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MIN-MAX THEORY FOR MINIMAL HYPERSURFACES
WITH BOUNDARY

by Camillo DE LELLIS & Jusuf RAMIC

Abstract. — In this note we propose a min-max theory for embedded hyper-
surfaces with a fixed boundary and apply it to prove several theorems about the
existence of embedded minimal hypersurfaces with a given boundary. A simpler
variant of these theorems holds also for the case of the free boundary minimal
surfaces.
Résumé. — Dans ce travail nous proposons une théorie « de Min-Max » pour

hypersurfaces plongées ayant un bord prescrit. Nous donnons plusieurs applications
de cette théorie à l’existence de solutions du problème de Plateau. Des variantes
plus simple des nos théoremes sont aussi valides pour les hypersurfaces minimales
avec frontière libre.

1. Introduction

The primary interest of this note is the following question, which has
been posed to us by White:

(Q) Consider two minimal strictly stable embedded hypersurfaces Σ0
and Σ1 in Rn+1 which have the same boundary γ; is there a third
smooth minimal hypersurface Γ2 with the same boundary?

In this note we anser positively, under some suitable assumptions, cf. Corol-
lary 2.9: the main one is that γ lies in the boundary of a smooth strictly
convex subset of Rn+1, but there are also two other assumptions of tech-
nical nature, which we discuss at the end of the next section.
If we regard Σ0 and Σ1 as two local minima of the Plateau’s problem, we

expect that a “mountain pass lemma” type argument yields a third mini-
mal surface Γ2 which is a saddle point. This intuition has a long history,

Keywords: Minimal surfaces, Min-Max theory, Plateau problem.
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1910 Camillo DE LELLIS & Jusuf RAMIC

which for closed geodesics goes back to the pioneering works of Birkhoff and
Ljusternik and Fet (cf. [6, 23]). In the case n = 2 the first results regard-
ing the Plateau’s problem are due to Shiffman [33] and Morse and Tomp-
kins [26], using the parametric approach of Douglas–Rado, which therefore
answers positively to question (Q) if we drop the requirements of embed-
dedness of the surfaces.
Using a degree theory approach to the Plateau problem, Tromba [39, 40]

was able to derive a limited Morse theory for disk-type surfaces, gener-
alizing the Morse–Shiffman–Tompkins result. M. Struwe [36, 37, 38] then
developed a general Morse theory for minimal surfaces of disk and annulus
type, based on the H1,2 topology (as opposed to the C0 topology used
in Morse–Shiffman–Tompkins approach). These (and other related works)
were expanded by Jost and Struwe in [19], where they consider minimal
surfaces of arbitrary topological type. Among other things, they succeed in
applying saddle-point methods to prove the existence of unstable minimal
surfaces of prescribed genus.
It is well-known that the parametric approach breaks down when n > 3.

For this reason in their celebrated pioneering works [4, 5, 27] Almgren
and subsequently Pitts developed a variational calculus in the large using
geometric measure theory. The latter enabled Pitts to prove in [27] the ex-
istence of a nontrivial closed embedded minimal hypersurface in any closed
Riemannian manifold of dimension at most 6. The higher dimensional case
of Pitts’ theorem was then settled by Schoen and Simon in [31]. A variant
of the Almgren–Pitts theory was later introduced by Simon and Smith (cf.
Smith’s PhD thesis [35]) in the 2-dimensional case, with the aim of pro-
ducing a min-max construction which allows to control the topology of the
final minimal surface. Further investigations in that direction were then
set forth by Pitts and Rubinstein in [28, 29], who also proposed several
striking potential applications to the topology of 3-manifolds. Part of this
program was carried out later in the papers [7], [9], [20] and [8], whereas
several other questions raised in [28, 29] constitute an active area of re-
search right now (see for instance [25]). Currently, min-max constructions
have gained a renewed interest thanks to the celebrated recent work of
Marques and Neves [24] which uses the Almgren–Pitts machinery to prove
a long-standing conjecture of Willmore in differential geometry (cf. also
the paper [2], where the authors use similar ideas to prove a conjecture of
Freedman, He and Wang in knot theory).
All the literature mentioned above regards closed hypersurfaces, namely

without boundary. The aim of this paper is to provide a similar framework
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MINIMAL SURFACES WITH BOUNDARY 1911

in order to attack analogous existence problems in the case of prescribed
boundaries. The real issue is only in the boundary regularity of the final
min-max surface, as the interior regularity and much of the existence setting
can be extended without problems. When the boundary γ is lying in the
boundary of a strictly convex set, our theorems give full regularity of the
min-max hypersurface in any dimension. The most relevant difficulty in
the proof can be overcome thanks to a beautiful idea of Brian White,
whom we thank very warmly for sharing it with us, cf. [41]: the elegant
argument of White to get curvature estimates at the boundary is reported
in Section 7.4. In passing, since many of the techniques are essentially
the same, we also handle the case of free boundaries, which for n = 2
has already been considered by Grüter and Jost in [17] and by Li in [21]
(modifying the Simon–Smith approach and reaching stronger conclusions).
Slightly after completing this work we learned that a more general approach
to the existence of minimal hypersurfaces with free boundary has been
taken at the same time by Li and Zhou in [18, 22]. Note in particular
that in [22] the authors are able to prove their existence even without the
assumption of convexity of the boundary.
Our min-max constructions use the simpler and less technical framework

proposed by the first author and Tasnady in [10], which is essentially a
variant of that developed by Pitts in his groundbreaking monograph [27].
It allows us to avoid a lot of technical details and yet be sufficiently self-
contained, but on the other hand there are certain limitations which Pitts’
theory does not have. However, several of the tools developed in this paper
can be applied to a suitable “boundary version” of Pitts’ theory as well
and we believe that the same statements can be proved in that framework.
Similarly, we do not expect any problems in using the same ideas to extend
the approach of Simon and Smith when the boundary is prescribed.

Acknowledgements. Both authors acknowledge the support of the
Swiss National Foundation. Moreover, they wish to express their grati-
tude to the anonymous referee who has pointed out several mistakes in an
earlier version of the paper.

2. Main statements

Consider a smooth, compact, oriented Riemannian manifold (M, g) of
dimension n + 1 with boundary ∂M. We will assume that ∂M is strictly
uniformly convex, namely:

TOME 68 (2018), FASCICULE 5
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Theorem 2.1. — The principal curvatures of ∂M with respect to the
unit normal ν pointing insideM have a uniform, positive lower bound.

Sometimes we write the condition above as A∂M � ξg, where ξ > 0,
A∂M denotes the second fundamental form of ∂M (with the choice of
inward pointing normal) and g the induced metric as submanifold of M.
We also note that we do not really need M to be C∞ since a limited
amount of regularity (for instance C2,α for some positive α) suffices for all
our considerations, although we will not pay any attention to this detail.
We start by recalling the continuous families of hypersurfaces used in [10].

Definition 2.2. — We fix a smooth compact k-dimensional manifold
P with boundary ∂P (possibly empty) and we will call it the space of
parameters.
A smooth family of hypersurfaces in M parametrized by P is given by

a map t 7→ Γt which assigns to each t ∈ P a closed subset Γt of M and
satisfies the following properties:

(s1) For each t there is a finite St ⊂M such that Γt is a smooth oriented
hypersurface inM\ St with boundary ∂Γt ⊂ ∂M\ St;

(s2) Hn(Γt) is continuous in t and t 7→ Γt is continuous in the following
sense: for all t and all open U ⊃ Γt there is ε > 0 such that

Γs ⊂ U for all s with |t− s| < ε;

(s3) on any U ⊂⊂M\ St0 , Γt
t→t0−→ Γt0 smoothly in U .

Remark 2.3. — There is indeed an important yet subtle difference be-
tween the above definition and the corresponding one used in [10]. In the
latter reference the families of hypersurfaces {Γt}t are also assumed to
have underlying families of open sets {Ωt}t which vary continuously (more
precisely t 7→ 1Ωt is continuous in L1) and such that ∂Ωt = Σt. For this
reason, in a lot of considerations where [10] invokes the theory of Cacciop-
poli sets, we will need to consider more general integral currents, allowing
for multiplicities higher than 1; cf. Remark 5.5 and Section 10.3.

From now on we will simply refer to such objects as families parametrized
by P and we will omit to mention the space of parameters when this is
obvious from the context. Additionally we will distinguish between two
classes of smooth families according to their behaviour at the boundary
∂M.

Definition 2.4. — Consider a smooth, closed submanifold γ ⊂ ∂M of
dimension n − 1. A smooth family of hypersurfaces parametrized by P is

ANNALES DE L’INSTITUT FOURIER
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constrained by γ if ∂Γt = γ \ St for every t ∈ P. Otherwise we talk about
“uncostrained families”.
Two unconstrained families {Γt} and {Σt} parametrized by P are homo-

topic if there is a family {Λt,s} parametrized by P × [0, 1] such that:
• Λt,0 = Σt ∀ t ∈ P,
• Λt,1 = Γt ∀ t ∈ P,
• and Λt,s = Λt,0 ∀ t ∈ ∂P and for all s ∈ [0, 1].

When the two families are constrained by γ we then require addition-
ally that the family {Λt,s} is also constrained by γ. Finally, a set X of
constrained (resp. unconstrained) families parametrized by the same P is
called homotopically closed if X includes the homotopy class of each of its
elements.

Definition 2.5. — Let X be a homotopically closed set of constrained
(resp. unconstrained) families parametrized by the same P. The min-max
value of X, denoted by m0(X) is the number

(2.1) m0(X) = inf
{

max
t∈P
Hn(Σt) : {Σt} ∈ X

}
.

The boundary-max value of X is instead

(2.2) bM0(X) = max
t∈∂P

{Hn(Σt) : {Σt} ∈ X} .

A minimizing sequence is given by a sequence of elements {{Σt}`} ⊂ X

such that
lim
`↑∞

max
t∈P
Hn(Σ`t) = m0(X).

Amin-max sequence is then obtained from a minimizing sequence by taking
the slices {Σ`t`}, for a choice of parameters t` ∈ P such that Hn(Σ`t`) →
m0(X).

As it is well known, even the solutions of the codimension one Plateau
problem can exhibit singularities if the dimension n + 1 of the ambient
manifold is strictly larger than 7. If we say that an embedded minimal
hypersurface Γ is smooth then we understand that it has no singularities.
Otherwise we denote by Sing(Γ) its closed singular set, i.e. the set of points
where Γ cannot be described locally as the graph of a smooth function. Such
singular set will always have Hausdorff dimension at most n − 7 and thus
with a slight abuse of terminology we will anyway say that Γ is embedded,
although in a neighborhood of the singularities the surface might not be a
continuous embedded submanifold. When we write dim(Sing(Γ)) 6 n − 7
we then understand that the singular set is empty for n 6 6.

TOME 68 (2018), FASCICULE 5
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Our main theorem is the following.

Theorem 2.6. — Let M be a smooth Riemannian manifold that sat-
isfies Assumption 2.1 and X be a homotopically closed set of constrained
(resp. unconstrained) families parametrized by P such that

(2.3) m0(X) > bM0(X) .

Then there is a min-max sequence {Σ`t`}, finitely many disjoint embedded
and connected compact minimal hypersurfaces {Γ1, . . . ,ΓN} with bound-
aries ∂Γi ⊂ ∂M (possibly empty) and finitely many positive integers ci
such that

Σ`t` ⇀∗
∑
i

ciΓi

in the sense of varifolds and dim(Sing(Γi)) 6 n− 7 for each i. In addition:
(a) If X consists of unconstrained families, then each Γi meets ∂M

orthogonally;
(b) If X consists of families constrained by γ, then we have:

∑
∂Γi = γ,

Sing(Γi) ∩ ∂M = ∅ for each i and ci = 1 whenever ∂Γi 6= ∅.

Our main concern is in fact the case (b), because the regularity at the
boundary requires much more effort. The regularity at the boundary for
the case (a) is instead much more similar to the usual interior regularity
for minimal surfaces and for this reason we will not spend much time on it
but rather sketch the needed changes in the arguments. As an application
of the main theorem we give the following two interesting corollaries.

Corollary 2.7. — Under the assumptions above there is always a non-
trivial embedded minimal hypersurface Γ inM, meeting the boundary ∂M
orthogonally, with dim(Sing(Γ)) 6 n− 7.

Note that the corollary above does not necessarily imply that Γ has
nonempty boundary: we do not exclude that Γ might be a closed mini-
mal surface. On the other hand, if Γ has nonempty boundary, then it is
contained in ∂M and any connected component of Γ is thus a nontriv-
ial solution of the free boundary problem. Therefore the existence of such
nontrivial solution is guaranteed by the following

Theorem 2.8. — M does not contain any nontrivial minimal closed
hypersurface Σ embedded and smooth except for a singular set Sing(Σ)
with dim(Sing(Σ)) 6 n− 7.

Note that the property above holds ifM satisfies some stronger convexity
condition than Assumption 2.1: for instance if there is a point p such that
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M \ {p} can be foliated with convex hypersurfaces, then it follows from
the maximum principle. In particular both the Assumptions 2.1 and 2.8
are satisfied by any bounded convex subset of the Euclidean space, or by
any ball of a closed Riemannian manifold with radius smaller than the
convexity radius.

Likewise, under the very same assumptions we can conclude the following
Morse-theoretical result for the Plateau’s problem.

Corollary 2.9. — LetM be a smooth Riemannian manifold satisfy-
ing Assumptions 2.1 and 2.8 and let γ ⊂ ∂M be a smooth, oriented, closed
(n− 1)-dimensional submanifold. Assume further that:

(i) there are two distinct smooth, oriented, minimal embedded hyper-
surfaces Σ0 and Σ1 with ∂Σ0 = ∂Σ1 = γ which are strictly stable,
meet only at the boundary and bound some open domain A (in
particular Σ0 and Σ1 are homologous).

Then there exists a third distinct embedded minimal hypersurface Γ2 with
∂Γ2 = γ such that dim(Sing(Γ2)) 6 n− 7 and Sing(Γ2) ∩ ∂M = ∅.

The corollary above asks for two technical assumptions which are not
really natural:

• Σ0 and Σ1 intersect only at the boundary;
• they are regular everywhere.

We use both to give an elementary construction of a 1-dimensional sweep-
out which “connects” Σ0 and Σ1 (i.e. a one-parameter family {Σt}t∈[0,1]),
but by taking advantage of more avdanced techniques in geometric mea-
sure theory and algebraic topology, as for instance Pitts’ approach via dis-
cretized faimly of currents, it should suffice to assume that Σ0 and Σ1 are
homologous and that the dimensions of their singular sets do not exceed
n− 7.
The smoothness enters however more crucially in showing that any sweep-

out connecting Σ0 and Σ1 must have a “slice” with n-dimensional volume
larger than max{Hn(Σ0),Hn(Σ1)}. It is needed to take advantage of an
argument of White [42], where regularity is a key ingredient. The following
local minimality property could replace strict stability and smoothness:

• For each i ∈ {0, 1} there is a ε > 0 such that any current Γ with
boundary γ which is distinct from Σi and at flat distance smaller
than ε from Σi has mass strictly larger than that of Σi.

TOME 68 (2018), FASCICULE 5
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3. Notation and outline of the paper

3.1. Outline of the paper

The Corollaries 2.7 and 2.9 will be shown in the very last section of the
paper (cf. Section 12). The remaining part will instead be entirely devoted
to prove Theorem 2.6.

First of all in the Section 4 we will introduce two adapted classes of
stationary varifolds for the constrained and unconstrained case, which are
a simple variants of the usual notion of stationary varifold introduced by
Almgren. Then in Proposition 4.2 we prove the existence of a suitable
sequence of families {{Σt}`} in X with the property that each min-max
sequence generated by it converges to a stationary varifold: the argument
is a straightforward adaptation of Almgren’s pull-tight procedure used in
Pitts’ book and in several other later references (indeed we follow the pre-
sentation in [7]).
In the Sections 5 and 6 we adapt the notion of almost minimizing sur-

faces used in [10] to the case at the boundary and we ultimately prove the
existence of a min-max sequence which is almost minimizing in any suffi-
ciently small annulus centered at any given point, cf. Proposition 5.3. The
arguments follow closely those used by Pitts in [27] and a trick introduced
in [10] to avoid Pitts’ discretized families. The min-max sequence gener-
ated in Proposition 5.3 is the one for which we will conclude the properties
claimed in Theorem 2.6. Indeed the interior regularity follows from the ar-
guments of Pitts (with a suitable adaptation by Schoen and Simon to the
case n > 6) and we refer to [10] for the details. The remaining sections are
thus devoted to the boundary regularity.

First of all in Section 7 we collect several tools about the boundary be-
havior of stationary varifolds (such as the monotonicity formulae in both
the constrained and uncostrained case and a useful maximum principle in
the constrained one), but more importantly, we will use a very recent argu-
ment of White to conclude suitable curvature estimates at the boundary in
the constrained case, under the assumption that the minimal surface meets
∂M transversally in a suitable (quantified) sense, cf. Theorem 7.14.
In Section 8 we recall the celebrated Schoen–Simon compactness the-

orem for stable minimal hypersurfaces in the interior and its variant by
Grüter and Jost in the free boundary case. Moreover, we combine the
Schoen–Simon theorem with Theorem 7.14 to conclude a version of the
Schoen–Simon compactness theorem for stable hypersurfaces up to the
boundary, when the latter is a fixed given smooth γ and the surfaces meet

ANNALES DE L’INSTITUT FOURIER
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∂M transversally. In Section 10 we modify the proof in [10] to construct
replacements for almost minimizing varifolds. The main difficulty and con-
tribution here is to preserve the boundary conditions for the surfaces in
the constrained case, throughout the various steps of the construction. Fol-
lowing the arguments in [10], we analogously define the (2m+2j)−1 - homo-
topic Platau problem for j ∈ N, and we conclude that in sufficiently small
balls, the corresponding minimizers are actually minimizing for the (usual)
Plateau problem. Hence their regularity (with no singular points!) at the
boundary will follow from Allard’s boundary regularity in [3]. Finally the
tools of Section 8 and Section 10 are used in Section 11 to conclude the
boundary regularity of the minmax surface and hence complete the proof
of Theorem 2.6.

3.2. Notation

Since we are always dealing with manifolds M which have a nonempty
boundary, as it is customary an open subset U ofM can contain a portion
of ∂M. For instance, ifM is the closed unit ball in Rn+2, P the north pole
(0, 0, . . . , 1) and Ũ a neighborhood of P in Rn+2, then Ũ ∩M is, in the
relative topology, an open subset ofM. Hence, although we will denote by
Int(M) the setM\∂M, the latter is not the topological interior ofM and
our notation is slightly abusive. In the following table we present notations,
definitions and conventions used consistently throughout the paper:
Bρ(x), Bρ(x) open and closed geodesic balll of radius ρ

and center x inM;
∂Bρ(x) geodesic sphere of radius ρ and center x inM
Int(U) “interior” of the open set U , namely U \ ∂M;
Inj(M) injectivity radius ofM;
An(x, τ, t) open annulus Bt(x) \Bτ (x);
AN r(x) the set {An(x, τ, t) with 0 < τ < t < r};
diam(G) diameter of a subset G ⊂M;
Hk k-dim Hausdorff measure inM;
ωk volume of the unit ball in Rk;
ν unit normal to ∂M, pointing inwards
spt support (of a function, vector field, varifold,

current, etc.);
Xc(U) smooth vector fields χ with spt(χ) ⊂ U (note that

such χ do not necessarily vanish on ∂M!);
X0
c(U) χ ∈ Xc(U) which vanish on ∂M;

TOME 68 (2018), FASCICULE 5
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Xtc(U) χ ∈ Xc(U) tangent to ∂M, i.e. χ · ν = 0;
X−c (U) χ ∈ Xc(U) pointing inwards at ∂M (χ · ν > 0);
Vk(U),V(U) vector space of k-varifolds in U ;
Gk(U), G(U) Grassmanian bundle of unoriented k-planes on U ;
[[S]] (rectifiable) current induced by the k-dimensional

submanifold S (taken with multiplicity 1);
the same notation is used for the corresponding
rectifiable varifold

M(S) mass norm of a current S;
F(S) flat norm of a current S;
v(R, θ) varifold induced by the k-rectifiable set R, with

multiplicity θ;
W0 the set {(x1, . . . , xn+1) ∈ Rn+1 : |xn+1| 6 x1 tan θ}

with θ ∈]0, π2 [ which we will refer to as the
canonical wedge with opening angle θ.

Note that all of the different spaces of vector fields introduced above
(namely Xc(U), X0

c(U), Xtc(U) and X−c (U)) coincide when U ∩ ∂M = ∅.
Otherwise we have the inclusions

X0
c(U) ⊂ Xtc(U) ⊂ X−c (U) ⊂ Xc(U) ,

which are all proper. Additional clarifications on the differences are pro-
vided in the next section. For the notation and terminology about currents
and rectifiable varifolds we will follow [34]. However we warn the reader
that, unless we specify that a given varifold is integer rectifiable, in general
it will be not and will be understood as a suitable measure on the space of
Grassmanians, according to [34, Chapter 8].

4. Existence of stationary varifolds

The first step in the min-max construction consists of finding a nice mini-
mizing sequence having the property that any min-max sequence belonging
to it converges to a stationary varifold. From now on we will denote the
subset of stationary varifolds by Vs(M) (or simply Vs): the latter is the
space of varifolds V such that δV (χ) = 0 for any vector field X0

c(M), where
δV denotes, as usual, the first variation of V (we refer to [34] for the rel-
evant definition). We will however consider two slightly smaller subclasses
of Vs, depending on whether we are dealing with the constrained or uncon-
strained problem. To get an intuition consider the one-parameter families
of smooth maps Φτ generated by vector fields in Xc following their flows
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and observe first that such family of smooth maps are keep fix any point
x 6∈ U . Concerning the points in U (more precisely those in U ∩ ∂M), we
have the following different behaviors:

(C) If χ ∈ X0
c(U) then, for every τ , Φτ is a diffeomorphism ofM onto

itself which is the identity on ∂M;
(T) If χ ∈ Xtc(U) then, for every τ , Φτ is a diffeomorphism ofM onto

itself which maps ∂M∩ U onto itself;
(I) If χ ∈ X−c (U) then Φτ is a well-defined map for τ > 0, but not

necessarily for τ < 0; moreover, for each τ > 0, Φτ is a diffeomor-
phism of M with Φτ (M) ⊂ M, but in general Φτ (M) will be a
proper subset of M, i.e. Φτ rather than mapping ∂M into itself
might “push it inwards”.

