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CLOSURES OF FACES OF COMPACT CONVEX SETS

by AK. ROY

1. Introduction.

It is well-known that one of the disconcerting facts in the
theory of infinite-dimensional compact convex sets is that the closure
of a face need not be a face. The main purpose of this paper is to
determine necessary and sufficient conditions which ensure that this
pathology does not occur for a given face. It should be emphasised
that our results are purely individual in character. We do not charac-
terise the class of compact convex sets which have the property
that the closures of all their faces are again faces. (As a matter
of fact, this appears to be a very difficult problem.) By way of appli-
cations, it is shown that several results scattered in the literature can
be proved in a rather econoimical and uniform manner by our method.

We conclude by giving several characterizations of cases when face
(C) is closed in a compact convex set K, for any closed convex subset
C of K without core points. This generalises a recent result in [11].
Our method of proof is quite different.

It is a pleasure to thank Dr. A.J. Ellis for showing some interest
in this investigation and for providing me with the example at the
end of § 3.

2. Definitions & Notations.

We will work with a fixed compact convex set K in a locally
convex Hausderff topological vector space E defined over the reals
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R. We assume throughout that K is ‘“‘regularly embedded” in E in
the sense defined in [1].

Following [1], we let 3,K be the set of extreme points of K
and let C(K), P(K) and A(K) denote, respectively, the space of conti-
nuous functions, the cone of continuous convex functions and the
space of continuous affine functions, on K. Let MJ{ (K) denote the
convex set of probability measures on K equipped with the weak*
topology induced on it by M(K), the dual of C(K).

For each x € K, we write
M, ={n € M{(K) : p@) =alx),V a € AK)}

which is a non-empty weak* compact convex subset of M: (K). Let
Z, denote the set of maximal or boundary measures [1] in M, .

If f € C(K), we define
fx)=inf{hx): h € AK),h> [}
which is the least upper se‘{nicontinuous (u.s.c) concave majorant of
f and, dually, we define f as the greatest convex minorant of f
If C is a proper compact convex subset of K, we define for
each =1,
Do(C) = (aC - (¢ — 1)K) N K
and by face (C) we mean the o-compact set U D,(C). We recall
n=1

[2 : page 99] that face (C) is the smallest, not necessarily closed,
face of K containing C.

If f is a function defined on K and S is a subset of K, we consis-
tently employ the notation f(S) < a to mean f(x) < « for all x € S.
A similar meaning should be given to f(S) = 0.

3. Conditions for the closure of a face to be a face.

Let FCK be a face and let a € A(K) be such that a <0
on F, and hence on F. The theorem in this section is motivated by
the following simple observation :
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——
Ova(x)=0 for all x €EF.
This follows from the fact (see [1]) that
Ova(x) =sup {u(0va) : u discrete, p € M_}.

———
However, since Ova is u.s.c. we cannot, in general, assert that

Ova(x) =0 for all x € F. But this is the case if and only if F is
also a face.
Let
F* ={a € AK) : a(F) <0}

and

(F*), ={x €K : a(x) <0Va€ F*.

Then we have the following.

LemMa 3.1. F = (F%),

We omit the proof which is a simple application of the Hahn-
Banach (separation) theorem. We will also need the following simple
result.

LEMMA 3.2. — Let f € P(K) and let {f,} be a sequence of func-
tions in P(K) converging uniformly to f. Then{ fn}converges uniformly

to f.
This is an obvious consequence of the factthat f —e < g<f+ €
implies f — e < g < f + € for any € > 0.

Adopting the terminology cf [6], we say that F* is perfect
if for any a € F* and € > 0, there exists a. € F* such that 0,

as<a, + e
We can now state the main result of this section as follows :

THEOREM 3.3. — Let F C K be a proper face. Then the follow-
ing are equivalent :

(1) F is a face.

(2) F* is perfect.
(3) Ova(F) = 0Va€EF*,
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—_—
(4) Ovf(F) =0V fe& PK) such that f(F) < 0.
(5) If — g, f€ P(K) with f(F) < g(F), then fvg =g on F.
Comments 1. — If F is assumed to be closed, then the equi-
valence of (1) and a result similar to (2) has been proved in [4] by
means of the “polar calculus”. However, our proof, which is an

adaptation to this context of an argument in [8], and formulation
are somewhat different.

2. — We should note that the statem\eﬂs _(2) — (5) have obvious
“duals” : for example, the dual of (2)is0 Aa (F) = 0 Va € F° where

F° ={a € A(K) : a(F) = 0}.

