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ON THE GREEN TYPE KERNELS
ON THE HALF SPACE IN R^

by Masayuki ITO

1. Let R" be the n( ^ 2)-dimensional Euclidian space
and D be the half space {x= [ x ^ x ^ ' ' •,n^) e R'1; x^ > 0}.
For a point x = [ x ^ x ^ ^ - ' ' ,x^) e R71, we write

_ / n M/2

^ == (— x^x^. . .,^J and M == ( 5 ̂  ) •
v=i /

When n ^ 3 , we put 02(^5 z/) == |a; — y]2-71 — \x — y]2-" in
D X D . Then Gg is the Green kernel on D . Analogously
we set, for a number a with 0 < a < n ,

Ga(^, y) =\x - 2/1°^ - \x - y^

in D X D , and we call it the Green type kernel of order a
on D . The following question was proposed to me in a letter
by H. L. Jackson : Does G^ also satisfy the domination
principle provided that 0 < a < 2 .

This paper is inspired by this question. Let C<;(D) and
C(D) be the usual topological vector space of real-valued
continuous functions in D with compact support and the
usual topological vector space of real-valued continuous
functions in D , respectively. We set

C?(D)={/-6C,(D); f^ 0}

and C+(D) = {fe C(D); f > 0}. For a given Hunt convo-
6
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lution kernel x on R71, we define the linear operator

V,: C,(D) 9 f-> (x ^ f - x ^ /% e C(D) (^,

where /r is the reflection of /* about the boundary ()D of D
and where (x ^ /" '— x ^ /% is the restriction of

x ^ f — y. ^ f

to D . If V./. is positive (that is, f ̂  0 ==^ V.̂  ^ 0), we say
that V^ is the Green type kernel associated with x .

The purpose of this paper is to show the following two
theorems.

THEOREM 1. — Let x be a Hunt convolution kernel on R71

and (^p)p^o ^e t^^e resolvent associated with x . Suppose that x
is symmetric with respect to ^D . Then the following two
conditions are equivalent:

(1) V.̂  is a Hunt kernel on D .

(2) For each p > 0 , —— x ^ 0 in the sense of distributions
in D . ^

THEOREM 2. — Let x be a Dirichlet convolution kernel on
R71 and a be the singular measure (the Levy measure) associated
with x . Suppose that x is also symmetric with respect to ?)D .
Then the following two conditions are equivalent:

(1) V.̂  is a Dirichlet kernel on D .

(2) — a ^ 0 in the sense of distributions in D .
bx^

This theorem gives immediately that the question raised
by H. L. Jackson is affirmatively solved.

2. Let x be a convolution kernel on R" (2). Similarly we
define V.̂  . When V^ is positive, we set

^+(V,)={/-eC+(D); V,/-6C+(D)},
where

V,/-^) = sup {V^(rr); g e C^-(D), g < /•}

(1) An /'e C^(D) may be considered as a finite continuous function in R/1 with
compact support c D .

(2) In potential theory, a convolution kernel means a positive measure.
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in D . Put ^(V,)= {feCW ;/•+,/•- e ^+(V,)} and, for an
/•e^V,), V,/' =¥,/•+- V,/*-. Then V, is a linear operator
from ^(V^) into C(D).

LEMMA 3. — L^ x and x' fee ^o convolution kernels on R\
Suppose that x and x' ar<° symmetric with respect to oD
and (Aat the convolution x ^ x' ^5 defined. If V.̂  15 positive,
then, for any fe C,(D), ¥,,/•£ ^(V,) and

Vx(V,^) = (X * X' * /•- X ^ X ' ^ ̂  .

Proo/*. — We may assume that f ̂  0 . Since x ^ x'
isdefinedand |V^| ^ x ' ^ y + x ' ^ f , we have V^/e^(V,).
Our convolution kernels x and x' being symmetric with
respect to bD , x ^ 7^) = x ^ /'(.r) and

x'^f^^x '^/1^).

For the sake of simplicity, we write h{x) = Vy^f(x) in D
and h{x) =0 on R71 — D . Then, for a g e C^(D), we have

/ ̂ {^nwgw dx
= r (x ^ h{x) — x ^ h{x))g(x) dx

= C h{x)x ^ g(x) dx — F h(x)x * g{x) dx

=/n(x' - fW - ̂  * A^))^ ^ g^) ̂

-^(^ " W - K * A^))^ - gW dx
= f ̂  ^ fW ^ g{x)dx- f K ^,f{x)K ^ g{x)dx
=J\ . x' ^ (f-f)^g{x)dx,

where x is the adjoint convolution kernel of x ; that is,
x(E) = x ( { — x ' , x e E}) for any Borel set E . Since g is
arbitrary, we obtain the required equality.

Remark 4. — In the above lemma, we have V^e ^(V^,)
and V^V^/*) = V^(V^) provided that V^, is also positive.