It is thus clear that Xtc is a natural class of variations for the uncostrained
problem, whereas a vector field in X−c gives a natural (one-sided) variation
for the constrained problem if we impose that it vanishes on the fixed
boundary γ. This motivates the following

Definition 4.1. — In the “constrained” min-max problem, where the
boundary constraint is γ, we introduce the set Vcs(M, γ) (or shortly Vcs(γ))
which consists of those varifolds satisfying the condition

(4.1) δV (χ) > 0 for all χ ∈ X−c (M) which vanish on γ.

In the “unconstrained” min-max problem we introduce the set Vus which
consists of those varifolds which are stationary for all variations in χ ∈
Xtc(M):

(4.2) δV (χ) = 0 for all χ ∈ Xtc(M).

Clearly, since X0
c(M) ⊂ Xtc(M), Vus is a subset of the stationary varifolds

Vs. Note moreover that, if χ ∈ X0
c(M), then both χ and −χ belong to

X−c (M) and vanish on γ: therefore we again conclude Vcs(γ) ⊂ Vs.
For the purpose of this section, we will consider the subset V(M, 4m0)

of varifolds with mass bounded by 4m0 = 4m0(X) (the latter being the
minmax value of Theorem 2.6). Recall that the weak* topology on this set
is metrizable, and we choose a metric D which induces it. We are now
ready to state the main technical proposition of this section which, as
already mentioned, will be proved using the classical pull-tight procedure
of Almgren.

TOME 68 (2018), FASCICULE 5
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Proposition 4.2. — Let X be a homotopically closed set of smooth
families parametrized by P, such that (2.3) is satisfied. Then:

(C) In the problem constrained by γ there exists a minimizing sequence
{{Γt}`} ⊂ X such that, if {Γ`t`} is a min-max sequence, then
D(Γ`t` ,V

c
s(γ))→ 0;

(U) In the unconstrained problem there exists a minimizing sequence
{{Γt}`} ⊂ X such that, if {Γ`t`} is a min-max sequence, then
D(Γ`t` ,V

u
s )→ 0.

Proof. — In what follows we will use Vcs in place of Vcs(γ) for the con-
strained case. In order to simplify our discussion, we introduce the notation
X−(U, γ) for the class of vector fields which belong to X−c (U) and vanish
on γ. We can repeat the first two steps in the proof of [7, Proposition 4.1]
verbatim, the only exception being that we consider vector fields in Xtc(M)
or X−(M, γ) and thus we replace Vs with Vus and Vcs in the respective
cases. Since both these sets of vector fields are convex subsets of X(M),
the vector field HV produced in [7, Proof of Proposition 4.1, Step 1] will
also belong to the same class. This way we obtain a map Ψ as in [7, Proof
of Proposition 4.1, Step 3], which sends each varifold V ∈ V(M, 4m0) to
a 1-parameter family of maps ΨV : [0,∞) ×M → M, and a continuous,
strictly increasing function L : R→ R s.t. L(0) = 0, with the property that

if η = D(V,V�s ) > 0, then ||ΨV (1, · )]V ||(M) 6 ||V ||(M)− L(η) ,

where � is either u or c, depending on the case considered. The map
ΨV (s, · ) is given by following the one-parameter family of diffeomorphisms
generated by T (V )HV where the “speed” T is a nonnegative continuous
function as in [7, Proof of Proposition 4.1, Step 2] with V�s replacing the
space of all stationary varifolds. In particular T is zero on V�s and thus
ΨV (s, · )]V = V for any varifold in V�s . Note moreover that in the uncon-
strained case ΨV (s, · ) is a diffeomorphism from M to itself, whereas in
the constrained case it is a diffeomorphism of M with ΨV (s,M) which
however keeps γ fixed.
At this point we diverge slightly from [7] and introduce the set

V∂ := {Ξt | t ∈ ∂P, {Ξt} ∈ X} ,

which is a closed subset of V(M). Note that, according to our notion of
homotopy in Definition 2.4, this definition is independent of the family
{Ξt} ∈ X we choose. We define b(V ) := min{D(V,V∂), 1} for V ∈ V(M),

ANNALES DE L’INSTITUT FOURIER



MINIMAL SURFACES WITH BOUNDARY 1921

and remark that b : V(M) → R is a continuous function. A quick compu-
tation as in [7, Proof of Proposition 4.1, Step 2] yields

(4.3) ||ΨV (b(V ), · )]V ||(M) 6 ||V ||(M)− b(V )L(D
(
V,V�s )

)
.

We now renormalize the diffeomorphisms ΨV by setting

ΩV (s, · ) = ΨV (b(V )s, · ), s ∈ [0, 1] .

We proceed exactly the same as in the rest of [7, Proof of Proposition 4.1,
Step 3], only with Ω instead of Ψ, and a different parameter space P.
Hence, if we start with a sequence of families {{Σt}`} ⊂ X such that
maxt∈P Hn(Σ`t) 6 m0(X) + 1

` , we consider for each ` the map

h` : P → X−(M, γ) (or Xtc(M)),

given by h`t = b(Σ`t)T
(
D(Σ`t,V�s )

)
HΣ`t : such smooth vector field generates

ΩΣ`t . Note that h`t = 0 for t ∈ ∂P. Moreover the map h` is continuous if
Xc(M) is endowed with the topology of Ck-seminorms. We next smooth
the mapp t 7→ h`t by keeping it 0 on ∂P. Consider now the 1-parameter
family of maps generated by such smoothing, which (by a slight abuse of
notation) we still denote by Ω`t(s, · ). We are ready to define a new family
Γ`t = Ω`t(1,Σ`t) Since Ω`t(s, · ) is the identity for t ∈ ∂P, the new family
{Γ`t}t is homotopic to {Σlt}t. By the rest of the construction and (4.3),
assuming that the smoothing of h`t is sufficiently close to it, we then have

(4.4) Hn(Γ`t) 6 Hn(Σ`t)− b(Σ`t)L
(
D(Σ`t,Vs)

)
+ 1
`
.

Moreover, there will be an increasing continuous map λ : R+ → R+ with
λ(0) = 0 and

(4.5) D(Σ`t,V�s ) > λ
(
D(Γ`t,V�s )

)
.

Finally, we claim that for every ε, there exist δ > 0 and N ∈ N such that

(4.6) if
{

k > N

and Hn(Γ`t`) > m0 − δ

}
, then D(Γ`t` ,V

�
s ) < ε.

Let us therefore fix ε > 0. Considering that b(W ) = 0 ∀W ∈ V∂ , the conti-
nuity of mass of varifolds clearly implies that, if we set ξ := m0(X)−bM0(X)

2 ,
then for all V ∈ V(M) with Hn(V ) > m0 − ξ = bM0(X) + ξ we have
b(V ) > c(ξ) > 0. We will choose 0 < δ < ξ and N ∈ N satisfying

c(ξ)L(λ(ε))
2 − δ > 1

N
.

Assume now, contrary to (4.6), there are k > N and t ∈ P such that

Hn(Γ`t`) > m0 − δ and D(Γ`t` ,V
�
s ) > ε.
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Then, by (4.4), (4.5) and the fact that Hn(Σ`t`) > H
n(Γ`t`) > m0 − δ >

m0 − ξ, we get

Hn(Σ`t`) > H
n(Γ`t`) + δ + c(ξ)L(λ(ε))

2 − δ − 1
`

> m0 + 1
N
− 1
`
.

This contradicts maxt∈P Hn(Σ`t) 6 m0(X) + 1
` for ` large enough, and

thus completes the proof of claim (4.6), which in turn implies the
proposition. �

5. Almost minimizing property

Following its introduction by Pitts [27], an important concept to achieve
regularity for stationary varifolds produced by min-max theory is that of
almost minimizing surfaces. Roughly speaking, a surface is almost minimiz-
ing if any area-decreasing deformation must eventually pass through some
surface with sufficiently large area. The precise definition we require here
is the following:

Definition 5.1. — Let ε > 0, U ⊂ M be an open subset, and fix
m ∈ N. A surface Σ is called ε-almost minimizing in U if there is no family
of surfaces {Σt}t∈[0,1] satisfying the properties:

(s1), (s2) and (s3) of Definition 2.2 hold;(5.1)
Σ0 = Σ and Σt \ U = Σ \ U for every t ∈ [0, 1];(5.2)
Hn(Σt) 6 Hn(Σ) + ε

2m+2 for all t ∈ [0, 1];(5.3)
Hn(Σ1) 6 Hn(Σ)− ε(5.4)

A sequence {Ωi} of surfaces is called almost minimizing (or a.m.) in U if
each Ωi is εi-almost minimizing in U for some sequence εi → 0 (with the
same m).

Remark 5.2. — The definition above is practically the same as the one
given in [10] when m = 1. The generalization is due to the more general
parameter space P. To be precise, we will henceforth fix m ∈ N such that
P can be smoothly embedded into Rm.

The main goal of this section is to prove an existence result regarding
almost minimizing property in annuli:
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Proposition 5.3. — LeX be a homotopically closed set of (constrained
or unconstrained) families inMn+1, parameterized by a smooth, compact
k-dimensional manifold P (with or without boundary), and satisfying the
condition (2.3). Then there is a function r : M → R+ and a min-max
sequence {Γk} = {Γktk} such that:

• {Γk} is a.m. in every An ∈ AN r(x)(x) with x ∈M;
• {Γk} converges to a stationary varifold V as k → ∞; the varifold
V belongs to Vcs(γ) in the constrained case, whereas it belongs to
Vus in the unconstrained case.

An important corollary of the above proposition is the interior regularity,
for which we refer to [10]. We record the consequence here

Proposition 5.4. — The varifold V of Proposition 5.3 is a regular em-
bedded minimal surface in Int(M), except for a set of Hausdorff dimension
at most n− 7.

Remark 5.5. — As already noticed in Remark 2.3, there is indeed a dif-
ference between the families considered here and the ones of [10]. For this
reason, one cannot literally apply the statements in [10] to conclude Propo-
sition 5.4 from Proposition 5.3. However, this difference only requires a
small technical adjustment, which is illustrated in Section 10.3.

In order to prove Proposition 5.3 we will be following the strategy laid
out in Section 5 of [7] (see also Section 3 of [10]), which contains a similar
statement. In fact, the main difference is the significant generalization of the
parameter space P. The case of higher dimensional cubes was covered in the
master thesis of Fuchs [12], and in this paper, some necessary modifications
were made. The key ingredient of the proof is a combinatorial covering
argument, a variant of the original one by Almgren and Pitts (see [27]),
and which we therefore refer to as the Almgren–Pitts combinatorial lemma.
We will use it to prove Proposition 5.3 at the end of this section, and its
proof will be provided in the next one.

Definition 5.6. — Let d ∈ N and U1, . . . , Ud be open sets in M. A
surface Σ is said to be ε-almost minimizing in (U1, . . . , Ud) if it is ε-a.m.
in at least one of the open sets U1, . . . , Ud.

Furthermore, we define

dist(U, V ) := inf
u∈U,v∈V

dg(u, v)

as the distance between the two sets U and V (dg being the Riemannian
distance).
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Finally, for any d ∈ N we denote by COd the set of d-tuples (U1, . . . , Ud),
where U1, . . . , Ud are open sets with the property that

dist(U i, U j) > 4 ·min{diam(U i),diam(U j)}

for all i, j ∈ {1, . . . , d} with i 6= j.

We require also the following lemma as preparation:

Lemma 5.7. — Let p ∈ N. Then there exists ωp ∈ N with the following
property:
(CA) Assume F1 = (U1

1 , . . . , U
ωp
1 ), . . . ,F2p = (U1

2p , . . . , U
ωp
2p ) are 2p fam-

ilies of open sets with the property that

(5.5) dist(U ji , U
j′

i ) > 2 ·min{diam(U ji ),diam(U j
′

i )}

for all i ∈ {1, . . . , 2p} and for all j, j′ ∈ {1, . . . , ωp} with j 6= j′.
Then we can extract 2p subfamilies Fsub1 ⊂ F1, . . . ,Fsub2p ⊂ F2p

such that:
– dist(U, V ) > 0 for all U ∈ Fsubi , V ∈ Fsubj s. t. i, j ∈ {1, . . . , 2p}

and i 6= j;
– Fsubi contains at least 2p open sets for every i ∈ {1, . . . , 2p}.

Proof. — Let F1, . . . ,F2p be as in the assumption (CA), with ωp some
(natural) number, to be fixed later. Note that, if U ∈ Fi and V 1, . . . V l ∈ Fs
with i 6= s and diam(U) 6 diam(V j), j ∈ {1, . . . , l}, then there is at most
one j ∈ {1, . . . , l} with dist(U, V j) = 0. Otherwise, assuming there are
two such sets V j1 , V j2 with dist(V j1 , U) = 0, dist(V j2 , U) = 0 and w.l.o.g.
diam(V j1) 6 diam(V j2), we would get

dist(V j1 , V j2) 6 diam(U) 6 diam(V j1),

which contradicts the assumption (5.5). Now, in order to produce the sub-
families, one can employ the following algorithm:

• take all the sets in all the families and arrange them in an ascending
order with respect to their diameters, left to right (from smallest
to largest). In the first step, fix the leftmost set;

• at each step of the process, remove all the sets to the right of the
fixed set which are at distance zero with respect to it. Furthermore,
if to the left of the currently fixed set there are 2p − 1 remaining
sets from the same family Fi, remove all the sets to the right which
belong to the same family (the latter operation will be called, for
convenience, “clearing of the family Fi”);

• move on to the first (remaining) set to the right of the previously
fixed set, fix it, and repeat the step above.
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We claim that the remaining sets build the desired subfamilies. Firstly, it is
obvious from the construction that for any two remaining sets U, V we have
dist(U, V ) > 0. Secondly, we see from the consideration at the beginning
of the proof that at each step we remove at most one set from each family
to which the fixed set does not belong to (and none from the same family,
due to (5.5)). Finally, since any family that reaches 2p remaining elements
is removed from the process, it can account for no more than 2p removed
elements from any other family. Hence, if for some Fi we do not reach the
stage at each we “clear” Fi, we have removed at most 2p(2p − 1) elements
from Fi and retained at most 2p − 1. Hence, if we choose any ωp > 4p we
can ensure that the clearing process happens for every family and thus that
we have selected at least 2p elements from each. �

Proposition 5.8 (Almgren–Pitts combinatorial lemma). — Let X be
a homotopically closed set of families as in Proposition 5.3. Assume P is
smoothly embedded into Rm, and let ωm be as in Lemma 5.7. Then there
exists a min-max sequence {ΓN} =

{
ΓNtN

}
such that:

• {ΓN} converges to a stationary varifold V , which belongs to Vcs(γ)
in the constrained case and to Vus in the unconstrained case;

• for any (U1, . . . , Uωm) ∈ COωm , ΓN is 1
N -a.m. in (U1, . . . , Uωm),

for N large enough.

We can now prove the main proposition as a corollary of the above.

Proof of Proposition 5.3. — We will show that a subsequence of {Γj} in
Proposition 5.8 satisfies the requirements. For each positive r1 < Inj(M)
and for each choice of r2, . . . , rω with the property that ri < 1

9ri−1 consider
the tuple (U1

r1
(x), . . . , Uωmrωm (x)) given by

U1
r1

(x) :=M\Br1(x);(5.6)

U lrl(x) := Br̃l(x) \Brl(x) where r̃l := 1
9rl−1 ;(5.7)

Uωmrωm := Brωm (x) where rωm 6
1
9rωm−1.(5.8)

Then, by definition, (U1
r1

(x), . . . , Uωmrωm (x)) ∈ COωm and Γj is therefore (for
j large enough) 1

j -a.m. in at least one U lrl(x), 1 6 l 6 ωm. Having fixed
r1 > 0, one of the following options holds:

(a) either {Γj} is (for j large) 1
j -a.m. in (U2

r2
(y), . . . , Uωmrωm (y)) for every

y ∈ M and every choice of r2, . . . , rω compatible with the require-
ment ri < 1

9ri−1;
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(b) or, for each K ∈ N, there exists some sK > K and a point xsKr1
⊂M

such that ΓsK is 1
sK

-a.m. inM\Br1(xsKr1
).

Assume there is no r1 > 0 such that (a) holds. Thus, choosing option (b)
with r1 = 1

j and K = j for each j ∈ N, we obtain a subsequence {Γsj}j∈N,
and a sequence of points {xsjj }j∈N ⊂ M such that Γsj is 1

sj
-a.m. in M \

B 1
j
(xsjj ). SinceM is compact, there exists some x ∈M such that xsjj → x.

We conclude that, for any N ∈ N, Γsj is 1
sj
-a.m. in M \ B 1

N
(x) for j

large enough. Consequently, if y ∈ M \ {x}, we can choose r(y) such that
Br(y)(y) ⊂⊂ M \ {x}, whereas r(x) can be chosen arbitrarily: with such
choice {Γsj} is a.m. in any annullus of AN r(z)(z) for any z ∈M.

Assume now that there is some fixed r1 > 0 such that (a) holds. Note
that, in this case, for any x there is a J (possibly depending on x) such that
Γj is not 1

j -a.m. in U1
r1

for all j > J . Due to compactness, we can divide the
manifold M into finitely many, nonempty, closed subsets M1, . . . ,MN ⊂
M such that:

• 0 < diam(Mi) < r̃2 = 1
9r1 for every i ∈ {1, . . . , N};

• M = ∪Mi.

Similar to the reasoning above, for eachMi, starting withM1, we consider
two mutually exclusive cases:

(a) either there exists some fixed r2,i > 0 such that {Γj} must be (for j
large) 1

j -a.m. in (U3
r3

(y), . . . , Uωmrωm (y)) for every y ∈ Mi and every
choice of radii r3, . . . , rωm with r3 <

1
9r2,i and rj < 1

9rj−1;
(b) or we can extract a subsequence {Γj}, not relabeled, and a sequence

of points {xi,j} ⊂ Mi such that Γj is 1
j -a.m. in Br̃2(xi,j) \B 1

j
(xi,j)

Again, if (b) holds, we know xi,j → xi ∈ Mi, and we can choose r(xi) ∈
(diam(Mi), r̃2). Accordingly, for any other y ∈ Mi, we can choose r(y)
such that Br(y)(y) ⊂⊂ Br(xi)(xi) \ {xi}. We proceed onto Mi+1, where
either (a) gets chosen, or we possibly extract a futher subsequence, and
define further values of the function r. For the subsetsMi1 , . . . ,Mil where
option (a) holds, we define r2 := min{r2,i1 , . . . , r2,il}, and then continue
iteratively, by first subdividing the sets and then considering the relevant
cases. Finally, note that if in the last instance of the iteration we choose
option (a) for certain subsets, it means that, in those sets, Γj must be (for
j large) 1

j -a.m. in Brωm (y) for some rωm > 0 and all y, hence we can choose
r(y) = rωm , and we are done. �

ANNALES DE L’INSTITUT FOURIER



MINIMAL SURFACES WITH BOUNDARY 1927

6. Almgren–Pitts combinatorial lemma

In this section, we turn to proving Proposition 5.8, which will be done
by contradiction. Assuming no min-max sequence (extracted from an ap-
propriate minimizing sequence) with the required property exists, we are
able to construct a competitor minimizing sequence {Σt}N with energy
(i.e. maxt∈P{Σt}N ), lowered by a fixed amount, thus reaching a contradic-
tion to the minimality of the original sequence. This will be done using two
main ingredients. The first is a technical lemma which enables us to use the
“static” variational principle in Definition 5.1 for a single, fixed time slice
to construct a “dynamic” competitor family of surfaces. This is achieved
by using a tool called “freezing”, introduced in [10] (see Lemma 3.1). The
statement and proof we present here are slightly different. In the rest of
this section we will use the notation Q(t0, r) for the p-dimensional cube
centered at t0 with sidelength 2r, namely

Q(t0, r) :=
{
t = (t1, . . . , tp) ∈ [0, 1]p

∣∣ ti0− r < ti < ti0 + r, ∀ i ∈ {1, . . . , p}
}
.

Lemma 6.1. — Let U ⊂⊂ U ′ ⊂M be two open sets, and {Ξt}t∈[0,1]p be
a smooth family parameterized by [0, 1]p, with p ∈ N fixed. Given an ε > 0
and t0 ∈ (0, 1)p, suppose {Σs}s∈[0,1] is a 1-parameter family of surfaces
satisfying properties (5.1)-(5.4), with Σ0 = Ξt0 and m = p. Then there is
an η > 0 such that the following holds for every a′, a with 0 < a′ < a < η:
There is a competitor (smooth) family {Ξ′t}t∈[0,1]p such that

Ξt= Ξ′t for t∈ [0, 1]p\Q(t0, a), and Ξt\U ′= Ξ′t\U ′ for t∈Q(t0, a);(6.1)

Hn(Ξ′t) 6 Hn(Ξt) + ε

2p+1 for every t ∈ [0, 1]p;(6.2)

Hn(Ξ′t) 6 Hn(Ξt)−
ε

2 for every t ∈ Q(t0, a′) .(6.3)

Moreover, {Ξ′t} is homotopic to {Ξt}.

Proof. — We prove the lemma in two steps.

