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MATHER DISCREPANCY AND THE ARC SPACES

by Shihoko ISHII

Abstract. — A goal of this paper is a characterization of singularities ac-
cording to a new invariant, Mather discrepancy. We also show some evidences
convincing us that Mather discrepancy is a reasonable invariant in a view point of
birational geometry.
Résumé. — Le but de ce papier est une caractérisation de certaines singularités

en fonction d’un nouvel invariant, la “discrépance de Mather”. Nous montrons
également quelques résultats nous prouvant que la discrépance de Mather est un
invariant raisonnable d’un point de vue de la géométrie birationnelle.

1. Introduction

Let Y −→ X be a resolution of the singularities of a varietyX over C that
factors through the Nash blow-up X̂ −→ X. In [9] we introduce the Mather
discrepancy divisor K̂Y/X and showed its relation with the geometry of the
arc space X∞ of X. Note that K̂Y/X coincides with the usual discrep-
ancy divisor KY/X when X is non-singular. For a pair (X, a) consisting of
a Q-Gorestein variety X and an ideal a ⊂ OX , the log-canonical thresh-
old lct(X, a) and minimal log-discrepancy mld(X, a) are defined by using
the usual discrepancy divisor KY/X , where Y −→ X is a log-resolution of
(X, a). In this paper, for a pair (X, a) consisting of an arbitrary variety X
and an ideal a ⊂ OX , we define Mather log-canonical threshold l̂ct(X, a)
and Mather minimal log-discrepancy m̂ld(X, a) by using the Mather dis-
crepancy divisor K̂Y/X , where Y −→ X is a log-resolution of (X, a) fac-
toring through the Nash blow-up X̂ −→ X. These invariants are defined
for an arbitrary variety X without the condition of Q-Gorenstein or even

Keywords: Singularities, arc space, minimal log-discrepancy.
Math. classification: 14E18,14B05.



90 Shihoko ISHII

normality. On these invariants, we obtain some formulas which are gener-
alizations of known formulas. This shows that the Mather discrepancy is a
reasonable invariant and we can expect that it will be useful in birational
geometry. The main result of this paper is about m̂ld(x;X,OX).

For a closed point x ∈ X of a variety of dimension n, we have the
following inequality:

m̂ld(x;X,OX) > n.
We can characterize a singularity (X,x) with m̂ld(x;X,OX) = n. Let λm
be defined by dim π−1

m (x)∩ψm(X∞) = mn− λm and let λ0
m be defined by

dim π−1
m (x)∩ψm(X∞r(SingX)∞) = mn−λ0

m, where ψm : X∞ −→ Xm and
πm : Xm −→ X are the truncation morphisms. Then it turns out that λm
and λ0

m are constant for m� 0 and they coincide with m̂ld(x;X,OX)−n.
Our characterization of a singularity (X,x) with m̂ld(x;X,OX) = n is the
following:

Theorem 1.1. — For a singularity (X,x) the following are equivalent:
(i) m̂ld(x;X,OX) = n;
(ii) λm = 0 for every m ∈ N;
(iii) λ0

m = 0 for every m ∈ N;
(iv) λ0

1 = 0;
(v) The tangent cone of (X,x) has a reduced irreducible component.

This paper is organized as follows: In the second section we put basic
facts on Mather discrepancy and the arc spaces, which will be used in this
paper. In the third section the invariants l̂ct and m̂ld are defined by using
Mather discrepancy and we prove the formulas on these invariants. These
formulas are natural generalization of the known formulas. In the forth
section we prove Theorem 1.1 .
We assume that every scheme in this paper is defined over C. A variety

is an irreducible reduced scheme of finite type over C.
The author expresses her hearty thanks to Lawrence Ein and Mircea

Mustaţǎ for the stimulating discussions. Before the publication of this pa-
per, Tommaso de Fernex and Roi Docampo introduced the same invariant
and obtained the results same as our Proposition 3.10 and Corollary 3.15
independently ([8]).