LEMMA 5. — Let x be a convolution kernel on R". Suppose
that x 15 symmetric with respect to oD . Then V,̂  15 positive

if and only if ^—x ^ 0 in the sense of distributions in D .ox^
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Proof. — First we shall show the « if » part. For a ( e (0, oo),
put H( = {x = (^1,^25- • • ̂ n) e Rn; x! = 0 and

D' = j a; = (.Ti, ^2, . . . , x,,) e D; f rfx = 0 ^ .
•• iV Haa;^ 5

It suffices to prove that, for any f e C^(D) and any x e D',
x ^ f(x) > x * /*(;r), because F rfa; = 0 and

x ^ /*(.r) == x ^ /*(^).

We choose a sequence (9/c)r=i °f non-negative, spherically
symmetric and infinitely differentiable functions such that
j 9^ dx = 1 and that the support of 9^ , supp (9^), is

contained in {^eB/ 1 ; !^! < l//c}. Then x ^ 9/, is symmetric

with respect to <)D and — — x ^ <p/,(^) < 0 in
OiZ^i

{x e R71; a;i ^ l//c}.

Let j fe C?-(D) and x == (^1^2,-"A) e D'- Then

S^-^J^ ' cp/c^ - ̂  ̂  ^ L-^m ̂  * 9/-^ - ̂  ̂

provided with 0 < m ^ /c . By letting k -> oo and m -> oo ,
we obtain that

x * f{x) == f f{y) dx ^ z,{y)

^ f^^fW^^.W
^ f^fW^^-^y)

^ ^ * fW - (^PJA^I ) f^ ^ = x * f(x)

where e^ denote the unit measure at x . Since f and x
are arbitrary, the (( if » part is true.

Next we shall show the « only if » part. Suppose that the
« only if » part is false. Then there exist a number ( > 0 ,
a point x= (x^x^, ' - ' , x ^ ) e D with x^ > t and a non-
negative, spherically symmetric and infinitely differentiable
function 9 in R71 with supp (9) <= {x e R71; \x\ < t} such

that ^—x ^ 9 (re) > 0 . Hence we can choose a numberox^
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s > 0 such that s < x^ — t and that, for every y e D
with \y\ < s , x * (y{x — y) < x -x- cp(a; — y) . Since

x ^ cp(rx; — y) == x * cp(^ — y),

we have, for an f + 0 e C^(D) satisfying

^PP^) c { y ^ R ' j ly l < ^},
x -x- /* ^ 9(rc) < x ^ f -x- q)(a;) = y. ^ f * ^(x).

But this contradicts the inequality K * f ^ K ^J in D .
Thus we see that the « only if » part is true.

In the same manner as above, we obtain the following

LEMMA 6. — Let a be a positive measure in R'1 — {0}.

Suppose that a is symmetric with respect to bD . If —— a ^ 0
brpi

in the sense of distributions in D , then, for any f E C^(D),

f f(x - y) d^(y) ^ f f{x - y) d^{y)

in D n C supp (/*).

3. We say that a convolution kernel x on R/1 is a Hunt
convolution kernel if x == r°°a^, where (a^^^ is a vaguely
continuous semi-group of positive measures in R"; that is,
oco = e (the Dirac measure), o^ ^ a, == a^, (V^ ^ 0 , V5 ^ 0)
and the application R+ == [0 , oo) 3 t -> GC( is vaguely
continuous. In this case, (a^p is uniquely determined (see,
for example, [3]) and called the vaguely continuous semi-
group associated with x . For a p e R"^, put

Xp = ̂ °°exp (— p()a,^ ;

then (^p)p^o ls called the resolvent associated with x .
This is characterized by a family (^p)p^o °^ convolution
kernels on Rn satisfying

x? — x,== (? - p)^ ^ ^^.(vp ^ o , v^ > 0)
and lim y.p = XQ == x (vaguely).

p->o
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LEMMA 7 (see [3] or Theorem 5 in [6]). —Let x , (a^o
and {y-p)p^Q be the same as above. For a p > 0 and a t > 0 ,
put

a^ = exp (- p() ^ ^—(px^ and a^o = e;
fc=o n •

^en (^p,()(^o J/s a ^^guely continuous semi-group of positive
measures and we have

i r00
x + — s = | a? ((ft and limocp ( = = a ( [vaguely} (t ^ 0).

P fc/O î ^

LEMMA 8. — Let v. = \ ai^dt be a Hunt convolution kernel
Jo

on R71 and (^p)p^o ^e ^e ^solvent associated with x . If x
^ symmetric with respect to ()D , t/i<m, /or any p and any
t , Kp and Q(.t are also symmetric with respect to <^D .