Proof of Theorem 3.3

(1) = (2). Suppose F* is not perfect. Then 3a, € F* and ¢, > 0
such that V b € F*,

either a, { b+ ¢,
or 0 £b+ €0 F @
If A(K)" denotes the positive cone in A(K), define
U=1{a € AK) : llall < ey}

and

H={b-p,.b—-q): bEF* p,q € AK)'}.
Then («) can be restated as

(@g,0) + (u,, u)) § HV u,, u, € U.

This implies that (a, , 0) ¢ H and hence by the Hahn-Banach theorem,
3¢ € (A(K) x A(K))* such that

sup (H) < ¢(a, , 0). (8)
H being a cone, () says that ¢ < 0 on H. Now, we can write
¢ =9, +¢9, where 9, € A(K)* (i = 1,2)

and
¢, (@) =@, 0),9,(b) =¢(0,b) for a, b€ A(K).
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If ¢ € A(K)" then (—c, 0) € H and hence ¢, (—¢) = ¢(- ¢, 0) <0,

showing that ¢, = 0. Similarly, ¢, 20 and thus (by [13]),

¢;(@) = Nja(x;) V a € A(K),for some A; € R" and x; €K (i = 1,2).
If a € F*, (a, a) € H and therefore

0=>vy@,a)

I

‘p1(a) + 802(00
= Nalx,) + Aalx,)
=a(\;x, + A\;x,),

Nxy A x,

showing, by lemma 3.1, that
& Oy W

€ F. But by (f),

0<yp(ay,0) =¢p,(,0 = }\1ao(x1)
and this shows, again by lemma 3.1, that x, & F, so F is not a face.
(2)=@3). If a € F*¥ and € > 0 then by assumption there
exists a, € F* such that

0,a<aqa .+ €

€

which implies that
m(x) <a(x)+te<eVxe F
and since € is arbitrary, we can conclude that F\I\a(l_:) = 0.
(3) = (4). If a,, a, € F* then for each x € K,

0va,(x)va2(x) SOva,(x)+0va,(x)

and hence

/\ —A —— ———
Ova,va, <0va, + Ova, <Ova, +0va,

by the subadditivity of the A function and it follows that Ova, va,
(F) < 0. By induction, this is true for any finite number of a; € F*.
If £€ P(K) with f(F) <0, we know from [1] that f can be appro-
ximated uniformly by an increasing sequence of functions of the
form a{” v...val™ where a'f") € F* for i=1,...,k Therefore,

by lemma 3.2, (Ov a(l") Y/ aﬁ”))" increases monotenically to Qv f
and it follows that Ov f(F) = 0.
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4) = (5). If f(F)<g(F) then (f— g) (F) <0 and since
/\ -
f—2€PK), by 4) Ov(f—g)=0 on F. But
fvg=0v(f-g +g

/

and therefore
—~— ,/\ —— A _
fvg=0v(f-g) +tg<Ov(f-g+g=gonF
and (5) follows.

(5) = (3). Obvious.

(3) = (1). Let x € F and consider u € M,. Suppose, if possible,
that supp. (W\F # @, ie. 3y € supp. (u), y ¢ F. By the Hahn-
Banach theorem, 3a € A(K) such that

a(F) < 0 <a(y).

So a € F*. By continuity, there exists a neighbourhood U of y with
UNF =0 and a(U) = a > 0 for some a.

Now,
m(x) =sup{A(Ova): AEM,}

.>/f(0va)dy> f (Ova) du = ap (U N supp.(u) > 0,
U

which contradicts (3).

This completes the proof of theorem 3.3.

COROLLARY 3.4. — If FCK is a face and F is also a face,
then
F= n (0va)'(0)
acF*
Remark. — Suppose that F is a proper face where F C K is a
face. If (F)' denotes the complementary set of F, i.e. the union
of all faces disjoint from F, then it is clear that (F)' C F'. It is natural

to enquire whether this inclusion is an equality. That it is not, is
shown by the following simple example :

K=M;[0,1], F={p€M][0,1] : u[0,a]l =u[b, 1] =0}
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where 0 < a < b < 1. It is clear that F is a face as is
F={p€M][0,1]: supp. (u) C [a, b]}.
Now, €, € F' but €, & (F)' as €, € F, showing that (F)' < F.
If 9,K is closed then the necessary and sufficient condition
for the closure of a face F C K to be a face is expressed below in a

different way. ;l"his has the advantage that it gives a rather explicit
description of F.

