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COMPARISONS OF KERNEL FUNCTIONS,
BOUNDARY HARNACK PRINCIPLE
AND RELATIVE FATOU THEOREM

ON LIPSCHITZ DOMAINS
by Jang-Mei G. WU

1. Introduction.

Let D c R/1 ^ n ^ 2 , be a Lipschitz domain with a point
0 in D fixed. It is proved by Hunt and Wheeden [8] that
corresponding to each positive harmonic function u in D ,
there is a unique Borel measure U on OD , such that
when P e D ,

(1.1) u(P) == j^ K(P ,Q) ^U(Q) ,

where K(P,Q) is the kernel function defined by

(1.2) K(P,Q)=^(Q)

in the Radon-Nikodym sense and co^E) is the harmonic
measure of E c ^D at P; moreover u has nontangential
limit riU/dco0 at (o°-almost every point of ^D .

The kernel function defined in (1.2) does not have an
explicit form as it does in spheres. In this paper, we shall
prove a kernel comparison theorem (Theorem 2) on K(P,Q3)
and K(P,Q2) with different poles Qi and Qg on ^D .
The spherical version of Theorem 2 follows easily from the
explicit form of Poisson kernel and can be stated as follows :
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Let K(P,Q) be the Poisson kernel on the unit ball S in
R" . Then there are positive constants c and C so that

(i) CK(P,Qi) < K(P,Q,) ^ ̂  K(P,Q,)

whenever Qi , Qg and Q are on 6S , P is on the radius

through Q and 1 |Q, - Q| < |Q, - Q| < 2|Q, - Q| < c;
and

(H) K(P,Qi) ^ K(P,Q,)

whenever Qi , Qg and Q are on OS , P is on the radius
through Q and |Q2 - Q| < |Qi - Q| < c .

We also have the following boundary Harnack principle
on positive harmonic functions.

THEOREM 1. — Suppose D is a Lipschitz domain, PQ
is a point in D , E is a relatively open set on OD and S is a
sub-domain of D satisfying OS n OD c E . Then there is a
constant C , so that whenever u^ and u^ are two positive
harmonic functions in D vanishing on E and Ui(Po) == uJPo)
then Ui(P) ^ C^(P) for all P e S .

It is pointed out to me by Professors A. Ancona and M. Bre-
lot that Theorem 1 is stated in [10], but the proof there is
not complete.

As an application of Theorems 1 and 2, we prove the follo-
wing relative Fatou theorem.

THEOREM 3. —Let D c R71 be a Lipschitz domain and
u , h be two positive harmonic functions on D . With respect
to a fixed point 0 in D , let U and H be the Borel measures
on OD corresponding to u and h. Then ujh has a finite
non-tangential limit at H-almost every point of OD . This
limit is H-almost everywhere the Radon-Nikodym derivative of
the absolutely continuous component of U with respect to H .

The choice of the fixed point 0 in D is not important
in Theorem 3. In fact, with respect to a fixed point 0, in
D , i = 1, 2, let H^ be the measure on bD corresponding
to h, then, a simple deduction from (1.1) and (1.2), Hi
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and Hg are absolutely continuous with respect to each
other.

In [5], Dahlberg proved that in the Lipschitz domain D ,
<x)° and the n — 1 dimensional Hausdorff measure or of
&D are absolutely continuous with respect to each other.
Roughly the bad points on &D where dco°/d<7 =00 or
d!<j/^G)° == oo are those points at which the norm of the
gradient of the Green's function G(0,.) of D tends to oo
or 0 . We note that the set of exceptional points in Theorem
3 need not contain those bad points on ^D .

Theorem 3 is false when u is positive superharmonic,
even if only the radial limits on spheres are considered [6].
But there are positive results about boundary limits along
curves for positive superharmonic functions on D [11].

Theorem 3 is first studied by Doob for open solid spheres [6].
The idea of the proof of Theorem 3 is partly from that in [6].

Professors Ancona and Brelot have kindly pointed out to
me that a fine limit version of Theorem 3 was proved by
Gowrisankaran [7 $ Theorem 8] and Theorem 3 can be derived
from the cited result in [7] by applying the method, intro-
duced by Brelot and Doob, (see [4$ Theorem 3] or [9; Theorem
5.5]), of showing the existence of nontangential limit of a
positive harmonic function at a boundary point from the
existence of the fine limit. However, the method used here
is more direct and indicates the exceptional set (see the
concluding remark).

For literature of fine limits of quotients of positive super-
harmonic functions see [3], [4], [6], and [7]. For fine topo-
logy approach for boundary Harnack principle and relative
Fatou Theorem about elliptic operators on Lipschitz domains
see [1].