Proof. — For a p ^ 0 5 we denote by x? the reflection
of Xp about ()D . Evidently (xp)p^ is the resolvent asso-
ciated with x . By using x = x and the unicity of the
resolvent associated with x , we have, for each p ^ 0 ,
Xp = Xp . This means that Xp is symmetric with respect
to <)D . This gives also that, for any f e Cc(D),

r00 exp (— pt)fd(x.t dt = r°° exp (— pt)f da^ dt (Vp ^ 0).
i/o ^j o ^

The Laplace transformation being injective, we have, for each
t ^ 0 , ^ /^doc^ ^ ^ fd^t . Hence, /* being arbitrary, we see
that y.t is symmetric with respect to c)D .

Similarly we have the following

Remark 9. — If x is symmetric with respect to the origin 0
(resp. spherically symmetric), then Xp and o^ are also
symmetric with respect to 0 (resp. spherically symmetric).

Let x be a convolution kernel on R'1. We say that x
is a Dirichlet convolution kernel if the (generalised) Fourier

1transformation x of x is defined and equal to —? where A
+ .

is a real-valued negative definite function in R^ such that —
+
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is locally summable. By virtue of the Levy-Khinchine theorem,
we have, for any x = (x^ x^ ' ' . , x^) e R",

n n p

^{x) == c + S S ̂ W + ( (1 - cos (2nx'y)) rfoc(y),
i=i j=i J

, . . n n .where c is a non-negative constant, ^ ^ a^x^ is a
1=1 j=i

positive semi-definite form, x ' y is the inner product in R"
and where a is a positive measure in R" — {0} symmetric
with respect to 0 and satisfying C \x\2|{l + \x\2) d^{x) < oo .
It is well-known that the above decomposition of ^ is unique.
The positive measure a in R71 — {0} is called the singular
measure associated with x . Since, for each ( ^ 0 , exp (—^)
is of positive type in R^, there exists a positive measure oc^
in R" such that 6^ = exp (— ^). Evidently {^t)t>o ls

a vaguely continuous semi-group of positive measures and
/»ao

x = I GC( dt. Hence a Dirichlet convolution kernel is a
i/ 0

Hunt convolution kernel and symmetric with respect to 0 .

4. A positive linear operator V : Cc(D) -> C(D) is called
a continuous kernel on D (Evidently V is continuous).
Similarly as in the section 2 , we define ^+(V) and ^(V).
We say that V is a Hunt kernel on D if V = P" Y( dt
(that is, for any /'eC,(D), Vf{x) = f30 M^f{x) dt in D),
where (V()^o is a continuous semi-group of continuous
kernels on D ; that is, Vo = I (the identity), for any ( ^ 0 ,
s ^ 0 and any fe C,(D),V,/'e ^(V,), \W) = V,(V,/1) = V^f
and the application R+ 9 ( ->- V^ is continuous in C(D).
Similarly as in [3], we see that (\t)t>o ls uniquely determined,
and we call it the continuous semi-group associated with V .
For a p ^ 0 , put Vp = p exp (— pt)\t dt; then we call
(Vp)^Q the resolvent associated with V . It is known that,
for any p ^ O , q > 0 and any /•eC,(D), V,/'e ^(V,),
V^(Vp),

V- V- (g - P)V,(V) = (g - P)V,(V)
(the resolvent equation) and limVp/'= Vo/* = V/* in C(D).

P->0
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Let Vi and Vg two continuous kernels on D . If, for any
/•eC,(D), V^e^(Vi), the application C,(D) 9 f^ Vi(V^)
is positive linear, we denote it by Vi • Vg .

Remark 10 (see [2]). — A Hunt kernel V on D satisfies the
domination principle; that is, for two /*, g e C^(D), V/* ^ Vg
on supp (/*) implies the same inequality on D .

5. We shall show Theorem 1 mentioned in the section 1.
(1) => (2). By Lemmas 5 and 8, it suffices to prove that,

for each p > 0 , V,/ is positive. Let (Vp)p^o be the resolvent
associated with V.̂  . Then, for an f e C^(D) and a p > 0 ,
V,/*= (pV., + I)(V/). On the other hand, Lemmas 3 and 8
give the V^/*e ^(V.J and

V = (x . (/- - 7))n = ((PX + s) ^ x,^ (/• - ̂
= (pV, + I)(V,/).

By using the resolvent equation, we have

Vp/-- V,/= (I - pV,)((pV, + I)(V/- V,/)) = 0 .

The function f being arbitrary, we have Vp === Vy. , and
hence Vy is positive.

(2) =^ (1). By Lemma 5, V^ is positive (Vp > 0). Let ocp/
be the positive measure defined in Lemma 7 (Vp > 0, V( ^ 0)
and (^t)t>o ^e ^le ^^aguely continuous semi-group associa-
ted with x . By Lemmas 3 and 7,

V^=exp(-p() ^^(pV,/,
/<-—n /l •/(=0

where (pV^)o = I , (pV,^)1 = pV^ and

(pVJ^^pVJ'^pVJ.A?/ \jr ' A?/ \r- ' r,p/

Therefore Va ^ is positive. From Lemma 7, it follows that,
for any fe C,(D), lim V , f == NJ in C(D) (V( ^ 0). Hence

p>00

V<y^ is positive. By using Lemma 3, we see that (V^ )^o
is a continuous semi-group of continuous kernels on D and
that V^ = j Va dt. Consequently V^ is a Hunt kernel
on D . This completes the proof.
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Question 11. — Let x be a Hunt convolution kernel on R"
satisfying x = x . Is it true that V.̂  is a Hunt kernel on D
provided that Vy. is positive ?

