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CLOSURES OF FACES OF COMPACT CONVEX SETS

by A.K. ROY

1. Introduction.

It is well-known that one of the disconcerting facts in the
theory of infinite-dimensional compact convex sets is that the closure
of a face need not be a face. The main purpose of this paper is to
determine necessary and sufficient conditions which ensure that this
pathology does not occur for a given face. It should be emphasised
that our results are purely individual in character. We do not charac-
terise the class of compact convex sets which have the property
that the closures of all their faces are again faces. (As a matter
of fact, this appears to be a very difficult problem.) By way of appli-
cations, it is shown that several results scattered in the literature can
be proved in a rather economical and uniform manner by our method.

We conclude by giving several characterizations of cases when face
(C) is closed in a compact convex set K, for any closed convex subset
C of K without core points. This generalises a recent result in [11].
Our method of proof is quite different.

It is a pleasure to thank Dr. A.J. Ellis for showing some interest
in this investigation and for providing me with the example at the
end of § 3.

2. Definitions & Notations.

We will work with a fixed compact convex set K in a locally
convex Hausderff topological vector space E defined over the reals
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R. We assume throughout that K is "regularly embedded" in E in
the sense defined in [1].

Following [ I ] , we let 8^K be the set of extreme points of K
and let C(K), P(K) and A(K) denote, respectively, the space of conti-
nuous functions, the cone of continuous convex functions and the
space of continuous affine functions, on K. Let M^(K) denote the
convex set of probability measures on K equipped with the weak*
topology induced on it by M(K), the dual of C(K).

For each x E K, we write

M^ ={n G M^(K) : fJi(a) = a(x) ,V a G A(K)}

which is a non-empty weak* compact convex subset of M^(K). Let
Z^ denote the set of maximal or boundary measures [ 11 in M^.

l f /GC(K) , we define

f(x)=inf{h(x) : / z G A ( K ) , A > / } ;

which is the least upper semicontinuous (u.s.c) concave majorant of
/ and, dually, we define / as the greatest convex minorant of /

If C is a proper compact convex subset of K, we define for
each a > 1,

Da(C) = (aC - (a- 1)K) H K

and by face (C) we mean the a-compact set U D^(C). We recall
n = i

[2 : page 99] that face (C) is the smallest, not necessarily closed,
face of K containing C.

If / is a function defined on K and S is a subset of K, we consis-
tently employ the notation /(S) < a to mean f(x) < a for all x G S.
A similar meaning should be given to f(S) = 0.

3. Conditions for the closure of a face to be a face.

Let F C K be a face and let a E A(K) be such that a < 0
on F, and hence on F. The theorem in this section is motivated by
the following simple observation :
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0"77(;c) = 0 for all x E F.

This follows from the fact (see [1]) that

0 \ / a ( x ) = sup { ^ ( O v a ) : yi discrete, ^ E M^}.

However, since O v a is u.s.c. we cannot, in general, assert that
0 \ / a ( x ) == 0 for all x E F. But this is the case if and only if F is
also a face.

Let
F* = { f l G A(K) : a(F)<0}

and

(F*)^ ={x E K : f l ( x ) < O V ^ E F*}.

Then we have the following.

LEMMA 3.1. F = (F*)^

We omit the proof which is a simple application of the Hahn-
Banach (separation) theorem. We will also need the following simple
result.

LEMMA 3.2. - Let /G P(K) and let {/^} be a sequence of func-
tions in P(K) converging uniformly to f. Then {f^} converges uniformly
tof

This is an obvious consequence of the fact that / - e < ^ < / 4- e
implies / — 6 < g < / + 6 for any e > 0.

Adopting the terminology cf [6], we say that F* is perfect
if for any a G F* and e > 0, there exists a^ G F* such that 0,
a < a^ 4- e.

We can now state the main result of this section as follows :

THEOREM 3.3. - Let F C K be a proper face. Then the follow-
ing are equivalent:

(1) F is a face.
(2) F* is perfect.
(3) (T77(F) = O V f l G F * .
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(4) o77(F) = 0 V/E P(K) such that /(F) < 0.
(5) // - g. /e P(K) vwrt /(F) < ̂ (F), rA^2 /^/7= ^ on F.

Comments 1. — If F is assumed to be closed, then the equi-
valence of (1) and a result similar to (2) has been proved in [4] by
means of the "polar calculus". However, our proof, which is an
adaptation to this context of an argument in [8], and formulation
are somewhat different.

2. - We should note that the statements (2) - (5) have obvious
"duals" : for example, the dual of (2) is 0 A a (F) = 0 \/a E F° where

F° ={aC A(K):a(P)> 0}.

