MASAYUKI ITÔ On the Green type kernels on the half space in \mathbb{R}^n

Annales de l'institut Fourier, tome 28, nº 2 (1978), p. 85-105 <http://www.numdam.org/item?id=AIF_1978_28_2_85_0>

© Annales de l'institut Fourier, 1978, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE GREEN TYPE KERNELS ON THE HALF SPACE IN \mathbb{R}^n

by Masayuki ITÔ

1. Let \mathbf{R}^n be the $n \ge 2$ -dimensional Euclidian space and D be the half space $\{x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n; x_1 > 0\}$. For a point $x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n$, we write

$$\overline{x} = (-x_1, x_2, \ldots, x_n)$$
 and $|x| = \left(\sum_{j=1}^n x_j^2\right)^{1/2}$.

When $n \ge 3$, we put $G_2(x, y) = |x - y|^{2-n} - |x - \overline{y}|^{2-n}$ in $D \times D$. Then G_2 is the Green kernel on D. Analogously we set, for a number α with $0 < \alpha < n$,

$$G_{\alpha}(x, y) = |x - y|^{\alpha - n} - |x - \overline{y}|^{\alpha - n}$$

in $D \times D$, and we call it the Green type kernel of order α on D. The following question was proposed to me in a letter by H. L. Jackson: Does G_{α} also satisfy the domination principle provided that $0 < \alpha < 2$.

This paper is inspired by this question. Let $C_e(D)$ and C(D) be the usual topological vector space of real-valued continuous functions in D with compact support and the usual topological vector space of real-valued continuous functions in D, respectively. We set

$$\mathbf{C}^+_{\mathbf{c}}(\mathbf{D}) = \{ f \in \mathbf{C}_{\mathbf{c}}(\mathbf{D}); \ f \ge 0 \}$$

and $C^+(D) = \{f \in C(D); f \ge 0\}$. For a given Hunt convo-

M. ITO

lution kernel \varkappa on \mathbf{R}^n , we define the linear operator

$$\mathbf{V}_{\mathbf{x}}:\mathbf{C}_{\mathbf{c}}(\mathbf{D})\ni f\rightarrow (\mathbf{x}\ast f-\mathbf{x}\ast\overline{f})_{\mathbf{D}}\in\mathbf{C}(\mathbf{D})\;(^{\mathbf{1}})\,,$$

where \overline{f} is the reflection of f about the boundary ∂D of Dand where $(\varkappa * f - \varkappa * \overline{f})_{D}$ is the restriction of

$$\varkappa * f - \varkappa * \overline{f}$$

to D. If V_{\varkappa} is positive (that is, $f \ge 0 \implies V_{\varkappa} f \ge 0$), we say that V_{\varkappa} is the Green type kernel associated with \varkappa .

The purpose of this paper is to show the following two theorems.

THEOREM 1. — Let \varkappa be a Hunt convolution kernel on \mathbb{R}^n and $(\varkappa_p)_{p \ge 0}$ be the resolvent associated with \varkappa . Suppose that \varkappa is symmetric with respect to $\eth D$. Then the following two conditions are equivalent:

(1) V_{x} is a Hunt kernel on D.

(2) For each p > 0, $\frac{\partial}{\partial x_1} \varkappa_p \leq 0$ in the sense of distributions in D.

THEOREM 2. — Let \times be a Dirichlet convolution kernel on \mathbf{R}^n and α be the singular measure (the Lévy measure) associated with \times . Suppose that \times is also symmetric with respect to ∂D . Then the following two conditions are equivalent:

- (1) V_{\star} is a Dirichlet kernel on D.
- (2) $\frac{\partial}{\partial x_1} \alpha \leq 0$ in the sense of distributions in D.

This theorem gives immediately that the question raised by H. L. Jackson is affirmatively solved.

2. Let \varkappa be a convolution kernel on $\mathbf{R}^{n}(^{2})$. Similarly we define V_{χ} . When V_{χ} is positive, we set

$$\mathscr{D}^+(\mathbf{V}_{\mathbf{x}}) = \{ f \in \mathbf{C}^+(\mathbf{D}); \ \mathbf{V}_{\mathbf{x}} f \in \mathbf{C}^+(\mathbf{D}) \},$$

where

$$\mathbf{V}_{\mathbf{x}}f(x) = \sup \{\mathbf{V}_{\mathbf{x}}g(x); g \in \mathbf{C}^+_{\mathbf{c}}(\mathbf{D}), g \leq f\}$$

(1) An $f \in C_c(D)$ may be considered as a finite continuous function in \mathbb{R}^n with compact support $\subset D$.

(2) In potential theory, a convolution kernel means a positive measure.

in D. Put $\mathscr{D}(V_x) = \{f \in C(D); f^+, f^- \in \mathscr{D}^+(V_x)\}$ and, for an $f \in \mathscr{D}(V_x), V_x f = V_x f^+ - V_x f^-$. Then V_x is a linear operator from $\mathscr{D}(V_x)$ into C(D).

LEMMA 3. — Let \times and \times' be two convolution kernels on \mathbb{R}^n . Suppose that \times and \times' are symmetric with respect to ∂D and that the convolution $\times \times \times'$ is defined. If V_{\times} is positive, then, for any $f \in C_{\mathfrak{c}}(D)$, $V_{\times'}f \in \mathscr{D}(V_{\times})$ and

$$\mathbf{V}_{\mathbf{x}}(\mathbf{V}_{\mathbf{x}'}f) = (\mathbf{x} * \mathbf{x}' * f - \mathbf{x} * \mathbf{x}' * \overline{f})_{\mathrm{D}}$$
.

Proof. — We may assume that $f \ge 0$. Since x * x'is defined and $|V_{x'}f| \le x' * f + x' * \overline{f}$, we have $V_{x'}f \in \mathcal{D}(V_x)$. Our convolution kernels x and x' being symmetric with respect to ∂D , $x * \overline{f}(\overline{x}) = x * f(x)$ and

$$\varkappa' * \overline{f}(\overline{x}) = \varkappa' * f(x).$$

For the sake of simplicity, we write $h(x) = V_{x'}f(x)$ in D and h(x) = 0 on $\mathbb{R}^n - D$. Then, for a $g \in C^+_c(D)$, we have

$$\int \mathbf{V}_{\mathbf{x}}(\mathbf{V}_{\mathbf{x}'}f)(x)g(x) dx$$

$$= \int (\mathbf{x} * h(x) - \mathbf{x} * \overline{h}(x))g(x) dx$$

$$= \int h(x)\mathbf{\check{x}} * g(x) dx - \int \overline{h}(x)\mathbf{\check{x}} * g(x) dx$$

$$= \int_{\mathbf{D}} (\mathbf{x}' * f(x) - \mathbf{x}' * \overline{f}(x))\mathbf{\check{x}} * g(x) dx$$

$$- \int_{\mathbf{R}^{n}-\mathbf{D}} (\mathbf{x}' * \overline{f}(x) - \mathbf{x}' * f(x))\mathbf{\check{x}} * g(x) dx$$

$$= \int \mathbf{x}' * f(x)\mathbf{\check{x}} * g(x) dx - \int \mathbf{x}' * \overline{f}(x)\mathbf{\check{x}} * g(x) dx$$

$$= \int \mathbf{x} * \mathbf{x}' * (f - \overline{f})(x)g(x) dx,$$

where \check{x} is the adjoint convolution kernel of \varkappa ; that is, $\check{x}(E) = \varkappa(\{-x; x \in E\})$ for any Borel set E. Since g is arbitrary, we obtain the required equality.

Remark 4. — In the above lemma, we have $V_{x}f \in \mathscr{D}(V_{x'})$ and $V_{x}(V_{x'}f) = V_{x'}(V_{x}f)$ provided that $V_{x'}$ is also positive.