Remark 12. — Let k(x) be a non-negative continuous
function in the wide sense in R" satisfying k{x) == k{x).
Suppose that x = k{x) dx is a Hunt convolution kernel
and that V^ is also a Hunt kernel on D . Put

G{x,y) = k{x—y) — k{x—y) in D X D .

If the function kernel k(x—y) satisfies the continuity prin-
ciple (3), then G satisfies the domination principle; that is,
for two positive measures [L and v in D with compact
support and with f G[L d\L < oo , then G(JL < Gv on
supp ((i) implies the same inequality in D , where

G[L(X) = fG{x,y) d(i(y).

It is known that k(x—y) satisfies the continuity principle
when x is a Dirichlet convolution kernel (see [4]).

We show this remark. We see that G also satisfies the
continuity principle. Therefore it suffices to prove that,
for a positive measure pi in D with compact support and an
x e D , G[L ^ Gs^ in D provided that G[L ^ Gs^ on
supp ((i) and that G[L is finite continuous (see [8]). Since V.̂
is a Hunt kernel, there exists f e C^(D) such that Vyf==Gf^ 1
on supp (^), where Gf(y) = CG(y,z)f{z) dz . Here we remark
that [A is considered as a positive measure in R". For a given
positive number 8 , there exists a neighborhood U of 0
such that, for any finite continuous function cp ^ 0 in R"
with supp (9) c: U with Jcp dx == 1 , (JL ^ 9 , ^ ^ cp e C^-(D)
and G([L * 9) ^ G(e^ * 9) + SGf on supp ( ( 1 * 9 ) . By letting
9 dx -> s (vaguely) and 8 ^ 0 , we have G[L ^ G£^ .

(3) This means that, for a positive measure pi in R" with compact support,

the function j k(x—y} d^. (y) of x is finite continuous provided that its restriction
to supp (pi) is finite continuous.
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6. Theorem 1 gives the following

/»oo

COROLLARY 13. — Let x = \ a* dt be a Hunt convolution
Jo

kernel on R". Then x is symmetric with respect to ^D and V^
15 a Hunt kernel on D i/* and only if, for each t ^ 0 , GC( 15

symmetric with respect to bD and ——a^ ^ 0 in the sense of
distribution in D . 1

COROLLARY 14. — Let x = j (x.t dt be a Hunt convolution
kernel on R" and [L be a Hunt convolution kernel on R1

/»oo

supported by R4". Suppose that y.^ = j a^ dpi(() ^ defined
(in the sense of measures) and that K is symmetric with respect
to ()D . If Vy. is a Hunt kernel on D , then V% is also a
Hunt kernel on D .

Proof. — We denote by (^p)p^o Ac resolvent associated
with [L . Since [JL? ^ pi , x^ p == J a^ d[Lp{t) is defined (Vp > 0).
It is known that x« is a Hunt convolution kernel on R71

and that {y•^,p)p^o ls Ae resolvent associated with x^ (see
Theorem 1 in [5]). By Theorem 1 and Corollary 13, o^ is

symmetric with respect to ^D and ——o^ ^ 0 in the sense
0 CCi

of distributions in D . Hence x» is also symmetric with

respect to ^D and — — x ^ ̂  ^ 0 in the sense of distributions
O^Ci

in D (Vp > 0). Consequently Theorem 1 gives this corollary.
In the same manner as above, we have the following

COROLLARY 15. — Let {^t)t^Q ^e a vaguely continuous
semi-group of positive measures in R" and [L be a Hunt
convolution kernel on R1 supported by R4'. Suppose that

j o^ d[L^t) is defined and that, for each t ^ 0 , QC( is symmetric

with respect to ^D and —— o^ ^ 0 in the sense of distributions^>x^
in D . Then V% is a Hunt kernel on D , where

^= jraf rf^-
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We shall show that the question raised by H. L. Jackson is
affirmatively solved.

Remark 16. — Let v be a positive measure in (0, 2) such
r*a 'j

that | — rfv(a) < oo and CQ , Ci be non-negative constants.
i/ o oc

Put
(CQS + (/M1-" <^(a)) Ar if n == 2
fcoe + (f^'^W + CiM2-") da; if n ^ 3.

