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0. Introduction.

Beurling and Deny have reduced the problem of determining all
Dirichlet forms on a locally compact space X endowed with a positive
Radon measure ^ to the question of determifting contraction-semigroups
of hermitian operators on L^X , {), which moreover are submarkovian,
cf. [3]. In order to obtain a complete solution of the last problem, it
is certainly necessary to impose further structure, and for example in
the case of a locally compact abelian group X with Haar measure $,
the translation invariant semigroups of the above type are characterized
by the so-called negative definite functions on the dual group ([3]).

In the present paper we shall extend this result to a more general
setting including the symmetric spaces. The results are most satisfactory
in the compact case, where we generalize results obtained for the
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sphere in [1]. Furthermore there is a surprising analogy between the
compact case and the symmetric spaces of noncompact type of rank
one : The potentials of finite energy in invariant regular Dirichlet
spaces are all square integrable with respect to Riemannian measure.

1. Description of the scope.

Let G be a locally compact group with left Haar measure dg,
L1 (G) the Banach algebra of complex functions integrable with respect
to dg, considered as a subalgebra of M^G), which consists / all
bounded complex measures on G.

If K denotes a compact subgroup of G, M^G) ' denotes the
subalgebra of measures jn € M1 (G), which are bi-invariant under K, i.e.

e^ * jn == ^ * E^ = p. for every k € K.

In general, for a subset A £ M^G) we write A4 for the set of
elements of A, which are bi-invariant under K. For functions / the
bi-invariance amounts to

f(gk) == f(kg) = f(g) for g E G, k e K.

because the modulus A of G is constant 1 on K.
For any continuous function / on G we define a continuous bi-

invariant function /q on G as

A^)== f [ f(kgl)dkdl^
Jy J v'K -K

where dk, dl denote normalized Haar measure on K.
Notice that (/^v = (/A where / ( g ) == f(g~1).
We now fix a compact subgroup K ofG and will always assume

the fundamental hypothesis : '
M1(G)^ is commutative. (1)

( l) This implies that G is unimodular. Ift fact ifS^G) denotes the set of continuous
functions with compact support, it suffices to verify j f(g)dg = jf(g~1) dg
for any fE3C(G)^. We choose ^p€3C(G)^ to be 1 on the compact set
supp(/) U supp(/)""1 and get

ff(g) dg = f * <p(e) = <p * f(e) = ff(g^)dg.
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This hypothesis is fullfilled in the following three situations :
a) (G , K) is a Riemannian symmetric pair.
b) G is abelian, K ={(?}.
c) G = ^U x 'U where U is any compact group, and K is the

diagonal in G.
Let now X = G/K be the homogeneous space of left cosets,

TT : G ^ X the canonical surjection. The action of G on X is denoted
( g , x) »-> g ' x, where g - x = Tr(gg^) if x = TT(^). Functions on G/K
are identified with right invariant functions on G. If F is a function
on G and s EG, we let \(s) F denote the function g ^> F^s^g),
which is right invariant if F is so.

On X there is a unique G-invariant measure { fixed by the formula

/ F ( 8 ) d g = f ( f F(gk)dk)dWg)) . (1)
JQ </x ^K /

Our main purpose is to characterize Dirichlet forms (Q, V) on
L^X, ^) which are G-invariant, that is

V5 e G VF G V (\(s) F G V , Q(\(s) F) = Q(F)) .

Here V is a dense subspace of L2 (X , {) and Q is a closed positive
hermitian form on V, and we suppose that the normal contractions
operate in (Q, V), cf. [3].

In § 2 we give a brief summary of the harmonic analysis of the
algebra L1 (G)11. Everything is more or less in the article of Godement
[9]. In the next § we prove that the G-invariant semigroups involved
can be viewed as convolution semigroups of bi-invariant measures.
The Fourier transformation of such semigroups leads to the notion of
negative definite functions defined on the set S2'1' of positive definite
spherical functions.

In the abelian case b), this reduces to Schoenberg's notion of
negative definite functions on an abelian group (viz. the dual group
of G).

The G-invariant Dirichlet forms are in one to one correspondence
with the real negative definite functions on I24. This main result is
established in § 4.
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Next we give an intrinsic characterization of the negative definite
functions. The result (theorem 5.2) is not true in full generality because
the function 1 can be an isolated point in ft'1'.