LEMMA 5. — Let \varkappa be a convolution kernel on \mathbb{R}^n . Suppose that \varkappa is symmetric with respect to ∂D . Then V_{\varkappa} is positive if and only if $\frac{\partial}{\partial x_1} \varkappa \leq 0$ in the sense of distributions in D.

Proof. — First we shall show the « if » part. For a $t \in (0, \infty)$, put $H_t = \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n; x_1 = t\}$ and

$$\mathrm{D}' = \left\{ x = (x_1, x_2, \cdots, x_n) \in \mathrm{D}; \int_{\mathrm{H}_{\mathfrak{L}_{x_i}}} d\varkappa = 0 \right\}.$$

It suffices to prove that, for any $f \in C_c^+(D)$ and any $x \in D'$, $\varkappa * f(x) \ge \varkappa * f(\overline{x})$, because $\int_{D-D'} dx = 0$ and $\varkappa * f(\overline{x}) = \varkappa * \overline{f}(x)$.

We choose a sequence $(\varphi_k)_{k=1}^{\infty}$ of non-negative, spherically symmetric and infinitely differentiable functions such that $\int \varphi_k dx = 1$ and that the support of φ_k , supp (φ_k) , is contained in $\{x \in \mathbf{R}^n; |x| < 1/k\}$. Then $\varkappa * \varphi_k$ is symmetric with respect to ∂D and $\frac{\partial}{\partial x_1} \varkappa * \varphi_k(x) \leq 0$ in

$$\{x \in \mathbf{R}^n; x_1 \ge 1/k\}.$$

Let $f \in C^+_c(D)$ and $x = (x_1, x_2, \cdots, x_n) \in D'$. Then

 $\int_{|\mathcal{Y}_4-x_4| \ge 1/m} f(y) \varkappa * \varphi_k(x-y) \ dy \ge \int_{|\mathcal{Y}_4-x_4| \ge 1/m} f(y) \varkappa * \varphi_k(\overline{x}-y) \ dy$

provided with $0 < m \leqslant k$. By letting $k \to \infty$ and $m \to \infty$, we obtain that

$$\begin{aligned} \varkappa * f(x) &= \int f(y) \, d \breve{x} * \varepsilon_x(y) \\ &\geq \int_{\mathbf{R}^n - \mathbf{H}_{x_1}} f(y) \, d \breve{x} * \varepsilon_x(y) \\ &\geq \int_{\mathbf{R}^n - \mathbf{H}_{x_1}} f(y) \, d \breve{x} * \varepsilon_{\overline{x}}(y) \\ &\geq \varkappa * f(\overline{x}) - \left(\sup_{z \in \mathbf{R}^n} |f(z)| \right) \int_{\mathbf{H}_{2x_1}} d\varkappa \ = \ \varkappa * f(\overline{x}) \end{aligned}$$

where ε_x denote the unit measure at x. Since f and x are arbitrary, the \ll if \gg part is true.

Next we shall show the «only if » part. Suppose that the «only if » part is false. Then there exist a number t > 0, a point $x = (x_1, x_2, \dots, x_n) \in D$ with $x_1 > t$ and a non-negative, spherically symmetric and infinitely differentiable function φ in \mathbf{R}^n with $\supp(\varphi) \subset \{x \in \mathbf{R}^n; |x| < t\}$ such that $\frac{\partial}{\partial x_1} \times \ast \varphi(x) > 0$. Hence we can choose a number

s > 0 such that $s < x_1 - t$ and that, for every $y \in D$ with |y| < s, $\varkappa * \varphi(x - y) < \varkappa * \varphi(x - \overline{y})$. Since

$$\varkappa * arphi(x-\overline{y}) = \varkappa * arphi(\overline{x}-y)$$

we have, for an $f \neq 0 \in C_c^+(D)$ satisfying

$$\begin{split} \sup p \ (f) \ &\subset \ \{y \in \mathbf{R}^n; \ |y| \ < \ s\}, \\ \varkappa * f * \varphi(x) \ < \ \varkappa * f * \varphi(\overline{x}) = \varkappa * \overline{f} * \varphi(x). \end{split}$$

But this contradicts the inequality $\varkappa * f \ge \varkappa * \overline{f}$ in D. Thus we see that the « only if » part is true.

In the same manner as above, we obtain the following

LEMMA 6. — Let α be a positive measure in $\mathbb{R}^n - \{0\}$. Suppose that α is symmetric with respect to ∂D . If $\frac{\partial}{\partial x_1} \alpha \leq 0$ in the sense of distributions in D, then, for any $f \in C_c^+(D)$,

$$\int f(x-y) \ dlpha(y) \ge \int \overline{f}(x-y) \ dlpha(y)$$

in $D \cap C \operatorname{supp} (f)$.

3. We say that a convolution kernel \times on \mathbb{R}^n is a Hunt convolution kernel if $\varkappa = \int_0^\infty \alpha_t dt$, where $(\alpha_t)_{t\geq 0}$ is a vaguely continuous semi-group of positive measures in \mathbb{R}^n ; that is, $\alpha_0 = \varepsilon$ (the Dirac measure), $\alpha_t * \alpha_s = \alpha_{t+s}$ ($\forall t \ge 0$, $\forall s \ge 0$) and the application $\mathbb{R}^+ = [0, \infty) \ge t \to \alpha_t$ is vaguely continuous. In this case, $(\alpha_t)_{t\geq 0}$ is uniquely determined (see, for example, [3]) and called the vaguely continuous semigroup associated with \varkappa . For a $p \in \mathbb{R}^+$, put

$$\varkappa_p = \int_0^\infty \exp\left(-pt\right) \alpha_t \, dt \; ;$$

then $(\varkappa_p)_{p\geq 0}$ is called the resolvent associated with \varkappa . This is characterized by a family $(\varkappa_p)_{p\geq 0}$ of convolution kernels on \mathbf{R}^n satisfying

$$\varkappa_p - \varkappa_q = (q - p) \varkappa_p \ast \varkappa_q (\forall p \ge 0 , \ \forall q > 0)$$

and $\lim_{p \to 0} \varkappa_p = \varkappa_0 = \varkappa$ (vaguely).

M. ITO

LEMMA 7 (see [3] or Theorem 5 in [6]). — Let \varkappa , $(\alpha_t)_{t\geq 0}$ and $(\varkappa_p)_{p\geq 0}$ be the same as above. For a p > 0 and a t > 0, put

$$lpha_{p,t} = \exp\left(-pt
ight)\sum_{k=0}^{\infty} rac{p^k t^k}{k!} (plpha_p)^k \quad and \quad lpha_{p,0} = \varepsilon;$$

then $(x_{p,t})_{t\geq 0}$ is a vaguely continuous semi-group of positive measures and we have

$$\varkappa + \frac{1}{p} \varepsilon = \int_0^\infty \alpha_{p,t} dt \quad and \quad \lim_{p \ge \infty} \alpha_{p,t} = \alpha_t \quad (vaguely) \quad (t \ge 0).$$

LEMMA 8. — Let $\varkappa = \int_{0}^{\infty} \alpha_{t} dt$ be a Hunt convolution kernel on \mathbf{R}^{n} and $(\varkappa_{p})_{p\geq 0}$ be the resolvent associated with \varkappa . If \varkappa is symmetric with respect to ∂D , then, for any p and any t, \varkappa_{p} and α_{t} are also symmetric with respect to ∂D .