Then Vx is a Hunt kernel.
In fact, we have, with a positive constant c(oc),

1^1--^^'(^^(-l^),"-A

( 0 < a < 2 if n = = 2 , 0 < a ^ 2 if n > 3). Evidently the
function c(a) of a is finite continuous. Put

(1 =
^s + (fc{^2-1 dv(a)) ^ if n = 2

^ + (Jc(a)^2-1 dv(a) + cic(2)) ^ if n ^ 3

r±^(a) <in R1. Since
on R71 and

oo , Xp. is a convolution kernel
Jo a

_ ( r i
\J (2TT()^

exp ^r
2( d[L[t) ) C?^ .

Hence [L is a convolution kernel on R1 supported by R4'.
Then (JL is a Hunt convolution kernel on R1 (cf. [5]), and
Corollary 14 gives our remark.

Let Ga be the Green type kernel of order a in D . Put

G{x,y) =
/Ga(^y) ^(a)

j"Gy{x,y) dv(a) + c^{x,y) if n ^ 3.

if n=2

Then Remarks 12 and 16 give that G satisfies the domination
principle.

7. Let Lioc(D) be the usual Frechet space of real-valued
locally summable functions in D . A Hilbert space H(D)
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contained in Lioc(D) is called a Dirichlet space on D if the
following three conditions are satisfied :

(1) For each compact set K in D , there exists a constant
A(K) > 0 such that, for any u e D , fju| dx <A(K)||u]| .

(2) C,(D) n H(D) is dense both in C,(D) and in H(D).
(3) For any normalized contraction T on R1 (4) and any

u e H(D), T . u e H(D) and ||T . u|| ^ ||u|l .
This is the definition by A. Beurling and J. Deny (see [1]).

Here we denote by ||. || and by ( . , . ) the norm in H(D)
and the associated inner product, respectively. For an fe C<.(D),
(1) gives that there exists uniquely u^ e H(D) such that,
for any u e H(D), (u^u) = Cufdx .

Let V be a linear operator from C^(D) into Lioc(D).
We say that V is a Dirichlet kernel on D if there exists
a Dirichlet space H(D; V) on D such that, for any

/•eC^D), \f=u^.

Evidently H(D;V) is uniquely determined. We call H(D; V)
the Dirichlet space associated with V and V the kernel of
H(D; V). For a Dirichlet kernel V on D , we set

^(V)=^eL^D); supll^;
' v ^11 v ^

V / (, ^ .. . ( ^ ,

u ^ OeC,(D) n H(D; V) < oo

and ^+(V) = {fe ^(V); f ^ 0}, where ||.|| denote the
norm in H(D; V). By virtue of (2), for an fe ^(V), there
exists uniquely V/*e H(D; V) such that, for any

u e C,(D) n H(D; V), (Nf,u) = fufdx ,

where ( • , • ) denote the inner product in H(D;V) . Thus V
may be considered as a linear operator from ^(V) into
H(D; V). It is known that V is positive (that is,

fe ^+(V) =^ ¥/• ^ 0 a.e.) (see [1]).

(4) This means that T is an application : R1 -> R1 such that R(0) == 0 and
|Ta—T6| ^ \a—b\ (Va , V& g RI) .
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LEMMA 17. — Let x be a Hunt convolution kernel on R71

satisfying x = x . J/* V^ 15 a Dirichlet kernel on D , ^m V^
is a Hunt kernel.

Proof. — For the sake of simplicity, we write H = H(D; Vyj.
Denote by |) • || and by ( . , . ) the norm in H and the inner
product in H , respectively. Let L^D) be the Hilbert space
of real-valued square summable functions in D . For a
p ^ 0 , Hp denotes the Hilbert space associated to the norm
NIp^P/H^+ll^ll2)1^ on H n L ^ D ) . Evidently H, is a
Dirichlet space on D . Let fe C^(D). For any ue C,(D) n H ,
we have

f^/(x)u(x) dx = -̂  ((V,u), - (V,u))

== -^ ((v-/.^) - (V^))
< -^-div./ii + 11 YD nun,

where Vp is the kernel of Hp and where ( • , • )p is the inner pro-
duct in Hp. Hence Vpfe ^(V). Since, for any ueC , , (D)nH,

p(V,(Vpf),u) = pf u{x)N,f{x) dx
= (V^^)p - (Vp/-,u) = (V^- Vp/-,u),

(2) gives V-Vp/-=pV,(V/) a.e. in D . Let (xp)p^,
be the resolvent associated with x . By Lemmas 3 and 8,
we have Vy/ — V,^/ = pVy.(V^/') . In the same manner as
in the proof of Theorem 1, we have Vp/* = Vy f a.e. in D ,
and hence V^ is positive (v? > 0) . By Theorem 1 and
Lemma 5, we see that V% is a Hunt kernel.

We shall prove Theorem 2 mentioned in the section 1.
(1) ==> (2). Let {y.p)p^o be the resolvent associated with x .