Step 1: Freezing. — First we will choose open sets A1, A2 and B1, B2
satisfying

U ⊂⊂ A1 ⊂⊂ A2 ⊂⊂ B1 ⊂⊂ B2 ⊂⊂ U ′,
and such that Ξt0 ∩ C̃ is a smooth surface, where C̃ := B2 \ Ā1, which is
possible since Ξt0 contains only finitely many singularities. In a tubular δ-
neighborhood (w.r.t the normal bundle) of Ξt0∩C̃ we fix normal coordinates
(z, σ) ∈ (Ξt0 ∩ C̃) × (−δ, δ) (from now on we use the notation Ω × (α, β)
to identify those points of the tubular neighborhood which lie on top of
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Ω ⊂ Ξt0 and have signed distance bounded between α and β). By choosing
δ small enough and/or redefining Ai-s and Bi-s, we can ensure that (Ξt0 ∩
A2)× (−δ, δ) ⊂⊂ B1 and (Ξt0 ∩ B1)× (−δ, δ) ⊂⊂ B2. Now, after defining
the open sets A := A1 ∪

(
(Ξt0 ∩ A2) × (−δ, δ)

)
, and B :=

(
(B1 ∩ Ξt0) ×

(−δ, δ)
)
∪
(
B2 \ ((B̄2 ∩ Ξt0)× [−δ, δ])

)
, we set C := B \ Ā and deduce the

following properties:
(a) U ⊂⊂ A ⊂⊂ B ⊂⊂ U ′;
(b) Ξt0 ∩ C is a smooth surface;
(c) we can fix η > 0 such that Ξt ∩C is the graph of a function gt over

Ξt0 ∩ C for t ∈ Q(t0, η).
Note that the slightly complicated definitions above are only to ensure the
property (c), or in other words, that the set C is “cylindrical” near Ξt0 so
that Ξt ∩C can in fact be entirely represented as a graph over Ξt0 ∩C, i.e.
Ξt ∩ C = {(z, σ) | σ = gt(z), z ∈ Ξt0 ∩ C} ∀ t ∈ Q(t0, η).
Next, we fix two smooth functions ϕA and ϕB such that:
• ϕA + ϕB = 1;
• ϕA ∈ C∞c (B), ϕB ∈ C∞c (M\ Ā)

We then introduce the functions

gt,τ := ϕBgt + ϕAgτ , t, τ ∈ Q(t0, η), s ∈ [0, 1]

Since gt converges smoothly to gt0(= 0) as t→ t0, we can make supτ ‖gt,τ−
gt‖C1 arbitrarily small by choosing η small. Moreover, if we express the area
of the graph of a function g over Ξt0 ∩C as an integral functional of g, we
know that it only depends on g and its first derivatives. Thus, if Γt,τ is the
graph of gt,τ , we can find η small enough such that

(6.4) Hn(Γt,τ ) 6 Hn(Ξt ∩ C) + ε

2p+3 .

Now, given 0 < a′ < a < η, we choose a′′ ∈ (a′, a) and fix a smooth function
ϑ : Q(t0, a)→ Q(t0, η) which is equal to the identity in a neighborhood of
∂Q(t0, a) and equal to t0 in Q(t0, a′′). We now define a new family {∆t} as
follows:

• ∆t = Ξt for t /∈ Q(t0, a);
• ∆t \ B̄ = Ξt \ B̄ for all t;
• ∆t ∩A = Ξγ(t) ∩A for t ∈ Q(t0, a);
• ∆t ∩ C = {(z, σ) |σ = gt,ϑ(t), z ∈ Ξt0 ∩ C} for t ∈ Q(t0, a).

Note that {∆t} is a smooth family homotopic to {Ξt}, they both coincide
outside of B (and hence outside of U ′) for every t, and that in A (and
hence in U) we have ∆t = Ξϑ(t) for t ∈ Q(t0, a). Since ϑ(t) is equal to t0
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for t ∈ Q(t, a′′), it follows that ∆t ∩ U = Ξt0 ∩ U for t ∈ Q(t0, a′′), or in
other words, ∆ ∩ U is frozen in Q(t0, a′′). Furthermore, because of (6.4),

(6.5) Hn(∆t ∩ C) 6 Hn(Ξt ∩ C) + ε

2p+3 for t ∈ Q(t0, a).

Step 2: Dynamic competitor. — We fix a smooth function χ :Q(t0, a′′)→
[0, 1] which is identically 0 in a neighborhood of ∂Q(t0, a′′), and identically
1 on Q(t0, a′). We then define a competitor family {Ξ′t} in the following
way:

• Ξ′t = ∆t for t /∈ Q(t0, a′′);
• Ξ′t \A = ∆t \A for t ∈ Q(t0, a′′);
• Ξ′t ∩A = Σχ(t) ∩A for t ∈ Q(t0, a′′).

The new family {Ξ′t} is also a smooth family, which is obviously homotopic
in the sense of Definition 2.4 to {∆t} and hence to {Ξt}, so long as we ensure
a is small enough that Q(t0, a) ⊆ (0, 1)p. We can now start estimating
Hn(Ξ′t). For t /∈ Q(t0, a), we have Ξ′t = ∆t = Ξt, so

(6.6) Hn(Ξ′t) = Hn(Ξt) for t /∈ Q(t0, a).

For t ∈ Q(t0, a), we have Ξt \ B̄ = Ξ′t \ B̄ and hence Ξ′t \U ′ = Ξt \U ′. This
shows property (6.1) of the lemma.
In the set C we have Ξ′t = ∆t for t ∈ Q(t0, a), thus owing to (6.5),

Hn(Ξ′t)−Hn(Ξt) = [Hn(∆t ∩ C)−Hn(Ξt ∩ C)](6.7)
+ [Hn(Ξ′t ∩A)−Hn(Ξt ∩A)]

(6.5)
6

ε

2p+3 + [Hn(Ξ′t ∩A)−Hn(Ξt ∩A)].(6.8)

Next, we want to estimate the area in A for t ∈ Q(t0, a). To do so, we
consider several cases separately:

(i) Let t ∈ Q(t0, a) \ Q(t0, a′′). Then Ξ′t ∩ A = ∆t ∩ A = Ξγ(t) ∩ A.
However, t, γ(t) ∈ Q(t0, η) and, having chosen η small enough, we
can assume that

(6.9) |Hn(Ξs ∩A)−Hn(Ξσ ∩A)| 6 ε

2p+3 for every σ, s ∈ Q(t0, η).

Hence, we deduce with (6.7) that

(6.10) Hn(Ξ′t) 6 Hn(Ξt) + ε

2p+2 .
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(ii) Let t ∈ Q(t0, a′′) \ Q(t0, a′). Then Ξ′t ∩ A = Σχ(t) ∩ A. Therefore,
with (6.7) it follows

Hn(Ξ′t)−Hn(Ξt) 6
ε

2p+3 + [Hn(Ξt0 ∩A)−Hn(Ξt ∩A)](6.11)

+ [Hn(Σχ(t) ∩A)−Hn(Ξt0 ∩A)]
(5.3),(6.9)
6

ε

2p+3 + ε

2p+3 + ε

2p+2 = ε

2p+1 .

(iii) Let t ∈ Q(t0, a′). Then we have Ξ′t ∩A = Σ1 ∩A. Using (6.7) again,
we have

Hn(Ξ′t)−Hn(Ξt) 6
ε

2p+3 + [Hn(Σ1 ∩A)−Hn(Ξt0 ∩A)](6.12)

+ [Hn(Ξt0 ∩A)−Hn(Ξt ∩A)]
(5.4),(6.9)
6

ε

2p+3 − ε+ ε

2p+3 < −
ε

2 .

Gathering the estimates (6.6), (6.10), (6.11) and (6.12), we finally obtain
the properties (6.2) and (6.3) of the lemma, which concludes the proof. �

By retracing the steps of the previous proof, we can see that it allows for
(at least) two generalizations, which will be useful.

Remarks 6.2.
(1) Note that the choice to have the cubes Q(t0, a′) and Q(t0, a) cen-

tered at t0 is unnecessary and only for the sake of notational sim-
plicity. Indeed, with the appropriate choice of cut-off functions ψ, γ
and χ, the proof is almost identical if we replace them with cubes
Q(t1, a′) and Q(t2, a) (or even more general sets) that are nested
inside each other, i.e. Q(t1, a′) ⊂⊂ Q(t2, a) ⊂⊂ Q(to, η).

(2) The lemma also works with minimal modifications if the family
{Ξt} is parameterized by a k-dimensional smooth submanifold P
of [0, 1]p, with ∂P ∩ (0, 1)p = ∅ in case it has a boundary. One can
simply take restrictions of the relevant subsets of [0, 1]p to their
intersection with P, both in the statement and the proof.

In order to use the previous lemma to construct the aforementioned
competitor minimizing sequence and prove the Almgren–Pitts lemma, we
will require a combinatorial covering argument, which is the second main
ingredient. The idea is to decrease areas of certain “large-area” slices by a
definite amount, while simultaneously keeping the potential area increase
for other slices under control.
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Proof of Proposition 5.8. — Let {{Γ`t}}` ⊂ X be a minimizing sequence
which satisfies Proposition 4.2, and such that F({Γ`t}) := max

t∈P
Hn(Γ`t) <

m0(X) + 1
2m+2` . The following claim clearly implies the proposition:

Claim. — For every N large enough there exists tN ∈ P such that
ΓN := ΓNtN is 1

N -a.m. in every (U1, . . . , Uωm) ∈ COωm and Hn(ΓN ) >
m0(X)− 1

N .

We define

(6.13) KN :=
{
t ∈ P

∣∣∣∣ Hn(ΓNt ) > m0(X)− 1
N

}
and suppose, contrary to the claim, that there is some subsequence {Nj}j
such that for every t ∈ KNj there exists an ωm-tuple (U1, . . . , Uωm) such
that ΓNjt is not 1

Nj
-a.m. in it. After a translation and/or dilation, we can

assume, without loss of generality, that P ⊂ [0, 1]m (in the embedding).
Note that, if we assumeN to be large enough thatm0(X)−1/N > bM0(X),
the set KN will surely lie in the interior of P. In fact, in everything that
follows, it is tacitly assumed that the subsets of P we choose stay away
from ∂P, in order to comply with our definition of homotopic families.

By a slight abuse of notation, from now on we do not rename the subse-
quence, and also drop the super- and subscript N from ΓNt and KN . Thus
for every t ∈ K there is a ωm-tuple of open sets (U1,t, . . . , Uωm,t) ∈ COωm
and ωm families {Σi,t,τ}τ∈[0,1] such that the following properties hold for
every i ∈ {1, . . . , ωm}:

• Σi,t,0 = Γt;
• Σi,t,τ \ Ui,t = Γt \ Ui,t;
• Hn(Σi,t,τ ) 6 Hn(Γt) + 1

2m+2N ;
• Hn(Σi,t,1) 6 Hn(Γt)− 1

N .
By recalling the definition of COωm , for any t ∈ K and any i ∈ {1, . . . , ωm}
we can choose an open set U ′i,t such that Ui,t ⊂⊂ U ′i,t and

(6.14) dist(U ′i,t, U ′j,t) > 2 ·min{diam(U ′i,t),diam(U ′j,t)}

for all i, j ∈ {1, . . . , ωm} with i 6= j. Next, we apply Lemma 6.1 with
Ξt = Γt, U = Ui,t, U ′ = U ′i,t and Στ = Σi,t,τ . Hence, for every t ∈ K and
i ∈ {1, . . . , ωm} we get a corresponding constant ηi,t given by the statement
of the lemma.
Step 1: Initial covering. — We first assign to each t ∈ K exactly one

constant ηt, by setting ηt := mini∈{1,...,ωm} ηi,t. We would like to initially
decompose the cube [0, 1]m into a grid of small, slightly overlapping cubes,
such that we might be able to apply the constructions in Lemma 6.1 to each
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of those (after discarding the ones which have empty intersection with K).
For this, we would like their size to be smaller than the size of the cube
given by the lemma for any point lying in the center of one of these cubes.
Therefore, we choose a covering of K:Q(((2r1 + 1)η̃, . . . , (2rm + 1)η̃), η

)∣∣∣∣∣∣∣
r1, . . . , rm ∈ {1, . . . , ξ} and
Q
(
((2r1 + 1)η̃, . . . ,

(2rm + 1)η̃), η
)
∩K 6= ∅

 ,

where η̃ = 9
10η, ξ = min{n ∈ N0 | (2n + 1)η̃ > 1 − η}, and η is yet to be

determined.
Ideally, we would like η to be smaller than any ηt. The problem, however,

is that for each t ∈ K, the constant ηt (which is determined by the proof
of Lemma 6.1) depends also on the sets Ui,t, so one might not in general
expect to prove lower boundedness. Nevertheless, using Remark 6.2(1),
we deduce that if t0 ∈ K, then for any t ∈ Q(t0,

ηi,t0
2 ), the conclusions

of the lemma hold with η = ηi,t0
2 (t being the center of the cubes now),

and U = Ui,t0 . Therefore, for t (∈ K) close enough to t0, we can replace
(U1,t, . . . , Uωm,t) by (U1,t0 , . . . , Uωm,t0) if necessary. Now, we can start by
covering K with Q(t, ηt2 ), t ∈ K. Since K is compact, it suffices to pick
finitely many t0, . . . , tl with K ⊂

⋃
Q(ti,

ηti
2 ). We then set:

(6.15) η′ := min
j∈{0,...,l}

ηtj
2

Also note that for N large enough, because of condition (2.3), the set K
lies in the interior of P (in case it has a boundary). That means there
exists some η′′ > 0 such that for any cube Q(t, η′′) intersecting K we have
∂P ∩Q(t, η′′) = ∅.

We define η := min{η
′

4 , η
′′}, which determines the size of the cubes in

the covering. Furthermore, we set

r := (r1, . . . , rm);
tr := ((2r1 + 1)η̃, . . . , (2rm + 1)η̃)
Qr := Q

(
((2r1 + 1)η̃, . . . , (2rm + 1)η̃), η

)
To each Qr with tr ∈ K we can assign a ωm-tuple (U1,tr , . . . , Uωm,tr) ∈
COωm by assumption. On the other hand, to any cube Qr in the covering
(i.e. Qr∩K 6= ∅) where the center tr /∈ K, owing to Remark 6.2(1) and the
choice of η above, we can also assign (U1,t̃, . . . , Uωm,t̃) belonging to some
t̃ ∈ K, where we are able to apply Lemma 6.1. With a slight abuse of
notation, we will denote this tuple by (U1,tr , . . . , Uωm,tr).
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Step 2: Refinement of the covering. — Our aim is to find a refinement
{Qr(a)}, a ∈

{
− 2

5 ,
2
5
}m of the initial covering, such that:

(i) Qr(a) ⊂ Qr for any a;
(ii) for every r and every a there is a choice of Ua,tr such that:

• U ′a,tr ∈ {U
′
1,tr , . . . , U

′
ωm,tr},

• dist(U ′a,tr , U
′
a′,t′r

) > 0 if Qr(a) ∩Qr′(a′) 6= ∅;
(iii) every point t ∈ [0, 1]m is contained in at most 2m cubes Qr(a).

To do this, we cover each cube Qr with 2m smaller cubes in the following
way:

(6.16)
{
Q
((

(2r1 + 1)η̃ + a1η, . . . , (2rm + 1)η̃ + amη
)
,

3
5η
)

∣∣∣∣ a1, . . . , am ∈
{
−2

5 ,
2
5

}}
We simplify the notation by setting

a := (a1, . . . , am) ∈
{
−2

5 ,
2
5

}
;

Qr(a) := Q
((

(2r1 + 1)η̃ + a1η, . . . , (2rm + 1)η̃ + amη
)
,

3
5η
)
.

Note that this choice of the refinement, as well as that of the initial covering,
immediately guarantees properties (i) and (ii).
After assigning a family of open sets to each cube of the initial covering

in the previous step, we now want to assign a subfamily to every cube of the
refined covering. Consider a cube Qr1(a) ⊂ Qr1 of the refinement. Assume
that Qr1(a) intersects 1 6 j 6 2m−1 different cubes of the initial covering,
say Qr2 , . . . ,Qrj , and let

Fr1 :=
(
U ′1,tr1

, . . . , U ′ωm,tr1

)
, . . . ,Frj :=

(
U ′1,trj

. . . , U ′ωm,trj

)
be the corresponding tuples of open sets. Applying Lemma 5.7, we extract
subfamilies Fsubri ⊂ Fri for every i ∈ {1, . . . , j}, each containing at least 2m
open sets such that

(6.17) dist(U, V ) > 0 ∀ U ∈ Fsubra , V ∈ Fsubrb
.

We then assign to Qr1(a) the subfamily Fsubr1
, which we now denote by

Fr(a). We can do this for every cube in the refinement. By construction,
the property (6.17) surely holds for each two subfamilies Fri(a),Frj (a′)
assigned to cubes Qri(a),Qrj (a′), such that Qri(a)∩Qrj (a′) 6= ∅ and Qri 6=
Qrj . On the other hand, the subfamilies assigned to two cubes belonging
to the same cube of the initial covering (i.e. Qri = Qrj ), are not necessarily
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different. Note however, that each subfamily contains at least 2m open sets,
and every cube Qr of the initial covering is covered by exactly 2m cubes
of the refinement. Hence we can assign to each of those a distinct open set
U ′a,tr ∈ Fr(a).

Thus we have a refinement of the covering {Qr(a)} and corresponding
open sets U ′a,tr which have all the three properties listed in the beginning of
Step 2. Moreover, sinceK is compact, and Qr(a) = Q(tr+aη, 3

5η) according
to (6.16), we can choose a δ > 0 such that every t ∈ K is contained in at
least one of the cubes Q(tr + aη, 3

5η − δ).
For the sake of simplicity, let us now rename the refinement {Qr(a)} and

call it {Pα}, the corresponding smaller cubes Q(tr + aη, 3
5η− δ) we call P

δ
α,

and the associated open sets we now denote by Uα and U ′α. In particular
α stands for the pair (a, tr).

Step 3: Conclusion. — In order to deduce the existence of a family {Γα,t}
with the properties:

• Γα,t = Γt if t /∈ Pα and Γα,t \ U ′α = Γt \ U ′α if t ∈ Pα;
• Hn(Γα,t) 6 Hn(Γt) + 1

2m+1N for every t;
• Hn(Γα,t) 6 Hn(Γt)− 1

2N if t ∈ P δα,

we apply Lemma 6.1 for Ξt = Γt, U = Uα, U
′ = U ′α and Στ = Σi,s,τ , where

(i, s) = α.
Recall that from the construction of the refined covering {Pα} and the

choice of U ′α it follows that, if Pα∩Pβ 6= ∅ for α 6= β, then dist(U ′α, U ′β) > 0.
We can therefore define a new family {Γ′t}t∈P with:

• Γ′t = Γt if t /∈ ∪Pα;
• Γ′t = Γα,t if t is contained in a single Pα;
• Γ′t =

[
Γt \ (U ′α1

∪ · · · ∪ U ′αs)
]
∪
[
Γα1,t ∩ U ′α1

]
∪ · · · ∪

[
Γαs,t ∩ U ′αs

]
if

t ∈ Pα1 ∩ · · · ∩ Pαs , s > 2.

This family is clearly homotopic to {Γt} and hence belongs to X.
We now want to estimate F({Γ′t}). If t /∈ K, then t is contained in at

most 2m Pα’s and Γ′t can therefore increase at most 2m · 1
2m+1N in area:

(6.18) t /∈ K =⇒ Hn(Γ′t) 6 Hn(Γt) + 2m · 1
2m+1N

6 m0(X)− 1
2N .

Note that the last inequality is due to the definition of K. If t ∈ K, then
t is contained in at least one cube P δα and at most 2m − 1 other cubes
Pα1 , . . . , Pα2m−1 . Hence the area of Γ′t looses at least 1

2N in the first cube
and increases at most 1

2m+1N in the remaining ones, which are no more
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than 2m − 1. Thus,

(6.19) t ∈ K =⇒ Hn(Γ′t) 6 Hn(Γt) + (2m − 1) · 1
2m+1N

− 1
2N

6 m0(X)− 1
2m+2N

,

where the last inequality holds since Hn(Γt) 6 F({ΓNs }s∈P) 6 m0(X) +
1

2m+2N by assumption.
From the preceding inequalities we conclude

F({Γ′t}) 6 m0(X)− 1
2m+1N

,

which is a contradiction to m0(X) = inf
X
F . This finishes the proof. �

7. Boundary behavior of stationary varifolds

7.1. Maximum principle

The first important tool which we recall is the following classical maxi-
mum principle for the constrained case.

Proposition 7.1 (Maximum principle). — LetM be a smooth (n+1)-
dimensional submanifold satisfying Assumption 2.1 and U ⊂ M an open
set. If V ∈ Vcs(U, γ) for some C2,α (n − 1)-dimensional submanifold γ of
∂M (namely δV (χ) > 0 for every χ ∈ X−c (U) which vanishes on γ), then
spt(V ) ∩ ∂M⊂ γ.

The above proposition is classical if we were to considerM as a subset of
a larger manifold M̃ without boundary and we had a varifold V which were
stationary in M̃ \ γ. For a proof we refer the reader to White’s paper [44].
However it is straightforward to check that the proof in [44] works in our
setting, since the condition δV (χ) > 0 for the class of vector fields X−c (U\γ)
pointing “inwards” is what White really uses in his proof.

Remark 7.2. — While one can in principle work with objects defined
intrinsically on M, it is often more convenient to embed M (smoothly)
isometrically into some Euclidean space RN . In fact, by possibly choosing
a larger N , one can do this so that M is a compact subset of a closed
(n+ 1)-dimensional manifold M̃.

As a corollary to Proposition 7.1 we obtain the following:
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Corollary 7.3. — LetM be a smooth (n+ 1)-dimensional Riemann-
ian manifold isometrically embedded in a Euclidean space RN and satis-
fying Assumption 2.1. If U ′ is an open subset of RN and V a varifold in
Vcs(U ′∩M, γ) for some n−1-dimensional C2,α submanifold γ of ∂M, then
the restricion of V to U ′ \γ has, as a varifold in U ′ \γ, bounded generalized
mean curvature in the sense of Allard: in particular all the conclusions of
Allard’s boundary regularity theory in [3] are applicable.

The proof is straightforward: after viewing M as a subset of a closed
submanifold M̃, Proposition 7.1 implies the stationarity of V in M̃ \ γ
and reduces the statement to a classical computation (see for instance [34,
Remark 16.6(2)]).

7.2. Monotonicity formulae

An important tool in regularity theory for stationary varifolds is the
monotonicity formula. For x ∈ Int(M) it says that there exists a constant
Λ (depending on the ambient Riemannian manifold M, and which is 0 if
the metric is flat, see [34]) such that the function

(7.1) f(ρ) := eΛρ ||V ||(Bρ(x))
ωnρn

is non-decreasing for any x ∈ M and any ρ < min{Inj(M),dist(x, ∂M)}.
A similar conclusion assuming the existence of a “boundary” was reached
by Allard [3]. However, in order to apply Allard’s conclusion to our case,
we need to first show that in our case ‖V ‖(γ) = 0. This is achieved in the
following Lemma.

