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MULTIPLY SUPERHARMONIC FUNCTIONS
by Kohur GOWRISANKARAN (1)

Dedie a Monsieur M. Brelot a V occasion
de son 70e anniversaire.

1. Introduction.

Let 0. be a locally compact, connected and locally connec-
ted Hausdorff space. We shall say that 0 is a harmonic
space of Brelot if 0 has a countable base for open sets and
if there is a system of harmonic functions defined on open
subsets of 0. satisfying the axioms 1, 2 and 3 of Brelot [2].

Let QI and Og ^e harmonic spaces of Brelot. A lower
semi-continuous extended real valued function ^ on the
product QI X ^2 ]s sal(! to be multiply superharmonic if (i)
^ ̂  + °° ^d (ii) ^ is hyperharmonic in each variable
separately. In this article we shall be concerned with mul-
tiply superharmonic functions : their boundary behaviour at
the distinguished boundary, the reduced functions and the
integral representation of positive functions. There are a
number of questions which arise in connection with these
topics. Concerning these questions we shall present here
some results though not exhaustive, and describe some of
the problems of interest to us.

2. Integral Representation and a Consequence.

Let ii^ and Og be harmonic spaces of Brelot, each one
of them with a countable base for open sets consisting of

(1) This research was partially supported by the grant A-5289 of the National
Research Council of Canada.
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completely determining domains [2]. Let MS4' denote the
class of all multiply superharmonic positive functions on the
product Hi X ^2- Let MS denote the differences of elements
in MS4' defined in the natural way. Then MS, provided
with the semi-norms ^ — pg j—^ / ^i ^P? — / ^2 ^P? ? where
js == (^ y) e (o == co^ x og, coi and cog are regular domains
in the respective spaces, is a locally convex Hausdorff topo-
logical vector space over the real numbers. A. Drinkwater [5]
showed that with the above topology MS+ has a compact
metrizable base A and hence deduced that every positive
multiply superharmonic function ^ is represented as an
integral of a positive finite Radon measure on A carried
by the set of extreme elements of A. She also showed that
this set of extreme elements contains elements of the form
s^{x)s^{y) where Si and $3 are extreme generators of the
cone of positive superharmonic functions on the respective
spaces QI and ^3- An explicit determination of all the
extreme elements of A has not yet been done. Also, it is not
known whether the measures carried by the extreme elements
representing the elements of MS4" are unique. We feel that
the representing measure is not unique in general. The results
of Ahern and Rudin [1] may throw some light on this problem.

Let C be the subclass of MS4- consisting of the elements 9
which verify the Cairoli condition; viz., x\—^^y, behaves
hyperharmonically on Sl^ where for every x e Qi, v^, is
the canonical measure, representing v{x, .), on a convenient
compact base of the positive superharmonic functions on Qg?
[4, 10, 11]. It was shown in [10] that C is a cone with a
compact base and the extreme elements of this base are
precisely of the form s^ considered above. Further C is
a lattice in its own order. Hence, the elements of C are
represented uniquely by finite Radon measures carried by
the extreme elements of a convenient compact base of C.
The following is an application of the above integral repre-
sentation.

Let U be the open unit disc in the plane. For any positive
integer n, N(U71) denotes the Nevanlinna class of the poly-
disc LP1, i.e., the class of holomorphic functions f on U71

such that log |f | has a non-negative multiply harmonic
majorant. The following result characterises the functions f
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in N(U") such that — log|/'[ + multiply harmonic positive
function belongs to C(IP1).

THEOREM 2.1. — Let feI^U"). Then, the following are
equivalent.

a) 3 a positive multiply harmonic function w on U"
such — log j f+w belongs to C(U").

^) f = ̂ g where h is free of zeros in N(l?1) and
g = Bi, . . ., B^ where Bj, is a Blaschke product for each k.

Proof. — We shall prove the result in the case n == 2.
The general case follows easily by induction. Let us first show
that b)=> a). Let /*GN(U 2 ) such that f = B^h where h
is in N(U2) and free of zeros, Bi, Bg are Blaschke products
on U. Then log|A[ is multiply harmonic and is the diffe-
rence of two such non-negative functions. Further ~ log |Bi|
and —log^ j are both non-negative multiply super-
harmonic and are constants in at least one of the variables.
Hence we deduce that — log|Bi| and -- logjBgl are both
elements of C [th. 11.7, 10]. Now it is easily seen that

b) =^ a).

