LUIS A. CORDERO P. M. GADEA Exotic characteristic classes and subfoliations

Annales de l'institut Fourier, tome 26, nº 1 (1976), p. 225-237 <http://www.numdam.org/item?id=AIF_1976__26_1_225_0>

© Annales de l'institut Fourier, 1976, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

.

EXOTIC CHARACTERISTIC CLASSES AND SUBFOLIATIONS

by Luis A. CORDERO and P.M. GADEA (*)

1. Introduction.

The development in the last years of the study of topological invariants associated to a foliated structure on a differentiable manifold(**) (usually called exotic characteristic classes of the foliation) has been well known.

Within the general context of this study, the following problem appears in a canonical way : let M be a differentiable manifold on which two foliations F_1 and F_2 are defined, and such that $F_1 \,\subset F_2$, that is, every leaf of F_2 is, itself, foliated by leaves of F_1 ; briefly, F_1 is said to be subfoliation of F_2 ; in fact, this geometrical structure on M can be described as a special type of multifoliate structure (in the sense of Kodaira-Spencer ({8})); now, we present two questions : 1) does a relation exist between exotic classes of F_1 and F_2 ?, and 2) : is it possible to give a topological obstruction to the existence of such a structure on M?.

In this paper we give the answer to these questions, by studying the problem through a more general situation and using Lehmann's techniques ({9}, {10}). For this purpose, we consider the following situation : let Q_i , i = 1, 2, be two G_i -principal fibre bundles over M, and let $\Pi : Q_1 \rightarrow Q_2$ be a morphism of principal fibre bundles (over the identity of M); by an appropriate choice of connections on these fibre bundles we point out a relation between the images of Lehmann's exoticism associated to those connections (Theorem 4.5); in the special case of F_1 and F_2 , two foliations as above, that relation gives the answer to our questions : every exotic characteristic class of F_2 is also an

(*) This author's work has been supported by a fellowship of C.S.I.C. (Spain).

(**) Always manifolds will mean paracompact differentiable manifold of class $C^\infty.$

exotic characteristic class of F_1 ; in fact, this result can be expressed as a topological obstruction F_1 to be a subfoliation of F_2 .

2. Notations and basic concepts.

Let M be a differentiable manifold. We shall denote \star (M) the Lie algebra of vector fields and A*(M) the exterior algebra of differential forms on M.

Given a G-principal fibre bundle $E \rightarrow M$, G being the structural Lie group, ω indistinctly denotes an (infinitesimal) connection on the bundle or the 1-form of that connection; I(G) is the algebra of invariant polynomials over the Lie algebra <u>G</u> of G; I(G) is a graded algebra, I(G) = $\bigoplus_{k \ge 0} I^k(G)$ and I⁺(G) denotes its maximal ideal

$$\mathrm{I}^{+}(\mathrm{G}) = \underset{k \geq 1}{\oplus} \mathrm{I}^{k}(\mathrm{G}).$$

Denote by $\lambda_{\omega} : I(G) \to A^*(M)$ the Chern-Weil homomorphism, defined by $\lambda_{\omega}(f) = f(\Omega)$, for $f \in I(G)$ and Ω being the curvature form of ω . If I = [0, 1] is the unit interval, $\int_0^1 : A^k(M \times I) \to A^{k-1}(M)$ denotes the integration along the fibre of $M \times I \to M$. If ω' is another connection on E, we write $[\overline{\omega}, \omega']$ the connection on $E \times I \to M \times I$ defined by

$$[\overrightarrow{\omega}, \omega'] \left(\frac{\partial}{\partial t}\right) = 0, \ [\overrightarrow{\omega}, \omega']|_{\mathbf{E} \times \{t\}} = t \, \omega' + (1 - t) \, \omega$$

and by $\Delta_{\omega,\omega'}$: $I^{k}(G) \rightarrow A^{2k-1}(M)$ the composition $\int_{0}^{1} \cdot \lambda_{[\overline{\omega,\omega'}]}$.

As it is well known, λ_{ω} induces an homomorphism λ :

$$I(G) \rightarrow H^{even}(M, \mathbb{R})$$

which is independent of ω .