The author wishes to thank the referee for many helpful
comments.

2. Definitions and Preliminaries.

We denote by D a Lipschitz domain in R71 , that is, D
is a bounded domain and to each Q G &D there corresponds
a local coordinate system (x,y) , {x G R71-1 and y e R) and

8
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a function f of class Lip 1 from R"-1 to R such that

N n D = {{x,y): y > f{x)} n D

for some neighborhood N of Q . We denote by 0 a fixed
point in D .

We call S a cone at Q e ^D if S is a subdomain of D
and S is the union of a family of rays of equal length starting
at Q . We say S is a nontangential cone at Q if
S U <^S\{Q} is contained in another cone at Q . We say
a function F in D has nontangential limit (B at Q e bD
if for each nontangential cone S at Q , lim F(P) === (B as
P — — Q , P e S .

Choosing and fixing local coordinate systems on ^)D pro-
perly, we denote by M > 1 an upper bound of the Lipschitz
constants of the functions f and note that there is a similar
circular cone at each Q e bD with axis on the local y-axis
which lies completely in D , and whose reflection about the
local rc-hyperplane lies Completely outside D . For geometrical
properties of Lipschitz domains and their relation to Har-
nack's inequality, the reader is referred to [8] and [9].

To each Q e ?)D , we assume the origin of the local coordi-
nate system is at Q and denote by L(Q,r) the region
D n {(.r,y) : \x\ < r , y — f[x) < 10 Mr} and by A(Q,r)
the base {{x,y) e bD : \x\ < r} for small r . We note that
there is a constant Co > 0 such that the fixed point
0 ^ L(Q,4Co) c D for each Q e bD and we shall only consider
those r , 0 < r < Co .

We shall use C^ , Ca , . . . , C , c to denote strictly positive
constants which depend at most on n , 0 , Co and M . The
actual values of C and c may vary from line to line but
the values of Ci , Cg , . . . are fixed. If the constants will
also depend on some other variables, we indicate this by
parentheses.

Here is a sequence of lemmas on estimates of harmonic
measures. Lemmas 1 and 2 are due to L. Carleson; detailed
proofs can be found in [9].

LEMMA 1. — If Q e ^D and P e L(Q,r/2) , then
^(A(Q,r)) ^ C .
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LEMMA 2. — Suppose Q E oD and A 15 the center of the
top of L(Q,r) , that is, A ==(0,10 Mr ) . Then for any
A' = A(Q, r ' ) , 0 < r ' < r , we have

co^) < Cco^A')
/•or PeD\L(Q,r ) .

We say D is starlike Lipschitz about 0 if it is starlike
about 0 and the y-axis of a local coordinate system at any
Q e oD can be chosen to contain the segment OQ , moreover
the Lipschitz constants of the corresponding Lip 1 functions
are bounded above by a constant M , M > 1 . We note
that « Lipschitz and starlike » need not imply « starlike Lips-
chitz » . In this case, we choose these local coordinate systems
as the fixed ones on oD and also assume 0 ^ L(Q,4Co) c D
for each Q e bD .

LEMMA 3. — Suppose Q e oD , A = A(Q,r) and
A = (0,10 M r) . Then for every measurable set E c A(Q,r/4) ,

O)O(E) ^ Cco^E^A);
moreover, if D is starlike Lipschztz about 0 , we also have

o^(E) ^ Cco^E^A) .

Lemma 3 is a special case of a result of Hunt and Wheeden,
see (2.4) and (3.1) in [9].

LEMMA 4. — Suppose D is starlike Lipschitz about 0 .
Then if Q e bD , 0 < r < Co , P = (0,10 Mr) and A = A(Q,r) ,
we have

cr^G^.P) ^ coO(A) ^ Cr^G^, P) ,

where G is the Greeks function on D .

Proof. — The validity of the second inequality is due to
Dahlberg [5], only it is stated for slightly more general domains
here. In order to prove the first inequality, we let 0 < r < Co
and DI be {{x,y) : \x\ < r , 5 M r < ? / — f(x) < 20 Mr} .
Because P is of distance at least Cr from bDi ,
G(T,P) ^ Cr2-" for T e ODi . By Lemma 1 and Harnack's
inequality we have ^(A) ^ C for T G bDi . Applying
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the maximum principle to ^-^(T.P) and co^A) for
T e D\Di , we have the first inequality.

The author is indebted to Robert Kaufman for a suggestion
concerning the proof of Lemma 5.