Finally we consider the problem : When does a G-invariant
Dirichlet form give rise to a Dirichlet space ? A complete answer is
obtained in the compact case and for symmetric spaces of noncompact
type of rank one.

2. Harmonic analysis on symmetric spaces.

We shall now summarize, how the Gelfand theory applies to the
commutative Banach algebra L^G)^, which has an involution *,
rO?)=/QT1). cf. [9], [11].

A (zonal) spherical function is any non-zero continuous solution
(^ : G -> C to the equation

f <^i ̂ 2) dk = ̂ i) ̂ (^2) » 8i, ^2 E G • (2)
"K

A spherical function a; is bi-inyariant and o?(^) = 1. The maximal
ideal space of L1 (G) ^ can be identified with the set ft of bounded
spherical functions, and the Gelfand transform of / G L1 (G)R takes
the form

W^) = [ f(8)'^8}dg , < j€f t .G

We also introduce the co-transform Sff defined as

®/(^)= f f(8)^(8)dg .^n

Now let ft4' be the set of positive definite spherical functions.
Then ft'^ is a closed subset of ft, and the topology on ft'*' can be des-
cribed as the topology of compact convergence overG, [4, th. 13.5.2].
This implies that ( g , o0 -> 00 (g) is a continuous mapping from G x ft'1"
into C.

The main result in the whole theory is the Godement-Plancherel
theorem :
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For every positive definite measure ^ on G there is a uniquely
determined positive measure fi on ̂  such that S^ej?2^'1" ,fi) for
all (^G 3<<G)^, and such that for all <p , ^ e9<;(G)^.

^* ^*) = f ^(coW(^)rfA(^) . (3)
"n4-

(Note that 9^) = ^(co) for ^ € ft'').
In particular if ^ is a continuous bi-invariant positive definite

function, we obtain the Bochner theorem :

<^)= V\ ^(g)da(^) (4)

where a = (<^rfg) is a uniquely determined positive bounded measure
on n^

Furthermore, for ^ = c^ the measure ̂  is called rA^ Plancherel
measure and is denoted rfo;. Much trouble is caused by the fact, that
the support Sl^ of do? can be a proper subset of ft^ The formula (3)
is specialized to

[ ^(g)T(g)dg= [ § )̂ Wco) d^ . <p , V/ G aC(G) ^, (5)
JG '»$

and S? can be extended in a unique way to an isometry of L2 (G) '
onto L^n^dex;).

For ^GM^G)11 we define the transform ̂  : ̂  -> C as the
function

§ (̂0;) = J o?(^) dfJi(g) .

This extends S? from L/(G)' to a homomorphism of the algebra
M1(G)• into the algebra of bounded continuous functions on i^.

2.1. LEMMA. ~ Let ^ E M1 (G)11. // ̂ (o;) = 0 /or all 0} C Sl^ ,
^^i ^ == 0.

/^roo/ — If p. € L2(G)• this is an immediate consequence of (5),
and the general case is reduced to this situation by convolution with
an approximative identity ((p^) in L^Gr, which is obtained in the
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following way. For any neighbourhood V of the origin in G we choose
a positive function <^v e: 3C(G) with support in V and with integral 1.
We next form the bi-invariant function <p^ . B

In particular it follows that L^G)' and M^G)^ are semi-simple
algebras.

2.2. The inversion THEOREM. - Let ^EM^G)11 and suppose that
Sip. G f^ (^Q , dcx;). Then [t has a continuous density ^ with respect to
dg and

^P(g) = f . ^(g) 9^) da}.
J^

Proof, — Suppose first that /G L1 (G) ' is continuous and bounded,
and that 9f G ff1 (^ , do;). The function

^P(g) = f ^(8) ̂ f(^) d^

is continuous, bi-invariant and bounded. Since also/EL^G)' (5)
gives

( ^(g)^'g)dg= f ^(G;)^7(^)d^= { ^(g)7^g)dg
^G J^ ^G

for all V/ e3C(G)^ and we get ^ = /.
This result applies to ^ * ̂ , where as before (<^) is an appro-

ximative identity, and we get

M * ^(g) = J + ^(g) ̂ ^(^)Si^(^) dcj .
^o

This implies the desired result, because ̂ ^ ^ 1 uniformly over
compact subsets of S24' as V shrinks to e. |

2.3. COROLLARY. — Suppose that 11 € M1(G)^. Then fJi is positive
definite if and only if ^u is positive on Sl^.

// this is the case, the measure p. in the Godement-Plancherel
theorem has ̂  as density wth respect to the Plancherel measure doj,
i.e. pi == ^(<^)do?.
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Proof. — Suppose first that jn is positive definite. We will show
that the measure Sf ̂ (co) d(jj satisfies (3).