Proof. — For a $p \ge 0$, we denote by $\bar{\mathbf{x}}_p$ the reflection of \mathbf{x}_p about $\partial \mathbf{D}$. Evidently $(\bar{\mathbf{x}}_p)_{p\ge 0}$ is the resolvent associated with $\bar{\mathbf{x}}$. By using $\mathbf{x} = \bar{\mathbf{x}}$ and the unicity of the resolvent associated with \mathbf{x} , we have, for each $p \ge 0$, $\mathbf{x}_p = \bar{\mathbf{x}}_p$. This means that \mathbf{x}_p is symmetric with respect to $\partial \mathbf{D}$. This gives also that, for any $f \in C_c(\mathbf{D})$,

$$\int_{\mathbf{0}}^{\infty} \exp(-pt) f \, d\alpha_t \, dt = \int_{\mathbf{0}}^{\infty} \exp(-pt) \overline{f} \, d\alpha_t \, dt \quad (\forall p \ge 0).$$

The Laplace transformation being injective, we have, for each $t \ge 0$, $\int f d\alpha_t = \int \overline{f} d\alpha_t$. Hence, f being arbitrary, we see that α_t is symmetric with respect to ∂D .

Similarly we have the following

Remark 9. — If \varkappa is symmetric with respect to the origin 0 (resp. spherically symmetric), then \varkappa_p and α_t are also symmetric with respect to 0 (resp. spherically symmetric).

Let \varkappa be a convolution kernel on \mathbf{R}^n . We say that \varkappa is a Dirichlet convolution kernel if the (generalised) Fourier transformation $\hat{\varkappa}$ of \varkappa is defined and equal to $\frac{1}{\psi}$, where ψ is a real-valued negative definite function in \mathbf{R}^n such that $\frac{1}{\psi}$

is locally summable. By virtue of the Lévy-Khinchine theorem, we have, for any $x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n$,

$$\psi(x) = c + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j + \int (1 - \cos (2\pi x \cdot y)) \, d\alpha(y),$$

where c is a non-negative constant, $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j$ is a positive semi-definite form, $x \cdot y$ is the inner product in \mathbb{R}^n and where α is a positive measure in $\mathbb{R}^n - \{0\}$ symmetric with respect to 0 and satisfying $\int |x|^2/(1+|x|^2) d\alpha(x) < \infty$. It is well-known that the above decomposition of ψ is unique. The positive measure α in $\mathbb{R}^n - \{0\}$ is called the *singular measure* associated with \varkappa . Since, for each $t \ge 0$, $\exp(-t\psi)$ is of positive type in \mathbb{R}^n , there exists a positive measure α_t in \mathbb{R}^n such that $\hat{\alpha}_t = \exp(-t\psi)$. Evidently $(\alpha_t)_{t\ge 0}$ is a vaguely continuous semi-group of positive measures and $\varkappa = \int_0^\infty \alpha_t dt$. Hence a Dirichlet convolution kernel is a Hunt convolution kernel and symmetric with respect to 0.

4. A positive linear operator $V: C_c(D) \to C(D)$ is called a continuous kernel on D (Evidently V is continuous). Similarly as in the section 2, we define $\mathscr{D}^+(V)$ and $\mathscr{D}(V)$. We say that V is a Hunt kernel on D if $V = \int_0^{\infty} \tilde{V}_t dt$ (that is, for any $f \in C_c(D)$, $Vf(x) = \int_0^{\infty} \tilde{V}_t f(x) dt$ in D), where $(\tilde{V}_t)_{t\geq 0}$ is a continuous semi-group of continuous kernels on D; that is, $\tilde{V}_0 = I$ (the identity), for any $t \geq 0$, $s \geq 0$ and any $f \in C_c(D)$, $\tilde{V}_t f \in \mathscr{D}(\tilde{V}_s)$, $\tilde{V}_s(\tilde{V}_t f) = \tilde{V}_t(\tilde{V}_s f) = \tilde{V}_{t+s} f$ and the application $\mathbf{R}^+ \ni t \to \tilde{V}_t f$ is continuous in C(D). Similarly as in [3], we see that $(\tilde{V}_t)_{t\geq 0}$ is uniquely determined, and we call it the continuous semi-group associated with V. For a $p \geq 0$, put $V_p = \int_0^{\infty} \exp(-pt)V_t dt$; then we call $(V_p)_{p\geq 0}$ the resolvent associated with V. It is known that, for any $p \geq 0$, q > 0 and any $f \in C_c(D)$, $V_p f \in \mathscr{D}(V_q)$, $V_q f \in \mathscr{D}(V_p)$,

$$\mathbf{V}_{p}f - \mathbf{V}_{q}f = (q - p)\mathbf{V}_{q}(\mathbf{V}_{p}f) = (q - p)\mathbf{V}_{p}(\mathbf{V}_{q}f)$$

(the resolvent equation) and $\lim_{p \neq 0} V_p f = V_0 f = V f$ in C(D).

Let V_1 and V_2 two continuous kernels on D. If, for any $f \in C_c(D)$, $V_2 f \in \mathcal{D}(V_1)$, the application $C_c(D) \ni f \to V_1(V_2 f)$ is positive linear, we denote it by $V_1 \cdot V_2$.

Remark 10 (see [2]). — A Hunt kernel V on D satisfies the domination principle; that is, for two $f, g \in C_c^+(D), Vf \leq Vg$ on supp (f) implies the same inequality on D.

5. We shall show Theorem 1 mentioned in the section 1.

(1) \implies (2). By Lemmas 5 and 8, it suffices to prove that, for each p > 0, V_{x_p} is positive. Let $(V_p)_{p \ge 0}$ be the resolvent associated with V_x . Then, for an $f \in C_c^+(D)$ and a p > 0, $V_x f = (pV_x + I)(V_p f)$. On the other hand, Lemmas 3 and 8 give the $V_{x_p} f \in \mathcal{D}(V_x)$ and

$$\mathbf{V}_{\mathbf{z}} f = (\mathbf{x} * (f - \overline{f}))_{\mathbf{D}} = ((p\mathbf{x} + \varepsilon) * \mathbf{x}_{p} * (f - \overline{f}))_{\mathbf{D}}$$

= $(p\mathbf{V}_{\mathbf{z}} + \mathbf{I})(\mathbf{V}_{\mathbf{z}p}f).$

By using the resolvent equation, we have

$$\mathbf{V}_{p}f - \mathbf{V}_{\mathbf{x}_{p}}f = (\mathbf{I} - p\mathbf{V}_{p})((p\mathbf{V}_{\mathbf{x}} + \mathbf{I})(\mathbf{V}_{p}f - \mathbf{V}_{\mathbf{x}_{p}}f)) = 0.$$

The function f being arbitrary, we have $V_p = V_{x_p}$, and hence V_{z_p} is positive.

 $(2) \longrightarrow (1)$. By Lemma 5, V_{x_p} is positive $(\forall p > 0)$. Let α_p , be the positive measure defined in Lemma 7 $(\forall p > 0, \forall t \ge 0)$ and $(\alpha_i)_{i\ge 0}$ be the vaguely continuous semi-group associated with \times . By Lemmas 3 and 7,

$$\mathbf{V}_{\alpha_{p,t}} = \exp\left(-pt\right)\sum_{k=0}^{\infty} \frac{p^k t^k}{k!} (p \mathbf{V}_{\mathbf{z}_p})^k,$$

where $(p \mathbf{V}_{\mathbf{x}_p})^{\mathbf{0}} = \mathbf{I}$, $(p \mathbf{V}_{\mathbf{x}_p})^{\mathbf{1}} = p \mathbf{V}_{\mathbf{x}_p}$ and

$$(p\mathbf{V}_{\mathbf{x}_p})^{n+1} = (p\mathbf{V}_{\mathbf{x}_p})^n \cdot (p\mathbf{V}_{\mathbf{x}_p}).$$

Therefore $V_{\alpha_{p,t}}$ is positive. From Lemma 7, it follows that, for any $f \in C_{c}(D)$, $\lim_{p \neq \infty} V_{\alpha_{p,t}} f = V_{\alpha_{t}} f$ in $C(D) \ (\forall t \ge 0)$. Hence $V_{\alpha_{t}}$ is positive. By using Lemma 3, we see that $(V_{\alpha_{t}})_{t\ge 0}$ is a continuous semi-group of continuous kernels on D and that $V_{\alpha_{t}} = \int_{0}^{\infty} V_{\alpha_{t}} dt$. Consequently V_{α} is a Hunt kernel on D. This completes the proof. Question 11. — Let \times be a Hunt convolution kernel on \mathbb{R}^n satisfying $\times = \overline{\times}$. Is it true that V_{\times} is a Hunt kernel on D provided that V_{\times} is positive?