LEMMA 5. — Suppose D is a Lipschitz domain, Q e ?)D ,
A is the center of the top of L(Q,r) and a > 0 . Then there
is a constant C(a) depending on a , 0 < C(a) < 1 , such
that ^(E) < a for 0 < t ^ C(a) and

E = A(Q,r(l + ^))\A(Q,r(l - t)) .

Proof. - Let y == y(Q^) = {{x,y} : \x\ = r , y = f{x)} ,
I be the n — 2 dimensional Hausdorff measure on y and

'C l̂T^xF5'̂
for P e R" . It is known that ?(P) is a positive harmonic
function on R''\y . Let x and p denote the ^-coordinates
of X and P respectively. We write o c ~ p i f c < a / | B < C .
For P 6 E , write \p\ as (1 — s)r or (1 + s)r , 0 < s <S (;
thus we have

r i
"(p) ~ J^ |(1 ± ^r-x}'1-^-d"-2^

^ Xi=i|1 ± s — a;)"-2

'" ________(sin 6)"-3=1 r (sln 6)'l-3 /7B
Jo [(1 — cos 6 ± sY + (sin O)2]^-2)/2

_ e"-3
^ c [(c62 ± s)2 + O^C-2)/2J, [(c62 ± s)2 + e2]^-2)/2

1 1~ log — ^ log — .
o L

By the maximum principle, for P e D ,

(2.1) ^P) > log—co^E) .1
—— (0^
t

We note that ^(A) < C . Letting P == A in (2.1), we see
the choice of C(a) .
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3. Proof of Theorem 1.

Suppose D is starlike Lipschitz about 0 . We shall
introduce two new Lipschitz domains D and D , D c D c D ,
and compare certain harmonic measures on these three regions.
Notations are retained from last section.

For 0 < ( < 1 , let g(x) be the Lipschitz function defined
on R""1 by

8{x) =
id , \x\ < 1 — t or \x\ > 1 + ( ,
[ t — |1 — Ml , 1 — t ^ \x\ ^ l + (.

For Q e ^)D , f the Lipschitz function associated with Q
and 0 < r < Co , we define

7W = fW - rg(x/r) and f(x) = f(x) + r g {x j r )

for x e R»-1 . Let D = D(Q,r,() be the region
D U {{x,y): (1 - ()r <\x\ < (1 + t)r , f(x) < y ^ f{x)}
and D == D(Q,r,() be the region

D\{(rc,y) : (1 - ()r < \x\ < (1 + ()r, f(x) < y ^ f(x)} .

We assume Co was chosen small enough so that
D = D(Q,r,() and D = D(Q,r,() are starlike Lipschitz about
0 for 0 < r < Co; and let CiM be an upper bound for
the Lipschitz constants corresponding to ^>D and &D .
Choose €2 , less than Co , depending on Co and CiM
but not on r and ( so that if 0 < r < Cg then
0 ^ L(Q,4Ca) c D or 0 ^ L(Q,4C2) c D for Q e OD or
<)D , where L and L are related to D and D as L is
related to D . Thus Lemmas 1 , 2 , 3 and 4 are applicable
to D and D . We observe that all the points in

A(Q,r(l + ^/2)\A(Q,r(l - t/2))

are of distance at least Ctr from ^D and from ()D . We
denote by co^E) the harmonic measure of E g ^D at
P e D with respect to the region D . For the region D
we define ^(E) similarly.
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LEMMA 6. — Suppose D is starlike Lipschitz about 0,
Q e OD , 0 < r < Ca , A = (0,10 Mr) , D = D(Q,r,() ,
D = D(Q,r,^) and A7 = A(Q / ,r /) c A(Q,r/2) . T/^yi ̂ re is a
constant €3 < 1/4 $ucA that

co^A') ^ co^A7) < Co^A7)

17 o < ^ < €3 .
Proof. — It is enough to prove the first inequality because

the second one follows from the first one by replacing D by
D and D by D . Assume 0 < t < 1/4 . It follows from
Lemma 2 for D and Harnack's inequality that

(3.1) (^(A7) ^ C4(oA(A/)

for P G D\L(Q ,5r/8) and some constant €4 . From (3.1)
and the maximum principle, it follows that

(3.2) (^(A') ^ co^A') + C^A'^E)

for P e D , where E = A(Q,r(l + ())\A(Q,r(l - ()) . In
the statement of Lemma 5, let a be 1/(2C4) . We may find
a constant €3 < 1/4 such that co^E) < 1/(2C4) for
0 < ( ^ €3 . Letting P = A in (3.2), we conclude that
(^(A7) ^ 2a>A(A /) . This completes the proof of Lemma 6.