Let $J \subset I(G)$ be a homogeneous ideal ; ω is said a J-connection if $\lambda_{\omega}(f) = 0$ for every $f \in J$. If P denotes a property of the degree of elements of I(G), J(P) denotes the homogeneous ideal generated by the elements satisfying the property P. For example, if dim M = n, every connection on E is a $J(> \left[\frac{n}{2}\right])$ -connection.

If $G = Gl(q, \mathbb{R})$, it is $I(G) = \mathbb{R}[c_1, \dots, c_q]$, where c_1, \dots, c_q are the usual generators given by

$$det(I + tA) = 1 + \sum_{i=1}^{q} c_i(A) t^i$$
, for every $A \epsilon gl (q, \mathbb{R})$

If $Q \rightarrow M$ is a vector bundle, ∇ denotes the derivation law of a linear connection on Q. Thus, every metric connection on Q is a J(odd)-connection.

If $Q \rightarrow M$ is the normal bundle of a foliation on M, of codimension q, and ∇ is a basic connection on Q (in the sense of Bott ({1})), then ∇ is a J(>q)-connection.

3. The Lehmann's exoticism $((\{9\}), (\{10\}))$.

Let E be a G-principal fibre bundle on M. Consider J, J' homogeneous ideales of I(G); if $f \in I^k(G)$, we write

$$\overline{f} = f \pmod{J}, \ \overline{f} = f \pmod{J'}$$

and introduce a graduation on the quotient algebras I(G)/J, I(G)/J'by deg $\overline{f} = \text{deg } \overline{\overline{f}} = 2k$, for every $f \epsilon I^k(G)$; also, we shall denote $\Lambda(I^+(G))$ the exterior algebra over **R** generated by the elements of $I^+(G)$ and define a graduation on $\Lambda(I^+(G))$ by deg f = 2k - 1, for every $f \epsilon I^k(G)$, k > 0. Then, consider the graded algebra

$$W(J, J') = I(G)/J\otimes_{\mathbf{R}} I(G)/J'\otimes_{\mathbf{R}} \Lambda(I^+(G))$$

and I(G)/J, I(G)/J', $\Lambda(I^+(G))$ are canonically identified to subalgebras of $\hat{W}(J, J')$; $I^+(G)$ can be identified to one part of $\Lambda(I^+(G)) \subset \hat{W}(J, J')$ by the isomorphism

$$h: \mathrm{I}^{+}(\mathrm{G}) \rightarrow \Lambda^{1}(\mathrm{I}^{+}(\mathrm{G}))$$

and, if $G = Gl(q, \mathbb{R})$, we write $h_i = h(c_i)$.

W(J, J') is endowed with a structure of graded differential algebra by defining a differential (of degree 1)

$$d(\overline{f}) = d(\overline{f}) = 0, \text{ for } f \epsilon I(G)$$
$$d(f) = \overline{f} - \overline{\overline{f}}, \text{ for } f \epsilon I^{+}(G)$$

and, clearly, $d^2 = 0$.

If ω is a J-connection and ω' is a J'-connection on E, a homomorphism of graded algebras $\rho_{\omega \omega'} : \hat{W}(J, J') \to A^*(M)$ is defined by

$$\rho_{\omega\,\omega'}(f) = \lambda_{\omega}(f)$$

$$\rho_{\omega\,\omega'}(\overline{f}) = \lambda_{\omega'}(f)$$

$$\rho_{\omega\,\omega'}(f_1 \wedge \dots \wedge f_r) = \Delta_{\omega,\omega'}(f_1) \wedge \dots \wedge \Delta_{\omega,\omega'}(f_r) , \text{ for } f_i \,\epsilon \,\mathrm{I}^+(\mathrm{G})$$

and, in cohomology, $\rho_{\omega \omega'}$ induces a homomorphism of graded algebras

$$\rho^*_{\omega\omega'}: \mathrm{H}^*(\mathrm{W}(\mathrm{J}\,,\,\mathrm{J}')) \to \mathrm{H}^*(\mathrm{M}\,,\,\mathbb{R})$$

The elements of Im $p^*_{\omega\omega'}$ are said to be the exotic characteristic classes associated to J, J', ω and ω' .