Let S=F N 9K and define
T={f€C@OK): 0<f<I, f(S) = 1}
Then we have the following

THEORI:.M 3.5. — Assume 0,K closed. Then Fisa face if and
only if ﬂ [ f = 1] is closed. When this condition is satisfied,

F=n [f=1].
fET

il

This result has been extracted from [10] and since its proof
is essentially the same as in [10], modulo some trivial details, we
omit it.

An example. — There are of course several examples in the
literature showing that the closure of a face may fail to be a face
(see, for instance, [2]). However, to the best of our knowledge, all
these examples deal with compact convex sets, usually Choquet
simplexes, with non-closed boundaries. We now present an example
to show that this pathology can occur even if the boundary is closed.

Let & be the disc-algebra and let K be its state space. Following
[7], we let Z = conv (K U —jK). Then K is just the probability
measures on the unit circle I', so that ,K and 9,Z are both closed.
Every point of 9,Z is a split face of Z and so if E C 9,Z, the norm-
closed convex hull of E (in A(Z)*) is a norm-closed split face of Z
(by the L-ideal theory of [3]). However, take E = v U — iy where
v is a proper arc of I' of length > 0. Using the fact that K is a
simplex, it is easy to check that conv (E) is a face of Z. However,
v is not a peak set for @ since any function in @ which is constant
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on 7 is necessarily constant on I', so that conv (E) (w*-closure) is
not a face of Z (by Theorem 2 of [7]).

4. Applications.

We will now give some applicafions of the results established
in the last section.

PROPOSITION 4.1. — If K has the property that f is continuous
for all f€ P(K), then the closure of every face F in K is again a
face.

—_—
Proof. — Let a € F*. As we have already remarked, O v a(F) = 0.
But Ova € P(K) and therefore m is continuous by assumption.

Thus 6’\/7(?) = 0 and we can use (3) of Theorem 3.3 to conclude
that F is a face.

Remark. — This result was first proved in [10] by a more
elaborate method. .

DEFINITION 4.2 (after [12]). —A compact convex set K has the
strong equal support property (s.e.s.p. for short) if (i) 9,K is closed
and (ii) for any x €K and u, v € Z, we have supp. (u) = supp. (v).

We now prove

PROPOSITION 4.3. — If K has the strong equal support property,
then the closure of every face F in K is again a face.

Proof. — If S=F N 3,K then it is rather easy to show from
the defining property of a face that F = conv (S). Let a € F*.
Then mF) =0 If x € l?, there exists a probability measure
u on S representing x (See [13]) : um is obviously maximal since
SCd,K, hence all AE Z; have their supports in S by the s.e.s.p.
But
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N
Ova(x)

A, (Ova) for some A, €Z,
=0

and hence F is a face by Theorem 3.3.

PROPOSITION 4.4. — Let K be a Choquet simplex. If F C K is
a face then F is a face if and only if ajg 9, K.

Proof — If F is a face then by the Krein-Milman theorem,
0,F is non-empty and it is clear that 9,F C 9,K.
On the other hand, suppose F is a face with the property

that 9,F C 9,K. Consider a € F*. If x € 9,F C 9,K, by Herve’s
criterion [1],

Ova(x)=0va)(x)=0.

But K being a simplex, O v a is an u.s.c. affine function (by the Choquet-
Meyer theorem), hence by the Bauer maximum principle, Ov a(F) = 0
and we see that F is a face.

COROLLARY 4.5. — If K isa Choquet simplex and if S is a compact
subset of d,K then conv (S) is a face of K.

Proof. — This is immediate from the preceding Proposition, once
we observe that F = conv (S) is a face in K and that 9,F = S C 9,K.

Remarks 1. — It would be interesting to know whether Prop. 4.4
extends to compact convex sets with the equal support property [12].

2. — In [15], the following result of Mokobodzki is proved : If
K is a Choquet simplex and if B is a compact convex subset of K
with 8,B € 9,K then B is a face of K.

This again follows immediately from the preced_ing discussion
once we note that F = conv (9,B) is a face and that 8, F=49,B Cd K.

5. Compactness of face (C).

Considerations of subsets of K of the form face (x), x € K, have
proved useful in several contexts : for example, they are important
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in the local version of Choquet’s Uniqueness Theorem [9] and in
Wil’'s proof of the existence and uniqueness of central measures for
points of K (see [1]). Their usefulness is also suggested by the follow-
ing simple result :

PRrROPOSITION 5.1. — If K is metrisable then every closed face F
of K has the form face (x) for some x € K.

Proof. — The metrisability implies that K, and hence F, is sepa-
rable. Let {k,} be a dense subset of F and define

k

%
il
(Nl

n

1
2”

n=1

It is clear that this series defines an element x of F, and that k,, € face
(x) C F ; it follows that F = face (x).