Then it is known that p^ -> a vaguely in R" — {0} as
p -> oo (see [1]), and hence theorem 1 and Lemma 17 give

that —— a ^ 0 in the sense of distributions in D .
^i

(2) =^ (1). Since j^Xp -> a vaguely in R71 — {0} as
p -> oo , Lemma 8 gives that a is symmetric with respect to
&D . Let A be the diagonal set of D X D and p be the
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positive measure in D X D — A defined by

fffWgW d^x.y) = ff(f(x-y) - f(x-y))g(x) d^y) dx

for any couple /*, g e C,(D) with supp (/•) n supp (g) = 0
(see Lemma 6). For any p , Xp being symmetric with respect
to the origin, we have a = a , and hence p is symmetric
with respect to A . Let C,°°(D) be the topological vector
space of real-valued and infinitely differentiable functions in D
with compact support (we identify an element of C;°(D)
and an infinitely differentiable function in B/1 with compact
support in D).

Let fe C;°(D). Consider the approximation of the function
\fW —fW of {x^) by the functions of form ^ ^iWi{y}
in D X D , where 9, e C;°(D) and ^ e C,°°(D) with

supp (<p,) n supp (^) = 0 .

Then we see that

0 ^ ff\f{x) - f{y)\^ d^y) + f\fWa{x) dx

= ff\f^ - V) - fW\2 d^y) dx

- ff(f^-y)-T^W^-y)-fW)d^y)dx < oo (^}

where, for x = {x^ ̂ ,. • .,^) e D , a(x) = 2 (. . rfa(y).
•» i/ Vv '̂̂ "l

Let H be the specialized Dirichlet space with the kernel x
(see [1]). We denote by |[ | . | |[ and by ( ( • , • ) ) the norm in H
and the associated inner product. For a couple /*, g e Cj°(D)
we put

{f,§)= f<^+.U+—s ia, f^^^^ \ 2 / 4ir2 ̂  ̂  J J aa;, & .̂

+ -I- JJ'(A )̂ - f(y}}(gW - g{y)) d^x,y)

= W - f,g}} = W,g - g)) == -t ((/• - 7,g - g)),

(6) The author would like to express his hearty thanks to Prof. F. Hirsch for the
correction of this formula.
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where x = (c + ̂  ^ a^x, + F(l - cos (2nx'y)) d^y)}-\
\^ i==i j==i J

Then ( . , . ) is an inner product in C,°°(D). For a compact
set K in D , we have

JK I u\ dx _ y/2 f^ \ u — u\ dx

JC^D) 1 1 ^ 1 1 ~ ue^D) 1 1 1 ^ - ^ 1 1 1 < 00 ?

"^0 u^o

where ||u|| == (u^u)^2. Hence the completion H of C;°(D)
by | | - [ I is contained in L^(D). Evidently, for any ueC;°(D)
and any normalized contraction T on R1, T • u e H and
II T . u|| < ||u||. For a u e H , we choose a sequence
(Ofc°=i c ^(D) such that

lim \\u,, — u\\ = 0 .
fc>ao

Since (T . i^)^ converges weakly to T . u in H as k -> oo
(see [1]), we have T . u e H and ||T . u|| ^ ||u|| . Hence H
is a Dirichlet space on D . We shall show that V.̂  is the
kernel of H . For an integer m ^ 1 , let T^ denote the

projection from R1 into j — ---, - 1 } . Let f e C fD) •
L m m J / cv / ?

then K^(f-f) -T, . K^{f-f)eH and

Vx/ ' -T.-V^eC^D),

because x ^ ( / ' — 7 ^ ) = 0 on ^)D and lim x ^ (/*— ^)(.r) =0.
|a'|-> c»

Therefore there exists a neighborhood V^ of the origin such
that, for any non-negative, spherically symmetric and infi-
nitely differentiable function 9 in R" with supp (<p) c: V
and J'9 dx == i , f^ 9 e C<T(D) and

(Vx/>-T,.V,/•).9^C,oo(D).
Since

( x * ( / - - ^ ) - T ^ . X * ( / - - 7 ) ) * y

= W- T^ . V,/-) * y - (V,/--T^.V,/-)Ty

and, for a u e fl ,

[||u*9J||2=^J'((u*s^u*s,))(p(a;)y(y)rfa;^ < [||M||(2^
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IIW-T,.V).<pll2 • :
^ { -111^ {f - f) - T, • x . {f - f)\\^ ^ 2H|x-. (/•- ^llp.

By letting cp cto -> e (vaguely) and m -> oo , we see that
V^e H and, for any u eC,°°(D) ,

(Vx/^) == ((x ^ (/• - n,u)) = J^/ - f) dx = fufdx .

This implies immediately that, for any u e H ,

(VJ,u) == fufdx .

Consequently V% is the kernel of the Dirichlet space H .
This completes the proof.

Theorem 2 gives also that the question raised by H. L. Jack-
son is affirmatively solved. In fact, the singular measure
associated with the convolution kernel r^" is equal to
ca\x\~v'~n dx provided that 0 < a < 2 , where c^ is a positive
constant, where \x\c(-~n dx is symbolically denoted by r^
(0 < a < n) .