The following lemma compares two harmonic functions
near a piece of boundary where they both vanish.

LEMMA 7. — Suppose D is starlike Lipschitz about 0,
0 < r < C 2 , Q e O D , L= L(Q,r) , I\ = ?)L\bD ,

Fg == I\\{(^y) : \x\ = r and y < f(x} + €3^ .

Let î and v^ be two positive harmonic functions on L; î
has boundary value 1 on Fi , 0 on ^L\ri and ^ has
boundary value 1 on Fg and 0 on ^V\T^ . Then

(3.3) ^i(P) ^ C ^(P)

for PeL(Q, r /4 ) .

Proof. - For 0 < r < 63 , let D = D(Q,r,C3) >

D = D(Q,r,C3) and G , G
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be the Green's functions on D and D respectively.
Suppose P e L(Q,r/4) . With the aid of Harnack's inequa-

lity, we may assume P is on OQ7 and dist (P,Q7) ^ 5 M r/2
for some Q' e A(Q,r/4) . It follows from lemma 4 that

(3.4) c^^G^P) < ^(A7)

and

(3.5) - (^(A') ^ C^y-^O.P) ,

where r1 = dis^P.Q7)/^ M) and A7 = A(Q / , r /) . By Har-
nack's inequality and the observation before Lemma 6, we
have _ _

G(0,X) ^ CG(0,A) for X e I\
and

G(0,X) ^ G(0,X) ^ CG(0,A) for X. e I\

where A is the center of the top of L(Q,r) . By the maximum
principle,

(3.6) ^(X)G(0,A) ^ CG(0,X) for X E L

and
(3.7) G(0,X) ^ C^(X)G(0,A) for X e L n D .

It follows from (3.6) and (3.7) that to prove (3.3) for
P e L(Q,r/4) , it is enough to show

G(0,P)G(0,A) < CG(0,P)G(0,A) .

With the aid of (3.4) and (3.5) it suffices to show

(3.8) ^(A^ ^ C(oo(A7) .

From Lemma 6 we have co^A7) ^ Cco^A7) . Applying
Lemma 3 to D and D , we obtain

(3.9) ^(A^/co^A) ^ Cco^A^/o^A) ,
where A = &D\(oD\A(Q,2r)) and A = OD\(bD\A(Q,2r)) .
We note that <o°(A) < <o°(A) . Thus (3.8) follows from
(3.9) and the proof is complete.

Proof of Theorem 1. — We choose e > 0 and a finite
family of cylinders {L(Q, , 2 e)}^^^^ in D depending on
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k

D , E and S so that |j L(Q,,s/8) 2 bS n bD and
fc i

L J L(Qi,2s) n bD c E . By Harnack's inequality, we need
i

only show that Ui(P) ^ Ci^P) for P e L(Q,,s/4) and
1 ^ i ^\k where C is a constant depending on D , E , S
and Po .

Fix i , 1 < i < k and denote by L(8) = L(Q^ , 8) , by
A the center top of L(s) . We claim that Ui(P) < Cui(A)
on &L(e) n D for some constant C depending on D , E
and S . Let K be the kernel function for the domain
L(2s) , normalized by K(A,Q) = 1 . Since Ui vanishes
on &L(2s) n ?)D , it suffices to show that for P e &L(e) n D
and Q e bL(2e) n D , K(P ,Q) ^ C for some constant C ,
or cop(A(Q,r)) ^ (^^^(Q,^)) whenever r is sufficiently
small; where <o and A are defined relative to L(2s) . By
Lemma 2 and Harnack's inequality, the last inequality holds
for some constant C depending on L(2e) and A , hence
depending only on D , E and S .

Let Cg be a constant depending on L(2s) , which plays
the same role as €3 in Lemma 7. By Harnack's ine-
quality, U2(P) ^ cUa(A) on bL(s)\{(.r,y) : \x\ = e and

y<f(x)+W. By Lemma 7 , ulw ^ c ̂  on

L(Q,,c/4). u1^ u2^
We recall that ^i(Po) == ^2(^0) • Thus by Harnack's

inequality Ui(P) ^ C u^(P) on L(Q,,s/4) , where C depends
on D , E , S and Po only. This completes the proof of
Theorem 1.

4. Inequalities on Kernel Functions.

In this section we shall prove a theorem concerning ine-
qualities of the kernel functions on Lipschitz domains. The
analogue for Poisson kernels on solid spheres can be derived
easily from the explicit form of the kernels. Notations are
retained from before.