For < p , i / / G 3<XG)\ h = (^ * ^/*, the inversion theorem gives

h(g)= f ^ ^[g)Sih(^)d^,
"o

and then we have

f J?A(^)^(^)rf^ = f (s?A(^) f oJ(i)^(^))dc<; =
"^ J^ v ^G /

= f h(g)d^(g),
^G

which shows that ft = ^JLI(G;) do). Since JLI is a positive measure, it
follows that ^n(a0 > 0 for all u € ̂  .

Suppose next that ̂  is positive on S2^ . If §<JLI is integrable with
respect to the Plancherel measure, the inversion theorem implies that

^i( /*/*)= f ( / * /* (^ ) f ^g)^(^)dJ)dg>0 ,
•'G^ J^ /

for all / € 9C(G), i.e. jn is positive definite.
If as before (<^) denotes an approximative identity, we find that

M * ̂  * (<P^)* is positive definite, because Sffi \ §?<p^ |2 is integrable
and positive on ̂  . If we let V shrink to e, we get the desired result, fl

For each a? € S2"1" we have a canonically defined Hilbert space
H^ with a unit vector e^ , and a continuous irreducible representation
w^, of G in H^ such that ̂  is a cyclic vector. Moreover

^(8) = (^ , ̂ o;(^)^J »

and Tr^(fe) ̂  = e^ for all fe G K, i.e. TT^ is of class one.
The representation ̂  can in the usual way be extended to a re-

presentation of M^G).

2.4. LEMMA. - For jLiGM^G)^ the operator TT^(^) is given by

7r^)a= ̂ (^)(a^Je^ , a G H ^ . c o G ^ .

In particular ir^(^) is in the trace class and t r i r ^ ( p L ) = ^(G;).
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Proof. - Let g,, g,eG, a = ̂ (g^ ; 6=^(^)^. It
suffices to show w i w

(ir^Wa. b) = g^(^) (a, ej (^, ̂ ) = g,̂ ) (̂ ) ̂ J^

We have

0^(/0 a ,6) = ̂  Or^) a, &) rf^) = y y(^^) ̂ (^ ^

but since ^ is bi-invariant, we also have

^ ^(S-t8Si)dn(g) = f^ u(g^kglg^dui(g)

for all k, /£ K. Thus, integrating over K with respect to k and /, we
obtain

(w^(^) a.b)= w(g^) w(g^) f cJ(i) d^(g) . l
G

2.5. THEOREM. - For any function F G L1 n L2(X, f) and any
a;Gn+' ^o/17) ^ a Hilbert-Schmidt operator in H^. The function
^ ~^ 117^^(F)llH.s. is continuous and square integrable with respect
to the Plancherel measure, and satisfies

f ^ \ F ( g ) \ 2 d g = f ^ ||7r,(F)||^.^. (6)
"0

The mapping F ->• (ff^(F))^ can be extended uniquely to an
isometry of I/(X , ^) into the Hilbert space of square integrable vector
fields of Hilbert-Schmidt operators.

Proof. - The function h = F* * F is bi-invariant and positive
definite. The measure Slh(w)du in the Godement-Plancherel theorem
is bounded, so S>h is integrable. By the inversion theorem we then have

^ I F(g) I2 dg = h(e) = / ^ §th(G}) dw ,
"o

but since v^(h) = ir^(F)* ff^(F) is in the trace class, ir^(F) is a
Hilbert-Schmidt operator and
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^(0;)== ^7r^(/2)==||7r^(F)||^s. .

The extension to L^X,^) is classical, cf. [8]. 0

3. Characterization of Grinvariant semigroups.

We shall now deal with the question of determining the strongly
continuous contraction-semigroups of submaikovian operators in
L^X , ^), which commute with the action ofG in X.

