, Ann. Inst. Fourier,
28, 2 (1977), 25-52.

Manuscrit re^u Ie 13 avril 1981.

H. HUEBER,
Fakultat fur Mathematik

Universitat Bielefeld
4800 Bielefeld 1 (R.F.A.)

&
M. SlEVEKING,

Angewandte Mathematik
Robert-Mayer-Str. 10

6000 Frankfurt/Main (R.F.A.).