Remark 12. — Let k(x) be a non-negative continuous function in the wide sense in \mathbb{R}^n satisfying $k(x) = k(\overline{x})$. Suppose that $\varkappa = k(x) dx$ is a Hunt convolution kernel and that V_{\varkappa} is also a Hunt kernel on D. Put

$$G(x,y) = k(x-y) - k(x-\overline{y})$$
 in $D \times D$.

If the function kernel k(x-y) satisfies the continuity principle (3), then G satisfies the domination principle; that is, for two positive measures μ and ν in D with compact support and with $\int G\mu \, d\mu < \infty$, then $G\mu \leq G\nu$ on supp (μ) implies the same inequality in D, where

$$\mathrm{G}\mu(x) = \int \mathrm{G}(x,y) \ d\mu(y).$$

It is known that k(x-y) satisfies the continuity principle when \varkappa is a Dirichlet convolution kernel (see [4]).

We show this remark. We see that G also satisfies the continuity principle. Therefore it suffices to prove that, for a positive measure μ in D with compact support and an $x \in D$, $G\mu \leq G\varepsilon_x$ in D provided that $G\mu \leq G\varepsilon_x$ on $\operatorname{supp}(\mu)$ and that $G\mu$ is finite continuous (see [8]). Since V_x is a Hunt kernel, there exists $f \in C_c^+(D)$ such that $V_x f = Gf \geq 1$ on $\operatorname{supp}(\mu)$, where $Gf(y) = \int G(y,z)f(z) dz$. Here we remark that μ is considered as a positive measure in \mathbb{R}^n . For a given positive number δ , there exists a neighborhood U of 0 such that, for any finite continuous function $\varphi \geq 0$ in \mathbb{R}^n with $\operatorname{supp}(\varphi) \subset U$ with $\int \varphi dx = 1$, $\mu * \varphi$, $\varepsilon_x * \varphi \in C_c^+(D)$ and $G(\mu * \varphi) \leq G(\varepsilon_x * \varphi) + \delta Gf$ on $\operatorname{supp}(\mu * \varphi)$. By letting $\varphi dx \to \varepsilon$ (vaguely) and $\delta \downarrow 0$, we have $G\mu \leq G\varepsilon_x$.

(3) This means that, for a positive measure μ in \mathbb{R}^n with compact support, the function $\int k(x-y) d\mu(y)$ of x is finite continuous provided that its restriction to supp (μ) is finite continuous.

6. Theorem 1 gives the following

COROLLARY 13. — Let $x = \int_0^\infty \alpha_t dt$ be a Hunt convolution kernel on \mathbb{R}^n . Then x is symmetric with respect to ∂D and V_x is a Hunt kernel on D if and only if, for each $t \ge 0$, α_t is symmetric with respect to ∂D and $\frac{\partial}{\partial x_1} \alpha_t \le 0$ in the sense of distribution in D.

COROLLARY 14. — Let $\varkappa = \int_{0}^{\infty} \alpha_{t} dt$ be a Hunt convolution kernel on \mathbb{R}^{n} and μ be a Hunt convolution kernel on \mathbb{R}^{1} supported by \mathbb{R}^{+} . Suppose that $\varkappa_{\mu} = \int_{0}^{\infty} \alpha_{t} d\mu(t)$ is defined (in the sense of measures) and that \varkappa is symmetric with respect to ∂D . If V_{χ} is a Hunt kernel on D, then $V_{\chi_{\mu}}$ is also a Hunt kernel on D.

Proof. — We denote by $(\mu_p)_{p \ge 0}$ the resolvent associated with μ . Since $\mu_p \le \mu$, $\varkappa_{\mu,p} = \int \alpha_t d\mu_p(t)$ is defined $(\forall p \ge 0)$. It is known that \varkappa_{μ} is a Hunt convolution kernel on \mathbb{R}^n and that $(\varkappa_{\mu,p})_{p\ge 0}$ is the resolvent associated with \varkappa_{μ} (see Theorem 1 in [5]). By Theorem 1 and Corollary 13, α_t is symmetric with respect to ∂D and $\frac{\partial}{\partial x_1} \alpha_t \le 0$ in the sense of distributions in D. Hence \varkappa_{μ} is also symmetric with respect to ∂D and $\frac{\partial}{\partial x_1} \varkappa_{\mu,p} \le 0$ in the sense of distributions in D ($\forall p \ge 0$). Consequently Theorem 1 gives this corollary. In the same manner as above, we have the following

COROLLARY 15. — Let $(\alpha_t)_{t\geq 0}$ be a vaguely continuous semi-group of positive measures in \mathbf{R}^n and μ be a Hunt convolution kernel on \mathbf{R}^1 supported by \mathbf{R}^+ . Suppose that $\int_0^\infty \alpha_t d\mu(t)$ is defined and that, for each $t \geq 0$, α_t is symmetric with respect to ∂D and $\frac{\partial}{\partial x_1} \alpha_t \leq 0$ in the sense of distributions in D. Then V_{x_n} is a Hunt kernel on D, where

$$\varkappa_{\mu} = \int_{0}^{\infty} \alpha_{t} \, d\mu(t).$$

We shall show that the question raised by H. L. Jackson is affirmatively solved.

Remark 16. — Let ν be a positive measure in (0, 2) such that $\int_0^2 \frac{1}{\alpha} d\nu(\alpha) < \infty$ and c_0 , c_1 be non-negative constants. Put

$$\varkappa = \begin{cases} c_0 \varepsilon + \left(\int |x|^{\alpha - n} d\nu(\alpha) \right) dx & \text{if } n = 2\\ c_0 \varepsilon + \left(\int |x|^{\alpha - n} d\nu(\alpha) + c_1 |x|^{2 - n} \right) dx & \text{if } n \ge 3. \end{cases}$$

Then V_x is a Hunt kernel.

In fact, we have, with a positive constant $c(\alpha)$,

$$|x|^{\alpha-n} = c(\alpha) \int_0^\infty \frac{1}{(2\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{2t}\right) t^{\alpha/2-1} dt$$

 $(0 < \alpha < 2$ if n = 2, $0 < \alpha \leq 2$ if $n \ge 3$). Evidently the function $c(\alpha)$ of α is finite continuous. Put

$$\mu = \begin{cases} c_0 \varepsilon + \left(\int c(\alpha) t^{\alpha/2 - 1} d\nu(\alpha) \right) dt & \text{if } n = 2\\ c_0 \varepsilon + \left(\int c(\alpha) t^{\alpha/2 - 1} d\nu(\alpha) + c_1 c(2) \right) dt & \text{if } n \ge 3 \end{cases}$$

in **R**¹. Since $\int_0^2 \frac{1}{\alpha} d\nu(\alpha) < \infty$, \varkappa_{μ} is a convolution kernel on **R**ⁿ and

$$\varkappa_{\mu} = \left(\int \frac{1}{(2\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{2t}\right) d\mu(t)\right) dx \,.$$

Hence μ is a convolution kernel on \mathbf{R}^1 supported by \mathbf{R}^+ . Then μ is a Hunt convolution kernel on \mathbf{R}^1 (cf. [5]), and Corollary 14 gives our remark.