3.1. LEMMA. — In order that a bounded operator T in L^X, $)
satisfies

i) T(X(5) F) = \(s) T(F) for all s 6 G, F C L^X , ^).
ii) IfQ < F < 1 ̂ -a.e., rA^ 0 < TF < 1 $-a.e. (T is submarkovian)

it is necessary and sufficient that there is a positive bi-invariant measure
jn on G with 11^11 < 1, such that TF = F * ^ for all FG L2(X, $).

The measure ^ is uniquely determined.

Proof, — It is immediate to verify that TF = F * ^ defines a
bounded operator with the properties i) and ii).

For the converse we proceed as follows :
a) We first assume that TF is continuous for every F € L2 (X , f).

It is easy to see that i) implies that T(F)^ = T(F^) for all F e 9<:(X).
The mapping F ^ T^F^)^) is a positive linear form on 9<;(G), so
it defines a positive Radon measure p. on G, which is clearly bi-
invariant and of total mass < 1.

For F€3<:(X) we have

F * Vi(e) = / F d[t = T(F11) (e) = T(F)15 (e) == T(F) (e) ,

and finally for any g € G

F * n(g-1) = [\(g) F] * yi(e) = T(X(g) F) (e) = \(g) T(F) (e) =
=T(F)QT1) .
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By the density of3<:(X) in L^X, S) it follows that TF = F * ^
for all FGL^X,^ .

b) In the general case we consider the operators

T v F = T F * ( ^ , FGL^X^) ,

where (^) is an approximative identity. Now Ty satisfy i) and ii) and
the condition of case a), so there is a positive bi-invariant measure ^ly
with j l ^ y l l ^ 1 suc!1 lhat TyF = F * iiy. If^Li is a vague accumulation
point for the net (^ly)? ^ ls easy t° see that TF ==J7 * fi (in L2(X, $))
for all F G 3C(X), and then for all F € L^X, £). B

If in the above correspondence ^ is associated with T, the adjoint
operator T* is associated with jSi, and if S is another operator of the
same type associated with v, then ST is associated with p. * v. This
proves in particular that two bounded operators in L^(X , {) commute,
if they satisfy the conditions of the lemma. The identity operator is
associated with the normalized Haar measure a?^ ot K (considered as
a measure on G).

DEFINITION. — A vaguely continuous convolution semigroup on
G is a family (^)^>o of positive bi-invariant measures on G satisfying

i) ^ * ̂  = ^+^ , s, t > 0 , ̂  = O?K .
ii) llMjK 1.
iii) fif -> 0?^ vaguely as t -^ 0.
Under these conditions we even have ̂ (/) "> C^K^) ^or r ^ 0

for all continuous bounded functions /. It is then easy to obtain the
following result :

3.2. THEOREM. — There is a one to one correspondence between
strongly continuous contraction-semigroups 0\)^o of operators in
L^X, {) satisfying i) and ii) of lemma 3.1, and vaguely continuous
convolution semigroups (^)y>o on G' The correspondence is given by

T , F = F * ^ , t>0 , FGL^X,^ .

DEFINITION. — A continuous function p : ̂ + -> C is called po-
sitive definite, i f p = ^ for some (necessarily unique) positive measure
^eM^G)^.
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Notice that |p((xj)| <p(l) =11^11 for all ^C^.
A continuous function q : ^+ -» C is called negative definite, if

q(l) > 0 and if exp(— ^7) is positive definite for all t > 0.
Notice that

|^-^(^)|<^^(i)< i ^ ^G^ ,

for all r > 0. This implies that Req >q(\) > 0.
The sets % and & of positive and negative definite functions are

convex cones containing the positive constant functions. The cone %
is even stable under multiplication.

In § 5 we are concerned with an intrinsic characterization of
these cones.

3.3. THEOREM. — There is a one to one correspondence between
negative definite functions q on S24' and vaguely continuous convo-
lution semigroups (^)^>o on ^ J ' ^e correspondence is given by

y^o}) =e~tq(w) , t>0 , c^en'' . (7)

Proof. — If (^)^>o is given, and c^Gft^ is fixed, there is a
uniquely determined complex number ff(co) such that (7) is fullfilled
for all t > 0. Since all the functions exp(— fq\ t > 0 are continuous
on the locally compact space R'1', the next lemma shows that q is
continuous. Since exp(— tq(l)) = Hjn^ || < 1 for all t > 0, we have
qW> 0.