Conversely, suppose f is in N(U2) and is such that there
exists a positive 2-harmonic function w such that

y= -log |/1 + w

belongs to C(U2). Let v^, for every z in U, be the measure
on U corresponding to the potential part of ^, .) on the
unit disc. Since f is a holomorphic function in the Nevan-
linna class, ^(z, ^) is a harmonic function in ^ except pos-
sibly at a countable set {^} satisfying the Blaschke condi-
tion. Hence, v^ charges precisely the points ^; i.e., ^ is
a positive measure which is a countable sum of point masses
at .̂. But, since v is in C(U2), the sets of ^ measure
zero are independent of z in U. By symmetry, we can find
a sequence, {zj} such that 1) this sequence satisfies the
Blaschke condition and 2) for every ^ in U, v{z, ^) is har-
monic in z except at the points ^. It follows that v is
2-harmonic on UX(U - {^}) u (U ~ {zy})XU and further
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that the zero set Z(/*) of f is precisely UX{^} U {zy}XU.
Let ZQ e U and ^o e U be such that f{zo, ^o) ^ O* Suppose

that f{zoy ^) has a zero of order I at ^. Let

g(q = [(^ - ̂ )i^/(i - ̂ )^]'.
Then, ^ — l0^!^! ls clearly a 2-superharmonic function on
U2. Since — ^ g l ^ l is harmonic in z or = + oo for every
fixed ^, it can be shown as in [10, Theorem 11.7, Cor.] that
-log[g| belongs to C(U2). Now, ^ S) - log |g(0|
is harmonic at ^;,, and by the same argument as above, we
conclude that ^(z, ^ ) — l o g | g ( ^ ) | is harmonic in a neigh-
bourhood of ^, for every z in U. This shows that the
order of the zero of /\z, .) at ^ is independent of z in U.
Let now Bi (resp. B2) be the Blaschke product corres-
ponding to zeros at .̂ (resp. Zj} of orders determined by
f^o? ^k) (resp. f(z? ^o))- We now conclude that f/BiBa is
a holomorphic function in N(U2) free of zeros. Hence,

g = BiBa and h = f/B^

satisfy the requirements of the theorem. The proof is complete.
The following corollary can be proved utilising the results

on integral representation of positive multiply superharmonic
functions [5].

COROLLARY. — Let f be in the Ne^anlinna class of the
polydisc Vn. Then f can be written in the form gh, where g
is a product of Blaschke products and h is in the Newnlinna
class and further the zero set of h cannot contain a set of the
form E^XEgX . . . XE^ with E/, = U for some k between 1
and n.

3. Behaviour at the Distinguished Boundary.

Let MS4' be the set of positive multiply superharmonic
functions on the product of two Brelot spaces t^ and Qg-
Let MH4- and P denote respectively the class of positive
multiply harmonic functions and the class of those ^ in
MS4' with 0 as the greatest multiply harmonic minorant.
It is clear that MS^ is the direct sum of P and MH4" and
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we know that the pointwise infimum of two elements in MS4'
is also in MS4'. Hence [Theorem 5,8], corresponding to each
extremal generator h^ of MH4- [Th. 1.1, 1.2, 6], there is
a ( fine filter ) G^ defined by

G^ == J E c: DI X ^2 : ^ e P, ̂  ^2 on [EJ

Let F/i^ (respectively F^) be the fine filter on Q^ (resp. Og)
corresponding to the minimal harmonic function h^ (resp. /ig).
The following lemma shows the relation between G^ ^ and
F,, X F^.

LEMMA 3.1. — The filter G^ is finer than F^ X F^.

Proof. — It is enough to show that every set of the form
EI X Eg in F^ X F^ is also in G^. Given a set of this
form, there exist potentials pi and pg on 0.^ and Og
respectively such that pi ^ \ on ^i\Ei for & = 1, 2.
Let ^ = PTJZ^ + Alpg. Then p e P and clearly ^ majj crises
h^ on £2i X ^2\(Ei X Eg). The proof is complete.