Let G_{α} be the Green type kernel of order α in D. Put

$$G(x,y) = \begin{cases} \int G_{\alpha}(x,y) d\nu(\alpha) & \text{if } n = 2\\ \int G_{\alpha}(x,y) d\nu(\alpha) + c_1 G_2(x,y) & \text{if } n \ge 3. \end{cases}$$

Then Remarks 12 and 16 give that G satisfies the domination principle.

7. Let $L_{loc}(D)$ be the usual Fréchet space of real-valued locally summable functions in D. A Hilbert space H(D)

м. іто

contained in $L_{loc}(D)$ is called a Dirichlet space on D if the following three conditions are satisfied:

(1) For each compact set K in D, there exists a constant A(K) > 0 such that, for any $u \in D$, $\int_{K} |u| dx \leq A(K) ||u||$.

(2) $C_{\mathfrak{c}}(D) \cap H(D)$ is dense both in $C_{\mathfrak{c}}(D)$ and in H(D).

(3) For any normalized contraction T on \mathbf{R}^1 (4) and any $u \in H(D), T \cdot u \in H(D)$ and $||T \cdot u|| \leq ||u||$.

This is the definition by A. Beurling and J. Deny (see [1]). Here we denote by $\|\cdot\|$ and by (\cdot, \cdot) the norm in H(D)and the associated inner product, respectively. For an $f \in C_c(D)$, (1) gives that there exists uniquely $u_f \in H(D)$ such that, for any $u \in H(D)$, $(u_f, u) = \int uf \, dx$.

Let V be a linear operator from $C_c(D)$ into $L_{loc}(D)$. We say that V is a Dirichlet kernel on D if there exists a Dirichlet space H(D; V) on D such that, for any

$$f \in C_c(D), \quad Vf = u_f.$$

Evidently H(D; V) is uniquely determined. We call H(D; V) the Dirichlet space associated with V and V the kernel of H(D; V). For a Dirichlet kernel V on D, we set

$$\mathscr{D}(\mathrm{V}) = \left\{ f \in \mathrm{L}_{\mathrm{loc}}(\mathrm{D}); \quad \sup \left\{ rac{\left| \int uf \, dx \right|}{\|u\|}; \ u \neq 0 \in \mathrm{C}_{\mathrm{c}}(\mathrm{D}) \cap \mathrm{H}(\mathrm{D}; \mathrm{V}) \right\} < \infty
ight\}$$

and $\mathscr{D}^+(V) = \{f \in \mathscr{D}(V); f \ge 0\}$, where $\|\cdot\|$ denote the norm in H(D; V). By virtue of (2), for an $f \in \mathscr{D}(V)$, there exists uniquely $Vf \in H(D; V)$ such that, for any

$$u \in \mathcal{C}_{c}(\mathcal{D}) \cap \mathcal{H}(\mathcal{D}; \mathcal{V}), \quad (\mathcal{V}f, u) = \int uf \, dx ,$$

where (\cdot, \cdot) denote the inner product in H(D; V). Thus V may be considered as a linear operator from $\mathscr{D}(V)$ into H(D; V). It is known that V is positive (that is,

$$f \in \mathscr{D}^+(\mathbf{V}) \Longrightarrow \mathbf{V} f \ge 0 \text{ a.e.}) \text{ (see [1]).}$$

(4) This means that T is an application: $\mathbf{R}^1 \to \mathbf{R}^1$ such that $\mathbf{R}(0) = 0$ and $|Ta - Tb| \leq |a - b|$ ($\forall a, \forall b \in \mathbf{R}^1$).

LEMMA 17. — Let x be a Hunt convolution kernel on \mathbb{R}^n satisfying $x = \overline{x}$. If V_x is a Dirichlet kernel on D, then V_x is a Hunt kernel.

Proof. — For the sake of simplicity, we write H = H(D; V_z). Denote by ||·|| and by (·,·) the norm in H and the inner product in H, respectively. Let L²(D) be the Hilbert space of real-valued square summable functions in D. For a $p \ge 0$, H_p denotes the Hilbert space associated to the norm $||u||_p = (p \int |u|^2 dx + ||u||^2)^{1/2}$ on H ∩ L²(D). Evidently H_p is a Dirichlet space on D. Let $f \in C_c(D)$. For any $u \in C_c(D) \cap H$, we have

$$\begin{split} \int \mathbf{V}_p f(x) u(x) \ dx &= \frac{1}{p} \left((\mathbf{V}_p f, u)_p - (\mathbf{V}_p f, u) \right) \\ &= \frac{1}{p} \left((\mathbf{V}_x f, u) - (\mathbf{V}_p f, u) \right) \\ &\leq \frac{1}{p} \left(\| \mathbf{V}_x f \| + \| \mathbf{V}_p f \| \right) \| u \|, \end{split}$$

where V_p is the kernel of H_p and where $(\cdot, \cdot)_p$ is the inner product in H_p . Hence $V_p f \in \mathscr{D}(V)$. Since, for any $u \in C_c(D) \cap H$, $p(V_z(V_p f), u) = p \int u(x) V_p f(x) dx$ $= (V_p f, u)_p - (V_p f, u) = (V_z f - V_p f, u),$

(2) gives $V_x f - V_p f = p V_x (V_p f)$ a.e. in D. Let $(x_p)_{p \ge 0}$ be the resolvent associated with \varkappa . By Lemmas 3 and 8, we have $V_x f - V_{x_p} f = p V_x (V_{x_p} f)$. In the same manner as in the proof of Theorem 1, we have $V_p f = V_{x_p} f$ a.e. in D, and hence V_{x_p} is positive $(\forall p > 0)$. By Theorem 1 and Lemma 5, we see that V_x is a Hunt kernel.

We shall prove Theorem 2 mentioned in the section 1.

 $(1) \longrightarrow (2)$. Let $(\varkappa_p)_{p \ge 0}$ be the resolvent associated with \varkappa . Then it is known that $p^2 \varkappa_p \to \alpha$ vaguely in $\mathbb{R}^n - \{0\}$ as $p \to \infty$ (see [1]), and hence theorem 1 and Lemma 17 give that $\frac{\partial}{\partial x_1} \alpha \le 0$ in the sense of distributions in D.

 $(2) \Longrightarrow (1)$. Since $p^2 \varkappa_p \to \alpha$ vaguely in $\mathbb{R}^n - \{0\}$ as $p \to \infty$, Lemma 8 gives that α is symmetric with respect to ∂D . Let A be the diagonal set of $D \times D$ and β be the

positive measure in $D \times D - A$ defined by

$$\iint f(x)g(y) \ d\beta(x,y) = \iint (f(x-y) - \overline{f}(x-y))g(x) \ d\alpha(y) \ dx$$

for any couple f, $g \in C_c(D)$ with $\operatorname{supp}(f) \cap \operatorname{supp}(g) = \emptyset$ (see Lemma 6). For any p, \varkappa_p being symmetric with respect to the origin, we have $\alpha = \dot{\alpha}$, and hence β is symmetric with respect to A. Let $C_c^{\infty}(D)$ be the topological vector space of real-valued and infinitely differentiable functions in D with compact support (we identify an element of $C_c^{\infty}(D)$ and an infinitely differentiable function in \mathbb{R}^n with compact support in D).