Lemma 7.4. — Let V ∈ Vcs(U, γ). Then ‖V ‖(γ) = 0. In particular,
a varifold V which is a.m. in annuli for the constrained problem as in
Proposition 5.3 is integer rectifiable in the wholeM.

Proof. — We split the varifold V into two parts: V r is the restriction of
V to G(M\γ), and V s is the “restriction of V to γ”, namely V s = V −V r.
We first claim that

(7.2) δV r(χ) = 0 for all χ ∈ Xtc(M) which vanish on γ.

First of all recall that δV (χ) = 0 for any χ ∈ Xtc(M) which vanishes on γ,
because in this case both χ and −χ belong to X−(M, γ). Secondly, observe
that from the formula for the first variation, namely

(7.3) δV (χ) =
∫

divπ χ(x) dV (x, π) ,
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we conclude easily that δV (χ) = δV r(χ) whenever χ ∈ Xc(M \ γ). Fix
therefore a χ ∈ Xtc(M) which vanishes on γ and let ϕδ be a family of
functions with the following properties:

• ϕδ ∈ C∞c (M\ γ);
• ϕδ is identically equal to 1 outside the 2δ-tubular neighborhood
of γ;

• ‖∇ϕδ‖0 6 Cδ−1, where the constant C is independent of the pa-
rameter δ.

Note that, since χ vanishes on γ, ‖χ‖0 6 Cδ in the 2δ-tubular neighborhood
of γ. Hence it is straightforward to check that ‖∇(ϕδχ)‖ 6 C, where C is
a constant independent of δ. Hence, the formula for the first variation and
the dominated convergence theorem yield

δV r(χ) =
∫

divπ χ(x) dV r(x, π)

= lim
δ↓0

∫
divπ (ϕδχ)(x) dV r(x, π) = lim

δ↓0
δV r(ϕδχ) = 0 .

This shows (7.2), which in turn, recalling that V s = V − V r, yields

(7.4) δV s(χ) = 0 for all χ ∈ Xtc(M) which vanish on γ.

Let now U be a sufficiently small tubular neighborhood of γ and for each
p ∈ U \ γ consider the nearest point q ∈ γ and the geodesic segment
connecting p and q in M̃. We then let χ(p) be the vector field tangent to
such geodesic segment, pointing towards q and with length equal to the
geodesic distance of q to p. Extend it then to γ by setting it 0 there. χ is
then a smooth vector field on a tubular neighborhood of γ inside M̃ and it
also has the following property:

(N) If e1, . . . , en−1, en, en+1 is a smooth orthonormal frame defined over
γ with the property that e1, . . . , en−1 are tangent to γ, then we have
∇e1χ(q) = · · · = ∇en−1χ(q) = 0, ∇enχ(q) = −en and ∇en+1χ(q) =
−en+1 for any q ∈ γ.

Clearly, χ is not tangent to ∂M. It is however easy to see that if q ∈ ∂M,
then the projection of χ(q) onto Tq∂M is bounded by C(dist(q, γ))2. For
this reason χ can be modified so that:

• it is tangent to ∂M;
• it vanishes on γ;
• it retains property (N) above.

Moreover, multiplying it by a suitable cut-off function, it can be suitably
extended outside a neighborhood of γ to the whole manifold M, in order
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to obtain a globally defined vector field χ ∈ Xt(M) which vanishes on γ.
For this reason it is an admissible test for (7.4), namely we must have

(7.5) 0 = δV s(χ) =
∫

divπ χ(x) dV s(x, π) .

On the other hand, the integral on the left hand side takes place for x ∈ γ.
For any such x, fix any n-dimensional plane π ⊂ TxM and recall that,

divπ χ(x) =
n∑
i=1

g(∇fiχ, fi) ,

where f1, . . . , fn is an orthonormal basis for π. Now, property (N) above
ensures that divπ χ(x) 6 −1. Hence we find δV s(χ) 6 −‖V s‖(M) =
−‖V ‖(γ). Thus (7.5) implies ‖V ‖(γ) = 0 and concludes our proof. �

Lemma 7.4 combined with Corollary 7.3 and with the results in [3] gives
the following

Proposition 7.5. — Consider an open subset U ⊂ M and a varifold
V ∈ Vcs(U, γ) which is a.m. in annuli as in Proposition 5.3 in the constrained
case (where γ is a C2,α submanifold γ of ∂M). Then, for every x ∈ γ there
exists a ρ0 > 0 and a (smooth) function Φ(ρ) with Φ(ρ) → 0 as ρ → 0,
such that the quantity

(7.6) f(ρ) = eΦ(ρ) ||V ||(Bρ(x))
ωnρn

is a monotone non-decreasing function of ρ as long as 0 < ρ < ρ0.

In particular, we conclude that the limit limρ↓0
||V ||(Bρ(x))

ωnρn
exists and it

is finite at any point x ∈ γ.
The case with free boundaries has been addressed by Grüter and Jost

in [14, 16, 17], who proved a suitable version of the monotonicity formula.
The results in these papers were proved in the Euclidean space, but they are
easily extendable to the case of stationary varifolds in compact Riemannian
manifolds using the embedding trick of Remark 7.2. We summarize the
conclusion in the following

Proposition 7.6. — Assume M ⊂ M̃ ⊂ RN , where M̃ is a closed
manifold, let U ⊂ M be an open set and V a varifold in Vus (U). Then for
each x ∈ U , there exists an r < dist(x, ∂U), and a constant c(x, r), with
c(x, r)→ 1 as r → 0, such that

(7.7) ||V ||(Bσ(x)) + ||V ||(B̃σ(x))
ωkσk

6 c(x, r) ||V ||(Bρ(x)) + ||V ||(B̃ρ(x))
ωkρk
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for all 0 < σ < ρ < r. Here, B̃σ(x) denotes the reflection of the ball Bσ(x)
across the boundary ∂M, as defined in [16, Section 2].

Note that, for points in Int(U) and r < dist(x, ∂M), the monotonicity
formula of Grüter and Jost reduces to (7.1).

Remark 7.7. — Proposition 7.6 is indeed proved in [16, Section 3] under
the additional assumption that the varifold V is rectifiable. In our case it is
however crucial that their argument can be extended to general varifolds.
Indeed, since the monotonicity is derived by testing the stationarity with
a suitable vector field, the adaptation of the argument to general varifolds
is straightforward and the reader may consult the lecture notes of Leon
Simon, more precisely [34, Chapter 8], where he shows how to adapt to
general varifolds the proof of the interior monotonicity formula presented
in [34, Chapter 4] under the rectifiability assumption.

An important consequence of the monotonicity in all of the above cases
is the existence of the density function of the varifold under consideration:

(7.8) Θ(V, x) = lim
r→0

||V ||(Br(x))
ωnrn

is well defined at all points x ∈ U . Moreover, in the case V ∈ Vus , one can
conclude that the function

Θ̃(V, x) :=
{

Θ(V, x) x ∈ Int(M) ∩ U
2Θ(V, x) x ∈ ∂M∩ U

is upper semicontinuous in U . In the constrained case we conclude instead
that the density function is upper semicontinuous in Int(U) and in ∂M∩U
separately.
A direct corollary of Proposition 7.6 is then the rectifiability of any var-

ifold V ∈ Vus (M) obtained in Proposition 5.3

Corollary 7.8. — Let V ∈ Vus be a varifold which is a.m. in annuli as
in Proposition 5.3. Then V is a rectifiable varifold.

Proof. — As already remarked, the a.m. property gives the integrality
of the varifold in the interior. The monotonicity formula of Proposition 7.6
gives that the upper density Θ(V, x) is everywhere finite, and thus we have
‖V ‖ ∂M = ΘHn ∂M by standard measure theoretic arguments. It re-
mains to show that for Hn-a.e. x ∈ ∂M with Θ(V, x) > 0 the varifold V
has Tx∂M as approximate tangent. Arguing as in the proof of [34, Theo-
rem 8.5.5] we know that for Hn-a.e. x ∈ ∂M with Θ(V, x) > 0 any varifold
tangent V ′ to V at x ∈ ∂M is of the form V ′ = ηΘ(V, x)Hn−1 Tx∂M,
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where η is a probability measure on the Grassmanian G of n-dimensional
planes of TxM. We just need to show that η = δTx∂M: as argued in the
proof of [34, Theorem 8.5.5] this would imply the rectifiability of V .
First of all, by standard arguments, the fact that V ∈ Vuc implies that

δV ′(χ) = 0 whenever χ is a vector field which is tangent to Tx∂M. In
particular we can conclude that η = δTx∂M following the argument used in
a similar situation in the proof of the Constancy Theorem in [34, Chapter 8].
Notice that the proof in there is achieved by testing the first variation
condition with a vector field of the form χ = f∇f , where f is a function
vanishing on Tx∂M: in particular in our case δV ′(χ) = 0 because χ actually
vanishes on Tx∂M. �

Finally, we record here a simple consequence of the argument in [16]
proving Proposition 7.6, which has a crucial role in a later section.

Lemma 7.9. — Let S be an n-dimensional varifold in {x∈Rn+1 :x16 0}
such that:

• δS(χ) = 0 for every vector field which is tangent to {x1 = 0};
• ρ−n‖S‖(Bρ(0)) = r−n‖S‖(Br(0)) for two distinct radii ρ < r.

Then s−n‖S‖(Bs(0)) = ρ−n‖S‖(Bρ(0)) for every s ∈ [ρ, r].

7.3. Blow-up and tangent cones

In this section we recall the usual “rescaling” procedure which allows to
blow-up minimal surfaces at a given point. Following Remark 7.2, we adhere
to the standard procedure of first embedding the Riemannian manifoldM
into RN . We will use the term n + 1-dimensional wedge of opening angle
θ ∈ ]0, π2 [ for any closed subsetW of the form R(W0), where R ∈ SO(n+1)
is an orientation-preserving isometry of Rn+1 and we recall that W0 is the
canonical wedge with opening angle θ, namely the set{

(x1, . . . , xn+1) ∈ Rn+1 ∣∣ |xn+1| 6 x1 tan θ
}
.

The half-hyperplane R({xn+1 = 0, x1 > 0}) will be called the axis of the
wedge and the n − 1-dimensional plane ` := R({xn+1 = x1 = 0}) will be
called the tip of the wedge. As stated above, when W = W0, we call it the
canonical wedge with opening angle θ.

Definition 7.10. — LetM be a smooth (n+ 1)-dimensional manifold
with boundary satisfying Assumption 2.1 and γ a C2,α (n−1)-dimensional
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submanifold of ∂M. We say that a closed set K ⊂M meets ∂M in γ with
opening angle at most θ if the following holds:

• K ∩ γ = K ∩ ∂M;
• for any x ∈ γ, let τ ∈ Tx∂M be a unit vector orthogonal to Txγ

and ν ∈ TxM be the unit vector orthogonal to Tx∂M and pointing
inwards; then for every C1 curve σ : [0, 1]→ K, with σ(0) = x and
parameterized by arc length, we have

(7.9) |〈σ̇(0), τ〉| 6 〈σ̇(0), ν〉 tan θ .

Figure 7.1. A set K meeting γ at some angle at most θ < π
2 .

We are now ready to state the blow-up procedure which we will use in
the rest of the note, especially at boundary points. Recall that, for x ∈ ∂M,
ν is the unit vector of TxM orthogonal to Tx∂M and pointing inwards.

Lemma 7.11. — LetM ⊂ RN be a smooth Riemannian manifold sat-
isfying Assumption 2.1, U ⊂ M an open set and V a rectifiable varifold
which is stationary in Int(U). Given a point x ∈ spt(V ) ⊂ M we intro-
duce the map ιx,r : RN → RN defined by ιx,r(y) := (y − x)/r and let
Mx,r := ιx,r(M) and Vx,r := (ιx,r)]V .

(I) If x ∈ Int(U), thenMx,r converges, as r → 0, locally in the Haus-
dorff sense, to TxM (which is identified with the corresponding
linear subspace of RN ). If V is integral, then up to subsequences
Vx,r converges, in the sense of varifolds, to a stationary varifold S
which is integral and is a cone.
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(B) If x ∈ ∂M, thenMx,r converges, locally in the Hausdorff sense, to
T+
xM := TxM∩ {y : ν · y > 0}. If V is integral and belongs to
Vcs(γ), then Vx,r converges, in the sense of varifolds, to an integral
varifold S which a cone, it is supported in T+

xM and it is stationary
in TxM∩ {y : y · ν > 0}.

(W) If x ∈ ∂M, V is as in (B) and spt(V ) is contained in a closed K

which meets ∂M at a C2,α submanifold γ with opening angle at
most θ < π

2 , then each such S (as in statement (B)) is supported
in the wedge W ⊂ TxM of opening angle θ with tip Txγ and axis
orthogonal to Tx∂M.

The lemma is a straightforward consequence of the theory of varifolds
developed in [3].

Definition 7.12. — At every point x where Θ(V, x) < ∞ we denote
by Tan(x, V ) the set of varifolds W which are limits of subsequences (with
rk ↓ 0) of {Vx,r}r and which will be called tangent varifolds to V at x. If a
tangent varifold is a cone, then it will be called tangent cone.

Remark 7.13. — We observe moreover that, when V is stationary and a
x a point where it satisfies the monotonicity formula, then W is stationary
and

(7.10) Θ(V, x) = Θ(W, 0) = ‖W‖(Br(0))
ωnrn

∀W ∈ Tan(x, V ),∀ r > 0 .

In order to conclude thatW is a cone one needs however some additional in-
formation. The rectifiability of the varifold is enough in the interior, cf. [34,
Chapter 8].

7.4. White’s curvature estimate at the boundary

We close this section by introducing the most important tool in the
boundary regularity theory which we will develop in the sequel. The tool
is a suitable curvature estimate at the boundary, suggested to us by Brian
White, which is valid for stable smooth hypersurfaces constrained in a
wedge. A varifold will be called stable (in an open set U) if the second
variation δ2V is nonnegative when evaluated at every vector field compactly
supported in Int(U). Strict stability will mean that the second variation is
actually strictly positive, except for the trivial situation where the vector
field vanishes everywhere on the support of the varifold.
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Theorem 7.14. — LetM be an (n+ 1)-dimensional smooth Riemann-
ian manifold satisfying Assumption 2.1, γ ⊂ ∂M a C2,α submanifold of ∂M
and r ∈ ]0, 1[. Denote by D the inverse of the distance between the closest
pair of points in γ which belong to distinct connected components; if there is
a single connected component, set D = 0. For every M > 0 and θ ∈ [0, π2 [
there are positive constants C(D,M,M, γ, n, θ) and δ(D,M,M, γ, n, θ)
with the following property: Assume that:
(CE1) x0 ∈ γ and Σ is a stable, minimal hypersurface in B2r(x0) such

that:
• Hn(Σ) 6Mrn, ∂Σ ⊂ ∂B2r(x0) ∪ ∂M and ∂Σ ∩ ∂M = γ;
• Σ is C1 apart from a closed set sing(Σ) with Hn−2(sing(Σ)) =

0 and γ ∩ sing(Σ) = ∅;
• Σ is contained in a closed set K meeting ∂M in γ with opening
angle at most θ.

Then Σ is C2,α in Bδr(x0) and

(7.11) |A| 6 Cr−1 in Bδr(x0).

Furthermore, Σ ∩Bδr(x0) consists of a single connected component.

The proof requires two elementary but important lemmas, which we state
immediately.

Lemma 7.15. — Let V be an integer n-dimensional rectifiable varifold
in Rn+1 such that:

(a) V is stationary in a wedge W0 of opening angle θ;
(b) δV = (w1, w2, 0, . . . , 0)Hn−1 ` for some Borel vector field w =

(w1, w2) ∈ L1
loc(Hn−1 `;R2).

Then for Hn−1-a.e. x ∈ ` we have the representation

w(x) =
m∑
i=1

vi(x)

where:
• m = 2Θ(x, V );
• each vi is of the form (− cos θi,− sin θi) for some θi ∈ [−θ, θ].

Lemma 7.16. — Let k ∈ N \ {0} and vi = (cos θi, sin θi) 2k + 1 unit
vectors in the plane with −π2 < θi <

π
2 . Then the sum v1 + · · ·+ v2k+1 has

length strictly larger than 1.

The simple proofs of the lemmas will be postponed to the end of the
section, while we first deal with the proof of the main Theorem (given the
two lemmas).
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Proof of Theorem 7.14. — We will in fact prove that the constants δ
and C depend on the C2,α regularity of γ,M and ∂M. First of all we focus
on the curvature estimate.
Without loss of generality, we again assume thatM is isometrically em-

bedded in a euclidean space RN . Observe that the dimension N can be
estimated by n and thus we can assume that N is some fixed number,
depending only on n. Upon rescaling we can also assume that r = 1: the
rescaling would just lower the C2,α norm of M, ∂M and γ and increase
the distance D−1 between different connected components of γ.
Assuming by contradiction that the statement does not hold, we would

find a sequence of manifoldsMk, boundaries γk, minimal surfaces Σk and
points pk ∈ Σk with the properties that:

• |AΣk |(pk) ↑ ∞, or pk is a singular point, and the distance between
pk and γk converges to 0

• Mk,Σk and γk satisfy the assumptions of the Theorem with r = 1,
with a uniform bound on the C2,α regularities of both γk andMk

and with a uniform bound on M and θ.

We let qk ∈ γk be the closest point to pk and, w.l.o.g. we translate the
surfaces so that qk = 0. We next rescale them by a factor ρ−1

k where ρk
is the maximum between |pk| and |AΣk(pk)|−1 (where we understand the
latter quantity to be 0 if pk is a singular point). We denote by γ̄k, M̄k,
Σ̄k and p̄k the corresponding rescaled objects. It turns out that, up to
subsequences,

(a) the rescaled manifolds M̄k are converging, locally in C2,α, to a half
(n + 1)-dimensional plane, that w.l.o.g. we can assume to Rn+1

+ =
{x |xn+2 = · · · = xN = 0, x1 > 0};

(b) the rescaled manifolds ∂M̄k are converging, locally in C2,α, to an
n-dimensional plane, namely {x |x1 = xn+2 = · · · = xN = 0};

(c) the rescaled surfaces γ̄k are converging, locally in C2,α, to an n−1-
dimensional plane, that w.l.o.g. we can assume to be ` := {x1 =
xn+1 = xn+2 = · · · = xN = 0};

(d) the points p̄k are converging to some point p̄ and lim infk |AΣ̄k | > 0;
(e) the surfaces Σ̄k are converging, in the sense of varifolds, to an in-

tegral varifold V , which is supported in the standard wedge W
contained in Rn+1

+ with tip `, axis π+ = {x1 > 0, xn+1 = xn+2 =
· · · = xN = 0};

(f) the integral varifold V is stationary inside W \ ` and in fact |δV | 6
Hn−1 `.
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All these statements are simple consequences of elementary considerations
and of the theory of varifolds. For (f), observe that |δ[[Σ̄k]]| 6 Hn−1 γk +
‖AMk

‖C0Hn Σk and use the semicontinuity of the total variation of the
first variations under varifold convergence.
We next show that the varifold V is necessarily half of an n-dimensional

plane τ bounded by ` and lying in W . This would imply, by Allard’s reg-
ularity theorem, that the surfaces Σk are in fact converging in C2,α to τ ,
contradicting (d).
We first start to show that the density 2Θ(V, x) is odd at Hn−1 a.e.

p ∈ `. By White’s stratification theorem, see Theorem 5 of White [43], at
Hn−1-a.e. point x ∈ ` there is a tangent cone V∞ to V which is invariant
under translations along `. This implies that V∞ is necessarily given by

m∑
i=1

[[πi ∩W0]]

for some family of n-dimensional planes (possibly with repetitions) con-
taining `, where

m = m(x) = 2Θ(V∞, 0) = 2Θ(V, x) .

Observe that any such halfplane πi ∩ W0 is contained in the wedge W0.
Without loss of generality we can assume that each πi∩W0 makes an angle
smaller than π

2 with π1 ∩W0
Let B ⊂ π1 ∩W0 be a compact connected set not intersecting `. By a

simple diagonal argument, V∞ is also the limit of an appropriate sequence
of rescalings of the surfaces Σ̄k, namely (Σ̄k(j))0,rj . If k(j) converges to
infinity sufficiently fast, we keep the convergence conclusions in (a), (b),
(c), (e) and (f) even when we replace Σ̄k, M̄k, ∂M̄k and γ̄k with the cor-
responding rescalings (Σ̄k(j))0,rj , (M̄k(j))0,rj , (∂M̄k(j))0,rj and (γ̄k(j))0,rj .
For notational simplicity, let us keep the label Σ̄k even for the rescaled
surfaces.
Note that, since the support of the varifold V∞ is a finite number of affine

graphs over the set B (and m is the sum of the multiplicities, including
the one of π1), the Schoen–Simon theorem implies smooth convergence of
the Σ̄k. Thus the Σ̄k will also be a union of m graphs over B (distinct,
because the Σk are surfaces with multiplicity 1). Let κ = π⊥1 and, after
giving compatible orientations to π1 and κ, for every x ∈ B where κ + x

intersects Σ̄k transversally, we define the degree

d(x) :=
∑

y∈κ∩Σ̄k

ε(TyΣ̄k,κ),
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where ε(TyΣ̄k,κ) takes, respectively, the value 1 or−1 according to whether
the two transversal planes have compatible or non-compatible orientation.
For k large enough γk does not intersect B + κ and thus d is constant on
B. Moreover, it turns out that d is either 1 or −1. To see this, one can for
instance consider Σ̄k as integral currents and project them onto π1. Due
to (c), for k large enough (and inside some large ball around the origin),
the projection of γ̄k’s will have multiplicity one, and since the projection
and the boundary operator commute, the projection of Σ̄k’s onto π1 inside
B will be simply ±[[π1]] B. Thus the number of intersections of y+κ with
Σ̄k must be odd for a.e. y ∈ B. This obviously implies that m is odd.

