ROGER C. MCCANN On absolute stability

Annales de l'institut Fourier, tome 22, nº 4 (1972), p. 265-269 http://www.numdam.org/item?id=AIF_1972__22_4_265_0

© Annales de l'institut Fourier, 1972, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 22, 4 (1972), 265-269.

ON ABSOLUTE STABILITY by Roger C. McCANN

55

It is well known that absolute stability of a compact subset M of a locally compact metric space can be characterized by the presence of a fundamental system of absolutely stable neighbourhoods, and also by the existence of a continuous Liapunov function V defined on some neighbourhood of $M = V^{-1}(0)$, [1]. Here we characterize the absolute stability of M in terms of the cardinality of the set of positively invariant neighbourhoods of M.

Throughout this paper R and R^+ will denote the reals and non-negative reals respectively. A rational number r is called dyadic if and only if there are integers n and j such

that
$$n \ge 0, 1 \le j \le 2^n$$
, and $r = \frac{1}{2n}$

A dynamical system on a topological space X is a mapping π of X × R into X satisfying the following axioms (where $x\pi t = \pi(x, t)$):

(1) $x \pi 0 = x$ for $x \in X$.

(2) $(x\pi t)\pi s = x\pi(t+s)$ for $x \in X$ and $t, s \in \mathbb{R}$.

(3) π is continuous in the product topology.

If $M \subset X$ and $N \subset R$, then $M\pi\bar{N}$ will denote the set $\{x\pi t : x \in M, t \in N\}$. A subset M of X is called positively invariant if and only if $M\pi R^+ = M$. A point $x \in X$ is called a critical point if and only if $x\pi R = \{x\}$. A subset M of X is called stable if and only if every neighbourhood of M contains a positively invariant neighbourhood of M.

A Liapunov function for a positively invariant compact subset M of X is a continuous mapping V of a neighbourhood W of M into R⁺ such that $V^{-1}(0) = M$ and $V(x\pi t) \leq V(x)$ for $x \in W$ and $t \in R^+$.

Absolute stability is defined in terms of a prolongation and is characterized by the following theorem, [1].

THEOREM. — Let M be a compact subset of a locally compact metric space. Then the following are equivalent:

(i) There is a Liapunov function V for M.

(ii) M possesses a fundamental system of absolutely stable neighbourhoods.

(iii) M is absolutely stable.

LEMMA 1. — Let $A \subseteq R$ be uncountable. Then there exists an $x \in A$ such that every neighbourhood of x contains uncountably many elements of A.

Proof. - [4, 6,23, III]. The following is a consequence of Lemma 1.

LEMMA 2. — Let $A \subseteq R$ be uncountable. Then there exists an $x \in A$ such that the sets $\{y \in A : y < x\}$ and $\{y \in A : x < y\}$ are uncountable.

LEMMA 3. — Let S and T be relatively compact sets of a locally compact connected metric space X and \mathfrak{D} a family of open sets of X such that

(i) for every $U \in \mathfrak{D}, \overline{S} \subset U \subset \overline{U} \subset T$,

(ii) if $U, V \in \mathfrak{D}$, then either $\overline{U} \subset V$ or $\overline{V} \subset U$. Then there is a $W \in \mathfrak{D}$ such that the sets $\{U \in \mathfrak{D} : U \subset W\}$ and $\{U \in \mathfrak{D} : W \subset U\}$ are uncountable.

Proof. — Since X is connected, the boundary ∂U of $U \in \mathfrak{D}$ is nonempty. If $U \in \mathfrak{D}$, then ∂U is compact since T is relatively compact. Let d be a metric on X and define $f: \mathfrak{D} \to \mathbb{R}^+$ by $f(U) = d(\overline{S}, \partial U)$. If U, $V \in \mathfrak{D}$ with $\overline{U} \subset V$, then f(U) < f(V). Let A be the image of \mathfrak{D} under f.

Then f is a one-to-one order preserving mapping of \mathfrak{D} onto A. A is uncountable since \mathfrak{D} is such. By Lemma 2 there is an $x \in A$ such that the sets $\{y \in A : x < y\}$ and

266

 $\{y \in A : y < x\}$ are uncountable. Set $W = f^{-1}(x)$. It is easily verified that

$$\{ U \in \mathfrak{D} : U \subset W \} = \{ f^{-1}(y) : y < x \}, \\ \{ U \in \mathfrak{D} : W \subset U \} = \{ f^{-1}(y) : x < y \},$$

and that both sets are uncountable.

THEOREM 4. — A nontrivial compact subset M of a locally compact connected metric space is absolutely stable if and only if M possesses a fundamental system \mathcal{F} of open positively invariant neighbourhoods such that

(i) for each $U \in \mathcal{F}$, the set $\{V \in \mathcal{F} : V \subset U\}$ is uncountable,

(ii) if U, $V \in \mathcal{F}$, then either $\overline{U} \subset V$ or $\overline{V} \subset U$.