Let $f \in C_c^{\infty}(D)$. Consider the approximation of the function $|f(x) - f(y)|^2$ of (x,y) by the functions of form $\sum_i \varphi_i(x)\psi_i(y)$ in $D \times D$, where $\varphi_i \in C_c^{\infty}(D)$ and $\psi_i \in C_c^{\infty}(D)$ with

$$\operatorname{supp}(\varphi_i) \cap \operatorname{supp}(\psi_i) = \emptyset .$$

Then we see that

$$0 \leq \iint |f(x) - f(y)|^2 d\beta(x,y) + \int |f(x)|^2 a(x) dx = \iint |f(x-y) - f(x)|^2 d\alpha(y) dx - \iint (\overline{f}(x-y) - \overline{f}(x))(f(x-y) - f(x)) d\alpha(y) dx < \infty (5)$$

where, for $x = (x_1, x_2, \dots, x_n) \in D$, $a(x) = 2 \int_{|y_4| \ge x_4} d\alpha(y)$. Let \tilde{H} be the specialized Dirichlet space with the kernel κ (see [1]). We denote by $||| \cdot |||$ and by $((\cdot, \cdot))$ the norm in \tilde{H} and the associated inner product. For a couple $f, g \in C_c^{\infty}(D)$, we put

$$\begin{split} (f,g) &= \int fg \bigg(\frac{a}{2} + c \bigg) \, dx + \frac{1}{4\pi^2} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \int \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \, dx \\ &+ \frac{1}{2} \iint (f(x) - f(y))(g(x) - g(y)) \, d\beta(x,y) \\ &= ((f - \overline{f},g)) = ((f,g - \overline{g})) = \frac{1}{2} \, ((f - \overline{f},g - \overline{g})), \end{split}$$

(⁵) The author would like to express his hearty thanks to Prof. F. Hirsch for the correction of this formula.

where $\hat{\mathbf{x}} = \left(c + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j + \int (1 - \cos (2\pi x \cdot y)) d\mathbf{x}(y))^{-1}$. Then (\cdot, \cdot) is an inner product in $C_c^{\infty}(\mathbf{D})$. For a compact set K in D, we have

$$\sup_{\substack{u \in \mathbf{C}_{c}^{\infty}(\mathbf{D})\\ u \neq 0}} \frac{\int_{\mathbf{K}} |u| \, dx}{\|u\|} = \sup_{\substack{u \in \mathbf{C}_{c}^{\infty}(\mathbf{D})\\ u \neq 0}} \frac{\sqrt{2} \int_{\mathbf{K}} |u - \overline{u}| \, dx}{|||u - \overline{u}|||} < \infty$$

where $||u|| = (u,u)^{1/2}$. Hence the completion H of $C_c^{\infty}(D)$ by $||\cdot||$ is contained in $L_{loc}(D)$. Evidently, for any $u \in C_c^{\infty}(D)$ and any normalized contraction T on \mathbb{R}^1 , $T \cdot u \in H$ and $||T \cdot u|| \leq ||u||$. For a $u \in H$, we choose a sequence $(u_k)_{k=1}^{\infty} \subset C_c^{\infty}(D)$ such that

$$\lim_{k\to\infty}\|u_k-u\|=0.$$

Since $(\mathbf{T} \cdot u_k)_{k=1}^{\infty}$ converges weakly to $\mathbf{T} \cdot u$ in \mathbf{H} as $k \to \infty$ (see [1]), we have $\mathbf{T} \cdot u \in \mathbf{H}$ and $\|\mathbf{T} \cdot u\| \leq \|u\|$. Hence \mathbf{H} is a Dirichlet space on \mathbf{D} . We shall show that V_x is the kernel of \mathbf{H} . For an integer $m \ge 1$, let \mathbf{T}_m denote the projection from \mathbf{R}^1 into $\left[-\frac{1}{m}, \frac{1}{m}\right]$. Let $f \in C_c(\mathbf{D})$; then $\varkappa * (f - \overline{f}) - \mathbf{T}_m \cdot \varkappa * (f - \overline{f}) \in \widehat{\mathbf{H}}$ and $V_x f - \mathbf{T}_m \cdot V_x f \in C_c(\mathbf{D})$,

because
$$\varkappa * (f - \overline{f}) = 0$$
 on $\eth D$ and $\lim_{|x| \to \infty} \varkappa * (f - \overline{f})(x) = 0$.
Therefore there exists a neighborhood V_m of the origin such that, for any non-negative, spherically symmetric and infinitely differentiable function φ in \mathbb{R}^n with $\operatorname{supp}(\varphi) \subset V_m$ and $\int \varphi \ dx = 1$, $f * \varphi \in C_c^{\infty}(D)$ and

$$(\mathcal{V}_{\varkappa}f - \mathcal{T}_{\mathfrak{m}} \cdot \mathcal{V}_{\varkappa}f) * \varphi \in \mathcal{C}^{\infty}_{c}(\mathcal{D}).$$

Since

$$\begin{aligned} (\mathbf{x} * (f - \overline{f}) - \mathbf{T}_m \cdot \mathbf{x} * (f - \overline{f})) * \varphi \\ &= (\mathbf{V}_{\mathbf{x}} f - \mathbf{T}_m \cdot \mathbf{V}_{\mathbf{x}} f) * \varphi - \overline{(\mathbf{V}_{\mathbf{x}} f - \mathbf{T}_m \cdot \mathbf{V}_{\mathbf{x}} f) * \varphi} \end{aligned}$$

and, for a $u \in \tilde{H}$,

$$|||u * \varphi|||^{2} = \iint ((u * \varepsilon_{x}, u * \varepsilon_{y}))\varphi(x)\varphi(y) dx dy \leq |||u|||^{2},$$

M. ITO

we have

$$\begin{split} \| (\mathbf{V}_{\mathbf{x}}f - \mathbf{T}_{\mathbf{m}} \cdot \mathbf{V}_{\mathbf{x}}f) * \varphi \|^{2} \\ \leqslant \frac{1}{2} ||| \mathbf{x} * (f - \overline{f}) - \mathbf{T}_{\mathbf{m}} \cdot \mathbf{x} * (f - \overline{f}) |||^{2} \leqslant 2 ||| \mathbf{x} * (f - \overline{f}) |||^{2}. \end{split}$$

By letting $\varphi \, dx \to \varepsilon$ (vaguely) and $m \to \infty$, we see that $V_x f \in H$ and, for any $u \in C_c^{\infty}(D)$,

$$(\mathbf{V}_{\mathbf{x}}f, u) = ((\mathbf{x} * (f - \overline{f}), u)) = \int u(f - \overline{f}) \, dx = \int uf \, dx$$

This implies immediately that, for any $u \in H$,

$$(\mathbf{V}_{\mathbf{x}}f,\mathbf{u})=\int uf\,dx$$
.

Consequently V_x is the kernel of the Dirichlet space H. This completes the proof.

Theorem 2 gives also that the question raised by H. L. Jackson is affirmatively solved. In fact, the singular measure associated with the convolution kernel $r^{\alpha-n}$ is equal to $c_{\alpha}|x|^{-\alpha-n} dx$ provided that $0 < \alpha < 2$, where c_{α} is a positive constant, where $|x|^{\alpha-n} dx$ is symbolically denoted by $r^{\alpha-n}$ $(0 < \alpha < n)$.

We denote now by Δ the laplacian on \mathbb{R}^n . We say that a convolution kernel \varkappa on \mathbb{R}^n is a Frostman-Kunugui kernel if \varkappa is spherically symmetric, vanishes at infinity (⁶), and if $\Delta \varkappa \ge 0$ in the sense of distributions outside the origin 0. Theorem 2 and Theorem 1 in [7] give the following

COROLLARY 18. — Suppose $n \ge 3$. Then the following two statements hold.

(1) For a Frostman-Kunugui kernel $\varkappa \neq 0$ on \mathbb{R}^n satisfying $\frac{\partial}{\partial x_1} \Delta \varkappa \leq 0$ in the sense of distributions in D, there exists uniquely a spherically symmetric Dirichlet convolution kernel \varkappa' on \mathbb{R}^n such that $V_{\varkappa'}$ is a Dirichlet kernel on D and that, for any $f \in C_c(D), V_{\varkappa}(V_{\varkappa'}f)(x) = V_{\varkappa'}(V_{\varkappa}f)(x) = G_2f(x)$ in D.