We denote now by A the laplacian on RA We say that a
convolution kernel x on R" is a Frostman-Kunugui kernel
if x is spherically symmetric, vanishes at infinity (6), and if
Ax ^ 0 in the sense of distributions outside the origin 0 .
Theorem 2 and Theorem 1 in [7] give the following

COROLLARY 18. — Suppose n ^ 3 . Then the following two
statements hold.

(1) For a Frostman-Kunugui kernel x 7^ 0 on R'1 satisfying

—— Ax ^ 0 in the sense of distributions in D , there exists
OrCi ,
uniquely a spherically symmetric Dirichlet convolution kernel x'
on R71 such that Vy. is a Dirichlet kernel on D and that,
for any fe C,(D), V,(V^) = V^W){x) = G,f{x) in D .

(2) For a spherically symmetric Dirichlet kernel x on R"
such that V^ is a Dirichlet kernel on D , there exists uniquely

(6) This means that, for any finite continuous function f in R/1 with compact
support, x * f(x) —^ 0 as \x\ —> oo .
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a Frostman- Kunugui kernel x' on R" such that — Ax ^ 0ox^
in the sense of distributions in D and that, for any fe Cg(D),
Vx(V^) = V^V,f)(^) = G,f{x) in D.

Proof. — First we shall show (1). By Theorem 1 in [7],
there exists uniquely a spherically symmetric Dirichlet
kernel x' on R71 such that x * x' == r2-". We have, with a
positive constant c , (Ax) * x' == — cs in the sense of distri-
butions in R\ This implies that the singular measure asso-

^
dated with x7 is equal to — Ax outside 0 . Theorem 2

c
and our assumption give that V.̂  is a Dirichlet kernel on D .
Since Ax ^ 0 in the sense of distributions in R'1 — {0}

and x vanishes at infinity, —— x ^ 0 in the sense of distri-
ctiZ^

buttons in D . By Lemma 5, V^ is positive, and by Lemma 3
and Remark 4, we obtain the required equality. Let's show
the uniqueness of x'. Let x" be a Dirichlet convolution
kernel on R" which is possessed of the same properties as of
x'. Since x is injective (see Theorem 1 in [7]) (7) and

x ̂ (V^-V^)^ x * (V^-V^)
in R^8), we have V,,/* = V^f (^fe C,(D)) . This implies
that, for any /•£ C,(D), (x' - ̂ }f = (x' - x") * f. In the

same manner as in Lemma 5, we have — (x' — x") = 0 in
OrCi

the sense of distributions in D . Since x' — x" is spherically
symmetric and vanishes at the infinity, we have x' = x".
Thus we see that (1) holds.

Next we shall show (2). By Theorem 1 in [7], there exists
uniquely a Frostman-Kunugui kernel x' on R'1 such that
x ^ x' == r2"". Since the singular measure associated with x

1is equal to —Ax ' outside 0 , Theorem 2 gives that
c

—— Ax' ^ 0 in the sense of distributions in D . Similarly as
^x-^

(7) This means that, for an / 'eC(D) , f = 0 provided that x * |f| is defined
and that x * f == 0 .

(8) We may assume that V^rf is a continuous function in R" with support
<= D .
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above, we see that V.̂ . is positive and the required equality
holds. Since x is also injective (see, for example, [1]), we can
similarly show the uniqueness of x\

Remember the Riesz decomposition formula

^a-n ^ ^(2-a)-n ̂  ̂ 2-n (Q < a < 2),

where a^ is a positive constant (see [9]). Then, by this corol-
lary, we see that G^ satisfies the domination principle
provided with n ^ 3 and 0 < a < 2 .

Remark 19. — For a spherically symmetric convolution

kernel x on R^ — x ^ 0 in the sense of distributions in D0^1
if and only if — x ^ 0 in the sense of distributions in

R'1 — {0} , where r == \x\ . In this case, x is absolutely
continuous outside 0 .

By using Theorem 1, Corollary 13 and this remark 19,
we have the following

Remark 20. — Let x = j oc o^ dt be a spherically symme-
tric Dirichlet kernel on R\ Then Vy. is a Dirichlet kernel
on D if and only if, for any t ^ 0 , GC( is of form

GC( = c^e + ̂ (M) dx ,

where c^ is a non-negative constant and kt is a non-negative
decreasing (in the wide sense) function on R4".

8. First we shall show that the inverse of the question
raised by H. L. Jackson is also affirmative.

PROPOSITION 21. — If the Green type kernel Ga (0 < a < n)
on D satisfies the domination principle, then 0 < a ^ 2 .