In view of the preceding remarks, it is natural to look for condi-
tions which ensure that face (x) is closed. This was recently done in
[11] where it is proved, among other things, that face (x) is closed
iff face (x) = D,(x) for some n (see § 2 for the definition of D,(x)).
We propose to generalize this result in the theorem below. It should
be pointed out that the proof of the implication (1) = (2) in this
theorem follows an argument used in [14] in a different situation.
We denote by P(K)* the cone of non-negative continuous convex
functions on K.

THEOREM 5.2. — Let C be a proper compact convex subset of
K without core points. Then the following are equivalent :

1) face (C) is closed.
2) face (C) = D,(C) for some n.
3) If f,, € PK)" and lim f,, (u) = 0 uniformly for u € C then

m —» oo

lim f;n(y) = 0 uniformly for y € face (C).

m —+ oo

4) face (C) is norm-closed in the space A(K)*.

Moreover, all the above statements are implied by
(*) : lin M, is a norm-closed (or weak*-closed) subspace of M(K),
where M, ={u € M; (K) : resultant (u) € C}.
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Proof. — (1) = (2). Suppose face (C) is closed and face (C) # D,(C)
for all n. This means that given any n € N* (= set of positive integers),
3y, € face (C) such that y, € n2"C. (By this is meant that

y, $n2"u, Vu €C).

Define y = Z 27"y,. Now y € face (C) as this set is closed by as-
n=1

sumption. But then y < mC for all m € N* which is a contradiction
as face (C) = U D, (C).
m=1

2) = (3). By 2), if y € face (C) then y < nu for some u € C,
hence f,,(y) <n f,,(u) as f,, is a concave function and thus lim f,,(») =0

m—oo

uniformly on face (C) if lim f;,,(u) = 0 uniformly on C.

(3) = (2). Suppose face (C) # D, (C)V n€ N*. This means that
given n € N*, 3y, € face (C) such that y, & nC but y, < "™y, for
some u, € C_and for some sufficiently large m(n) € N*. Since
(nC — y,) N K = @, where K is the (closed) cone generated by K,
a standard Hahn-Banach argument shows that 3 q, € A(K)" such that

a,(y,)>naw)VueC
and a,(y,) < n’"(”)an w,)

These inequalities imply that sup {a,(u) : u €C}> 0

and a,(y,) > n sup {a,(u) : u € C}.
Let b, = a,/n sup {a,(u) : u € C}
Then b, € AK)" and if u €C,

1
b,w) = a,w)/n sup{a,w) : u €CI< -
showing that lim 4,(x) = 0 uniformly foru € C : however, b,(y,) > 1
N —oo

and so b, does not tend to zero uniformly on face (C), contradict-
ing (3).
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(2) = (1). Obvious.
(2) = (4). Obvious.

(4) = (2). By the regular embedding of K in A(K)*, we can regard
each x € K as a member of the unit ball of A(K)*. As a norm-closed
subset of the complete metric space A(K)*, face (C) is complete and
hence by the Baire Category Theorem, some D, (C) must have non-
empty relative interior, i.e. there exists some y, € Dno(C) such that
for some neighbourhood of the origin,

U={u€AK)* : llull <n}
(yo + U) N face (C) C D,,o(C).
Let y € face (C) and define

z = 1 y +
2+ 2+

Yo € face (C)

n 2n
Th z — = — <— <
en { Yoll >+ 1 Iy — poll 2+ 7 n
and hence z€ (y, + U) N face (C) C D"O(C).

Therefore, for some ¢ € C and k € K,

n 2
—_—y + = — - Dk
2+ny 2+ny° no¢ — (o )
1 1
or, c=— . —2 y+(1——- L )k'
ng 2+nq n, 2+n
1 1 2
_ k +— -
] (1 Z) nO 2+"?y0
where k' = e K.
L
n, 2+n
2
Thus, y €D, (C) where a= (l +—) ngy
n

and this implies (2).

This completes the proof of the equivalence of (1), (2), (3)
and (4). As far as statement (*) is concerned, first note that since
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M; is a w* compact subset of M; (K), by a known result [1 : page 112]
lin M, is w* closed iff lin M is norm-closed. Now the proof follows
exactly the argument used in [11] to prove (vi) = (i) in Theorem 1.9

of that paper.

Remarks 1. — The use of the Baire Category Theorem above
was suggested by the proof of a similar result in [5]. The argument
proving (1) = (2) could also be used here.

2. — We have not been able to decide whether any of the first
four statements in Theorem 5.2 implies (*).
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