Let $J \subset I(G)$ be a homogeneous ideal and ω_0 , ω_1 two J-connections on E; ω_0 and ω_1 are said to be differentiably J-homotopic if there does exist a J-connection $\widetilde{\omega}$ on $E \times I \rightarrow M \times I$ such that

$$\widetilde{\omega}|_{\mathbf{E}\times\{0\}} = \omega_0 \ , \ \widetilde{\omega}|_{\mathbf{E}\times\{1\}} = \omega_1$$

and, in a more general form, ω_0 and ω_1 are said to be J-homotopic if there does exist a finite sequence $\omega_0 = \omega_{s_0}, \omega_{s_1}, \ldots, \omega_{s_k} = \omega_1$ of J-connections such that, for every $i = 0, 1, \ldots, k - 1$, ω_{s_i} and $\omega_{s_{i+1}}$ are differentiably J-homotopic. A set C of connections on E is said to be J-connected if it is not-empty and any two connections in C are J-homotopic.

PROPOSITION 3.1. – Im $\rho_{\omega\omega'}^*$ depends only on the J-connected component of ω and the J'-connected component of ω' .

In particular, if C is the set of basic connections on the transversal bundle Q of a q-codimensional foliation on M and C' is the set of metric connections on Q, Lehmann shows that C is J(>q)-connected and C' is J(odd)-connected; moreover, in this case $\hat{W}(J(>q),$ J(odd)) has the same cohomology that its subalgebra

$$WO_q = \mathbb{R} [c_1, \ldots, c_q] / J(>q) \otimes_{\mathbb{R}} \Lambda(h_1, h_3, \ldots, h_{(q)})$$

where (q) denotes the largest odd integer $\leq q$ and $h_i = h(c_i)$. Therefore

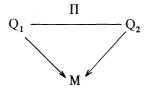
PROPOSITION 3.2. – The homomorphism $\rho_{\nabla\nabla'}^*$:

 $\mathrm{H}^{*}(\mathrm{WO}_{a}) \rightarrow \mathrm{H}^{*}(\mathrm{M}, \mathbb{R})$

does not depend on the choice of $\nabla \epsilon C$ and $\nabla' \epsilon C'$.

4. Homomorphism of principal fibre bundles and the Lehmann's exoticism.

In this paragraph we shall consider the following situation : let $Q_i \rightarrow M$ be a G_i -principal fibre bundle (i = 1,2) and let



a homomorphism of principal fibre bundles ; also, denote

 $\Pi: G_1 \longrightarrow G_2$

the corresponding homomorphism of Lie groups and assume that Π is surjective but not a submersion in general, e.g.

 $d\Pi : \underline{G}_1 \longrightarrow \underline{G}_2$

is not of maximal rank in general ; the linear mapping $d\Pi$ permits to define :

DEFINITION 4.1. – If $f \in I^k(G_2)$, i(f) is defined by

$$i(f) (X_1 \otimes \ldots \otimes X_k) = f(d \prod (X_1) \otimes \ldots \otimes d \prod (X_k)),$$

for every $X_i \in \underline{G}_1$, j = 1, 2...k

A direct application of this definition shows

PROPOSITION 4.2. - For every $f \in I(G_2)$, $i(f) \in I(G_1)$ and

 $i: I(G_2) \rightarrow I(G_1)$

is a homomorphism of graded algebras. Moreover, if $d \Pi$ is of maximal rank, then i is injective.

Let $J_2 \subseteq I(G_2)$ be an homogeneous ideal and J_1 an arbitrary homogeneous ideal of $I(G_1)$, such that $J_1 \supseteq i(J_2)$ (in particular, J_1 could be thought as the homogeneous ideal generated by the elements of $i(J_2)$).

THEOREM 4.3. – Let ω_1 be a connection in Q_1 , and Ω_1 its curvature form. Then :

a) there is a unique connection ω_2 in Q_2 such that the horizontal subspaces of ω_1 are mapped into horizontal subspaces of ω_2 by Π .

b) if Ω_2 , is the curvature form of ω_2 , then

$$\Pi^* \omega_2 = d \Pi \cdot \omega_1$$
$$\Pi^* \Omega_2 = d \Pi \cdot \Omega_1$$

c) if ω_1 is a J_1 -connection, then ω_2 is a J_2 -connection.