Proof. — Since X is connected, no nontrivial subset of X is both open and closed. If M is absolutely stable, then there is a continuous Liapunov function V for M. Set $\mathcal{F} = \{ V^{-1}([0, r)] : r \text{ in the range of } V \}$. It is easily verified that \mathcal{F} possesses the desired properties. Now assume that $\mathcal F$ is a fundamental system of open positively invariant neighbourhoods of M with properties (i) and (ii). For each dyadic rational we will construct a set $U(r) \in \mathcal{F}$ such that $U(r) \subset U(S)$ whenever r < s. We first obtain from \mathcal{F} a fundamental system of neighbourhoods $\left\{ U\left(\frac{1}{2^n}\right): n \text{ a non-} \right\}$ negative integer} such that $U\left(\frac{1}{2^{n+1}}\right) \subset U\left(\frac{1}{2^n}\right)$ and the set $\left\{ \mathbf{A} \in \mathcal{F} : \ \mathbf{U}\left(\frac{1}{2^{n+1}}\right) \subset \mathbf{A} \subset \mathbf{U}\left(\frac{1}{2^{n}}\right) \right\}$ is uncountable. This is done by induction in the following manner. Let N_i be a countable fundamental system of neighbourhoods of M. Let $U(1) \subset N_1$ be an element of \mathcal{F} which is relatively compact. Suppose that $U\left(\frac{1}{2^n}\right)$ has been defined. By Lemma 3 and property (ii), there is a $B \in \left\{ W \in \mathcal{F} : W \subset U\left(\frac{1}{2^n}\right) \right\}$ such that $B \subset N_{n+1}$ and both $\{W \in \mathcal{F} : V \subset B\}$ and $\frac{1}{2}$

$$\left\{ W \in \mathcal{F} \colon B \subset V \subset U\left(\frac{1}{2^n}\right) \right\}$$

are uncountable. Set $U\left(\frac{1}{2^{n+1}}\right) = B$. Now extend this system to one with the desired properties. For example, we chose $U\left(\frac{3}{4}\right)$ to be any element C of \mathscr{F} such that the sets $\left\{W \in \mathscr{F} : U\left(\frac{1}{2}\right) \subset V \subset C\right\}$ and $\{W \in \mathscr{F} : C \subset V \subset U(1)\}$ are uncountable. This is possible by the properties of the sets $U\left(\frac{1}{2^n}\right)$ and Lemma 3. Now define V: $U(1) \rightarrow R^+$ by $V(x) = \inf \{r : x \in U(r)\}$. Evidently V(x) = 0 if and only if $x \in M$. If $x \in U(r)$ and $t \in R^+$, then $x \pi t \in U(r)$ since U(r)is positively invariant. Therefore,

 $V(x) = \inf \{r : x \in U(r)\} \ge \inf \{r : x \pi t \in U(r)\} = V(x \pi t).$ The continuity of V is proved as in the proof of Urysohm's lemma. Thus we have constructed a Liapunov function for M. M is absolutely stable.

Example. — Let X = [-1, 1], $M = \{0\}$, and π be the dynamical system indicated by the following diagram where the points $\pm 2^{-n}$, n a non-negative integer, are critical points.

$$-\frac{1}{2}$$
 $-\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ 1

Clearly M is stable. The only open positively invariant neighbourhoods of M are X and intervals of the form $(-2^{-m}, 2^{-n})$ where m and n are non-integers. There are only countably many such neighbourhoods. Hence, M is not absolutely stable.

PROPOSITION 5. — Let X be the plane and p an isolated critical point. If each neighbourhood of p contains uncountably many periodic trajectories (cycles), then p is absolutely stable.

Proof. — Let W be a disc neighbourhood of p which contains no critical points other than p. A cycle C is a Jordan curve and, hence, decomposes the plane into two components, one bounded (denoted by int C) and the other unbounded. If C is a cycle, then int C contains a critical point, [3, VII, 4.8]. Hence, if C is a cycle in W, then C is the boundary of a neighbourhood (necessarily invariant) of p. It can be shown (the proof is almost identical with that of Proposition 1.10 of [6]) that if C_1 and C_2 are distinct cycles in W, then either $int C_1 \subset int C_2$ or $int C_2 \subset int C_1$. Theorem 4 may now be applied to obtain the desired result.

Another characterization of absolute stability of compact sets is found in [5]. Non-compact absolutely stable sets are characterized in [3].

BIBLIOGRAPHY

- J. AUSLANDER, P. SEIBERT, Prolongations and stability in dynamical systems, Ann. Inst. Fourier, Grenoble, 14 (1964), 237-268.
- [2] O. HAJEK, Dynamical Systems in the Plane, Academic Press, London, 1968.
- [3] O. HAJEK, Absolute stability of non-compact sets, J. Differential Equations 9 (1971), 496-508.
- [4] K. KURATOWSKI, Topology Vol. I, Academic Press, London, 1966.
- [5] R. MCCANN, Another characterization of absolute stability, Ann. Inst. Fourier, Grenoble, 21,4 (1971), 175-177.
- [6] R. McCANN, A classification of centers, Pacific J. Math., 30 (1969), 733-746.

Manuscrit reçu le 7 février 1972, accepté par M. Reeb.

Roger C. McCANN, Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44 106 (USA).