Conversely, if q is negative definite, we have by definition a
family (^)y>o °^ positive bi-invariant measures satisfying (7). Conse-
quently we have

S?(^ * ̂ ) == ^(^)^(^) ̂ -(^^ = ̂ (^^) ,

which shows the semigroup property. The formula

^*^*)=,/\ ^(^^(c^e-^^da; , (^,^e3<:(G)^,
^o

implies that ^(<p * ^*) -> a;K((p * ^*) for t -^ 0, because

k-^>| = |^(o;)| < I I ^ H = e-^< l>< 1 .
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This is sufficient to ensure the continuity property of the semi-
group. 0

3,4, LEMMA. — Let f : Y -^ R be a real function on a compact
Hausdorff space Y. // f^ : Y -> C given as

f,(y)=exp(itf(y))
is continuous for every t E R, then f is continuous.

Proof. — Let T be the group of complex numbers with absolute
value 1 and define

P : R -^ T^ as j3(;c) (t) = exp(itx) .

By definition j3 o / is continuous, so j3(/(Y)) is compact. A
theorem of Glicksberg [7] then shows, that /(Y) is compact in R,
and now it is easy to prove that /is continuous, fl

Remarks. — The lemma extends to ^-spaces, in particular to
locally compact spaces. On the other hand, if we put Y = j3(R),
/ = fT1 we get an example which shows, that the lemma is false for
topological spaces in general.

Note that a positive definite function p = §̂  on S2"*" is real if
and only if p. is symmetric (p, = ^), and consequently a negative
definite function q on ft'1' is real (and then positive) if and only if
the corresponding convolution semigroup (p-t\>o ^^i^s of sym-
metric measures. It follows from corollary 2.3, that the measures ̂
are positive definite in this case.

4. Characterization of G-invariant Dirichlet forms.

4.1. THEOREM. — There is a one to one correspondence between
G-invariant Dirichlet forms (Q , V) on L^X,^) and real negative
definite functions q on ft'*'. The correspondence is given by

Q(F) = / Jl ̂ (F) 11̂  q(^)d^ for F G V , (8)
°o
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and V is the set of functions F € L^X , f) /or w/wA r^ integral in
(8) ^ /irn .̂

Proof. - By the general theorem of Beurling and Deny (cf. [3]),
there is a one to one correspondence between the Dirichlet forms
(Q,V) on L^X,^) and the strongly continuous contraction-semi-
groups (Ty)^o of hermitian and submarkovian operators in L2(X , {).
The correspondence is given by

,. / I >. Q(F) for F E V
hm (- (F - T,F),F) =
t^t ) - for FEL^X^AV.

The Dirichlet form (Q , V) is G-invariant if and only if each of
the operators T^ satisfy i) of lemma 3.1. (For the "only if part one
considers the semigroup T^F = X (s-1) T:^\(s) F), s€ G).

The correspondence is now proved by theorem 3.2 and 3.3. In
order to prove (8), we use the expressions

T , F = F * ^ , ^(o;)^-^) (9)

For FCL 1 nL^X,^) we get by theorem 2.5 and lemma 2.4

( -^ (F-T ,F) ,F)=(F^(^-^) ,F)=

= f^ tr (^(F)* ̂ (F * } (^K - ̂ ))) ̂

= /^ ^7^<.((Fil6iltF)* l(^K-^))^=
^o

=^ }< l-^( '))ll^(F)ll^s.^.

By continuity, this formula holds for all FeL^X,^). When t
decreases to zero, F^l - exp(- tq(c^))) increases to q(^\ and the
proof is finished. |

If G is compact, H^, is of finite dimension N^, and can be taken
to be the subspace ofL^X , $) spanned by the functions \(s) a;, s E G.
Furthermore L^X , $) is the Hilbert sum of the spaces H^,, co G S^,
so F G L^X , {) has a L2-expansion
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F = S P F—— CJ ?CJo>en

where P^ is the orthogonal projection on H^ . It turns out that

P o , F = N ^ F * a ; . IIP^FII^N^IlTr^F)!!^..