We next infer that 2Θ(V, x) must be 1 at Hn−1-a.e. x ∈ `. Apply indeed
Lemma 7.15 and, using the Borel maps w and vi defined in there, consider
the Borel function

f(x) := |w(x)| =
∣∣∣∑ vi(x)

∣∣∣ .
We then have |δV | = fHn−1 ` and from Lemma 7.16, we conclude that
f(x) > 1 at every point x where 2Θ(V, x) is an odd number larger than
1. Since by the previous step such number is odd a.e., we infer our claim
by using item (f) from above. By Allard’s regularity theorem, any point
x as above (i.e. where there is at least one tangent cone invariant under
translations along `) is then a regular point.

Hence, it turns out that:

• the set of interior singular points of V has Hausdorff dimension at
most n− 7, by the Schoen–Simon compactness theorem;

• the set of boundary singular points has Hausdorff dimension at most
n− 2.

Consequently, there is only one connected component of the regular set
of V whose closure contains `. Thus there cannot be any other connected
component, because its closure would not touch ` and would give a station-
ary varifold contained in the wedge W , violating the maximum principle.
Hence we infer that any interior regular point of V can be connected with
a curve of regular points to a regular boundary point. In turn this implies
that the varifold V has density 1 at every regular point. So V can be given
the structure of a current and in particular we conclude that the Σk’s are
converging to V as a current.
Consider next that,

lim
R↑∞

‖V ‖(BR(0))
Rn
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is bounded uniformly, depending only on the constant M . Thus, by the
usual monotonicity formula, there is a sequence Rk →∞ such that V0,RK
converges to a cone V∞ stationary inW \`. Again, by a diagonal argument,
V∞ is also the limit of a sequence of rescalings (Σ̄k(j))0,Rj , and if k(j) con-
verges to infinity sufficiently fast, we retain the conclusions in (a), (b), (c),
(e) and (f) when we replace Σ̄k, M̄k, ∂M̄k and γ̄k with the corresponding
rescalings (Σ̄k(j))0,Rj , (M̄k(j))0,Rj , (∂M̄k(j))0,Rj and (γ̄k(j))0,Rj .

All the conclusions inferred above for V are then valid for V∞ as well,
namely: V∞ has multiplicity 1 a.e., it can be given the structure of a current
and the surfaces (Σ̄k(j))0,Rj are converging to it in the sense of currents.
In particular the boundary of V∞ (as a current) is given by ` (with the ap-
propriate orientation). We can then argue as in [3, Lemma 5.2] to conclude
that the current V∞ is in fact the union of finitely many half-hyperplanes
meeting at `. But since ` has many regular points, where the multiplicity
must be 1

2 , we conclude that indeed V∞ consists of a single plane.
In particular we infer from the argument above that Θ(V∞, 0) = 1

2 . This
in turn implies

lim
R↑∞

‖V ‖(BR(0))
Rn

= ωn
2 .

On the other hand

lim
r↓0

‖V ‖(Br(0))
rn

= ωnΘ(V, 0) .

But the upper semicontinuity of the density and the fact that Θ(V, x) = 1
2

for Hn−1-a.e. x ∈ ` implies that Θ(V, 0) > 1
2 .

Since ` is flat, Allard’s monotonicity formula implies that

r 7→ ‖V ‖(Br(0))
rn

is monotone and thus constant. Again the monotonicity formula implies
that such function is constant if and only if V is itself a cone. This means
that V coincides with V∞ and is half of a hyperplane, as desired.
We now come to the claim that, choosing δ possibly smaller, the surface

Σ has a single connected component in Bδr(x0). Again this is achieved
by a blow-up argument. Given the estimate on the curvature, for every
sufficiently small η we have that x0 belongs to a connected component of
Σ which is the graph of a function f for some given system of coordinates
in B2η(x0). Let us denote by Γ such a connected component. For η small
we can assume that the tangent to Γ is as close to Tx0Γ as we desire and
thus we can assume that the connected component is actually a graph of
a function f : Tx0Γ → Tx0Γ⊥, with gradient smaller than some ε > 0,
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whose choice we specify in a moment. From now on in all our discussion we
assume to work in normal coordinates based at x0. In fact it is convenient
to consider a closed manifold M̃ which contains ∂M and from now on we
let B̃r(x0) be the corresponding geodesic balls.
Assume now, by contradiction, that Bδη(x0) contains another point y0 ∈

Σ which does not belong to Γ, where δ is a small parameter, depending on
the maximal opening angle θ with which the set K can meet ∂M. Thus y0
belongs to a second connected component Γ′. By the curvature estimates
we can assume that Γ′ as well is graphical and more precisely it is a graph
over some plane π of a function g with gradient smaller than ε and height
smaller than εη. Moreover, without loss of generality, we can assume that
π passes through the point y0.
Observe that by assumption (CE1) Γ′ cannot intersect ∂M, hence any

point in ∂Γ′ is at distance 2η from x0. Since ‖g‖0 6 εη, it turns out that any
point z0 ∈ π ∩ B̃(2−2ε)η(x0) must be in the domain of g, which we denote
by Dom(g). To see this observe first that, since π ∩ B̃(2−2ε)η(x0) is convex,
we can join y0 and z0 with a path γ lying in π∩ B̃(2−2ε)η(x0). Assume that
γ is parametrized over [0, 1] and that γ(0) = y0. For a small ε we know
that γ([0, ε]) ⊂ Dom(g). If γ(1) ∈ Dom(g) we are finished. Otherwise we
let τ be the infimum of {t : γ(t) 6∈ Dom(g)}. Obviously the point p in the
closure of the graph of g lying over γ(τ) is a boundary point for Γ′. On the
other hand, since γ(τ) ∈ B̃(2−2ε)η(x0) and ‖g‖ 6 εη, clearly p cannot be at
distance 2η from x0. This is a contradiction and thus we have proved the
conclusion

π ∩ B̃(2−2ε)η(x0) ⊂ Dom(g) .
In particular we conclude that π ∩ B̃(2−4ε)η(x0) cannot meet ∂M: if the
intersection were not empty, then there would be a point q contained in
π ∩ (B̃(2−2ε)η(x0) \ M) which lies at distance at least 3

2εη from ∂M. In
particular the point of the graph of g lying on top of q could not belong to
M, although it would be a point of Γ′.
By a similar argument, we conclude that π∩B̃(2−6ε)η(x0) cannot intersect

Tx0Σ, otherwise we would have nonempty intersection between the graphs
of f and g, i.e. a point belonging to Γ ∩ Γ′, which we know to be different
connected components of Σ ∩B2η(x0), hence disjoint.
At this point we choose ε = 1

12 . Summarizing, the plane π has the fol-
lowing properties:

(a) π contains a point y0 ∈ Bδη(x0);
(b) π does not intersect ∂M∩ B̃3η/2;
(c) π does not intersect Tx0Σ ∩ B̃3η/2;
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(d) Tx0Σ meets Tx0∂M at an opening angle at most θ.
It is now a simple geometric property that, if δ is chosen sufficiently small
compared to θ, then the plane π cannot exist, cf. Figure 7.2. �

Figure 7.2. If two planes π and Tx0Σ satisfy the assumption (b), (c)
and (d), then π cannot contain a point which is δη close to x0.

Proof of Lemma 7.15. — By White’s stratification theorem, see Theo-
rem 5 of White [43], at Hn−1-a.e. point x ∈ ` there is a tangent cone V∞
to V which is invariant under translations along `. This implies that V∞ is
necessarily given by

m∑
i=1

[[πi ∩W0]]

for some family of n-dimensional planes containing `, where m = m(x) =
2Θ(V∞, 0) = 2Θ(V, x). It is therefore obvious that

δV∞ =
m∑
i=1

viHn−1 `

where each vi = vi(x) is the unit vector contained in πi\W0 and orthogonal
to `: therefore for each i we have vi = (− cos θi,− sin θi) for some θi ∈
[−θ, θ].
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Let rk ↓ 0 be a sequence such that the rescaled varifolds Vx,rk converge
weakly to V∞. Then δVx,r converges to δV∞ in the sense that δVx,rk(ϕ)→
δV∞(ϕ) for any smooth compactly supported vector field on Rn+1. On the
other hand for a.e. x we have δVx,r⇀∗ w(x)Hn−1 `. This completes the
proof since for a.e. x we must have w(x) =

∑m(x)
i vi(x). �

Proof of Lemma 7.16. — We order the vectors so that θ1 6 θ2 6 · · · 6
θ2k+1. For each i 6 k, the sum wi of the pair vi + v2k+2−i is a positive
multiple of (

cos θi+θ2k+2−i
2 , sin θi+θ2k+2−i

2

)
.

Since θi 6 θk+1 6 θ2k+2−i, it is easy to see that the vectors wi and vk+1
form an angle strictly smaller than π

2 . We therefore have 〈wi, vk+1〉 > 0
and we can estimate

|v1 + · · ·+ v2k+1| >
2k+1∑
j=1
〈vj , vk+1〉 = 1 +

k∑
i=1
〈wi, vk+1〉 > 1 . �

8. Stability and compactness

Since the ground-breaking works of Schoen [30], Schoen–Simon–Yau [32]
and Schoen–Simon [31], it is known that, roughly speaking, all the smooth-
ness and compactness results which are valid for hypersurfaces (resp. in-
teger rectifiable hypercurrents) which minimize the area are also valid (in
the form of suitable a priori estimates) for stable hypersurfaces.

8.1. Interior compactness and regularity

We recall here the fundamental compactnesstheorem of Schoen and Si-
mon (cf. [31]) for stable minimal surfaces.

Theorem 8.1. — Let {Σk} be a sequence of stable minimal hypersur-
faces in some open subset U ⊂M\ ∂M and assume that:

(i) each Σk is smooth except for a closed set of 0 Hn−2-measure;
(ii) Σk has no boundary in U ;
(iii) supkHn(Σk) <∞.

Then a subsequence of {Σk} (not relabeled) converges, in the sense of
varifolds, to an integer rectifiable varifold V such that:

(a) V is, up to multiplicity, a stable minimal hypersurface Γ with
dim(Sing(Γ)) 6 n− 7;
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(b) at any point p 6∈ Sing(Γ) the convergence is smooth, namely there
is a neighborhood U ′ of p such that, for k large enough, Σk ∩ U ′
can be written as the union of N distinct smooth graphs over (the
normal bundle of) Γ∩U ′, converging smoothly (where the number
N is uniformly controlled by virtue of (iii)).

In fact the Theorem of Schoen and Simon gives a more quantitative
version of the smooth convergence, since for every point p 6∈ Sing(Γ) the
second fundamental form of Σk at p can be bounded, for k large enough,
by C max{dist(p,Sing(Γ))−1,dist(p, ∂U)−1}, where the constant C is inde-
pendent of k.

8.2. Boundary version for free boundary surfaces

In [17] the fundamental result of Schoen and Simon has been extended
to the case of free boundary minimal surfaces, under a suitable convexity
assumption in the case of n = 2 in the Euclidean case. However, it can
be readily checked that the arguments presented in [17] to adapt the proof
of Schoen and Simon in [31] to the free boundary case are independent
both of the dimensional assumption n = 2 and of the assumption thatM
is a convex subset of the Euclidean space. We state the resulting theorem
below, where we need the following stronger stability condition, which we
will call stability for the free boundary problem. For a more general result,
where the convexity assumption on ∂M is removed, see the recent work of
Li and Zhou, [18].

Definition 8.2. — LetM be a smooth (n+1)-dimensional Riemannian
manifold and U ⊂M an open set. A varifold V ∈ Vus (U) is said to be stable
for the free boundary problem if δ2V (χ) > 0 for every χ ∈ Xtc(U).

Theorem 8.3. — LetM be a smooth (n+ 1)-dimensional Riemannian
manifold which satisfies Assumption 2.1. Let Σk be a sequence of stable
minimal hypersurfaces in some open subset U ⊂M and assume that:

(i) each Σk is smooth except for a closed set of 0 Hn−2-measure;
(ii) ∂Σk ∩U is contained in ∂M and Σk meets ∂M orthogonally (thus,

Σk is stationary for the free boundary problem);
(iii) Σk is stable for the free boundary problem;
(iv) supkHn(Σk) <∞.

Then a subsequence of Σk (not relabeled) converges, in the sense of vari-
folds, to an integer rectifiable varifold V such that:
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(a) V is, up to multiplicity, a stable minimal hypersurface Γ with
dim(Sing(Γ)) 6 n− 7;

(b) at any point p 6∈ Sing(Γ) the convergence is smooth;
(c) Γ meets ∂M orthogonally, thus V ∈ Vus (U);
(d) V is stable for the free boundary problem.

8.3. Boundary version for the constrained case

We close this section by combining Theorem 7.14 with the interior es-
timates of Schoen and Simon to get a compactness theorem for stable
minimal hypersurfaces which have a fixed given boundary γ and meet ∂M
transversally in a suitable quantified way.

Theorem 8.4. — LetM be an (n+1)-dimensional smooth Riemannian
manifold which satisfies Assumption 2.1, γ ⊂ ∂M a C2,α submanifold of
∂M, U an open subset of M and K ⊂ U a set which meets ∂M in γ at
an opening angle smaller than π

2 . Let Σk be a sequence of stable minimal
hypersurfaces in U ⊂M and assume that:

(i) each Σk is smooth except for a closed set of vanishingHn−2 measure
and γ ∩ sing(Σ) = ∅;

(ii) ∂Σk ∩ U = γ ∩ U ;
(iii) supkHn(Σk) <∞;
(iv) Σk ⊂ K.

Then a subsequence of Σk, not relabeled, converges, in the sense of varifolds,
to an integer rectifiable varifold V such that:

(a) V is, up to multiplicity, a stable minimal hypersurface Γ with
dim(Sing(Γ)) 6 n− 7;

(b) at any point p 6∈ Sing(Γ) the convergence is smooth;
(c) Sing(Γ) ∩ ∂M = ∅ and ∂Γ = γ (in particular, the multiplicity of

any connected component of Γ which intersects ∂M must be 1).

Proof. — First of all, after extraction of a subsequence we can assume
that Σk converges to a varifold V . Observe that V is stationary in Int(U)
and thus it is integer rectifiable in there, by Allard’s compactness theo-
rem. Note also that each Σk belongs to Vcs(U, γ) and thus, by continuity
of the first variations, V belongs as well to Vcs(U, γ). Thus, by the maxi-
mum principle of Proposition 7.1 we conclude that ‖V ‖(∂M) = ‖V ‖(γ). In
particular, as argued for Lemma 7.4 ‖V ‖(∂M) = 0 and that V is integer
rectifiable in U .
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Next observe that in U \ ∂M we can apply the Schoen–Simon compact-
ness theorem: thus, except for a set K ′ in U \∂M, the smooth convergence
holds at every point x0 ∈ U \ (γ ∪ K ′) and dim(K ′) 6 n − 7. As for the
points x ∈ γ, consider first an open subset U ′ which has positive distance
from ∂U \ ∂M. By the boundary curvature estimates of Theorem 7.14,
there is an r0 > 0 and a constant C0, both independent of k, such that
|AΣk | 6 C0 in any ball Br0(x) with center x ∈ γ ∩U ′. This implies that, in
a fixed neighborhood U ′′ of γ, Σk consists of a single smooth component
which is a graph at a fixed scale, independent of k. The estimate on the
curvature in Theorem 7.14 gives then the convergence of these graphs in
C1,α for every α < 1. Since the limit turns out to be (locally) graphical
and a solution of an elliptic PDE, classical Schauder estimates imply its
smoothness and the smooth convergence. �

8.4. Varying the ambient manifolds

In all the situations above, we can allow also for the manifolds M to
vary in a controlled way, namely to change as Mk along the sequence.
One version which is particularly useful is when theMk are embedded in a
given, fixed, Euclidean space and they are converging smoothly to aM. All
the compactness statements above still hold in this case and in particular
the corresponding obvious modifications (left to the reader) will be used at
one occasion in the very simple situation where the Mk are rescalings of
the sameM at a given point, thus converging to the tangent space at that
point, cf. Section 11.1 and Section 11.4 below.

9. Wedge property

In this section we use the maximum principle to prove that, given a
smooth γ any stationary varifold V ∈ Vcs(U, γ) meets γ “transversally” in
a quantified way, namely it lies in suitable wedges that have a controlled
angle. This property is necessary to apply to the compactness Theorem 8.4.
The precise formulation is the following

Lemma 9.1. — Let M be a smooth (n + 1)-dimensional submanifold
satisfying Assumption 2.1, γ be a C2 (n − 1)-dimensional submanifold
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of M and U ′ ⊂⊂ U two open subsets of M. Then there is a constant
θ0(U,U ′, γ) < π

2 and a compact set K ⊂ U ′ with the following properties:
(a) K meets γ at an opening angle at most θ0;
(b) spt(V ) ∩ U ′ ⊂ K for every varifold V ∈ Vcs(U, γ).

Note that in the special case of U =M, we are allowed to choose U ′ =M
and thus we conclude a uniform transversality property for any varifold in
Vcs(M, γ), in particular for the varifold V of Proposition 5.3. On the other
hand we do need the local version above for several considerations leading
to the regularity of V at the boundary. WhenM is a subset of the Euclidean
case, the lemma above follows easily from the following two considerations:

(i) By the classical maximum principle, spt(V ) is contained in the com-
pact subset K which is the convex hull of (γ ∩U)∪ (∂U \ ∂M), see
for instance the reference [34];

(ii) Such convex hull K meets γ at an opening angle which is strictly
less than π

2 at every point x ∈ γ ∩U (here the C2 regularity of γ is
crucially used, cf. the elementary Lemma 9.2 below).

The uniform (upper) bound on the angle is then obtained in U ′ ⊂⊂ U

simply by compactness.
Unfortunately, although the extension of (i) above to general Riemannian

manifolds is folklore among the experts, we do not know of a reference
that we could invoke for Lemma 9.1 without some additional technical
work. This essentially amounts to reducing to the Euclidean situation by a
suitable choice of coordinates.

9.1. Wedge property and convex hull

We start by recording the following elementary fact, which in particular
proves claim (ii) above.

Lemma 9.2. — Consider a bounded, open, smooth, uniformly convex
set M ⊂ Rn+1 and a C2 (n − 1)-dimensional connected submanifold γ ⊂
Br(0)∩∂M passing through the origin. Then there is a wedgeW containing
γ such that:

(a) The axis of W is orthogonal to T0∂M;
(b) The tip of W is T0γ;
(c) The opening angle is bounded away from π

2 in terms of the principal
curvatures of ∂M and of those of γ.
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Proof. — For simplicity fix coordinates so that T0γ = {x1 = xn+1 = 0},
T0∂M = {x1 = 0} andM\ {0} is lying in {x1 > 0}. For every θ < π

2 let
Mθ be the portion of M lying in {xn+1 > x1 tan θ}, and consider r > 0
such that the open ball

Br((0, 0, . . . , 0, r))

containsMθ. Let ρ(θ) be the smallest such radius. ρ(θ) is a non-increasing
function of θ and by the uniform convexity of M, ρ(θ) → 0 as θ ↑ π

2 . On
the other hand we know that if ρ(θ) < ‖Aγ‖−1

∞ , then Bρ((0, 0, . . . , 0, ρ)) is
an osculating ball for γ at 0 and cannot contain any point of γ. This shows
that for all θ sufficiently close to π

2 , γ is contained in {xn+1 6 x1 tan θ}. By
a simple reflection argument we obtain the same property with {−xn+1 6
x1 tan θ}, which completes the proof of the lemma. �

9.2. Proof of Lemma 9.1

First of all, we observe that by a simple covering argument it suffices to
show the lemma in a sufficiently small neighborhood U of any point p ∈ γ,
since we already know by the maximum principle in Proposition 7.1 that
spt(V ) ∩ ∂M ⊂ γ.

Recall that we can assume that M is a subset of a closed Riemannian
manifold M̃, cf. Remark 7.2. Let p ∈ γ, and Ũ a normal neighborhood
of p in M̃. We then consider normal coordinates on M̃ centered at p,
given by the chart ϕ := E ◦ exp−1

p : U → Rn+1, where the isomorphism
E : TpM̃ → Rn+1 is chosen so that E(Tp∂M) = {x ∈ Rn+1 : x1 = 0}, and
E(Tpγ) = {x ∈ Rn+1 : x1 = xn+1 = 0}.

Now, if we let A denote the second fundamental form of ∂M inM with
respect to the unit normal ν pointing insideM, B the second fundamental
form of ϕ(∂M) in Rn+1 with respect to the unit normal n pointing in-
side ϕ(M), and ∇, ∇̄ the ambient Riemannian and Euclidean connection
respectively, we immediately see that

A(X,Y )
∣∣
p

= −g(∇̄Xν, Y )
∣∣
p

= g(ν, ∇̄XY )
∣∣
p

= 〈n,∇XY 〉
∣∣
0

= −〈∇Xn, Y 〉
∣∣
0 = B(X,Y )

∣∣
0,

since ν(p) = n(0), g( · , · )
∣∣
p

= 〈 · , · 〉 and ∇
∣∣
p

= ∇̄
∣∣
0 by the properties of the

exponential map. Hence, it follows from Assumption 2.1 that B � ξ Id at
0. Thus, if we represent ϕ(∂M) as a graph of a function f over its tangent
plane

{
x ∈ Rn+1

∣∣x1 = 0
}
at 0, the Hessian of f is equal to B at 0, and
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hence there are some Cartesian coordinates (y2, . . . , yn+1) on this plane
such that f has the form

(9.1) f(y2, . . . , yn+1) = 1
2(κ2y

2
2 + · · ·+ κn+1y

2
n+1) +O(|y|3),

where κ2, . . . , κn+1 > ξ > 0 are principal curvatures (w.r.t. inward pointing
normal at 0).
In particular we can assume that U is chosen so small that f is uniformly

convex in the Euclidean sense, namely that D2f > 0 everywhere on ϕ(Ũ).
By abuse of notation we keep using Ũ for ϕ(Ũ),M for ϕ(M) and thus V
for the varifold ϕ]V . Since we can now regardM as a convex subset of the
euclidean space, we can apply Lemma 9.2 and conclude that γ is contained
in a wedge W of the form {|xn+1| 6 tan θx1}. However we cannot apply
the maximum principle to conclude that spt(V ) ⊂ W because V is not
stationary in the euclidean metric. Our aim is however to show that, if we
enlarge slightly θ, but still keep it smaller than π

2 , then spt(V ) ⊂ W . The
resulting θ will depend on the manifoldM, the submanifold γ and the size
of Ũ , but not on the point p. Thus this argument completes the proof, since
the set K can be taken to be, in a neighborhood of γ ∩U ′, the intersection
of the corresponding wedges for p (intersected with U ′) as p varies in γ∩U ′.