The following is a variant of Besicovitch's theorem on the
differentiation of Borel measures: Suppose (A and v are
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finite Borel measures on the boundary of the Lipschitz domain
D , then for ^-almost every point Q e oD , (Ji(A(Q,r))/v(A(Q,r))
tends to c?(x/c?v(Q) , the Radon'Nikodym derivative of (JL with
respect to v , as r—^0 . (See [2] or [9]).

Applying this result to (1.2), we see that for each P e D

<4-1) ^^^-i
for <o°-almost every Q e oD . In fact, Hunt and Wheeden [9]
have proved that (4.1) holds for each Q e bD and that for
fixed P e D , K(P,Q) is a continuous function of Q on
bD . Because of (4.1) we may use the lemmas in the previous
sections to show the following results.

LEMMA 8. — Suppose D is starlike Lipschitz about 0 ,
Q e bD , 0 < r < Cg and Qi , Qg are in A(Q,r)\A(Q,r/2) .
Then there are constants c and C such that

cK(P,Q,) ^ K(P,Q,) ^ CK(PA)

for P on L(Q,r/32) or on the segment OQ .

Proof. — It is enough to prove that

(4.2) K(P,Q,) < CK(P,Q,)

for some constant C . Given Qi and Qa on A(Q,r)\A(Q,r/2) ,
we denote by A^. , i = 1 or 2 , the region A(Q^,a^) for small
a, > 0 . From (4.1),

K(P,Qi) ^(A^) <QO(A,)
K(P,Q,) ^ <oO(Ai) co^A,)

for sufficiently small A^ and Ag . (By a ^ (B we mean

c < -a- < C . ) Let A = (0,10 Mr) . From Lemma 3 we
P /

have

(4.3) K(P,Qi) ^(A,) (^(A,)
K(P,Q,) ~ o^) • ^(A,)

for sufficiently small Aji and Ag . Let L == L(Q,r/8) ,
ri=8L\5D, r2=I\\{(a;,i/) : |a;|==r/8 and i/</'(.r)+C3»-/8} .
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From Harnack's inequality we have

(4.4) C "̂  > 1v / (*> (^2)
for P e Eg and small Ag . We may choose €5 > 0 so
that L(Qi,C5r) does not meet I\ and if Ai is the center
of the top of L(Qi,C5r) then dist (A,Ai) ^ Cr for some
constant C depending on Cg . Therefore by Lemma 2
and Harnack's inequality we have

(4.5) (^(Ai) ^ Cc^Ai) < Cco^Ai)

for P e Li and small Ai . From (4.4), (4.5), Lemma 7
and the maximum principle we conclude that

<^(Ai) p ̂ (A,)
^(Ai) "^(A,)

for P on L(Q,r/32) and thus from (4.3),

(4.6) K(P,Q,) < CK(P,Q,) .
Let B = (0,5 M r/16) be the center of the top of L(Q,r/32) .

We want to show (4.2) for P on the segment OB . Let
S={(x,y): |a; |=2r, y = f{x)} , &i == {P e D and P is
on OQ' for some Q' e S and dist (P, Q') < 5 M r/16}
and 82 = {P 6 D , P is on OQ' for some Q' e A(Q , 2r) and
dist (P,Q') = 5 M r/16} . Because of (4.6) and Harnack's ine-
quality,

(4.7) K.(P,Q,) <£ CK(P,Q,)
for P e ^2 . Using the cone properties for D we may
find constants C , c such that for each Q^ e S , with respect
to the local coordinate system at Q /, the quotient of the
moduli of the rr-coordinates of Qi and Qg is bounded above
and below by C and c respectively. Thus repeating the
argument in the last paragraph with Q replaced by points
Q7 e S and using Harnack's inequality, we obtain

(4.8) K(P,Q,) ^ C K(P,Q,)
for P 6 ^i . Let D' be the subdomain of D containing
0 and bounded by &D , &i and ^ • By (4.7), (4.8) and
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maximum principle on D' , we conclude that for P on the
segment OB c D' ,

K(P,Q,) ^ C K(P,Q,) .

Hence the proof is complete.

LEMMA 9. — Suppose D is starlike Lipschitz about 0 ,
0 < r < Ca . Q2 ^ A(Q^/2) and Qi is on the n — 2 dimen-
sional boundary of A(Q,r) . Then there is a constant C such
that

(4.9) K(P,Q,) ^ CK(P,Q,)
for P on the ray OQ .

Proof. — The idea of the proof is very similar to that of
Lemma 8; we shall not put down too much detail.