Formula (8) is now reduced to

Q(F)= S I I^FI I 2 ^)^ (10)
W€^

because ft'1' is discrete, and the Plancherel measure has the mass N^ in
a). (Note that ft = ̂  = ft^). This generalizes results for the sphere
[1].

In the case G = '11 x U where 01 is a compact group and K is
the diagonal in G, we obtain a characterization of the Dirichlet forms
on the compact group '11, which are invariant under the inner auto-
morphisms of^.

Finally, in the case where G is abelian, K =={(?} , theorem 4.1
reduces to the theorem of Beurling and Deny [3 p. 190].

5. Positive and negative definite functions on ft^

We now introduce intrinsic definitions of positive and negative
definite functions.

DEFINITION. - A continuous function p : ̂  •-> C is called a
fD-function, if the following property holds :

V^ , . . . , ^GC,Vc^ .....c^G^

(Re(S a,G}\ >0 on G ^ R e f V a,p^)\ > 0\ .
^^i / \ ,= i / /

A continuous function q : ^+ -> C is called a W-function if
q(l) > 0, and if the following property holds :
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Vfl, , . . . , a,, €E C , Vo>i ,.. . , ̂  € ̂ +

" n
(Z a(=°>Re(£ a(W,)>o on G-> Re( ̂  a, <7(U())< o) .

^ »~1 / V^^ / /

5.1. THEOREM. — Every positive (resp. negative) definite function
on ft4' is a PD- (resp. ND-^ function.

Proof. - If p =Sifji for /nEM^G)^ and if

/ w \
Re(S a ,c^)>0 on G ,\ , = i /

we have

Re ( f ^P(^,)) = ̂  Re( ̂  a, ̂ (g)) dil(g) > 0 .

Suppose n@xt that ^ is negative definite and that
n w

Re ( ^ fl?, a;,.) > 0 on G with ^ a, = 0 .
^ i = i f 1=1

This implies that for all t > 0

R.( 2_., 1 (,-,-"<".>)) <0,

n '
and for t -> 0 we get R e / ^ ^,<7(a;,)V<0. fl

\ , = = i /

The converse to theorem 5.1 is not true in general, because there
are symmetric spaces of rank one, for which 1 is an isolated point in
S^, [12](1). On the other hand it is simple to check that PD- and
ND-functions are usual continuous positive and negative definite func-
tions on ^+ in the case of G abelian, K =={e} , in the case of which
^+ is the character group of G.

We shall now prove that the converse of theorem 5.1 is true,
whenever G is compact.

(1) In these cases the function p(cj) = 0 for a? ^ 1, p(\) = 1 is a PD-function,
but not a positive definite function.
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5.2. THEOREM. - (1) IfG is compact, then every PD- (resp. ND-)
function is a positive (resp. negative) definite function.

Proof. - a) The subspace E of 3C(G)11 spanned by the spherical
functions a; G Sl^ i$ dense in 3<;(G)^ under the uniform norm (lemma
2.1). I fp is given to be a PD-function, we can in a unique way extend
p to a linear form Lp : E -^ C, namely

n n

Lp(S ,̂) = S ^P(^) .^,<

^=1 / i=iV / s l / /=l

The definition of a PD-function implies that L is real and posi-
tive, and consequently continuous. This shows that there is a uniquely
determined positive bi-invariant measure ^ on G such that

Lp(/)==//^ for all fCE ,

in particular ^(o?) = p(o;) for all a; E S^.
b) Let <7 : ft4' -> C be a ND-function. We define the operator A

in E by
n nA ( Z fl* ̂ i) = ~ S ^ ̂ (^) ̂^1=1 / 1=1

and shall prove that A satisfies the maximum principle :
n

If /= ^ 0,0;, satisfies Re/(^) = sup Re/> 0 for some
1=1 G

go^G, then Re A/(^) < 0.
n

To see this put A = ^ a, a^o) c^ , so that
'1=1 ' " : '

sup Reh > Re AO?) = Re/(^) > 0 .