Recall that, in our notation,M is in fact the set {y1 > f(y2, . . . , yn+1)}.
For each λ > 0 consider now the function

fλ(y2, . . . , yn+1) = (1− λ)f(y2, . . . , yn+1) + λ
yn+1

tan θ .

For λ ↓ 0, the function fλ converges in C2 to the function f . Thus the
setMλ = {y1 > fλ(y2, . . . , yn+1)} is uniformly convex in the Riemannian
manifold M̃ as soon as λ 6 ε.
Observe next that all the graphs of all the functions fλ intersect in an n−

1-dimensional submanifold, which is indeed the intersection of the graphs
of f1 and f0 = f . Consider now the region

R = {f0(y2, . . . , yn+1) 6 y1 6 fε(y2, . . . , yn+1)} ,

cf. Figure 9.1. Since the graph of f0 is in fact ∂M, we know from Propo-
sition 7.1 that spt(V ) ∩ ∂M∩R ⊂ γ and from the choice of the wedge W
we thus know that spt(V ) ∩ ∂M∩R = {0}. Assume now by contradiction
that R contains another point p ∈ spt(V ). Then this point does not be-
long to γ. On the other hand there must be a minimum δ such that the
graph of fδ contains this point. But then, by the fact thatMδ is uniformly
convex in M̃, this would be a contradiction to the maximum principle of
Proposition 7.1.
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We thus conclude that the region R intersects the support of V only in
the origin. On the other hand recall that fδ is convex also in the Euclidean
sense. Thus its graph lies above its tangent at 0, which is given by {yn+1 =
y1δ
−1 tan θ}. This implies that the support of V intersected with Ũ is in

fact contained in
{yn+1 6 y1δ

−1 tan θ} .
Symmetrizing the argument we find the new desired wedge in which the
support of our varifold is contained. �

Figure 9.1. The region R foliated by the graps of fλ.

10. Replacements at the boundary

We have now all the tools for proving the boundary regularity of the
varifold V in Proposition 5.3 and we can start with the argument leading
to

Theorem 10.1. — The varifold V of Proposition 5.3 has all the prop-
erties claimed in Theorem 2.6.

The argument is indeed split into two main steps. In the first one we
employ another important concept first developed by Pitts, called a re-
placement.

Definition 10.2. — Let V ∈ V(M) be a stationary varifold inM, be-
longing to one of the classes Vus and Vcs(M, γ), and U ⊂ M an open set.
A stationary varifold V ′ ∈ V(M) (belonging to one of the two correspond-
ing classes) is called a replacement for V in U if V = V ′ on G(M \ U),
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‖V ‖(M) = ‖V ′‖(M), and V ′ U is a stable minimal hypersurface Γ. In
the constrained case we require that ∂Γ ∩ U = γ ∩ U (in particular the
connected components of Γ that intersect γ will arise with multiplicity 1
in the varifold V ). In the unconstrained case the surface Γ ∩ U meets ∂M
orthogonally.

Our goal now is to show that the almost minimizing property of the
sequence {Γj} from Proposition 5.3 is sufficient to prove the existence of a
replacement for the varifold V . More precisely, we prove:

Proposition 10.3. — Let {Γj}, V and r be as in Proposition 5.3. Fix
x ∈ M and consider an annulus An ∈ AN r(x)(x). Then there exist a
varifold Ṽ , a sequence {Γ̃j} and a function r′ :M→ R+ such that:

• Ṽ is a replacement for V in An and Γ̃j converges to Ṽ in the sense
of varifolds;

• Γ̃j is almost minimizing in every An′ ∈ AN r′(y)(y) with y ∈M;
• r(x) = r′(x).

10.1. Homotopic Plateau’s problem

Let us fix a point x ∈ M and An ∈ AN r(x)(x) from now on. If x ∈
IntM, then the statement above is indeed proved in [10], except for a
small technical adjustment which we explain in Section 10.3 below. We
fix therefore x ∈ ∂M. The strategy of the proof will be analogous to the
one in [10] and follows anyway the pioneering ideas of Pitts: in An we
will indeed replace the a.m. sequence Γj with a suitable Γ̃j , which is a
minimizing sequence for a suitable (homotopic) variational problem.
As a starting point for the proof we consider for each j ∈ N the following

class and the corresponding variational problem:

Definition 10.4. — Let U ⊂ M be an open set and for each j ∈ N
consider the class Hc(Γj , U) (resp. Hu(Γj , U)) of surfaces Ξ such that there
is a constrained (resp. unconstrained) family of surfaces {Γt} satisfying
Γ0 = Γj , Γ1 = Ξ, (5.1), (5.2), and (5.3) for ε = 1/j (recall that m is fixed
by Remark 5.2). The subscript c (resp. u) will be dropped when clear from
the context. A minimizing sequence inH(Γj , U) is a sequence Γj,k for which
the volume of Γj,k converges towards the infimum.

We will call the variational problem above the (2m+2j)−1 - homotopic
Plateau problem. Next, fix a minimizing sequence {Γj,k}k∈N ⊂ H(Γj , An).
Up to subsequences, we have that:
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• as integral currents, [[Γj,k]] converge weakly to an integral current
Zj (in the constrained case the current is integral inM, including
the boundary ∂M, because ∂Zj ∂M = [[γ]]; in the unconstrained
case the current Zj is a-priori only integral in the interior; however
the regularity proved later in Corollary 10.7 will actually imply that
it is integral even when including the boundary ∂M);

• as varifolds, Γj,k converge to a varifold V j ;
• V j , along with a suitable diagonal sequence Γ̃j = Γj,k(j) converges

to a varifold Ṽ .
The rest of the section will then be devoted to prove that the varifold Ṽ

is in fact the replacement of Proposition 10.3 and that the sequence Γ̃j
satisfies the requirements of the same proposition.

Remark 10.5. — Note that V j ∈ Vcs(An, γ) and that V j is a.m. in annuli
(in fact it has a much stronger minimizing property!). For this reason we
can apply Lemma 7.4 and conclude that V j is an integer rectifiable varifold.

The proof is split into two steps. In the first one we will show that, at all
sufficiently small scales, the current Zj is indeed a minimizer of the area
in the corresponding variational problem (constrained and unconstrained)
without any restriction on the competitors. More precisely we show that

Lemma 10.6. — Let j ∈ N and y ∈ An. Then there are a ball B =
Bρ(y) ⊂ An and a k0 ∈ N such that every set Ξ with the following proper-
ties (satisfied for some k > k0) belongs to the class H(Γj , An):

• Ξ is a smooth hypersurface away from a finite set;
• ∂Ξ∩B = γ∩B in the constrained problem, whereas ∂Ξ∩Int(B) = ∅
in the unconstrained problem;

• Ξ \B = Γj,k \B;
• Hn(Ξ) < Hn(Γj,k).

As a simple corollary, whose proof will be given later, using the regularity
theory for area minimizing currents for a given prescribed boundary (and
the corresponding regularity theory for the minimizers in the free boundary
case, as developed by Grüter in [14]) we then get the following

Corollary 10.7. — h Let B̃ be the ball concentric to the ball B in
Lemma 10.6 with half the radius. In the constrained case the current Zj
has boundary γ in B and any competitor Zj + ∂S, where S is an integer
rectifiable current supported in B̃, cannot have mass smaller than that
of Zj . In the unconstrained case Zj is a minimizer with respect to free
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boundary perturbations, namely any current Zj + T with spt(∂T ) ⊂ B ∩
∂M and spt(T ) ⊂ B̃, cannot have mass smaller than that of Zj .
Thus, Zj An = V j An = Γ̄j is a regular, minimal, embedded hyper-

surface except for a closed set Sing(Γ̄j) of dimension at most n− 7. In the
unconstrained case it meets the boundary ∂M orthogonally and it is stable
for the free boundary problem. In the constrained case Sing(Γ̄j) does not
intersect ∂M and ∂Γ̄j = γ (in An; in particular any connected component
of Γj that intersects ∂M must have multiplicity 1).

The second step in the proof of Proposition 10.3 takes advantage of the
compactness theorems in Section 8 to pass into the limit in j and conclude
that Ṽ has the desired regularity properties.

10.2. Proof of Lemma 10.6

We focus on the constrained case, since the proof in the unconstrained
case follows the same line and it is indeed easier.

We will exhibit a suitable homotopy between Γj,k and Ξ by first de-
forming Γj,k inside B to a cone with vertex y and base Γj,k ∩ ∂B, and
then deforming this cone back to Ξ, without increasing the area by more
than (2m+2j)−1, which will prove the claim. To this end, we borrow the
“blow down -blow up” procedure from [10], which in turn is borrowed from
Smith [35] (see also Section 7 of [7]) and we only need to modify the idea
because x ∈ ∂M.

Fix y ∈ An ∩ ∂M, and j ∈ N. If y /∈ γ, by considering M as a subset
of M̃ as in Remark 7.2, and simply making sure to choose ρ small enough
that Bρ(y) ⊂⊂ M̃\γ, we can reduce to the interior case. Note that we also
make use of the convexity assumption onM to make sure all the surfaces
in the homotopy stay inside M. Therefore, we are left to prove the case
y ∈ An ∩ ∂M∩ γ.

First, in a small neighborhood around y, we can find (smooth) diffeo-
morphisms

Ψ1 : Rn−1 × R→ ∂M, Ψ−1
1 (γ) ⊂ Rn−1 × {0}, Ψ1(0) = ι(y);

Ψ2 : ∂M× R+ →M, Ψ2(x, t) = expx(tν(x)),

with ι : ∂M → M the inclusion map, and ν(x) unit normal to ∂M. By
taking Ψ2(Ψ1(x), t) and composing it with a linear map if necessary, we get
a (smooth) local coordinate chart Ψ : U ⊆ Rn+1 → V in a neighborhood
V ⊂ An ⊂M of y, with Ψ(0) = y, ∂M∼= Rn×{0}, γ ∼= Rn−1×{0}×{0},
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and DΨ0 = Id. In the following, Ber(0) and Hn,e are used to denote the
ball of radius r and the Hausdorff measure w.r.t the euclidean metric in the
given coordinates. We will choose τ > 0 small enough, that Be2τ (0) ⊆ U .
The required radius ρ of the geodesic ball B = Bρ(y) will be fixed later,
but chosen small enough that Ψ−1(Bρ(y)) ⊂⊂ Beτ (0) (and, of course,
smaller than the injectivity radius). Furthermore, by choosing U (and con-
sequently τ) small enough, we can ensure for any surface Σ ⊂ Be2τ (0) that

(10.1) 1
c
Hn,e(Σ) 6 Hn(Σ) 6 cHn,e(Σ),

where c depends on the metric, and c → 1 for τ → 0. From now on, we
will use the same symbols to denote sets and their representations in the
coordinates given by Ψ.
Step 1: Stretching Γj,k∩∂Ber(0). — First of all, we will choose r ∈ (τ, 2τ)

such that, for every k,

Γj,k is regular in a neighborhood of ∂Ber(0)
and intersects it transversally

(10.2)

This is implied by Sard’s lemma, since each Γj,k has only finitely many
singularities. We let K be the cone

K = {λz | 0 6 λ < 1, z ∈ ∂Ber(0) ∩ Γj,k}

We now show that Γj,k can be homotopized through a family Ω̃t to a surface
Ω̃1 in such a way that:

• maxtHn,e(Ω̃t)−Hn,e(Γj,k) can be made arbitrarily small;
• Ω̃1 coincides with K in a neighborhood of ∂Ber(0)

To this end, we consider a smooth function ϕ : [0, 2τ ]→ [0, 2τ ] with:
• |ϕ(s)− s| 6 ε and 0 6 ϕ′ 6 2;
• ϕ(s) = s if |s− r| > ε and ϕ ≡ r in a neighborhood of r.

Set Φ(t, s) := (1− t)s+ tϕ(s). If A is any set, we use λA as usual to denote
the set {λx |x ∈ A}. We can now define Ω̃t in the following way:

• Ω̃t \Ane(0, r − ε, r + ε) = Γj,k \Ane(0, r − ε, r + ε);
• Ω̃t ∩ ∂Bes(0) = s

Φ(t,s)
(
Γj,k ∩ ∂BeΦ(t,s)

)
for every s ∈ (r − ε, r + ε),

where the annuli (with the superscript e) are with respect to the euclidean
metric. Note that our choice of coordinates ensures that γ is preserved as
the boundary. Furthermore, the surfaces are smooth (with the exception of
a finite number of singularities), since Γj,k is regular in a neighborhood of
∂Ber(0) Moreover, owing to (10.1) and (10.2), and for ε sufficiently small,
Ω̃t will have the desired properties. Finally, since Ξ coincides with Γj,k on
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M\ Bρ(y) (and in particular, outside Beτ (0)), the same argument can be
applied to Ξ. This shows that

w.l.o.g. we can assume K = Ξ = Γj,k

in a neighborhood of ∂Ber(0)
(10.3)

Step 2: The homotopy. — We now construct the required homotopy
mentioned in the beginning of the proof, as the family {Ωt}t∈[0,1] of hyper-
surfaces which satisfy:

• Ωt \ B̄er(y) = Γj,k \ B̄er(y) for every t;
• Ωt ∩Ane(0, |1− 2t|r, r) = K ∩An(y, |1− 2t|r, r) for every t;
• Ωt ∩ B̄e(1−2t)r(0) = (1− 2t)(Γj,k ∩ B̄er(0)) for t ∈ [0, 1

2 ];
• Ωt ∩ B̄e(2t−1)r(0) = (2t− 1)(Ξ ∩ B̄er(0)) for t ∈ [ 1

2 , 1].

Note again that, because of the way we chose our coordinates and defor-
mations, and consequently (10.3), this satisfies the properties of a smooth
constrained family. The only property left to check is that

(10.4) max
t
Hn(Ωt) 6 Hn(Γj,k) + 1

2m+2j
∀ k > k0

holds for a suitable choice ρ, r and k0.
First we observe the following standard facts, for every r < 2τ and

λ ∈ [0, 1]:

Hn,e(K) = r

n
Hn−1,e(Γj,k ∩ ∂Ber(0)

)
;(10.5)

Hn,e
(
λ(Γj,k ∩ B̄er(0))

)
= Hn,e

(
λ(Γj,k ∩Ber(0))

)
(10.6)

6 Hn,e
(
Γj,k ∩Ber(0)

)
;

Hn,e
(
λ(Ξ ∩ B̄er(0))

)
= Hn,e

(
λ(Ξ ∩Ber(0))

)
6 Hn,e

(
Ξ ∩Ber(0)

)
;(10.7) ∫ 2τ

0
Hn−1,e(Γj,k ∩ ∂Bes(0)

)
ds 6 Hn,e

(
Γj,k ∩Be2τ (0)

)
,(10.8)

where the equalities in (10.6) and (10.7) are due to (10.2). From (10.1) and
the assumption on Ξ we conclude Hn,e(Ξ∩Be2τ (0)) 6 c2Hn,e(Γj,k∩Be2τ (0)),
which together with (10.5), (10.6) and (10.7) gives us the estimate

(10.9) max
t
Hn(Ωt)−Hn(Γj,k)

6 cHn,e
(
Ωt ∩Be2τ (0)

)
6 c3Hn,e

(
Γj,k ∩Be2τ (0)

)
+ rHn−1,e(Γj,k ∩ ∂Ber(0)

)
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By (10.8) we can find r ∈ (τ, 2τ) which, in addition to (10.2) (and conse-
quently (10.3)), satisfies

(10.10) Hn−1,e(Γj,k ∩ ∂Ber(0)
)
6

2
τ
Hn,e

(
Γj,k ∩Be2τ (0)

)
.

Hence,

(10.11) max
t
Hn(Ωt) 6 Hn(Γj,k) + (4 + c2)Hn,e

(
Γj,k ∩Be2τ (0)

)
.

By a metric comparison argument similar to (10.1) relating the lenghts
of curves inside Be2τ (0), we can obtain the inclusions Bρ(y) ⊂⊂ Beτ (0) ⊂
Be2τ (0) ⊂⊂ Bc̄ρ(y), where the constant c̄ depends on the metric, assuming
of course that τ is initially chosen small enough. Next, by the convergence
of Γj,k to the stationary varifold V j , we can choose k0 such that

(10.12) Hn,e
(
Γj,k ∩Be2τ (0)

)
6 2||V j ||(Bc̄ρ(y)) for k > k0.

Finally, by the monotonicity formula (see [3, Theorem 3.4(2)]),

(10.13) ||V j ||(Bc̄ρ(y) 6 CM||V j ||(M)ρn.

By gathering the estimates (10.11), (10.12), and (10.13) (and having chosen
τ small enough as instructed, depending only onM), we deduce that if:

• ρ is chosen small enough that

2(4 + c2)CM||V j ||(M)ρn < 1
2m+2j

holds,
• k0 is chosen large enough that (10.12) holds
• and r ∈ (τ, 2τ) is fixed so that it satisfies (10.2) and (10.10),

then we can construct {Ωt} as above, concluding the proof. �

10.3. Proof of Corollary 10.7

Step 1. Minimality in the interior. — Again, we focus on the constrained
problem, since the unconstrained problem is exactly the same. Strictly
speaking, the conclusion of the corollary is new even in the interior, because
in [10] the homotopic Plateau’s problem was stated in the framework of
Caccioppoli sets, i.e. not allowing multiplicities for our currents. We thus
first show how to remove this technical assumption in the interior; in turn,
the following argument also gives the needed technical adjustment to the
arguments in [10] in order to show the interior regularity, cf. Remark 5.5.
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Fix j ∈ N, y ∈ Int(An), and let Bρ(y) ⊂ An be the ball given by
Lemma 10.6 where we assume in addition ρ < dist(y, ∂M). We will prove,
by contradiction, that the integral current Zj (obtained as the weak limit of
currents [[Γj,k]]) is area minimizing in Bρ/2(y). Note that in order to get the
convergence, up to subsequences, of [[Γj,k]] we can apply Federer–Fleming’s
compactness theorem:

• a uniform bound on the mass of [[Γj,k]] is obvious by the minimality
property;

• in the constrained case the bound on the mass of ∂[[Γj,k]] is obvious
because all such boundaries coincide with γ; in the uncostrained
case the mass can be bounded locally by the results in [15].

Assume, therefore, it is not, and there exists an integral current S, with
∂S = γ, S = Zj onM\Bρ/2(y) and

(10.14) M(S) < M(Zj)− η

Since supk(M(Γj,k) + M(γ)) <∞, and therefore the weak and flat conver-
gence are equivalent, we have the existence of currents integral Aj,k and
Bj,k with

(10.15) Γj,k − Zj = ∂Aj,k +Bj,k and M(Aj,k) + M(Bj,k)→ 0

In fact, considering that ∂(Γj,k − Zj) = 0, we can assume w.l.o.g. that
Bj,k = 0. By slicing theory, we can choose ρ/2 < τ < ρ and a subsequence
(not relabeled) such that

(10.16) ∂(Aj,k Bτ (y)) = (∂Aj,k) Bτ (y) +Rj,k, M(Rj,k)→ 0

where sptRj,k ⊂ ∂Bτ (y), and Rj,k is integer multiplicity (cf. Figure 10.1).
Now, define the integer n-rectifiable current

Sj,k := S Bτ (y)−Rj,k + Γj,k (M\Bτ (y)).

It is easy to check from the above that ∂Sj,k = γ. Moreover, from the weak
convergence Γj,k ⇀ Zj we get M(Zj Bτ ) 6 lim infk→∞M(Γj,k Bτ ),
and together with (10.14), (10.16), this implies

(10.17) lim sup
k→∞

(
M(Sj,k)−M(Γj,k)

)
6 −η.

We now proceed to approximate Sj,k with smooth surfaces, which would by
construction exhibit a similar gap in area (mass) with respect to Γj,k. The
idea is to then apply Lemma 10.6, thereby showing that these smooth sur-
faces belong to the class H(Γj , An), and thus contradicting the minimality
of the original sequence Γj,k.
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Figure 10.1. The cut-and-paste procedure to produce a suitable com-
petitor.

Let us first fix (a, b) ⊂⊂ (τ, ρ) with the property that Γj,k∩An(y, a, b) is a
smooth surface. Since ∂[Sj,k Bb(y)] ⊂ ∂Bb(y), we can find an n-rectifiable
current Ξ with spt(Ξ) ⊂ ∂Bb(y) and ∂Ξ = ∂[Sj,k Bb(y)]. Taking R =
Sj,k Bb(y) − Ξ we apply 4.5.17 of [11] to find a decreasing sequence of
Hn+1-measurable sets {Ui}∞i=−∞ (of finite perimeter in Bb) and use them
to construct rectifiable currents

Sj,ki = ∂[[Ui]] Bb(y) with spt ∂Sj,ki ⊂ ∂Bb(y), and

Sj,k Bb(y) =
∑
i∈Z

Sj,ki , M(Sj,k Bb(y)) =
∑
i∈Z

M(Sj,ki ).(10.18)

In fact, R = ∂T where T =
∑∞
i=1[[Ui]]−

∑0
i=−∞[[Bb(y)\Ui]]. Let us therefore

define the integer valued function f : Bb(y)→ Z by

f :=
∞∑
i=1

χUi −
0∑

i=−∞
χBb\Ui ,

where χA denotes the characteristic function of a set A. Because the se-
quence {Ui}∞i=−∞ is decreasing, we see immediately that Ui = {x | f(x)> i}.
In fact, f is of bounded variation inside Bb(y), which follows from (10.18)
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and the fact that (see Remark 27.7 in [34])

(10.19) M(∂[[Ui]] Bb(y)) =
∫
Bb(y)

|DχUi |.