Proof. — Since Ga satisfies the domination principle, Gy,
also satisfies the balayage principle (see, for example, [8]);
that is, for a positive measure (A in D with compact support
and a compact set F in D , there exists a positive measure
(AF supported by F such that G^[L > G^p in D and
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Ga(Ji == GatJip Ga-n.e. on F (9). Let (JL ^ 0 and F be a
closed ball contained in D such that supp ((i) n F == 0 .
Suppose that a > 2 . Let ( be positive integer satisfying
0 < a — 2t ^ 2 and P = a — 2( . Then

G^X.y) = J"G2^,2;)Gp(z,2/) Ck

(see Lemma 3). Since Ga^Gpp.) = Gg^Gppip) a.e. on F , we
have Gp^ == GR[JLF a.e. on F , because

^(G^Gpli) - G^(Gp^p)) = (- cy(G^ - G^p)

in the sense of distributions in D , where c is the positive
constant satisfying Ar2^ = — cs . Since Gp(A is continuous
on F and Gpp-p is lower semi-continuous, we have
Gpp- ^ GR^P on F , and so j GR(JLF d(iF < 00 • The function
kernel Gg satisfying the domination principle, we have
GQ[L ^ GptJip in D . By virtue of the injectivity of Gg ,
we have GQ[L ^ GftpLp . But this contradicts the equality
Gg^Ggti) == Gg^GpiJiF) Ga-n.e. on F . Thus we achieve the
proof.

We raise a question.

Question 22. — Let x be a convolution kernel on R'1
satisfying x = x . Suppose that V^ is a Hunt kernel on D .
Then is it true that x is the sum of a Hunt convolution
kernel and of a non-negative constant ?

The following proposition shows that the answer is « yes »
in a special case.

PROPOSITION 23. — Let x be a convolution kernel on R'1
satisfying x = x . Suppose that V.̂  is a Hunt kernel on D .
If j dv. < oo and x is absolutely continuous outside 0 ,
then x is a Hunt convolution kernel.

Proof. — We may assume that | rfx < 1 . For a p e (0,1] 9
we put

^= i (-pyw;
k=0

(9) We write G^[L = Ga(JLE G^-n.e. on F if, for any positive measure v in D

with supp (v) c: F and j G^v dv < oo , j G (̂JI dv = j G^'F d^ '
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then Kp is a real measure in R", absolutely continuous
outside 0, Xp = Xp and fd\x,\ < oo , where |xp| denote
the total variation of Xp . Since (px + e) * Xp = x , Lemma 3
gives that, for any /-eC,(D), (pV, + I)(V,/) = V,/-. Let
{ ^ p j p ^ o the resolvent associated with V^ . In the same
manner as in Theorem 1, we have, for any fe C<;(D), V f=\. f
in D . Hence V^ is positive. In the same manner as In

Lemma 5, we have ^ Xp < 0 in the sense of distributions

in D . We show that %p is a convolution kernel. It suffices to
prove that, for any fe C^(D), fjd^ > 0 , because

,, (f(\\\ — ^({O}) ^ „
p({u}) - 1 + px({0}) ^ °' ^=^

and %p is absolutely continuous outside 0 . For each integer
/<• ^ 1 , we choose a non-negative, spherically symmetric
and infinitely differentiable function 9^ in R" such that
f (p.- da; = 1 and supp (cpj c: L e R»; jd < ^

•/ ( k
= -reR"; a;| < —^ . Since

k }
^— "p * fk^) < 0 in the set5 .TI

\x={x^,x^ • • - , x ^ eR"; a-i >

and ^nm^ "p * y?c(a;) = 0 , we have %p * <p,(.r) > 0 in the
above set. Hence, for any fe C^(D) ,

fjd^ = lim f^^f(x)^ * (̂.r) ̂  ^ 0 .k^oo ^^>t

Consequently Xp is a convolution kernel (^p e (0,1]). Since
v • — K p = P ^ * ^ p , ^ ^ v . p . For a p e (1, 2], we put

xp= S (l-P)^)^;
k=o

then Xp is also a real measure in R», absolutely continuous
outside 0 , Xp = ̂  , |̂x,| < TO and x - ̂  = px * x, .
In the same manner as above, %„ is a convolution kernel
Inductively we obtain a family (x,)^. of convolution ker-
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nels satisfying x — Xp = px * Xp and lim x^ = x (vaguely).
p->o

By Lenima 3.2 in [6], we obtain that, for each p ^ 0 and
q > 0 , y.p — v.q = (q — p)xp * x^ and lim Xp = x (vaguely),

p->o
where XQ == x . Since V% is a Hunt kernel on D , x 7^ 0 ,
and hence, for any x + 0 e R", x 7^ x * s^., because

lim x * f(x) = 0
\X\-> 00

for any finite continuous function f in R71 with compact
support. Hence, by Corollary 1 of Theorem 5 in [6], x is a
Hunt convolution kernel. This completes the proof.

Remark 24. — In the above proposition, if x is spherically
symmetric, the same conclusion holds without the assumption
that x is absolutely continuous outside 0 . See Remark 19.
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