Proof. -a and b) are well-known results (see Kobayashi-Nomizu, vol I ($\{7\}$), p. 79).

In order to prove c), we have to show that, if $f \in J_2$ with deg f = k, then $\lambda_{\omega_2}(f) = 0$, e.g.

 $f(\Omega_2)$ $(\mathbf{Y}_1 \otimes \ldots \otimes \mathbf{Y}_{2k}) = 0$, for $\mathbf{Y}_1, \ldots, \mathbf{Y}_{2k} \in \mathfrak{X}(\mathbf{Q}_2)$

But it suffices to show that when Y_i , i = 1, ..., 2k, is horizontal with respect to ω_2 and, in this case, there exist $X_1, ..., X_{2k} \in \mathcal{X}(Q_1)$ such that $d\Pi(X_i) = Y_i$ for every i = 1, 2, ..., 2k. But $i(f) \in J_1$, then

$$0 = i(f) \ (\Omega_{1}) \ (X_{1} \otimes \ldots \otimes X_{2k}) =$$

$$= \frac{1}{(2k)!} \sum_{\sigma} \epsilon_{\sigma} i(f) \ (\Omega_{1}(X_{\sigma(1)}, X_{\sigma(2)}) \otimes \ldots \otimes \Omega_{1}(X_{\sigma(2k-1)}, X_{\sigma(2k)})) =$$

$$= \frac{1}{(2k)!} \sum_{\sigma} \epsilon_{\sigma} f(d\Pi \ (\Omega_{1}(X_{\sigma(1)}, X_{\sigma(2)})) \otimes \ldots \otimes d\Pi \ (\Omega_{1}(X_{\sigma(2k-1)}, X_{\sigma(2k)}))) =$$

$$= \frac{1}{(2k)!} \sum_{\sigma} \epsilon_{\sigma} f((\Pi^{*}\Omega_{2}) \ (X_{\sigma(1)}, X_{\sigma(2)}) \otimes \ldots \otimes (\Pi^{*}\Omega_{2}) \ (X_{\sigma(2k-1)}, X_{\sigma(2k)})) =$$

$$= \frac{1}{(2k)!} \sum_{\sigma} \epsilon_{\sigma} f(\Omega_{2}(d\Pi \ (X_{\sigma(1)}), d\Pi \ (X_{\sigma(2)})) \otimes \ldots \otimes \Omega_{2}(d\Pi \ (X_{\sigma(2k-1)}), d\Pi \ (X_{\sigma(2k)}))) =$$

$$= \frac{1}{(2k)!} \sum_{\sigma} \epsilon_{\sigma} f(\Omega_{2}(\mathbf{Y}_{\sigma(1)}, \mathbf{Y}_{\sigma(2)}) \otimes \ldots \otimes \Omega_{2}(\mathbf{Y}_{\sigma(2k-1)}, \mathbf{Y}_{\sigma(2k)})) =$$
$$= f(\Omega_{2}) \quad (\mathbf{Y}_{1} \otimes \ldots \otimes \mathbf{Y}_{2k})$$

Remark. – Note that, if \overline{J}_2 is another homogeneous ideal of $I(G_2)$ with $\overline{J}_2 \supset J_2$, it might happen that ω_2 be, in fact, a \overline{J}_2 -connection.

Now, let J_2 , J'_2 (respect. J_1 , J'_1) homogeneous ideales of $I(G_2)$ (respect. $I(G_1)$) such that

$$\mathbf{J}_1 \supseteq i(\mathbf{J}_2) , \ \mathbf{J}_1' \supseteq i(\mathbf{J}_2')$$

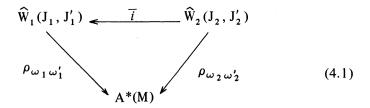
By virtue of Theorem 4.3, given ω_1 a J_1 -connection and ω'_1 a J'_1 -connection, there exist ω_2 a J'_2 -connection and ω'_2 a J'_2 -connection satisfying the condition b) in the Theorem. Then, consider the graded differential algebras

$$\hat{W}_{1}(J_{1}, J_{1}') = I(G_{1})/J_{1} \otimes_{\mathbb{R}} I(G_{1})/J_{1}' \otimes_{\mathbb{R}} \Lambda(I^{+}(G_{1}))$$
$$\hat{W}_{2}(J_{2}, J_{2}') = I(G_{2})/J_{2} \otimes_{\mathbb{R}} I(G_{2})/J_{2}' \otimes_{\mathbb{R}} \Lambda(I^{+}(G_{2}))$$