(2) For a spherically symmetric Dirichlet kernel \times on \mathbb{R}^n such that V_{\times} is a Dirichlet kernel on D, there exists uniquely

(6) This means that, for any finite continuous function f in \mathbb{R}^n with compact support, $\varkappa * f(x) \to 0$ as $|x| \to \infty$.

a Frostman-Kunugui kernel x' on \mathbb{R}^n such that $\frac{\partial}{\partial x_1} \Delta x \leq 0$ in the sense of distributions in D and that, for any $f \in C_c(D)$, $V_x(V_{x'}f)(x) = V_{x'}(V_xf)(x) = G_2f(x)$ in D.

Proof. — First we shall show (1). By Theorem 1 in [7], there exists uniquely a spherically symmetric Dirichlet kernel \varkappa' on \mathbb{R}^n such that $\varkappa * \varkappa' = r^{2-n}$. We have, with a positive constant c, $(\Delta \varkappa) * \varkappa' = -c\varepsilon$ in the sense of distributions in \mathbb{R}^n . This implies that the singular measure associated with \varkappa' is equal to $\frac{1}{c} \Delta \varkappa$ outside 0. Theorem 2 and our assumption give that $V_{\varkappa'}$ is a Dirichlet kernel on D. Since $\Delta \varkappa \ge 0$ in the sense of distributions in $\mathbb{R}^n - \{0\}$ and \varkappa vanishes at infinity, $\frac{\partial}{\partial x_1} \varkappa \le 0$ in the sense of distributions in D. By Lemma 5, V_{\varkappa} is positive, and by Lemma 3 and Remark 4, we obtain the required equality. Let's show the uniqueness of \varkappa' . Let \varkappa'' be a Dirichlet convolution kernel on \mathbb{R}^n which is possessed of the same properties as of \varkappa' . Since \varkappa is injective (see Theorem 1 in [7]) (⁷) and

$$\varkappa * (\mathbf{V}_{\mathsf{x}'}f - \overline{\mathbf{V}_{\mathsf{x}'}f}) = \varkappa * (\mathbf{V}_{\mathsf{x}'}f - \overline{\mathbf{V}_{\mathsf{x}'}f})$$

in $\mathbf{R}^{n}(^{8})$, we have $V_{\mathbf{x}'}f = V_{\mathbf{x}'}f \ (\forall f \in C_{\mathbf{c}}(\mathbf{D}))$. This implies that, for any $f \in C_{\mathbf{c}}(\mathbf{D})$, $(\mathbf{x}' - \mathbf{x}'')f = (\mathbf{x}' - \mathbf{x}'') * \overline{f}$. In the same manner as in Lemma 5, we have $\frac{\partial}{\partial x_{1}} (\mathbf{x}' - \mathbf{x}'') = 0$ in the sense of distributions in \mathbf{D} . Since $\mathbf{x}' - \mathbf{x}''$ is spherically symmetric and vanishes at the infinity, we have $\mathbf{x}' = \mathbf{x}''$. Thus we see that (1) holds.

Next we shall show (2). By Theorem 1 in [7], there exists uniquely a Frostman-Kunugui kernel \varkappa' on \mathbb{R}^n such that $\varkappa \ast \varkappa' = r^{2-n}$. Since the singular measure associated with \varkappa is equal to $\frac{1}{c} \Delta \varkappa'$ outside 0, Theorem 2 gives that $\frac{\partial}{\partial x_1} \Delta \varkappa' \leqslant 0$ in the sense of distributions in D. Similarly as

(7) This means that, for an $f \in C(D)$, f = 0 provided that $\varkappa * |f|$ is defined and that $\varkappa * f = 0$. (8) We may assume that $V_{\varkappa'}f$ is a continuous function in \mathbb{R}^n with support

(*) We may assume that $V_x f$ is a continuous function in \mathbf{R}^n with support $\subset \overline{\mathbf{D}}$.

above, we see that $V_{x'}$ is positive and the required equality holds. Since \varkappa is also injective (see, for example, [1]), we can similarly show the uniqueness of \varkappa' .

Remember the Riesz decomposition formula

$$r^{\alpha-n} * r^{(2-\alpha)-n} = a_{\alpha} r^{2-n} \quad (0 < \alpha < 2),$$

where a_{α} is a positive constant (see [9]). Then, by this corollary, we see that G_{α} satisfies the domination principle provided with $n \ge 3$ and $0 < \alpha < 2$.

Remark 19. — For a spherically symmetric convolution kernel \varkappa on \mathbf{R}^n , $\frac{\partial}{\partial x_1} \varkappa \leqslant 0$ in the sense of distributions in D if and only if $\frac{\partial}{\partial r} \varkappa \leqslant 0$ in the sense of distributions in $\mathbf{R}^n - \{0\}$, where r = |x|. In this case, \varkappa is absolutely continuous outside 0.

By using Theorem 1, Corollary 13 and this remark 19, we have the following

Remark 20. — Let $\varkappa = \int_0^\infty \alpha_i dt$ be a spherically symmetric Dirichlet kernel on \mathbf{R}^n . Then V_{\varkappa} is a Dirichlet kernel on D if and only if, for any $t \ge 0$, α_t is of form

$$\alpha_t = c_t \varepsilon + k_t(|x|) \, dx \, ,$$

where c_t is a non-negative constant and k_t is a non-negative decreasing (in the wide sense) function on \mathbf{R}^+ .

8. First we shall show that the inverse of the question raised by H. L. Jackson is also affirmative.

PROPOSITION 21. — If the Green type kernel G_{α} $(0 < \alpha < n)$ on D satisfies the domination principle, then $0 < \alpha \leq 2$.

Proof. — Since G_{α} satisfies the domination principle, G_{α} also satisfies the balayage principle (see, for example, [8]); that is, for a positive measure μ in D with compact support and a compact set F in D, there exists a positive measure $\mu'_{\rm F}$ supported by F such that $G_{\alpha}\mu \ge G_{\alpha}\mu'_{\rm F}$ in D and

 $G_{\alpha}\mu = G_{\alpha}\mu'_F G_{\alpha}$ -n.e. on F(). Let $\mu \neq 0$ and F be a closed ball contained in D such that $supp(\mu) \cap F = \emptyset$. Suppose that $\alpha > 2$. Let t be positive integer satisfying $0 < \alpha - 2t \leq 2$ and $\beta = \alpha - 2t$. Then

$$G_{\alpha}(x,y) = \int G_{2t}(x,z) G_{\beta}(z,y) dz$$

(see Lemma 3). Since $G_{2i}(G_{\beta}\mu) = G_{2i}(G_{\beta}\mu'_F)$ a.e. on F, we have $G_{\beta}\mu = G_{\beta}\mu'_F$ a.e. on F, because

$$\Delta^{t}(\mathbf{G}_{\mathbf{2}t}(\mathbf{G}_{\mathbf{\beta}}\boldsymbol{\mu}) - \mathbf{G}_{\mathbf{2}t}(\mathbf{G}_{\mathbf{\beta}}\boldsymbol{\mu}_{\mathbf{F}}')) = (-c)^{t}(\mathbf{G}_{\mathbf{\beta}}\boldsymbol{\mu} - \mathbf{G}_{\mathbf{\beta}}\boldsymbol{\mu}_{\mathbf{F}}')$$

in the sense of distributions in D, where c is the positive constant satisfying $\Delta r^{2-n} = -c\varepsilon$. Since $G_{\beta}\mu$ is continuous on F and $G_{\beta}\mu'_F$ is lower semi-continuous, we have $G_{\beta}\mu \ge G_{\beta}\mu'_F$ on F, and so $\int G_{\beta}\mu'_F d\mu'_F < \infty$. The function kernel G_{β} satisfying the domination principle, we have $G_{\beta}\mu \ge G_{\beta}\mu'_F$ in D. By virtue of the injectivity of G_{β} , we have $G_{\beta}\mu \ne G_{\beta}\mu'_F$. But this contradicts the equality $G_{2i}(G_{\beta}\mu) = G_{2i}(G_{\beta}\mu'_F) \ G_{\alpha}$ -n.e. on F. Thus we achieve the proof.