By recalling the standard way of approximating functions of bounded
variation by smooth functions, we take a compactly supported convolution
kernel ϕ and consider the functions fε = f ∗ ϕε, for ε < ρ − b (hence
spt fε ⊂ Bρ(y)). Of course,

∫
Bρ
|Dfε| →

∫
Bρ
|Df | for ε → 0. If we define

Ut,ε := {x : fε(x) > t}, then by coarea formula∫
|Dfε| =

∫ ∞
−∞

dt
∫
|DχUt,ε |.

By a simple argument, which essentially follows from Chebyshev’s inequal-
ity applied to the function fε(x) − f(x) (see Lemma 1.25 in [13]), we get
χUt,ε → χUi in L1 for every t ∈ (i− 1, i), i ∈ Z. Taking a sequence εl → 0,
and using the lower semicontinuity of the perimeter w.r.t L1 convergence,
we deduce

(10.20)
∫
Bb

|Df | = lim
j→∞

∫
Bb

|Dfεl | >
∫ ∞
−∞

dt lim inf
l→∞

∫
Bb

|DχUt,εl |

>
∞∑

i=−∞

∫ i

i−1
dt
∫
Bb

|DχUi | =
∫
Bb

|Df |.

Hence, for all i ∈ Z and almost all t ∈ (i− 1, i), lim inf l→∞
∫
Bb
|DχUt,εl | →∫

Bb
|DχUi |. Moreover, since almost all level sets are smooth by Sard’s

lemma, for all i ∈ Z we may choose a ti ∈ (i− 1, i) such that:
• ∂Uti,εl is smooth;
• lim inf l→∞

∫
Bb
|DχUti,εl | →

∫
Bb
|DχUi |.

By choosing a diagonal subsequence (without relabeling), we can ensure
that the lim inf l→∞ is replaced by a liml→∞. We now define a current

∆j,k,l =
∞∑

i=−∞
∂[[Uti,εl ]] Bb(y),

and note that it is induced by a smooth surface (for each l ∈ N), since it
is composed of smooth level sets of a smooth function. Furthermore, the
properties above together with (10.18) and (10.19) imply that M(∆j,k,l)→
M(Sj,k Bb(y)) as l→∞.
We would now like to patch ∆j,k,l with Γj,k outside Bb(y). For this,

recall that Sj,k ∩ An(y, a, b) = Γj,k ∩ An(y, a, b) is also a smooth surface.
Therefore, fixing a regular tubular neighborhood T of Sj,k inside An(y, a, b)
and the corresponding normal coordinates (ξ, σ) on it, we conclude that
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for l sufficiently large (consequently εl sufficiently small), T ∩∆j,k,l is the
set {σ = gεl(ξ)} for some function gεl . Moreover, gεl → 0 smoothly, as
l → ∞. Now, using a patching argument entirely analogous to the one of
the freezing construction in Lemma 6.1 (one dimensional version) allows us
to modify ∆j,k,l to coincide with Sj,k (and therefore Γj,k) in some smaller
annulus An(y, b′, b) ⊂ An(y, a, b), without increasing the area too much.
Thus, observing the definition of Sj,k and (10.17), we are able to construct
currents ∆j,k with the following properties:

• ∆j,k is smooth outside of a finite set;
• ∆j,k (M\Bρ(y)) = Γj,k (M\Bρ(y));
• lim supk

(
M(∆j,k)−M(Γj,k)

)
6 −η < 0.

For k large enough, Lemma 10.6 tells us that ∆j,k ∈ H(Γj , An), which
would in turn imply that Γj,k is not a minimizing sequence, thus closing
the contradiction argument.
Step 2. Minimality at the boundary. — We are still left with proving

the statement in case y ∈ γ ⊂ ∂M. As before, we start with a competitor
current S and the assumption (10.14). As a matter of fact, we will reduce
this to the previous case by constructing the current Sj,k, “pushing” it
slightly towards the interior of M, and then “attaching” to it a smooth
layer which connects it to γ. If the mass of the resulting current is very close
to the mass of Sj,k, we retain (10.14) with a smaller constant, and proceed
with smoothing as before. First, analogously to the above, we obtain the
currents Sj,k and (10.17). Choose (a, b) ⊂⊂ (τ, ρ) such that Γj,k∩An(y, a, b)
(and hence also Sj,k) is a smooth surface with boundary γ ∩ An(y, a, b).
Parametrize a tubular neighborhood Uδ(∂M) = {x∈M| |dist(x, ∂M)|<δ}
of ∂M with the usual smooth diffeomorphism

Φ : ∂M× [0, δ)→ Uδ(∂M), (t, s) 7→ Φ(t, s) = expt(sν(t)),

where ν(t) is the inward pointing normal of ∂M at t. Let us denote by
N := γ × [0, δ) the smooth hypersurface which meets ∂M orthogonally
in γ. Next, we pick a < a′ < b′ < b and slightly deform Sj,k to make it
coincide with N in An(y, a′, b′) ∩ Uξ(∂M) for some ξ small enough. To do
this, note for example that near γ, Sj,k∩An(y, a′, b′) is a graph of a function
g over N , due to the convexity assumption onM. By considering g(1−ψ),
where ψ is a suitable cutoff function supported in An(y, a, b) ∩ U2ξ(∂M)
and equal to 1 in An(y, a′, b′) ∩ Uξ(∂M), we obtain the desired surface.
Furthermore, its area will be arbitrarily close to the area of Sj,k, provided
ξ is chosen small enough. Thus, w.l.o.g. we can assume

(10.21) Sj,k = N in An(y, a′, b′) ∩ Uξ(∂M), for some ξ small enough.
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We fix:
• a smooth function ϕ : [0,∞)→ [0, ε] such that ϕ(0) = ε, ϕ(x) =

0 for x >
√
ε, and |ϕ′(x)| 6 C

√
ε (where ε will be fixed later);

• a smooth function η : ∂M → [0, 1] such that η(t) = 1 for t ∈
∂M∩Ba′(y) and η(t) = 0 for t ∈ ∂M\Bb′(y).

Consider now the map

(10.22) Ψ(x) :=
{

(t, s) 7→ (t, s+ ϕ(s)η(t)) for x = (t, s) ∈ U√ε(∂M);
Id for x ∈M \ U√ε(∂M).

If ε < δ2 is small enough that |ϕ′(x)| < 1, we ensure that s 7→ s+ ϕ(s)η(t)
is monotone increasing, and Ψ : M → M is a well defined, smooth,
proper map, with a Lipschitz constant 1 + O(

√
ε). This means that we

can push forward the current Sj,k to obtain Ψ#(Sj,k) with a (possibly)
small gain in mass, and with ∂(Ψ#(Sj,k)) = Ψ#(∂Sj,k) = Ψ#(γ) being
a smooth submanifold of N . It is now obvious that, by attaching to it a
smooth surface γ|spt(η) × [0, εη(t)) with mass O(ε) (and the proper orien-
tation assigned), we are able to construct a current S̃j,k with ∂S̃j,k = γ,
S̃j,k \Bρ(y) = Γj,k \Bρ(y) and with M(S̃j,k) arbitrarily close to M(Sj,k).
Moreover, it follows from the construction and (10.21) that S̃j,k is smooth
in Uε(∂M) ∩ Bb(y) (in fact, it coincides with N in Uε(∂M) ∩ Bb′(y)). We
can now repeat the smoothing procedure from the previous case, centered
around the point y′ = Ψ(y) ∈ S̃j,k, with one modification; we may not
be able to actually choose (metric) balls around y′ with some radii ã, B̃,
contained in Int(M) such that S̃j,k ∩ An(y′, ã, B̃) is smooth, as before.
Nevertheless, it follows from the above that we may choose some open
neighborhoods Va(y′) ⊂⊂ Vb(y′) ⊂⊂ Bb(y) diffeomorphic to balls, such
that this is true. All the arguments can be easily modified for this case,
and we reach a contradiction once again.
Step 3. Zj = V j . — We first show that M(Γj,k) converges to M(Zj).

Indeed, if this were not the case, we would have

M(Zj ∩Bρ/2)(y) < lim sup
k→∞

M(Γj,k ∩Bρ/2)(y)

for some y ∈ An and some ρ to which we can apply the conclusion of
Lemma 10.6. We can then use Zj instead of S in the beginning of this
proof to once again contradict the minimality of the sequence {Γj,k}k∈N.
The convergence of the mass is then a simple consequence of the following
well known fact
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Lemma 10.8. — Let V j be a sequence of rectifiable currents inM such
that:

(i) V j ⇀ V in the flat norm;
(ii) M(V j)→M(V ).

Let the rectifiable varifolds W j associated to V j converge to a (rectifiable)
varifold W . Then W is the varifold associated to the rectifiable current V .

Step 4. Regularity and stability. — In the constrained case the regu-
larity in the interior follows from the standard theory for area-minimizing
currents, see for instance [34]. The regularity at the boundary follows in-
stead from [3] because ∂M is uniformly convex (actually [3] deals with the
case whereM is a subset of the Euclidean space, but the modifications to
handle the case of a general Riemannian manifold are just routine ones). In
the unconstrained case, the regularity is proved in Grüter’s work [14] (here
again, the arguments, given in the euclidean setting, can be easily adapted
to deal with the general Riemannian one).
The minimality and stability of the surfaces Γ̄j (together with the con-

dition that they meet orthogonally ∂M in the unconstrained case) are
obvious consequences of the minimality property. �

10.4. Proof of Proposition 10.3

We can now use the compactness theorems in Section 8 to show that
the varifold Ṽ has all the regularity properties required by Definition 10.2.
In the unconstrained case we use Theorem 8.3, whereas in the constrained
case we use Theorem 8.4. Note that we can apply the latter theorem thanks
to Lemma 9.1. As for the remaining claims, the arguments are the same as
in [10]. �

11. Proof of Theorem 10.1 and Theorem 2.6

Clearly Theorem 2.6 is a direct consequence of Theorem 10.1 and Propo-
sition 5.3. Thus from now on we focus on Theorem 10.1: we fix a varifold
V as in there and we want to prove that it is regular. In particular, we
already know that V is regular in the interior. Moreover,

(a) In the constrained case we know that spt(V ) ∩ ∂M ⊂ γ. We thus
need to show the regularity of V at any point p ∈ γ, and more
precisely that for every p ∈ γ there is a neighborhood U such that
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V is a regular minimal surface Γ in U counted with multiplicity 1,
such that ∂Γ = γ (in U).

(b) In the unconstrained case we need to show that, with the exception
of a closed set of dimension at most n− 7, for any p ∈ ∂M there is
a neighborhood U such that V is a regular minimal surface Γ in U
(counted with integer multiplicity, not necessarily 1) which meets
∂M orthogonally.

11.1. Tangent varifolds and integrality

We already know, in the constrained case, that V is an integer rectifiable
varifold and that ‖V ‖(∂M) = 0. In the unconstrained case we know the
integrality of V in Int(M). We now wish to show that ‖V ‖(∂M) = 0 even
in this case.
Fix a point p ∈ ∂M where Θ(V, p) > 0 and consider the standard blow-

up procedure of Lemma 7.11. The upper bound on the density provided by
Proposition 7.6 ensures that any sequence of rescaled varifolds Vp,rk have
locally uniformly bounded mass and thus converges, up to subsequences,
to some tangent varifold W : recall that Tan(V, p) denotes the set of such
tangent varifolds. We fix one of them, say W , together with a converging
sequence of rescalings Vp,rk .W is supported in TpM. Indeed the hyperplane
Tp∂M divides TpM in two connected components π+ and π− and W is
supported in the closure of one of them, say π+.
By Proposition 7.6 and standard arguments we conclude that:
(i) δW (χ) = 0 for every smooth compactly supported vector field on

TpM tangent to TpM;
(ii) ρ−n‖W‖(Bρ(0)) = σ−n‖W‖(Bσ(0)) = ωmΘ(V, p) for every σ, ρ> 0.

Thanks to Proposition 10.3, there exists a varifold Ṽk which is a replace-
ment for V in the annulus An(p, rk, 2rk). Rescaling such a replacement
suitably we get a second varifold V̄k which is a replacement for Vp,rk in
ιp,rk(An(p, rk, 2rk)). In particular, by the compactness Theorem 8.3 (in
the appropriately modified version discussed in Section 8.4) we obtain the
convergence of V̄k to a replacement W̄ for W . Now, the latter replacement
has the property that it is regular in B2(0)\B1(0) ⊂ TpM and meets Tp∂M
orthogonally. Moreover, by the property of the replacement we must have

‖W̄‖(B1/2(0)) = ‖W‖(B1/2(0))

and ‖W̄‖(B5/2(0)) = ‖W‖(B5/2(0)) .
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Using (ii) above and Lemma 7.9 we conclude that

(11.1) σ−n‖W̄‖(Bσ(0)) = ρ−n‖W̄‖(Bρ(0)) = ωmΘ(V, p) ∀ σ, ρ > 0 .

In particular we must have that spt(‖W̄‖) ∩ ∂Br(0) 6= ∅ for every r > 0:
otherwise we would find an annulus Br+ε(0) \ Br−ε(0) which does not
intersect spt(‖W̄‖), implying in turn that ‖W̄‖(Br+ε(0)) = ‖W̄‖Br−ε(0),
which would contradict (11.1).
Fix now a point q ∈ B3/2(0) ∩ W̄ . Since W̄ is regular in B2(0) \ B1(0),

clearly Θ(W̄ , q) > 1
2 . Using the monotonicity formula in B1/2(q) we then

conclude that
‖W̄‖(B1/2(q)) > c(n) > 0 ,

where c(n) is a geometric constant. In particular we have obtained a uni-
form lower bound for the density Θ(V, p), namely we have

(11.2) Θ(V, p) > c(n) > 0 ∀ V ∈ spt(‖V ‖) .

In turn, by standard arguments (cf. [34, Chapter 8]: in place of the usual
monotonicity formula we can use Proposition 7.6), we conclude that, if p ∈
spt(‖V ‖∩∂M), any tangent varifoldW has the same uniform lower bound
on the density. The classical Allard’s rectifiability theorem implies that V
is then rectifiable “in the interior”, namely in π+ (cf. again [34, Chapter 8]).
On the other hand we also have that ‖V ‖ Tp∂M = ΘHn Tp∂M and we
can use the same argument as in the proof of Corollary 7.8 in order to show
that indeed W is rectifiable everywhere. Finally, using the Grüter–Jost
monotonicity formula and arguing as in [34, Chapter 8], the property (ii)
together with the rectifiability imply that W is indeed a cone.
Going back to the replacement W̄ , for the same reason we can argue that

W̄ is a cone and thus conclude that W itself is regular in the punctured
plane TpM \ {0}. Moreover, by the considerations in [14] and [17], the
reflection ofW along Tp∂M gives a stable minimal hypercone in TpM\{0},
regular up to a set of codimension at least 7. Finally, see for instance [31],
since the origin has zero 2-capacity, such a cone turns out to be stable on
the whole TpM. In particular, by the classical result of Simons, the cone
is in fact a hyperplane if n 6 6.
Before going on, we observe that the argument above applies literally

in the same way to the constrained case as well. We conclude that W is
a cone C in TpM \ {0} with the property that ∂C = Tpγ. In particular
we conclude that C is a multiplicity 1 half-hyperplane and indeed, by the
Wedge property of Lemma 9.1, C meets Tp∂M transversally.

We summarize our conclusions in the following:

TOME 68 (2018), FASCICULE 5



1972 Camillo DE LELLIS & Jusuf RAMIC

Lemma 11.1. — Let V be as in Theorem 10.1, p a point in ∂M and
W ∈ Tan(V, p) a tangent varifold.

(i) In the constrained caseW = 0 unless p ∈ γ and if p ∈ γ thenW is a
half hyperplane of TpM, counted with multiplicity 1, which meets
Tp∂M transversally at Tpγ.

(ii) In the unconstrained case W is a minimal hypersurface Ξ meeting
Tp∂M orthogonally, which is half of a stable minimal cone in TpM
(counted with multiplicity), regular up to a set of dimension at
most n− 7. When n 6 6, Ξ is half of a hyperplane meeting Tp∂M
orthogonally.

Next, in the unconstrained case the lemma above implies that

‖W‖(Tp∂M) = 0 .

In particular, since ∂M is a closed subset ofM, we easily conclude that

lim
k→∞

r−nk ‖V ‖(∂M∩Brk(p)) = lim
r↓0
‖Vp,rk‖(ιp,rk(∂M∩Brk(p))

6 ‖W‖(Tp∂M∩B1) = 0 .

Therefore,

lim
r↓0

r−n‖V ‖(∂M∩Br(p)) = 0 for every p ∈ ∂M ,

which in turn implies easily ‖V ‖(∂M) = 0.
In particular we have concluded that V is integral even in the uncon-

strained case.

11.2. Regularity in the constrained case

In the constrained case, Lemma 11.1 implies that we fall under the as-
sumptions of Allard’s boundary regularity theorem for stationary varifolds:
V is therefore regular at every point p ∈ γ, which completes the proof.

11.3. Unconstrained case: regularity in the punctured ball

Our first goal is to show that, if p ∈ ∂M, then there is a radius r such
that V is regular up to the boundary in the punctured ball Bρ(p) \ {p}
(except for a singular set of dimension at most n− 7).

We first fix p ∈ ∂M and we then choose r > 0 so that V is a.m. in
any annulus centered at p and with outer radius smaller than r. Fix next
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a ρ > 0 with 4ρ < r and recall that we do know that V is regular in
the interior of An(p, ρ, 4ρ), namely in An(p, ρ, 4ρ) \ ∂M. Enumerate next
the connected components Γ1, . . . ,Γi . . . of (An(p, ρ, 4ρ) \ ∂M)∩ spt(‖V ‖)
(which might be infinitely many). Fix any point q ∈ Γi and consider a small
ball Bσ̃(q) ⊂ An(p, ρ, 4ρ) \ ∂M so that Bσ(q)∩ Γi is (diffeomorphic to) an
n-dimensional ball for every σ < σ̃. Let s be the distance between p and q
and observe that, by the classical maximum principle, there is a positive σ
such that ∂Bt(p) must intersect Γi∩Bσ(q) for every t ∈ ]s, s+σ[. Moreover,
for a.e. t such intersection must be transversal by Sard’s Lemma. Let t be
any such radius, let q̃ ∈ ∂Bt ∩ Γi ∩ Bσ(q) and let γ be a curve connecting
q̃ and q in Γi ∩Bσ(q). Without loss of generality, by possibly changing the
point q̃, we can assume that γ is contained in Bt(p) \ Bs−σ(p) (except for
the endpoint q̃).
Consider now a replacement V ′ for V in the annulus An(p, ρ, t). It turns

out that q̃ ∈ spt(‖V ‖) necessarily. On the other hand V ′ is a.m. in annuli
and thus it is regular in the interior, namely in M \ ∂M: more precisely
it can have only singularities of codimension at most 7 and at a singular
point any tangent cone must be singular. This is certainly not the case for
q̃ because “outside of Bt(p)” V ′ is regular in a neighborhood of q̃ and meets
∂Bt(p) transversally: in particular we know that any tangent cone of V ′ at
q̃ must contain half of an hyperplane. Since such tangent cone is stable and
regular, except for a singular set of dimension n− 7, we conclude that any
tangent cone to V ′ at q̃ is indeed the (same!) hyperplane.

Hence q̃ is a regular point for V ′ as well. Let now Γ̃ be the connected
component of spt(‖V ′‖)∩ (An(p, ρ, 4ρ) \ ∂M) which contains q̃. By unique
continuation, Γ̃ must in fact contain Γi∩Bσ(q). Again by unique continua-
tion we conclude that the connected component Γ̃ and Γi must coincide. On
the other hand, because of the properties of the replacement, Γ̃ is regular
up to the boundary in An(p, ρ, t).
Since q can be chosen arbitrarily close to sup{d(p, p′) : p′ ∈ Γi, we

conclude that in fact Γi is regular up to the boundary on the whole annulus
An(p, ρ, 4ρ). Now, by the monotonicity formula, we conclude immediately
that, if Γi contains a point in An(p, 2ρ, 3ρ) (no matter whether such point
is in the interior or in the boundary), then its n-dimensional volume is
bounded from below by c(n)ρn: in particular there are only finitely many
Γi’s which intersect An(p, 2ρ, 3ρ). For simplicity we will assume that they
are the first N0 in the chosen enumeration.

Recall that the singular sets Si := Sing(Γi∩An(p, 2ρ, 3ρ)) have dimension
at most n−7. Consider a boundary point q ∈ ∂M∩Γi∩An(p, 2ρ, 3ρ) which
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is regular for Γi and at the same time does not belong to any other Sj . If
q were in the closure of some other Γj , then it would be a regular point for
Γj as well. Recall that Γi and Γj cannot cross in the interior and that they
meet ∂M orthogonally. In particular we would necessarily have that Γi and
Γj have the same tangent at q. However this would violate the maximum
principle.
Consider now a point p ∈ spt(‖V ‖) ∩An(p, 2ρ, 3ρ) ∩ ∂M. Since

‖V ‖(∂M) = 0

and since the Γi’s intersecting An(p, 2ρ, 3ρ) are finitely many, we must
necessarily have that p ∈ Γi for some i.

Summarizing we have concluded so far that

spt(‖V ‖) ∩An(p, 2ρ, 3ρ) ⊂
N0⋃
i=1

Γi

and

any point q ∈ (An(p, 2ρ, 3ρ) ∩ Γi) \
N0⋃
i=1

Si

is a regular point for V .
Clearly, these two properties imply that V is regular in An(p, 2ρ, 3ρ)

(except for the usual closed set of dimension at most n − 7). Since the
argument is valid for any ρ < r

4 , we easily conclude the regularity of V in
a punctured ball.