The homomorphism $i: I(G_2) \rightarrow I(G_1)$ induces canonically a new homomorphism of graded algebras

$$\overline{i}: \widetilde{W}_{2}(J_{2}, J_{2}') \rightarrow \widetilde{W}_{1}(J_{1}, J_{1}')$$

PROPOSITION 4.4. – The following diagram is commutative



Proof. – It suffices to prove the commutativity for $\overline{f} = f \pmod{J_2}$, $\overline{\overline{f}} = f \pmod{J'_2}$ with $f \in I(G_2)$, and $\Delta_{\omega_2, \omega'_2} = \Delta_{\omega_1, \omega'_1}$. \overline{i} .

If $\overline{i}: I(G_2)/J_2 \to I(G_1)/J_1$ denotes, once more, the mapping given by $\overline{i}(\overline{f}) = \overline{i}(\overline{f})$, we have

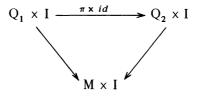
$$\rho_{\omega_2 \omega'_2}(f) = \lambda_{\omega_2}(f) = f(\Omega_2)$$

and

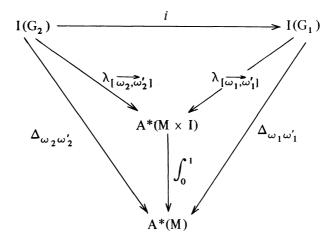
$$\rho_{\omega_1\omega'_1}(\overline{i}(\overline{f})) = \rho_{\omega_1\omega'_1}(\overline{i(f)}) = i(f)(\Omega_1)$$

and it is clear that $f(\Omega_2)$ and $i(f)(\Omega_1)$ define the same element of A*(M). In a similar way, the commutativity is proved for $\overline{\overline{f}}$.

Now, we consider



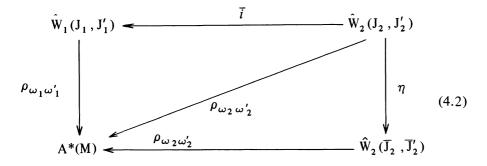
where $[\overrightarrow{\omega_2}, \overrightarrow{\omega'_2}]$ is the unique connection in $Q_2 \times I$ which might be obtained form $[\overrightarrow{\omega_1}, \overrightarrow{\omega'_1}]$ in $Q_1 \times I$ through Theorem 4.3; hence, the following diagram is commutative



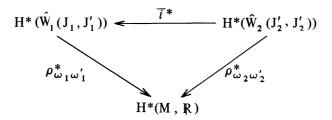
Remark. – If \overline{J}_2 and \overline{J}'_2 are homogeneous ideales of $I(G_2)$ such that $\overline{J}_2 \supset J_2$, $\overline{J}'_2 \supset J'_2$, and the connections ω_2 , ω'_2 are not only J_2 -and J'_2 -connections but \overline{J}_2 - and \overline{J}'_2 -connections, respectively, and if

$$\eta : \hat{W}_{2}(J_{2}, J_{2}') \rightarrow \hat{W}_{2}(\overline{J}_{2}, \overline{J}_{2}')$$

is the canonical projection, (4.1) can be enlarged to a new commutative diagram



THEOREM 4.5. – Diagram (4.1) induces, in cohomology, a new commutative diagram



Hence

$$\operatorname{Im} \rho_{\omega_{2}\omega_{2}^{\prime}}^{*} \subset \operatorname{Im} \rho_{\omega_{1}\omega_{1}^{\prime}}^{*} \qquad (4.3)$$

Moreover, $\operatorname{Im} \rho_{\omega_2 \omega'_2}^*$ does not change when ω_1 (respect. ω'_1) runs over its J_1 -connected component (respect. J'_1 -connected component).