We raise a question.

Question 22. — Let \varkappa be a convolution kernel on \mathbb{R}^n satisfying $\varkappa = \overline{\varkappa}$. Suppose that V_{\varkappa} is a Hunt kernel on D. Then is it true that \varkappa is the sum of a Hunt convolution kernel and of a non-negative constant?

The following proposition shows that the answer is « yes » in a special case.

PROPOSITION 23. — Let \times be a convolution kernel on \mathbb{R}^n satisfying $\times = \overline{\times}$. Suppose that V_{\times} is a Hunt kernel on D. If $\int d\varkappa < \infty$ and \times is absolutely continuous outside 0, then \times is a Hunt convolution kernel.

Proof. — We may assume that $\int d\varkappa < 1$. For a $p \in (0,1]$, we put

$$\mathbf{x}_p = \sum_{k=0}^{\infty} (-p)^k (\mathbf{x})^{k+1};$$

(*) We write $G_{\alpha}\mu = G_{\alpha}\mu'_{E}G_{\alpha}$ -n.e. on F if, for any positive measure ν in D with supp $(\nu) \subset F$ and $\int G_{\alpha}\nu \ d\nu < \infty$, $\int G_{\alpha}\mu \ d\nu = \int G_{\alpha}\mu'_{F} \ d\nu$.

then \varkappa_p is a real measure in \mathbb{R}^n , absolutely continuous outside 0, $\varkappa_p = \overline{\varkappa}_p$ and $\int d|\varkappa_p| < \infty$, where $|\varkappa_p|$ denote the total variation of \varkappa_p . Since $(p\varkappa + \varepsilon) * \varkappa_p = \varkappa$, Lemma 3 gives that, for any $f \in C_c(D)$, $(pV_{\varkappa} + I)(V_{\varkappa_p}f) = V_{\varkappa}f$. Let $(V_p)_{p \ge 0}$ the resolvent associated with V_{\varkappa} . In the same manner as in Theorem 1, we have, for any $f \in C_c(D)$, $V_p f = V_{\varkappa_p} f$ in D. Hence V_{\varkappa_p} is positive. In the same manner as in Lemma 5, we have $\frac{\partial}{\partial \varkappa_1} \varkappa_p \le 0$ in the sense of distributions in D. We show that \varkappa_p is a convolution kernel. It suffices to prove that, for any $f \in C_c^+(D)$, $\int_{\Omega} f d\varkappa_p \ge 0$, because

$$\varkappa_p(\{0\}) = \frac{\varkappa(\{0\})}{1 + p\varkappa(\{0\})} \ge 0, \qquad \varkappa_p = \overline{\varkappa}_p$$

and \varkappa_p is absolutely continuous outside 0. For each integer $k \ge 1$, we choose a non-negative, spherically symmetric and infinitely differentiable function φ_k in \mathbf{R}^n such that $\int \varphi_k \, dx = 1$ and $\operatorname{supp}(\varphi_k) \subset \left\{ x \in \mathbb{R}^n; \ |x| < \frac{1}{k} \right\}$. Since $\frac{\partial}{\partial x_1} \varkappa_p * \varphi_k(x) \le 0$ in the set $\left\{ x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n; \ x_1 \ge \frac{1}{k} \right\}$

and $\lim_{|x| \to \infty} \varkappa_p * \varphi_k(x) = 0$, we have $\varkappa_p * \varphi_k(x) \ge 0$ in the above set. Hence, for any $f \in C_c^+(D)$,

$$\int_{\mathbf{D}} f \, d\varkappa_p = \lim_{k \ge \infty} \int_{x_k \ge \frac{1}{k}} f(x) \varkappa_p * \varphi_k(x) \, dx \ge 0 \; .$$

Consequently \varkappa_p is a convolution kernel $(\forall p \in (0,1])$. Since $\varkappa - \varkappa_p = p\varkappa * \varkappa_p, \varkappa \ge \varkappa_p$. For a $p \in (1, 2]$, we put

$$\mathbf{x}_p = \sum_{k=0}^{\infty} (1 - p)^k (\mathbf{x_1})^{k+1};$$

then \varkappa_p is also a real measure in \mathbf{R}^n , absolutely continuous outside 0, $\varkappa_p = \overline{\varkappa}_p$, $\int d|\varkappa_p| < \infty$ and $\varkappa - \varkappa_p = p\varkappa * \varkappa_p$. In the same manner as above, \varkappa_p is a convolution kernel. Inductively we obtain a family $(\varkappa_p)_{p \ge 0}$ of convolution kernels satisfying $\varkappa - \varkappa_p = p\varkappa * \varkappa_p$ and $\lim_{p \neq 0} \varkappa_p = \varkappa$ (vaguely). By Lemma 3.2 in [6], we obtain that, for each $p \ge 0$ and q > 0, $\varkappa_p - \varkappa_q = (q - p)\varkappa_p * \varkappa_q$ and $\lim_{p \neq 0} \varkappa_p = \varkappa$ (vaguely), where $\varkappa_0 = \varkappa$. Since V_{\varkappa} is a Hunt kernel on D, $\varkappa \neq 0$, and hence, for any $x \neq 0 \in \mathbf{R}^n$, $\varkappa \neq \varkappa * \varepsilon_x$, because

$$\lim_{|x| \to \infty} \varkappa * f(x) = 0$$

for any finite continuous function f in \mathbb{R}^n with compact support. Hence, by Corollary 1 of Theorem 5 in [6], \varkappa is a Hunt convolution kernel. This completes the proof.

Remark 24. — In the above proposition, if \varkappa is spherically symmetric, the same conclusion holds without the assumption that \varkappa is absolutely continuous outside 0. See Remark 19.

BIBLIOGRAPHY

- [1] A. BEURLING and J. DENY, Dirichlet spaces, Proc. Nat. Acad. U.S.A., 45 (1959), 208-215.
- [2] J. DENY, Éléments de la théorie du potentiel par rapport à un noyau de Hunt, Sém. Brelot-Choquet-Deny (Théorie du potentiel), 5^e année, 1960-1961, nº 8.
- [3] J. DENY, Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier (Grenoble), 12 (1962), 643-667.
- [4] M. Itô, Sur la régularité des noyaux de Dirichlet, C.R. A. S. Paris, 286 (1969), 867-868.
- [5] M. Itô, Sur la famille sous-ordonnée au noyau de convolution de Hunt donné, Nagoya Math. J., 51 (1973), 45-56.
- [6] M. Irô, Sur le principe relatif de domination pour les noyaux de convolution, Hiroshima Math. J., 5 (1975), 293-350.
- [7] M. Irô, Sur les noyaux de Frostman-Kunugui et les noyaux de Dirichlet, Ann. Inst. Fourier (Grenoble), 27, 3 (1977), 45-95.
- [8] M. KISHI, Maximum principle in the potential theory, Nagoya Math. J., 23 (1963), 165-187.
- [9] M. RIESZ, Intégrales de Riemann-Liouville et potentiels, Acta Sc. Math., Szeged, 9 (1938), 1-42.

Manuscrit reçu le 10 janvier 1977 Proposé par G. Choquet.

Masayuki Itô,

Mathematical Institute Nagoya University Nagoya, Japon.