First we shall show (4.9) for P on the segment QB where
B is the center of the top of L = L(Q,3r/4) . Let
A = (0,20 M r) and A, = A(Q,,a,) , a, > 0 and i = 1 ,2 .
To show (4.9) it is enough to prove

(4.10) ^(A^/co^Ai) ^ Co^A^/^Aa)

for small A^ and Ag . Let I\ = &L\oD and

I\ - IV\{(^/) : \x\ = 3r/4 and y < f(x) + 3C3r/4} .

We have
cco^AgYco^A^) ^ 1 for P e I\ and ^(A^/co^Ai) ^ 1

for P e I\ and small Ai , Ag . By Lemma 7 and the maxi-
mum principle, (4.10) holds for P on QB .

Choose a point Q7 on A(Q,r) so that with respect to the
local coordinate system at (^/ , the quotient of the moduli
of the ^-coordinates for Qi and Qg is bounded above and
below by 2 and 1/2 respectively. If P is a point on the
segment OB , we let P7 be the point on OQ7 so that dist
(P^Q) = dist (P,Q) . By Lemma 8, K^P^Qi) ^ K^P'.Qa) .
By Harnack's inequality, (4.2) follows for P on OB . This
completes the proof.

For a general Lipschitz domain D , we choose and fix a
finite covering of oD , ̂  = {L(Q,, Co/4)}^.^ , with Q, e €)D
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k

and U HQi^o/^) D { P e D : dist (P^D) < e} for some
i

e > 0 . Then we have the following theorem.

THEOREM 2. — Suppose D i5 a Lipschitz domain. There
exist constants Cg , c , C depending on i^ such that

(1) if 0 < r < Ce , Q e OD and Qi , Qg are m
A(Q,r)\A(Q,r/2) ,

then
cK(P,Qi) < K(P,Q,) < CK(P,Q,)

for P on the local y'axis at Q with dist (P,Q) < Co or on
L(Q,r/32);

(2) if 0 < r < Ce , Q e &D , Qz e A(Q,r/2) anrf Qi i'« ore
(Ae n — 2 dimensional boundary of A(Q,r) , (Aera

K(P,Qi) < CK(P,Q,)

for P on (Ae focaZ y-axis at Q wi(A dist (P,Q) < Co .

Proof. — We first prove (1). Choose 7*0 depending on
^ so that for each Q e &D , L(Q,3ro) is in some L(Q,,Co/4) e-T.
For each Q e &D , we choose one L(Q^,Co/4) from "T
which contains L(Q,3ro) and denote by D the cylinder
L(Qi?Co) and let 0 be the point (0,5 MCo) with respect
to the local coordinate system at Q, . Then D is starlike
Lipschitz about 0 and with C^M as an upper bound for
the Lipschitz constants of functions defining D (€7 is inde-
pendent of i^) . We denote by L(Q,r) the cylinder corres-
ponding to Q,r with respect to the starlike Lipschitz domain
D . Let K be the kernel function on D relative to the
fixed point 0 , that is, for X e D and Y <x) ^D

K(X,Y) = ̂ /^(Y) ,

where (^(E) is the harmonic measure of E C ^D at X
with respect to the region D . By Lemma 8 and the choice
of €2 , we may find Cg less than 7*0 , depending on C^M.
such that if 0 < r < Cg , Qi , Qa are in A(Q,r)\A(Q,r/2)
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and P is on the segment OQ or on L(Q,r/32) then

K(P,Q,) ^ CK(P,Q,);
hence

(4.11) ^(A^/o^Ai) ^ Cd^A,)/^^)

for small A^ === A(Q^) , a, > 0 and i == 1,2 .
Suppose 0 < r < Cg , Q e o D and Qi , Q2 are in

^Q^y^^Q^/S) . We need to show that there is a constant
C depending on ^ , so that

(4.12) K(P,Q,) ^ CK(P,Q,)

for those P described in (1). With the aid of Harnack's
inequality, we may assume P is on OQ with dist (P,Q) ^ Co
or on L(Q,r/32) and need only to show (4.12) for these P's .
Thus it is enough to show

(4.13) (^(A,)/^,) ^ CoW/c^A,)

for small A^ and A^ . Because both quotients in (4.13)
have limits as the diameters of A^ and A2 tend to zero,
and &° and n — 1 dimensional Hausdorff measure on
oD are absolutely continuous with respect to each other,
we need only to show (4.13) for those A^ and Ag satisfying

(4.14) &°(A,) = co°(A,) .