Proof. – The commutativity of this diagram is evident from that of (4.1), and this fact implies trivially (4.3).

In order to prove the last assertion, it suffices to show that if ω_1 (respect. ω'_1) runs over its J_1 -connected (respect. J'_1 -connected) component, then ω_2 (respect. ω'_2) does it over its J_2 -connected (respect. J'_2 -connected) component.

For that, let $\overline{\omega}_1$ be a connection in Q_1 differentiably J_1 -homotopic to ω_1 and let $\overline{\omega}_2$ be the connection in Q_2 corresponding to $\overline{\omega}_1$ through Theorem 4.3; $\overline{\omega}_2$ is a J_2 -connection. Now, consider the connection $\widetilde{\omega}$ in $Q_1 \times I \rightarrow M \times I$ which defines the J_1 -homotopy between ω_1 and $\overline{\omega}_1$; $\widetilde{\omega}$ is also a J_1 -connection and its corresponding connection in $Q_2 \times I$ through Theorem 4.3 is a J_2 -connection which

defines a J_2 -homotopy between ω_2 and $\overline{\omega}_2$. All these facts can be easily checked by a direct calculation.

5. Application to subfoliations.

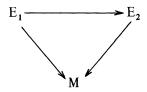
The geometric situation which we have described in § 1 is a particular case of multifoliate structure on the manifold M and is defined as follows: consider the set $P = \{1, 2, 3\}$ with the usual order, 1 < 2 < 3, and suppose dim M = n. Now, we define a mapping

$$\alpha = \{1, 2, \ldots, n\} \rightarrow \mathbf{P}$$

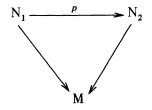
and, thus, $\{\alpha\}$ is P-multifoliate and we have determined the subgroup $G_P \subset Gl(n, \mathbb{R})$ of matrices

$$\begin{pmatrix} * & * & * \\ ---- & --- & --- \\ 0 & * & * \\ ---- & --- & --- \\ 0 & 0 & * \end{pmatrix} \xrightarrow{---} P_{1}$$

Let us suppose given an integrable G_P -structure on M; then, on M, there exist two foliations F_1 , F_2 of dimensions p_1 , p_2 , respectively, and such that every leaf of F_2 is, itself, foliated by leaves of F_1 . This fact is equivalent to the existence of two vector subbundles $E_i \subset TM$, i = 1,2, and an injective morphism



If $N_i = TM/E_i$, i = 1,2, is the normal bundle of F_i , there is canonically defined a surjective morphism



Denote $q_i = n - p_i = \text{codim F}_i$, i = 1, 2; it is possible to choose a covering {U} of M which trivializes simultaneously N₁ and N₂, and a local basis of sections of N₁

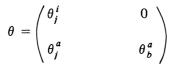
$$\omega^1,\ldots,\ \omega^{q_2},\ \omega^{q_2+1},\ldots,\ \omega^{q_1}$$

in such form that $\omega^1, \ldots, \omega^{q_2}$ is a local basis of sections of N_2 ; it is clear that this choice can be done compatibly with $p : N_1 \rightarrow N_2$. Moreover, as E_1 and E_2 are completely integrable

$$d\omega^{i} = \theta^{i}_{j} \wedge \omega^{j} , i, j = 1, 2, \dots, q_{2}$$

$$d\omega^{a} = \theta^{a}_{j} \wedge \omega^{j} + \theta^{a}_{b} \wedge \omega^{b} , a, b = q_{2} + 1, \dots, q_{1}$$

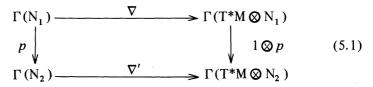
and the matrix of 1-forms



is the 1-form of a connection in N_1 , which is basic with respect to F_1 , and

$$\theta' = (\theta_i^i)$$

is the 1-form of a connection in N₂, basic with respect to F₂. If ∇ (respect. ∇') denotes to derivation law associated to θ (respect. θ'), the following diagram commutes



Similarly, if we consider a weakly-compatible Riemannian metric (see Vaisman ({11})) on the multifoliate manifold M, it is possible to define two metric connections $\widetilde{\nabla}$ and ∇' on N₁ and N₂ respectively, which permit to write a new commutative diagram like (5.1) (in particular, by using the techniques introduced in ({4}), it is possible to write the global expression of these connections).