Proof of Theorem 3.3
(1) =^ (2). Suppose F* is not perfect. Then 3 ̂  G F* and e^ > 0

such t h a t V A E F*,

either a^ ^ b + e^ )^ ^ u . ^o
• (a)

-o »
. / v*-*/

or 0 %b + CQ )

If A(K)+ denotes the positive cone in A(K), define

U = { ^ G A ( K ) : |k|| <e^}

and
H = {(b - p , b - q) : b G F* , p , q C AdC)^.

Then (a) can be restated as

(^o , 0) + (u, , u^) ̂  H,V u,, u^ E U.

This implies that (Og , 0) ^ H and hence by the Hahn-Banach theorem,
3 ̂  E (A(K) x A(K))* such that

sup <^(H) < <^o , 0). W

H being a cone, ((3) says that (^ < 0 on H. Now, we can write
{? = <^i + ^2 where <p, E A(K)* (/ = 1,2)

and
<^ (^) = ^(a, 0), ̂ (6) = ^(0 ,6) for a , b e A(K).
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If c G AW then (- c , 0) E H and hence <^ (- c) = <^(- c, 0) <0,
showing that ^ > 0. Similarly, ̂  > 0 and thus (by [13]),

^(a) = \a(x,) \/ a^ A(K),for some \ G R-" and x, G K 0- = 1,2).

If a G F*, (a , a) G H and therefore

0 > ^Qz, a) = ^i(a) + ^(fl0

= X^0:i) + X^fl^a)

= a(\^x^ 4- X^x^),

showing, by lemma 3.1, that—^———^ E F. But by (j3),
AI + A^

0 < ^(^o , 0) = ̂  (^o , 0) = X^o(^i)

and this shows, again by lemma 3.1, that x^ ^f. F, so F is not a face.

(2) =^ (3). If a E F* and e > 0 then by assumption there
s a^ E F* such thatexists a^ E F* such that

0 , a < a, + e

which implies that

0^a(x) < a,(x) 4- e < e,V x G F

and since e is arbitrary, we can conclude that O v a ( F ) = 0.

(3) ^ (4). If ^ , a^ G F* then for each x G K,

O v f l i ( j c ) v ^2^) ̂  0 v a^x) + O v ^(x)

and hence

O v ^ i V ^ ^ C ^ ^ i + 0 v ^ 2 ^ 0 v < 2 ^ + 0 v a 2

by the subadditivity of the A function and it follows that O v ^ v a^
(F) < 0. By induction, this is true for my finite number of<^- G F*.
If /G P(K) with /(F) < 0, we know from [1] that / can be appro-
ximated uniformly by an increasing sequence of functions of the
form a^ v . . . v a^ where a^ E F* for / = 1 , . . . , k. Therefore,
by lemma 3.2, (0 v a^ . . . v a^Y increases monotenically to O v /
and it follows that 0^7(F) = 0.
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(4) ^ (5). If /(F)<^(F) then (/- g) (F) < 0 and since
/ -^<EP(K) , by (4) O v ( / - ^ ) = 0 on F. But

f ^ g = 0 \ / ( f - g ) + g

and therefore /

/ v ^ = O v (/-^) + ^ < 0 v (/-^) + g = g on F

and (5) follows.

(5) => (3). Obvious.

(3) =» (1). Let x G F and consider ^ G M^. Suppose, if possible,
that supp. (^i)\F=^0, i.e. 3 y G supp. (/z), ^ ^ F. By the Hahn-
Banach theorem, 3 a E A ( K ) such that

a(F) < 0 < a{y).

So a E F*. By continuity, there exists a neighbourhood V of y with
U 0 F = 0 and a(U) > a > 0 for some a.
Now,

O^T(.x) = sup {X(0 v a) : \ G M^}

>y"(0 v a) d^i > f (0 v a) d/i > a/i (U H supp.(/x)) > 0,

which contradicts (3).
This completes the proof of theorem 3.3.

COROLLARY 3.4. - // F C K is a face and F is also a face,
then

F = n (OvaF^O)
aer*

Remark. - Suppose that F is a proper face where F C K is a
face. If (F)' denotes the complementary set of F, i.e. the union
of all faces disjoint from F, then it is clear that (F)' C F\ It is natural
to enquire whether this inclusion is an equality. That it is not, is
shown by the following simple example :

K = M ^ [ 0 , I], F = { / z G M : [ 0 , 1] : M O , f l ] = M 6 , 11 = 0}
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where 0 < a < b < 1. It is clear that F is a face as is

F = {^ G M\ [0 , 1] : supp. OLI) C [a, b]}.

Now, e^ e F' but e^ f. (F)' as e^ G F, showing that (F)' C F\

If 3^K is closed then the necessary and sufficient condition
for the closure of a face F C K to be a face is expressed below in a
different way. This has the advantage that it gives a rather explicit
description of F.

Let S = F 0 3^K and define

T = { / G C O , K ) : 0 < / < 1,/(S)= 1}.