Next, note that P^(c^) = o;(^o) G;(^) is a positive definite function
on ̂  for fixed ^, so since

(1) A mild modification of the proof gives that the theorem is valid in the non-
compact case if all the functions c^e^Vl} tend to 0 at infinity, and if 1
is not an isolated point in ^+. These conditions are satisfied for instance for
the symmetric spaces of euclidean type and the real and complex hyperbolic
spaces.
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Pe ( f(8o) 1 - S a, c^) > 0 on G ,
v /=! /

we get
n

Re (/(^) - I a, p (c^)) > 0 ,
v /= i a /

that is Re A < Re f(g^) .
This shows that sup Re A = Re h(e) > 0, so we have

( n
Re h(e) . 1 - ̂  ^ c^o) ̂ ,) > 0 on G ,

1=1 /

which implies that

Re(h(e)q(l)- § a, Cx;,(^)^(a;,)) < 0 ,
1=1 /

i.e. Re Af(g^) <i-q(l)Reh(e) < 0 .

c) We next show that (XI - A) E = E for X > 0, where I is the
identity operator on E.

For any c^E^ we have Re(l - a?) > 0 on G, which implies
that Re<7(o0 > Req(\) == q(l) > 0. Since

(XI - A)( S ^^) = £ (X + 4(^))a,o;, ,
^=1 / i= i

it is clear that (XI -- A) E = E for X > 0 and that

(XI-A)-(t ^)=f —————^^^i / / = i X + q(^)

In particular (XI - A) E is dense in 3C(G)^ for X > 0, and then
one knows (cf. [2] or [13]), that the closure of A is the infinitesimal
generator of a Feller semigroup (P^)^o on ^(G)^. (One should think
of 9^(0^ as the space of continuous functions on the double coset
space K\G/K).

The resolvent (V^\>o of the semigroup is given as V^ = (XI - A)"1

on E. We therefore obtain

exp (/X(XV, - I)) ( 1 a, ̂ ) = f exp (- -̂ i( )̂ a, ̂  .
^i=l / 1=1 ^ A + Q(^iV
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For X tending to oo we get

/ " \ "
Pr( S ^^i} = S exp(-^(c^))^a;, ,

^1=1 ' /=!

which shows that exp(- tq) is a PD-function for all t > 0. I
In the important case where G is a noncompact connected semi-

simple Lie group with finite center, and K a maximal compact subgroup
of G, the negative definite functions on ^+ can be expressed by a
Levi-Khinchine formula due to Gangolli [6].

In this case we have

5.3. LEMMA. - Let q : ̂  -> R be a real negative definite func-
tion. If q is not identical zero, then q(a}) > 0 for all 0} E S2^ .

Proof. - For a; G Sl^ it is well known that o?(x) -> 0 forx -> oo
in G (Theorem 2 p. 585 in [10]). Consequently { x € G | o;(;c) = 1} is
a compact set, but just by the fact that a; is positive definite, it follows
that {x e G | G}(X) = 1} is a subgroup. Thus, by the maximality of K,
we conclude that {x € G | o?(x) = 1} = K.

If we suppose that q(c^) = 0 for some G; G ft^ , we have by (7)
that

1 = S^(co) = f Re(^(x)d^(x) for all t > 0 ,
G

which implies that supp ̂  C K, || ̂  || = 1 for all t > 0. Since JLI^ is
bi-invariant, we must have ^ = a?^ for all t > 0 i.e. q = 0. I

If we furthermore suppose that X is of rank 1 the following
holds :

For x CG\K, the function (^ ^ cj(x) tends to zero at infinity
on the locally compact space Sl^.

For a proof, see f. ex. [5, th. 2]. It seems to be unknown whether
the same property holds for higher rank.

This has the following consequence :

5.4. COROLLARY. — Suppose that X is a symmetric space of non-
compact type and of rank 1, and that q : Sl^ -^ R is a real negative
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definite function not identical zero. Then there is a constant a > 0
such that q(o^) > a for all <jj G Sl^.