By another part, consider the Lie groups G_1 and G_2 given as follows : $G_1 \subset Gl(q_1, \mathbb{R})$ is the group of all matrices

$$m = \begin{pmatrix} A & 0 \\ B & C \end{pmatrix}$$

with $A \in Gl(q_2, \mathbb{R})$, and $G_2 = Gl(q_2, \mathbb{R})$, and the homomorphism

$$G_1 \longrightarrow G_2$$
$$m \longmapsto A$$

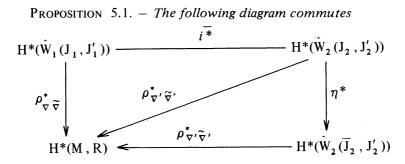
Next, consider $I(G_1)$ and $I(G_2)$ and their homogeneous ideales given by

Ideales of
$$I(G_1) : J_1 = J(>q_1), J'_1 = J(odd)$$

Ideales of $I(G_2)$: $J_2 = J(>q_1)$, $J'_2 = J(odd)$, $J_2 = J(>q_2)$

Clearly, ∇ (respect. ∇') is a J_1 -connection (respect. J_2 -connection) and $\widetilde{\nabla}$ (respect. $\widetilde{\nabla}'$) is a J'_1 -connection (respect. J'_2 -connection); in fact, ∇' is a \overline{J}_2 -connection.

Under these assumptions, we can use the results of § 4 and state



Hence, Im $\rho_{\nabla'\nabla'}^* \subset Im \rho_{\nabla\nabla}^*$, e.g. the set of exotic classes of F_2 is a subset of the set of exotic classes of F_1 .

This result permits us to give a topological obstruction to F_1 be a subfoliation of F_2 , as follows :

COROLLARY 5.2. – A necessary condition for F_1 be a subfoliation of F_2 is that every exotic class of F_2 be also an exotic class of F_1 .

At last, note that if F_2 is given by $E_2 = TM$, e.g. if F_2 has the manifold M as unique leaf, that obstruction is trivial.

BIBLIOGRAPHY

- [1] R. BOTT, Lectures on characteristic classes and foliations, *Lecture* Notes on Math., n° 279 (1972), Springer-Verlag, Berlin.
- [2] S.S. CHERN and J. SIMONS, Some cohomology classes in principal fibre bundles and their applications to Riemannian geometry, *Proc. Nat. Acad. Sci. U.S.A.*, 66 (1971), 791-794.
- [3] S.S. CHERN and J. SIMONS, Characteristic forms and transgression, I, Preprint.
- [4] Luis A CORDERO, Special connections on almost-multifoliate Riemannian manifolds, Preprint.
- [5] Luis A. CORDERO, Sobre la geometria de las variedades multifoliadas, III Jornadas Mat. Hispano-Lusitanas, Sevilla 1974.
- [6] C. GODBILLON, Conferencias sobre cohomologia de Gelfand-Fuks y foliaciones, *Public. Dep. Geometria y Topologia*, Univ. Santiago de Compostela, n° 22 (1973), notas de P.M. Gadea.
- [7] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, I, II. Interscience Publ. (1963-69).
- [8] K. KODAIRA and D.C. SPENCER, Multifoliate structure, Ann. of Math., 74 (1961), 52-99.
- [9] D. LEHMANN, J-homotopie dans les espaces de connexions et classes exotiques de Chern-Simons, C.R. Acad. Sc. Paris, 275 A (1972), 835-838.
- [10] D. LEHMANN, Classes caractéristiques exotiques et J-connexité des espaces de connexions, Preprint.
- [11] I. VAISMAN, Almost-multifoliate Riemannian manifolds, Ann. Sc. Univ. "Al. I. Cuza", sect. I, vol. XVI (1970), 97-104.

Manuscrit reçu le 26 juillet 1974 Accepté par G. Reeb.

Luis A. CORDERO Y P. M. GADEA, Universidad de Santiago de Compostela Facultad de Ciencias Departamento de Geometría y Topología Santiago de Compostela (Espagne).