First, we want to show that there is a constant C depend-
ing on T ,

(4.15) o>o(A2) < CcoO(Ai) .

Let I\ = bD\oD , we have

(OO(A,) == &5(^) + r VKO^^d^X) .
J PI

Therefore

<o°(A,)CO

- f K(0,Y)d<oo(Y) - f K(0,X) ( K(X,Y)^o(Y)d6°(X)"A, J r, J A,
=f [K(0,Y)-J' K(0,X)K(X,Y)d&°(X)]d(oO(Y) .
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We observe that for each Y e & D n ^ ) D , the term enclosed
by brackets in the above equality is positive. By (4.1),
Lemma 2 and Harnack's inequality we observe that

max {K(X,Y) : X e I\ , Y G A(Q,, Co - ro)} < C

for some constant C . Because for each X , K(X,Y) is a
continuous function of Y e bD , there is a constant C > 0
depending on ^ so that

K(0,Y) - f K(0,X)K(X,Y)rf(o°(X) > C^r,
for each Y e A(Q^ ,Co — ro) . Hence for sufficiently small
A^

(4.16) ^(A^) ^ Co^A^) .

By Harnack's inequality,

(4.17) (o°(Ai) ^ Co)°(Ai) .

From (4.14), (4.16), (4.17) and monotonicity, we have
(^(Aa) < C<o°(Ai) , which is (4.15). Switching the roles of
Qi and Qg , we also have

(4.18) o)°(Ai) ^ Cco^Ag) .

Next we want to show that for P on OQ with
dist (P,Q) < Co or on L(Q,r/32) ,

(4.19) ^(Ai) ^ Cco^A^) .

Let B be the center of the top of D , and

r, = r,\{(x,y): \x\ = Co.y < f[x) + CsCo}
where {x,y) are the local coordinates and y = f{x) is the
Lipschitz function corresponding to Q^ in defining the
Lipschitz domain D . From Harnack's inequality, it follows
that for i == 1, 2,

c^(\) ^ O)O(A,) < Co^A,) .

Combining the above inequalities with (4.15) and (4.18)
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we obtain

(4.20) co^Ai) < co^Aa) ^ Cco^Ai) .

Applying Lemma 2 and Harnack's inequality properly we
have

(4.21) Cco^AiYc^Ai) ^ 1
for X e I\ , and

(4.22) (^(A^/co^) ^ 1
for X e I\ . Let ^,(X) = co .̂) — (^(A,.) for X e D u bD
and j' = 1 or 2 . Thus ^(X) has the same boundary
values as co^A^.) on Fi and vanishes on bD n bD . Embed-
ding D in a sufficiently large domain D* which is starlike
Lipschitz about O* and has 2M as an upper bound for the
Lipschitz constants, we may conclude from (4.20), (4.21),
(4.22) and Lemma 7 that ^i(P) ^ C^(P) tor P on L(Q,,Co/4) .
From (4.11) and (4.14), we have (^(Ai) ^ C&^Ag) for P
on OQ or on L(Q,r/32). Combining the last two inequalities
we have (4.19). Thus (4.13) follows. This concludes the
proof for (1).

The proof of (2) is the same as (1) except that we use Lemma 9
instead of Lemma 8 . This completes the proof of Theorem 2 .

5. Proof of Theorem 3.

Before we prove Theorem 3, we need the following lemma.

LEMMA 10. — Let h be a positive harmonic function on D ,
corresponding to a Borel measure H on oD . Then for
U-almost every Q e bD

(5.1) lim inf A(P) > 0

as P —>- Q along the local y-axis at Q .

Proof, — Let E be the set of Q e bD , where lim inf
A(P) = 0 as P —^ Q along the local 2/-axis. For each Q e E ,
choose {Pn} on the local y-axis, satisfying P^—^-Q and*(P.) < ̂ .
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Let A,==A(Q,|P, - Qj) and Ax beany A(X,a), X e &D ,
a > 0 . From Harnack's inequality and Lemma 3, we have
(^(AJ^Ax) > C(»o(Ax) for X e A, and sufficiently small
Ax . Therefore

»(P.) S ̂  K(P.,X)<JH(X)

=fl^»^fe<>»,H(,,)
JA^->O (o°(A(^,a)) v /

> c f -^^(X)^-^.A^°(AJ v / (OO(AJ

Thus the symmetric derivative lim l1^2171^ = 0 for eachu^oo (X)°(A^Q))
Q e E . It follows from a theorem by Besicovitch f2; Theo-
rem 5] that H(E) = 0 .