Proof - Put a = inf{<?(G;)|c«jeno} and suppose that a = 0.
We then have a sequence G;̂  Gft^ such that lim q(c^n) = 0. Suppose
that some subsequence cj^ is contained m a compact subset of S^o .
For a cluster point o?o of a?,, we would then have ^(o?o) = 0, and
then q is identical zero. Thus c^ -^ oo in 12̂  . By (7) we have

ojj^) d^(x) = ^ ^^ for all t > 0 .xG

The above property of the spherical functions implies that the
integral tends to ^(K), so we get ^(K) = 1 for all t > 0. Consequently
we have ̂  = Cx^ for all t > 0 and thus q = 0, which is a contradiction. B

6. Characterization of G-invariant Dirichlet spaces.

Let (Q,V) be a G-invariant Dirichlet form on L^X,^). It is
known (cf. [3]) that Q is positive definite and that the completion V
of V under the norm Q172 is a Dirichlet space if and only if

/ (T/F , F) dt < oo for all F G ̂ (X) , (11)

(Tf\>Q being the corresponding semigroup.
Using the expressions (9) this condition amounts to the requi-

rement that

^117^-(F)I^S• ^rf"<oo 02)

for all F<=3<^(X). (l|7rJF)||^ g is a function in C^) n ̂ (ft; ,do;)).
For any coen^ there is^e^^G)^ such that |^(o?)|2 > 0,

and (12) then implies that \lq is integrable over some neighbourhood
of 0} with respect to the Plancherel measure. We have thus proved :

6.1. LEMMA. - Let (Q , V) be a G'invariant Dirichlet form and
suppose that Q is positive definite and that the completion V of V
under Q172 is a Dirichlet space. Then Ifq ^^^oc^S »da))•
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We do not know whether the converse of lemma 6.1 is valid in
general, i.e. if 1/^JE ̂  (S^, d^\ is it then true that Q is positive
definite and that V is a (necessarily G-invariant) Dirichlet space ?

This is known however in the abelian case (see [3]), and we shall
now prove it in the compact case and when X is a symmetric space of
noncompact typeof rank 1.

6.2. THEOREM. - Suppose that G is compact and let (Q , V) be
a G-invariant Dirichlet form on L^X,^) mth associated negative
definite function q. Then l / q EJ?^ (^, dcj) if and only ifq(l) > 0,
and in this case Q is positive definite. Moreover, V is a regular, G-
invariant Dirichlet space under the norm Q172.

Proof. - Recall that ̂  is discrete and that q(cj) > q(l) for all
coG^, which by (10) implies that

Q(F)>^(1)| |F| |2 for all F G V .

This shows that Q is positive definite, and since V is complete under
the norm (|1F||2 + Q(F))172, V is also complete under Q172, and this
proves that V is a Dirichlet space. It is obvious that V is regulai,
because all the functions \(s) co, s E G, a? € ̂  are contained in V. B

6.3. THEOREM. — Suppose that X = G/K is a symmetric space of
noncompact type of rank 1, and let (Q , V) be a G-invariant Dirichlet
form on L^X,^) mth associated negative definite function q not
identical zero.

Then Q is positive definite and V is a regular G-invariant Dirichlet
space under the norm Q172.

Proof. - By corollary 5.4 there is some constant a > 0 such that
qr(o?) > a for all a? G S2^ , and from (8) we then get the inequality

Q(F)>a||F||2 f o r a l l F E V .

This proves as above that Q is positive definite and that V is a Dirichlet
space under Q172. The regularity of V is proved like in [3]. [

Let (^),>o be the vaguely continuous convolution semigroup
corresponding to q satisfying the conditions in one of the two theo-
rems. We have
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^(<P * ^*) = f , ^(GO) 1^) C-̂ ) rfco
»$

for all <^, V/ ea^G)11, and since l / q is bounded over 12̂  , we get

/*00 r — ^—— 1
J ^(^*^*)^=J , ^(a;)^(a;)——do;

o , "o ^(a;)
for all <p, ^e^G)11.

Now, since any function f€9C^(G) can be dominated by a
function of the form <p * ^116, where (^?, ^ €3<;^(G)^, the formula

^ = ^ ^A

defines a positive definite, positive and bi-invariant measure v on G
satisfying

^ * V/*) = / ^ ^^(cj)i^(o;) —— dcj , ,̂ V/ E ̂ (G)^.
"o ^(<A;)

The measure (/ is the potential kernel of the Dirichlet space V : The
potential generated by F G 3C(X) is (represented by) the function
F * v.

Since V C L^X , ^), we have proved that the potentials of fmite
enei-gy are square integrable with respect to { under the hypothesis of
theorem 6.2 or 6.3. This in turn implies, that any function in L^X , $)
is a measure of finite eneigy.
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