It is known that for positive harmonic functions u^ on i2i,
Ug on Qg, the limits of [w(^, y)lu-^{x)u^(y)] as ^ and y
tend to the fine boundaries of the spaces and independent of
each other do not exist in general, even when w > 0 is a
multiply harmonic function [9]. The following however shows
that the limit following the product of fine filters exist for
certain special classes.

THEOREM 3.2. — Let u^ > 0 be positive harmonic function
on Qi, pi; the canonical Radon measure representing u^ carried
by the set of extreme harmonic functions A^ of a conveniently
chosen compact base of positive superharmonic functions on î i,
for i = 1, 2. Let w > 0 be a multiply harmonic function on
Q,^ X ^2 such that the measure on A^ X A^ representing w
has a JRadon-Nikodym derivative f with respect to [L-^ ® {ig
such that f is a bounded uniformly continuous function on
A^ X A^. Then, wfu^u^ has finite limit following F^ X F,̂ ,
equal to /*, for ^ ® ^3 almost every (h^ Ag) in A^ X Aj.

Proof. — The space Cn(A^) of bounded uniformly conti-
nuous functions on A^ provided with the topology of uniform
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convergence on compact subsets of 0.^ is separable. Hence,
there exists a countable dense subset {fn}nevs ^or ^^ space.
Hence, it is possible to find a Borel set E^ <== A^ of ^-

1 rmeasure zero such that, for all M E N , —— \ h{x)f^h)^ (dh)
U^(X) J

has the fine limit f^ except for elements in E^. Now, given any
f in Cu(A^) there exists a sequence f^ which converges
uniformly on A^ to /*. This implies that f fm,{h}h(x)[L^ {dh)
converges uniformly on 0.^ to f f(h)h{x)^ {dh). Hence,

1 Fwe deduce that except for elements in Ei,——- \ f{h)h{x)^ {dh)
u^[x)J

has the fine limit equal to /*. Similarly we can find a set
Eg c: AI of (Jig-measure zero such that for all g in Cu(A^),

1 Fthe fine limit of —-— ( h/(y)g{h)^ {dh) exists and equals g
^ { y j J

for all elements of A^ except possibly in Eg.
Now consider any function on A^ X A| of the form

f(h^)g{h^) where /*eCu(A^) and g e Cn(Ai). Since [ii and
{jig are totally finite measures we deduce that the limit of
[l/Ui(oQu2(t/)] ff f(h^)g(h^h^x)h^y}^ (dh^ {dh^) following

Fh, X F,^
exists for ^4 ® ̂  almost every element of A^ X A|; in
fact the exceptional set is contained in (A^ X Eg U Ei X A^).
Evidently the same conclusion is true for any finite linear
combination of such functions. Now a straight-forward appli-
cation of Stone-Weierstrass theorem gives the required result.

The following theorem can be proved using techniques
similar to that found in [3].

THEOREM 3.3. — Let U be the open unit disc in the plane
and T the unit circle. Let w be a bounded multiply harmonic
function on IP. Then, w has a finite limit following the
product of fine filters, for Lebesgue almost every element of 'Tk.

The following questions arise naturally in the above consi-
derations; partial answers to some of them are known.

1) Let Ui, Ug, (AI and ^ be as in the Theorem 3.2. Let f
be a bounded (^ (x) (ig measurable function on A^ X A^.
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Let w = f h^f(h^ ^K^i ® ^}{dh-^ dh^). Does w[u^u^
have finite limit following the product of fine filters for
^i ® ^2 almost every element of A^ X A^?

2) Let u > 0 be a multiply harmonic function on Qi X ^a
and let v be the canonical measure on A^ X A| representing
u. Let w > 0 be a.ny multiply superharmonic function on
O.i X ^2- Do the limits of w/u following G/»^ exist v-
almost every-where?

3) In the particular case of £1^ == Dg = U, is there any
relation between the limits following G^ and the restricted
non-tangential limits [12]?

4. Reduced function and capacity.

Let P > 0 be a multiply superharmonic function on the
product 0.^ X ^2 °f two Brelot spaces. For any

E <= ^ x ^2,

we define the reduced function B(E, ^) === inf. {w : w e MS4"
and w ^ ^ on E}. The reduced functions satisfy the usual
subadditive and regularisation properties [7]. We have the
following property.