Then we have the following

THEOREM 3.5. -Assume 3^K closed. Then F is a face if and
only if n [/= 1] is closed. When this condition is satisfied,/eT

F = n [/= 1].
/GT

This result has been extracted from [10] and since its proof
is essentially the same as in [10], modulo some trivial details, we
omit it.

An example. — There are of course several examples in the
literature showing that the closure of a face may fail to be a face
(see, for instance, [2]). However, to the best of our knowledge, all
these examples deal with compact convex sets, usually Choquet
simplexes, with non-closed boundaries. We now present an example
to show that this pathology can occur even if the boundary is closed.

Let QL be the disc-algebra and let K be its state space. Following
[7], we let Z = conv (K U - z'K). Then K is just the probability
measures on the unit circle F, so that 3^K and 3^Z are both closed.
Every point of 3^Z is a split face of Z and so if E C 8^Z, the norm-
closed convex hull of E (in A(Z)*) is a norm-closed split face ofZ
(by the L-ideal theory of [3]). However, take E = 7 U — ry where
7 is a proper arc of V of length > 0. Using the fact that K is a
simplex, it is easy to check that conv (E) is a face of Z. However,
7 is not a peak set for QL since any function in QL which is constant
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on 7 is necessarily constant on F, so that conv (E) (w*-closure) is
not a face of Z (by Theorem 2 of [7]).

4. Applications.

We will now give some applications of the results established
in the last section.

PROPOSITION 4.1. — // K has the property that f is continuous
for all f € P(K), then the closure of every face F in K is again a
face.

Proof. — Let a G F*. As we have already remarked, 0 v a(F) = 0.
But 0 v a E P(K) and therefore 0 v a is continuous by assumption.
Thus O v a ( F ) == 0 and we can use (3) of Theorem 3.3 to conclude
that F is a face.

Remark. — This result was first proved in [10] by a more
elaborate method.

DEFINITION 4.2 (after [12]) .— A compact convex set K has the
strong equal support property (s.e.s.p. for short) if (i) 3^K is closed
and (ii) for any x G K and fJi, v E Z^ v^e have supp. (/-i) == supp. (v).

We now prove

PROPOSITION 4.3. - // K has the strong equal support property,
then the closure of every face F in K is again a face.

Proof. - If S = F H 8^K then it is rather easy to show from
the defining property of a face that F = conv (S). Let a €E F*.
Then O v a ( F ) =0 . If x G F, there exists a probability measure
p. on S representing x (See [13]) : p. is obviously maximal since
S C 3^K, hence all A E Z^ have their supports in S by the s.e.s.p.
But
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0 v a(x) = \i (0 v a) for some \ E Z^

= 0
and hence F is a face by Theorem 3.3.

PROPOSITION 4.4. - Let K be a Choquet simplex. If F C K is
a face then F is a face if and only if 3^F C 3^K.

Proof. — If F is a face then by the Krein-Milman theorem,
3^F is non-empty and it is clear that 3^F C 3^K.

On the other hand, suppose F is a face with the property
that B ^ F C a ^ K . Consider a E F*. If x G 3^,F C 3^K, by Herve's
criterion [ I ] ,

'0^a(x) = (Ova) (x) = 0.

But K being a simplex, 0 v a is an u.s.c. affine function (by the Choquet-
Meyer theorem), hence by the Bauer maximum principle, 0 v a(F) •= 0
and we see that F is a face.

COROLLARY 4.5. — If K is a Choquet simplex and if S is a compact
subset of 8^K then conv (S) is a face ofK.

Proof. — This is immediate from the preceding Proposition, once
we observe that F = conv (S) is a face in K and that 3^F = S C 3^K.

Remarks 1. - It would be interesting to know whether Prop. 4.4
extends to compact convex sets with the equal support property [12].

2. — In [15], the following result of Mokobodzki is proved : //
K is a Choquet simplex and if B is a compact convex subset of K
mth 3^B C a^K then B is a face of K.

This again follows immediately from the preceding discussion
once we note that F = conv (B^B) is a face and that 8pF = B^B C 8^K.

5. Compactness of face (C).

Considerations of subsets of K of the form face (x), x G K, have
proved useful in several contexts : for example, they are important
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in the local version of Choquet's Uniqueness Theorem [9] and in
Wil's proof of the existence and uniqueness of central measures for
points of K (see [1]). Their usefulness is also suggested by the follow-
ing simple result :

PROPOSITION 5.1. - // K is metrisable then every closed face F
of K has the form face (x) for some x E K.

Proof. - The metrisability implies that K, and hence F, is sepa-
rable. Let {k^} be a dense subset of F and define

- V -L^x ~ L ^n^n
n=\ L

It is clear that this series defines an elements ofF, and that k^ E face
(x) C F ; it follows that F = face (x).