11.4. Unconstrained case: removing singular points for n 6 6

From the previous step and by a simple covering argument, we conclude
that the set of singular points at the boundary is at most finite when n 6 6.
We now wish to remove said points. Again the argument is a suitable variant
of the argument which deals with the same issue in the interior (cf. [10]).
Consider the smooth surface Γ (counted with multiplicity) which gives the
varifold V in Br(p) \ {p}. If we choose r sufficiently small, by Lemma 11.1,
for every ρ < r we know that the rescalings ιp,ρ(Γ) are ε close, in the
varifold sense and in the annulus ιp,ρ(An(p, ρ/8, 4ρ)), to a varifold of the
form Θ(V, p)π(ρ) where π(ρ) ⊂ TpM is a half-hyperplane meeting Tp∂M
orthogonally. We can also assume that the tilt between π(ρ) and π(2ρ) is
smaller than ε, provided r is chosen even smaller.
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By the compactness Theorem 8.3 (again, in the more general version
where the ambient manifolds can change, cf. Section 8.4), if r is suffi-
ciently small and ρ < r, then Vp,ρ ιp,ρ(An(p, ρ/4, 2ρ)) consists of finitely
many Lipschitz graphs Γ1(ρ), . . . ,Γk(ρ) over π(ρ), with controlled Lipschitz
constant (say, at most 1), each counted with multiplicity mi. The same
then holds for V An(p, ρ/4, 2ρ). Moreover since the tilt between π(ρ) and
π(ρ/2) is small, we easily conclude that the numbers of connected compo-
nents in An(p, ρ/8, ρ) is the same, that they can be ordered so that Γi(ρ)
and Γi(ρ/2) overlap smoothly and that the corresponding multiplicities are
the same.

We can repeat the above argument over dyadic radii ρ2−j and we con-
clude that V (Bρ(p) \ {p} consists of finitely many connected compo-
nents Γi counted with multiplicity mi, which are topologically punctured
n-dimensional balls, smooth up to ∂M. Taking one such connected compo-
nent and removing the multiplicity, we get a multiplicity 1 varifold in Bρ(p)
which is stationary for the free boundary problem and has flat tangent
cones at p, with multiplicity 1. This falls therefore under the assumptions
of the Allard’s type theorem proved by Grüter and Jost in the paper [16],
from which we conclude that p is a regular point. Hence each Γi continues
smoothly across p. The classical maximum principle now implies that the
Γi cannot actually touch at the point p, implying in fact that the number
of connected components of Γ in any ball Bρ is 1.

12. Competitors: proofs of Corollary 2.7 and 2.9

We start with Corollary 2.7.
Proof of Corollary 2.7. — Without loss of generality we can assume that

M is connected.
First of all we show that there is a generalized family {Σt}t∈[0,1] where

Σ0 and Σ1 are trivial (namely as closed sets which consist of a collection
of finitely many points). Indeed it suffices to take the level sets of a Morse
function f whose range is [0, 1], with the additional requirement that the
restriction of f to ∂M is also a Morse function. Since Morse functions are
generic on smooth manifolds, the existence of such an f is guaranteed. We
then construct a homotopically closed family X by taking the smallest such
family which contains Σt.
Take now any {Σ′t}t ∈ X. Away from the singularities St the family {Σ′t}

can be given locally and for t in an interval [a, b] as the image of a smooth
map Φ : U×[a, b]. Thus the family {Σ′τ}τ∈[0,1] induces canonically a current
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Ω′t such that ∂Ω′t = Σ′t. If {Γt,s}(t,s)∈[0,1]2 is a homotopy between {Σt}t∈[0,1]
and {Σ′t}t∈[0,1], it is easy to check that the corresponding currents Ωt,s such
that ∂Ωt,s = Γt,s also vary continuously. Observe however that:

• Ωt,0 = [[{f < t}]] and thus Ω1,0 = [[M]], whereas Ω0,0 = 0;
• Since Γ1,s, resp. Γ0,s are all trivial currents, each Ω1,s, resp. Ω0,s,

is either 0 orM (because we are assuming thatM is connected);
• The continuity of Ω1,t and Ω0,t ensures then that Ω′1 = Ω1,1 = [[M]]

and Ω′0 = Ω′0,1 = 0.
We thus conclude that there must be one Ω′t such that M(Ω′t) = 1

2 Vol(M).
Now the isoperimetric inequality implies that Hn(Σ′t) > c0(M) > 0, where
the constant c0 depends only upon the ambient manifold.
The above argument shows that m0(X) > bM0(X) = 0 and thus we can

apply Theorem 2.6 to find a free boundary minimal hypersurface with total
area equal to m0(X). This completes the proof. �

Similarly, Corollary 2.9 will be an immediate consequence of Theorem 2.6
applied to constrained families, once we are able to show the existence
of two strictly stable minimal surfaces gives a homotopically closed set
X of constrained families parametrized by P = [0, 1] which satisfies the
condition (2.3). The proof will be divided into two lemmas. In the first
one we show the existence of a particular smooth family of hypersurfaces
{Σ}t∈[0,1], starting from Σ0 and ending in Σ1. In the second lemma we show
that any integer rectifiable current with sufficiently small flat distance to
Σ0 or Σ1 must have mass which is strictly greater, with a uniform lower
bound depending on the distance. More precisely our two lemmas are

Lemma 12.1. — Assume Σ0 and Σ1 are as in Corollary 2.9. Then there
exists a smooth family of hypersurfaces {Σt} parametrized by [0, 1] which
is constrained by γ.

Lemma 12.2. — Let Σ0,Σ1 be as above. There exists an ε0 > 0 and
f : (0, ε0]→ R+ such that:

(S) If Γ is an integer rectifiable current with F([[Σi]]−Γ) = ε, i ∈ {0, 1},
and ∂Γ = ∂[[Σi]] = γ, then M(Γ) >M([[Σi]]) + f(ε).

The two lemmas above easily imply our corollary.
Proof of Corollary 2.9. — Obviously, by taking the homotopy class of

the family in Lemma 12.1 we construct a homotopically closed set X. The
second lemma then clearly implies that any smooth family {Γt} with Γ0 =
Σ0 and Γ1 = Σ1 must satisfy (2.3), since F(Γt,Γs) is a continuous function
of t and s and F(Γ0,Γ1) > 0. In particular there is a smooth minimal
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surface Γ with volume equal to m0(X) > max{Hn(Σ0),Hn(Σ1)} which
bounds γ.
Now, by Assumption 2.8 the surface Γ cannot be given by Σ0 (or Σ1)

plus a closed minimal hypersurface, since the latter cannot exist. Recall
moreover that the volume of Γ must be strictly larger than Σ0 (resp. Σ1)
and the multiplicity of Γ must be everywhere 1 thanks to part (b) of The-
orem 2.6, we conclude that Γ is distinct from Σ0 (resp. Σ1). In particular,
if γ is connected, then all the Σi’s must be connected and thus Σ2 would
give a third distinct minimal surface.
In general, such argument would still be correct if one between Σ0 and

Σ1 were connected. Otherwise, Σ2 might be the union of some connected
components of Σ0 and of some connected components of Σ1, arranged in
such a way that ∂Σ2 = γ and that Hn(Σ2) > max{Hn(Σ0),Hn(Σ1)}. In
order to avoid such situation, we consider the family F of minimal surfaces
which bound γ and which can be described as union of some connected
components of Σ0 and of some connected components of Σ1. Since F con-
sists of finitely many elements, we can pick one of maximal volume, which
we denote by Γ0. The remaining connected components of Σ0 and of Σ1
(namely those which are not connected components of Γ0) form a second
stable minimal surface Γ1 which also bounds γ. If we now run the previous
argument with Γ0 and Γ1 replacing Σ0 and Σ1, we achieve yet another
minimal surface Γ2: since Γ2 must have volume strictly larger than that
of Γ0, the maximality of the latler in the class F guarantees that Γ2 has
at least one connected component which is neither contained in Σ0, nor
in Σ1. �

12.1. Proof of Lemma 12.1

Step 1. — Let us first extendM slightly across ∂M, in order to make the
following arguments more elegant (as per Remark 7.2 we can even do this
so thatM⊂ M̃, for some closed manifold M̃, if necessary). Consider the
normal tubular neighborhood of γ inM, which is realized by an embedding
ι : U → M, where U ⊂ Nγ is a neighborhood of the zero section of the
normal bundle Nγ, such that ι|γ = 1γ and ι(U) is open in M. Take a
(smooth) vector field e1(x) along γ, which is the normal to ∂M pointing
inwards.
For each point x of γ, consider the sets ι−1(Σi ∩ ι(U)) ∩ Ux, i ∈ {1, 2},

where Ux ∼= R2 is the fiber of the normal bundle at x. Since Σ0 and Σ1
are smooth and minimal, we can use the same arguments as in the proof

TOME 68 (2018), FASCICULE 5



1978 Camillo DE LELLIS & Jusuf RAMIC

of Lemma 9.1 to conclude that, if U is small enough, these are smooth,
non-intersecting curves (starting at the origin) which are contained inside
a 2-dimensional wedge of opening angle at most θ < π

2 , with e1(x) lying
on its axis. Hence, choosing U even smaller if necessary, we can make sure
that they are graphs over e1(x). That is, for each Ux there exist (smooth)
functions φ0

x, φ
1
x such that:

φ0
x, φ

1
x : Wx → R, φix(Wx) = ι−1(Σi ∩ ι(U)) ∩ Ux for i = 0, 1

where Wx := e1(x) ∩ Ux.
Recall that, by our assumption, Σ0∪Σ1 bounds an open set A. Consider

a point y ∈ Ā∩ ι(Ux), for some x ∈ γ. Note that the orthogonal projection
of ι−1(y) on e1(x), which we denote by ȳ, lies on the line segment Wx. We
define:

(12.1) ux(y) := t, where ι−1(y) = tφ1
x(ȳ) + (1− t)φ0

x(ȳ), t ∈ [0, 1].

Now, by the properties of the tubular neighborhood, to each y ∈ A ∩ ι(U)
is associated a unique fiber Ux, hence there exists an η > 0, such that
when we are at most η-away from ∂M, i.e. on some open set E0 = A ∩
ι(U) ∩ (M\Mη) withMη := {x ∈ M : dist(x, ∂M) > η}, these fiber-wise
constructions yield a well defined function f0 : E0 → R such that,

f0(y) := ux(y), where y ∈ ι(Ux).

Furthermore, this function is smooth (by smoothness of Σ0,Σ1 and ι), and
it has no critical points, provided we choose η small enough, since obviously
the derivative in the direction orthogonal to e1 (and γ) will be different
from 0.

Now, we construct a covering of Ā\E0 with balls, satisfying the following
two properties:

(a) Each ball has a radius less or equal than η
2 ;

(b) Each ball can only contain points from one of the surfaces Σ0 and
Σ1, and if it does, its center must lie on the surface.

Through compactness, we obtain a finite subcover, consisting of balls cen-
tered at the points x1, x2, . . . , xN . We will denote these balls by E1, . . . , EN .
Around each of these points xk lying on one of the Σi-s, we can characterize
the submanifold through a local trivialization, i.e. there exists a neighbor-
hood W ⊂M of the point (which we can w.l.o.g. assume to be bigger than
the ball Ek), an open set W ′ ⊂ Rn+1 ∼= Rn × R1, and a diffeomorphism

Ψxk : W →W ′, Ψxk(Σi ∩ U) = W ′ ∩ (Rn × {0}).
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We assume in these cases that the points lying inside the set A are mapped
into the positive half-space Rn+1

+ := {(y1, . . . , yn+1), yn+1 > 0}. We now
define functions fi on the balls Ei, i ∈ {1, . . . , N} in the following way:

(12.2) fi(y) :=


1
2 if xi lies in the interior of A;
(yn+1 ◦Ψxi)(y) if xi lies on Σ0;
1− (yn+1 ◦Ψxi)(y) if xi lies on Σ1.

Here, yn+1 : Rn+1 → R is just a function which evaluates the corresponding
coordinate. Functions fi defined in this way are obviously smooth.
Finally, take a partition of unity {ϕj}06j6N of Ā, subordinate to the

covering E0, . . . , EN . This allows us to define a function h : Ā→ R via:

(12.3) h(x) :=
N∑
i=0

ϕi(x)fi(x),

which is smooth up to the boundary of A, excluding γ of course.
Step 2: The function h defined in (12.3) has no critical points near Σ0

and Σ1, as well as in a small neighborhood of γ. Moreover h(Σ0 \ γ) = 0
and h(Σ1 \ γ) = 1. — It is obvious from (12.1), (12.2) and (12.3) that
h(Σ0 \ γ) = 0 and h(Σ1 \ γ) = 1. Note also that, by the definitions of Ei,
when we are at most η

2 away from ∂M, only ϕ0 is supported in this region,
hence here it must hold h(x) = f0(x), and we already know that f0 has no
critical points in it. In points q ∈ Σ0, we have

∂h

∂yn+1

∣∣∣∣
q

=
∑
i

∂ϕi
∂yn+1

· fi +
∑
i

ϕi ·
∂fi
∂yn+1

where yn+1 again denotes the “height” with respect to some fixed local
chart Ej . We have fi(q) = 0 ∀ i according to (12.1) and (12.2), so the
first sum vanishes. We also see that ∂fj

∂yn+1
= 1 and ∂fi

∂yn+1
> 0 for i 6= j,

i > 0 due to the compatibility of charts. so since ϕi-s are nonnegative and∑
i ϕi = 1, it follows that the second sum is positive. Hence q cannot be a

critical point of h. With similar arguments, we deduce this also for points
lying on Σ1.

It can be seen from the construction, however, that the function h will
be mostly constant inside the open set A away from Σ0 and Σ1. So in this
region we will use the fact that Morse functions form a dense, open subset
in the C2 topology, and define one such function g, say on the open set
B := A ∩ Int(Mη/4) (recall the definition above), such that

(12.4) ‖h− g‖C2(B) < ε
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for some small ε > 0, which will be fixed later. Next, we define a cut-off
function ψ : M → R, such that ψ = 0 on (M \Mη/4) ∪W and ψ = 1
on Mη/2 \W ′, where W ⊂⊂ W ′ are sufficiently small neighborhoods of
Σ0 ∪ Σ1. We finally define:

(12.5) f : Ā→ R, f(x) := ψ(x)g(x) + (1− ψ(x))h(x)

Step 3: For ε small enough, the function f is Morse inside A, and its level
sets provide a smooth family parametrized by [0, 1], where f−1(1) = Σ1 and
f−1(0) = Σ0. — It follows from the construction that f does not have any
degenerate critical point in the regions where ψ = 0 or ψ = 1. In the
intermediate region, due to (12.4) we have:

Df = Dh+Dψ(g − h) + ψ(Dg −Dh)

Due to the previous steps, we know h = f0 when at most η
2 away from

∂M, and thus we have no critical points for h close to ∂M. Thus |Dh| > δ

for some δ > 0 onM\M η
2
. Hence we have

|Df | > |Dh| − (|Dψ|+ |ψ|)‖h− g‖C2 > δ − Cε,

for some constant C depending on ψ (which in turn depends only on η)
on M \M η

2
∪W ′. Now, we can fix ε small enough so that |Df | > 0 on

M \ M η
2
∪ W ′. On the other hand, since f = g on M η

2
, we conclude

that f is a Morse function. It is clear from the construction that the level
sets of f will be smooth hypersurfaces near γ and will in fact have γ as
boundary. �

12.2. Proof of Lemma 12.2

The proof uses heavily Brian White’s similar result in [42] where he
proves that [[Σi]] is the unique minimizer among all currents in the same
homology class whose support is contained in a sufficiently small neighbor-
hood of Σi (note that, actually, it follows from standard arguments that, if
the neighborhood is sufficiently small, any current with the same boundary
as Σi must be in its holomogy class). In this lemma we just need to replace
the assumption of being close in the L∞ sense to the one of being close in
the flat norm. Thus our lemma is indeed very close to [1, Lemma 4.1].
W.l.o.g. we assume i = 0. By Theorem 2 of White [42], there exists an

open set U containing Σ0 such that

(12.6) M(Γ) > M([[Σ0]]) ∀ Γ with ∂Γ = ∂[[Σ0]], and spt(Γ) ⊂ U.
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We define

(12.7) m0(ε) := inf{M(Γ) | ∂Γ = ∂[[Σ0]] and F(Γ− [[Σ0]]) = ε}.

Our aim is to show that m0(ε) > M([[Σ0]]) ∀ ε ∈ (0, ε0], which clearly
implies the statement (S), by setting f(ε) = m0(ε) −M([[Σ0]]). Note that
the infimum in (12.7) is actually a minimum. We would like to show that,
if ε sufficiently small, a minimizer Γε must be contained in the tubular
neighborhood U of Σ0: this would then conclude the proof because by (12.6)
the mass of Γε would be strictly larger than that of [[Σ0]]. In fact, what we
will really show is that there is certainly a Z which has at most the same
mass as Γε, has boundary γ and it is contained in U , which still suffices to
reach the desired conclusion.
Step 1. — Let us denote first extend Σ0 slightly outside ∂M to a Σ′0

(remember that we can embed M in a smooth closed manifold M̃) and
denote by Uδ the δ-tubular neighborhood of Σ′0 intersected withM. We will
choose δ small enough so that U2δ ⊂ U . Note that ∂Uτ is smooth for all τ ∈
(δ, 2δ) and diffeomorphic to two copies of Σ0, with diffeomorphisms whose
smoothness can be bounded independently of τ . Hence, by the isoperimetric
inequality, we can choose some constant C > 0 (independent of τ) such that
for every (n− 1)-dimensional integer rectifiable current α homologous to 0
in ∂Uτ , there exists an n-dimensional integer rectifiable current S in ∂Uτ
with

(12.8) ∂S = α and M(S) 6 CM(α)
n
n−1 .

Take Γε to be the minimizer in (12.7). For every τ ∈ (δ, 2δ) we define:
• A(τ) := M

(
Γε (Uτ )c

)
;

• L(τ) := M
(
∂
(
Γε (Uτ )c

))
= M

(
∂(Γε Uτ )− γ

)
.

A standard inequality using coarea formula yields

(12.9) L(τ) 6 −A′(τ) for a.e. τ .

Let us now fix τ ∈ (δ, 2δ). One of the following alternatives must hold:
(A1) L(τ) = 0. This means that ∂

(
Γε Uτ

)
= γ, and hence Γε Uτ is

homologous to Σ0 in U . Consequently, by (12.6),

m0(ε) = M(Γε) >M(Γε Uτ ) > M([[Σ0]]),

hence we are finished.
(A2) L(τ) > 0. Since F(Γε − [[Σ0]]) is sufficiently small, then F(Γε −

[[Σ0]]) = M(T ) with ∂T = Γε − [[Σ0]]. Note that the slice of the
(n + 1)-current T , which is supported in ∂Uτ , bounds the slice of
the n-current Γε− [[Σ0]], which in fact coincides with the slice of Γε
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because Σ0∩∂Uτ = 0. Let us denote the slice of T by S. This means
that S lies in ∂Uτ (Σ0) with ∂S = γ − ∂(Γε Uτ ), and by (12.8),

M(S) 6 CL(τ)
n
n−1

Let us set Z = Γε Uτ + S. At this point, we make a further dis-
tinction between two cases:

(A2.1) M(Z) 6 M(Γε). By construction, Z is homologous to Σ0 in
U ; thus by (12.6),

m0(ε) = M(Γε) >M(Z) > M([[Σ0]]),

and the claim follows.
(A2.2) M(Z) >M(Γε). By the above, this implies

M
(
Γε (Uτ )c

)
6M(S) 6 CL(τ)

n
n−1 .

In summary, it follows from the considerations above that for the rest of the
proof we may assume w.l.o.g. the following properties for a.e. τ ∈ (δ, 2δ):

• L(τ) > 0
• A(τ) 6 CL(τ)

n
n−1 .

Step 2. — We claim that the minimizers Γε satisfy

(12.10) M(Γε)→M([[Σ0]]) as ε→ 0.

By the lower semicontinuity of mass with respect to flat convergence, we
immediately get

lim inf
ε→0

M(Γε) >M([[Σ0]]).

The other inequality needed to prove the claim follows by constructing
suitable competitors. Consider the currents Γ̃r := [[Σ0]] + ∂[[Br(p)]], where
Br(p) ⊂ U , Br(p) ∩ Σ0 = ∅. Clearly, F(Γ̃r − [[Σ0]]) → 0 as r → 0, hence
(for ε small enough) there exists some r(ε) such that F(Γ̃r(ε) − [[Σ0]]) = ε.
Moreover, M(Γ̃r(ε))→M([[Σ0]]) as ε→ 0. This shows that

lim sup
ε→0

M(Γε) 6M([[Σ0]]),

and the claim follows.
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Step 3. — We next prove that

(12.11) lim
ε→0

M
(
Γε (U3δ/2)c

)
= 0.

As before, we can assume Γε − [[Σ0]] = ∂Tε, with M(Tε) → 0 as ε → 0.
If (12.11) were wrong, there would exist a sequence εk ↓ 0 and an α > 0
such that

(12.12) M
(
Γεk (U3δ/2)c

)
> α.

If we let 〈Tεk , τ〉 = ∂(Tεk Uτ )− (∂Tεk) Uτ denote the slices of Tεk (w.r.t
the distance from Σ0), then by coarea formula∫ 3

2 δ

δ

M(〈Tεk , τ〉) dτ 6M(Tεk)→ 0

as k → 0. Since L1 convergence implies a.e. pointwise convergence, we are
able to extract a subsequence (not relabeled) and a τ ∈ (δ, 3

2δ) such that
M(〈Tεk , τ〉) → 0. On the other hand, we can apply (12.6) to the current
〈Tεk , τ〉+ Γεk Uτ as we did in Step 1, which gives us

M
(
〈Tεk , τ〉+ Γεk Uτ

)
> M([[Σ0]]).

Using these two facts together with (12.10), one easily concludes

lim
k→∞

M
(
Γεk (Uτ )c

)
→ 0 ,

which is a contradiction to (12.12).
Step 4. — Note that the previous step tells us that A

( 3
2δ
)
→ 0 as

ε → 0. Recall that we assume L(τ) > 0 ∀ τ ∈ (δ, 2δ) since Step 1, which
immediately implies that also A(τ) > 0. However, from (12.9) and the other
assumption of Step 1 we deduce

A(τ) 6 CL(τ)
n
n−1 6 C(−A′(τ))

n
n−1 ,

giving (by a slight abuse of notation regarding the constants involved)

− A′(τ)
A(τ)n−1

n

>
1
C
∀ τ ∈ (δ, 2δ).

Integrating the above inequality between 3
2δ and 2δ, we get

A
( 3

2δ
) 1
n > A

( 3
2δ
) 1
n −A(2δ) 1

n >
δ

2nC
which gives a contradiction for ε small enough. �
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