THEOREM 4.1. — Let ^ > 0 be superharmonic functions
on ^ i = 1, 2. Then B(<^ X (02, ^2) = K^K^.

Proof. — Clearly R^R^2 is a multiply superharmonic
function > 0 on t2i X ^2 ^d equals ^2 on ^i X 0)2?
hence it maj crises the reduced function on the left side. On
the other hand, let w > 0 be multiply superharmonic on
f2i X ^2 ^d ^ ^1^2 on ^i X («)2- Then, for each y e 0)2,
w{x, y) ^ ^i(^)^2(1/) ^or ^1 a; e ^i* Hence,

^ 2/) > ^(2/)R^(^)

for all x e D^ and each y e (02- Now, we get that for every
x e ^i and all y e ^2, w(a;, y) ^ R^(^)R^(y). This completes
the proof.

The reduced function is closely related to the notion of
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capacity and convergence theorems, etc. The following result
suggests a possible approach to the treatment of these
questions.

THEOREM 4.2. — Let X and Y be regular Hausdorff
topological spaces. Let K {resp. Ko) denote the class of all
compact subsets (resp. finite unions of compact rectangles)
of X X Y. Let 9 be a non-negative valued set function on KQ
satisfying 1) 9 is monotone non-decreasing, 2) strongly sub-
additive and 3) outer regular i.e., for C e Ko, ?(C) < + °°
and any s > 0, there exists an open set V ^ C such that
for all^ D e Ko and C <= D <= V, cp(D) < 9(6) + s.

Then, 9 can be extended to a capacity on K and this
extension is unique.

Proof. — Let K be any compact set in X X Y. Let us
first of all show that K is the intersection of all sets in Ko
containing K. Since K is a compact set in a Hausdorff
space, K is the intersection of all open sets containing K.
Hence, it is sufficient to show that given an open set V contai-
ning K, there exists a set C e Ko such that K c: C c= V.
Now, it is possible to choose a finite number points (^i, yi), ....
(^19 Vn) m K, and neighbourhoods V .̂ X W .̂ of (^, y ^ )
such that (i) V,, X W,. c= V and (ii) (J (^- X W,,) ^ K.

_ __ i==l to n
Let K, = K n (V^. X Wy,) and A, and B, be respecti-
vely the projections of K; to X and Y. Then, A^ X B(
are compact rectangles and C = I J A^ X B^ is in Ko
and clearly K c: C <= V. i=:lto"

Now let, K be any compact set of X X Y. Let {CJ^g;
be the collection of all sets in Ko which contain K. Since Ko
is closed for finite intersections, {Q} is decreasing directed
and we have just shown that K = \ \ Q. It follows that the

iei
numbers 9(C;) are decreasing directed and we set

9 ( K ) = i n f . {9 (CO:^ I} .

It is clear that 9 ^ 0 and monotone non-decreasing on K.
The strong subadditivity of 9 on K is an immediate conse-
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quence of the strong subadditivity of 9 on Ko. Finally,
to show the outer regularity of 9, suppose K e K is that
^(K) < + oo and s > 0. There exists a set C e KQ such
that C c K and 9(6) < $(K) + e/2. Choose an open set
V => C such that for all C' in Ko with

C c C c: V, 9(C) < (p(C) + s/2.

Let K' be any compact set such that K c: K/ <= V. Then
there exists a D in Ko such that K7 c D c V. Now'
D U C is again a finite union of compact rectangles and
hence belongs to Ko and D U C c: V. Hence

^K') ^ 9(D u C) ^ 9(C) + ^/2 ^ 9(K) + s.

This proves that 9 is outer regular, showing that 9 is a
strong capacity.

It is obvious from the definition of 9 that 9 coincides
with 9 on Ko. Finally, suppose ^ any strong (or even
weak) capacity on K such that ^ restricted to Ko is 9.
Given any compact set of K and any c > 0, there exists
an open set V •=> K and a set C in Ko with

K c= C c: V

such that +(K) > ^(C) - c == 9(0) - s ^ <p(K) - e. Hence,
^(K) ^ <p(K). However,

^(K) ^ inf {9(C) : C e K^, C => K} = cp(K).

The proof is complete.
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