In view of the preceding remarks, it is natural to look for condi-
tions which ensure that face (x) is closed. This was recently done in
[11] where it is proved, among other things, that face (x) is closed
iff face (x) == D^(x) for some n (see § 2 for the definition ofD^(x)).
We propose to generalize this result in the theorem below. It should
be pointed out that the proof of the implication (1) => (2) in this
theorem follows an argument used in [14] in a different situation.
We denote by P(K)+ the cone of non-negative continuous convex
functions on K.

THEOREM 5.2. — Let C be a proper compact convex subset of
K without core points. Then the following are equivalent :

1) face (C) is closed.
2) face (C) = D^(C) for some n.
3) If f^ E PW and lim f^(u) = 0 uniformly for u E C then

m -»•<»

lim f^(y) = 0 uniformly for y E face (C).
m -»-oo

4) face (C) is norm-closed in the space A(K)*.

Moreover, all the above statements are implied by
(*) : lin M^ is a norm-closed (or weak*-closed) subspace of M(K),
where M^={^ E M^(K) : resultant Oz) E C}.
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Proof. - (1) => (2). Suppose face (C) is closed and face (C) =^ D^(C)
for all n. This means that given any n E N'^ (= set of positive integers),
3^ G face (C) such that y^ ^ ^2"C. (By this is meant that

y^ ^ ^2"^, V u G C).

Define ^ = ^ 2~"^. Now ^ ^ face (C) as this set is closed by as-
n=i

sumption. But then y ^ mC for all m € N+ which is a contradiction
as face (C) = 0 D^(C).

w = l

(2) => (3). By (2), if y E face (C) then y < nu for some M e C,
hence f^{y) < ̂  /^(^) as/^ is a concave function and thus lim f^(y) =0

W-»-oo

uniformly on face (C) if lim fyn(u) = 0 uniformly on C.
W -»-00

(3) => (2). Suppose face (C) ̂  D^(C)V ^ G N"". This means that
given n G N'", 3 >„ G face (C) such that y^ ^ ^C but y^ < ^w(w)^ for
some u^ E C and for some sufficiently large m(^) € N^ Since
(^C — Yn) n K = 0, where K is the (closed) cone generated by K,
a standard Hahn-Banach argument shows that 3 a^ E AW"^ such that

a^y^>na,(u)\fu^C

and a^Xn^a^u,)

These inequalities imply that s\xp{a^(u) : u E C} > 0

and a^(y^)> n sup{a^u) : u ^C}.

Let bn = a^/n sup {^(^) : ^ G C}

Then b^ G A(K)+ and if u G C,

^(^) = ^(^)/^ sup {^(^) : K G C} < -

showing that lim b^(u) = 0 uniformly for u G C : however, b^(y^) > 1
n -oo

and so &„ does not tend to zero uniformly on face (C), contradict-
ing (3).
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(2) ^ (1). Obvious.
(2) => (4). Obvious.

(4) =» (2). By the regular embedding of K in A(K)*, we can regard
each x G K as a member of the unit ball of A(K)*. As a norm-closed
subset of the complete metric space A(K)*, face (C) is complete and
hence by the Baire Category Theorem, some D^ (C) must have non-
empty relative interior, i.e. there exists some y^ D^ (C) such that
for some neighbourhood of the origin,

U = { ^ E A ( K ) * : I I ^ H <T?}

(Vo + U) H face (C) C D^ (C).

Let y e face (C) and define

z =——— V + ——— ^o E face (C)2 + 7 7 2 + ?7

Then || z - ̂ || = ——— \\y - y \\ < -^ < ̂
2 + 1 7 2 + 1 7

and hence z E (^ + U) 0 face (C) C D^ (C).

Therefore, for some c G C and A: E K,

rh^Y-h^o-^-^o-i)^
c—.—^i—1 .—L-V

HO 2 + T ? V fly 2 + T ? /

(1-4^-1._ ^oV ^./ n^ 2 +
where ,' = v ^/ ^o 2 + 7 ^ e K

I——1-.-!-
^o 2 + 7 7

Thus, y G D^ (C) where a = (l + -) ^

and this implies (2).

This completes the proof of the equivalence of (1), (2), (3)
and (4). As far as statement (*) is concerned, first note that since
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M^ is a w* compact subset ofM^(K), by a known result [1 : page 112]
lin M^ is w* closed iff tin M^ is norm-closed. Now the proof follows
exactly the argument used in [11] to prove (vi) => (i) in Theorem 1.9
of that paper.

Remarks 1. — The use of the Baire Category Theorem above
was suggested by the proof of a similar result in [5]. The argument
proving (1) => (2) could also be used here.

2. — We have not been able to decide whether any of the first
four statements in Theorem 5.2 implies (*).
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