Now we shall prove Theorem 3. Let S be a nontangential
cone at Q. We say S is of class N (N: positive integer)
if every point P e S can be connected by an arc y in D to
the point P' on the local y-axis satisfying dist(P',Q) == dist
(P,Q) , such that the length of y is less than Ndis t (y^D) .
For each Q e ^D , let S(Q,N) be the union of cones of
class N at Q.

To prove the theorem it is enough to show that, for each

^^l^it^ as P——^^^(W, forH-al-
most every Q e &D . A slight variant of an argument in
[6] says that it is enough to show that there is a constant
C(Q,N) for each Q and N , independent of u and h,
such that

(5.2) lin.sup^CfQ.N)^1-^
n[r) r->Q H(A(Q,r))

as P —^ Q ? P e S(Q , N) whenever the symmetric derivative
exists and (5.1) is satisfied. By Harnack's inequality, it
is enough to prove that

(5.3) ,in..„p^p)<C(Q)l,n,-(A(Q^
/Hr) r^o H(A(Q,r))

as P —^ Q along local y-axis whenever the symmetric deriva-
tive exists and (5.1) is satisfied.
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Since U and H are Borel measures, for H-almost every
Q e & D ,

U(A(Q,a))^jU
alo H(A(Q,a)) (IH —/ '

Let Q be a point on &D satisfying (5.1) and

lim U(AJ/H(AJ == a < oo ,
n-> oo

where A^ == A(Q,2~'n) . Choose and fix an integer k , such
that 2-k < Cg and U(AJ ^ 2aH(AJ for n ^ k . Suppose
P is on the local y-axis at Q and satisfies dist (P,Q) < Co •
We let HP) be sup {K(P,X) : XeA,\A^} and J,(P)
be inf {1^ : m ^ n} . It follows from Theorem 2 that if
n ^ k then

(5.4) J,(P) < L(P) < CJ,(P)

for some constant C depending on a preassigned finite
cylindrical covering of bD . Therefore

r K(P,X)rfU(X) ^ S I,(P)U(A,\A^) + K(P,Q)U({Q})
^ A/, n==fc

< C 1 J,(P)U(A,\A^) + K(P,Q)U({Q}) .
n=k

By Abel sumrnation formula, the observation

lim Ji,(P)U(A^) = K(P,Q)U({Q}) ,
N-»-oo

the choice of k , (5.4) and Theorem 2, we have

J^K(P,X)rfU(X)

^ Cf i (J, - J^)(P)U(AJ + J,-i(P)U(A,)1
Ln==fe J

< 2aC 1 (J, - J,_i)(P)H(AJ + J,_,(P)H(A,)1
-.n==fc J

= 2aC S J,(P)H(A,\A^) + K(P,Q)H({Q})1
-n=k J

< 2aCft I,(P)H(A,\A^) + K(P,Q)H({Q})1
--n=:k J

< 2aC^ K(P,X)rfH(X) ^ 2aC /l(P) .



166 JANG-MEI G. WU

Therefore

u(P)/A(P) == [f^ KfP,X)dU(X) +^ K(P,X)rfU(X)]/A(P)

^2ac+[L^^K(p 'x^uw]/ /^(p)•
For the same reason as in the proof of Theorem 2 K(P X)
is bounded for X e &D\A, and P near Q. Because
(5.1) holds at Q, lim sup u(P)/A(P) < 2aC as P —^ Q
along local y-axis at Q . Hence (5.3) is proved. This
completes the proof of the theorem.

Remark. — Professor Ancona suggests that it is interesting
to indicate the exceptional set in Theorem 3. We write
u = dH H ^~ vs where u^ is singular with respect to H .
At a point Qo e &D where condition (5.1) is satisfied and

at which the symmetric derivative of du._dv. (Q^ H + U

with respect to H is zero, u/A has nontangential limit
oLJ ,^ ,
,jj (<^o) • in fact,

KP)-^(QoWP)|

^o^^t^H^-^H^^^+^Q)]-

dividing both sides of the inequality by h(P) and applying
(5.2) to the right side, we obtain

u(P) dV (Qo) = olim sup
\h{P) dH

Qo nontangentially, hence,as P

•-ĵ hlj'Q.)
as P—^Qo nontangentially. The set of Qo on &D with
properties described above has full H-measure (a classical
argument).
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We notice that the condition (5.1) and the existence of
symmetric derivative of U with respect to H at Qo need
not give the nontangential limit of ufh at Qo , for example
D = {z G C : | z\ < 1 , Im z > 0} , u{z) = arg z(0 < arg z < n) ,
h == 0 and Qo is the origin.
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