2. Preliminaries on Mather discrepancy and arc spaces

Let X be a Q-Gorenstein variety of index r and f : Y −→ X a resolution
of the singularities of X. Then the (usual) discrepancy divisor KY/X is
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MATHER DISCREPANCIES 91

the unique Q-divisor supported on the exceptional locus of f such that
rKY/X is linearly equivalent with rKY − f∗(rKX). Note that the usual
discrepancy is defined only for a Q-Gorenstein variety X, and the following
Mather discrepancy is defined for every variety, even for non-normal variety.

Definition 2.1 ([9]). — Let X be a variety of dimension n and
f : Y −→ X a resolution of the singularities factoring through the Nash
blow up. Then, the image of the canonical homomorphism

f∗ ∧n ΩX −→ ∧nΩY

is an invertible sheaf of the form J ∧n ΩY , where J is the invertible ideal
sheaf of OY that defines an effective divisor supported on the exceptional
locus of f . This divisor is called the Mather discrepancy divisor and denoted
by K̂Y/X . For every prime divisor E on Y, we define

k̂E := ordE(K̂Y/X).

More generally, if v is a divisorial valuation over X, then we can assume
without loss of generality that v = q valE for a prime divisor E on some Y
and a positive integer q, and define

k̂v := q · k̂E .

For a Q-Gorenstein varietyX, we define kE := ordE(KY/X) for a resolution
f : Y −→ X and define also kv in the similar way.

2.2. — Let X be an n-dimensional Q-Gorenstein variety of index r. We
write the image of the homomorphism

(∧nΩX)⊗r −→ OX(rKX) = ω
[r]
X

by Ir ⊗ OX(rKX), where Ir is an ideal of OX . Let f : Y −→ X be a
resolution factoring through the Nash blow up. Then, the relation of usual
discrepancy and the Mather discrepancy is as follows:

f∗(Ir)⊗OY (rK̂Y/X) = OY (rKY/X).

In particular K̂Y/X > KY/X . Let JX be the Jacobian ideal of X and let
Jr = (J rX : Ir), then Jr · Ir and J rX have the same integral closure ([6,
Corollary 9.4]). If X is locally a complete intersection, then I1 = JX

Definition 2.3. — Let X be a scheme of finite type over C and K ⊃ C
a field extension. For m ∈ N, a C-morphism SpecK[t]/(tm+1) −→ X is
called an m-jet of X and a C-morphism SpecK[[t]] −→ X is called an arc
of X.

TOME 63 (2013), FASCICULE 1



92 Shihoko ISHII

2.4. — We denote the space of m-jets of X by Xm and the space of arcs
by X∞. For terminologies and the basic properties of these spaces, we refer
the paper [11].

Definition 2.5. — Let X be a variety over C. We say an arc α:
SpecK[[t]] −→ X is thin if α factors through a proper closed subset of
X. An arc which is not thin is called a fat arc.

An irreducible closed subset C in X∞ is called a thin set if the generic
point of C is thin. An irreducible closed subset in X∞ which is not thin is
called a fat set.

One typical example of a fat set is a maximal divisorial set which is
introduced in [12].

Definition 2.6. — For a divisorial valuation v over a variety X, define
the maximal divisorial set corresponding to v as follows:

CX(v) := {α ∈ X∞ | ordα = v},

where { } is the Zariski closure in X∞.

Proposition 2.7 ([12]). — Let v = q valE be a divisorial valuation over
a variety X. Let f : Y −→ X be a good resolution of the singularities of
X such that the prime divisor E appears on Y . Here, a good resolution
means a resolution whose exceptional locus is a simple normal crossing
divisor. Then,

CX(v) = f∞(Contq(E)).
In particular, CX(v) is irreducible.

Definition 2.8 ([4]). — For an ideal sheaf a on a variety X, we define

Conte(a) = {α ∈ X∞ | ordα(a) = e}

and
Cont>e(a) = {α ∈ X∞ | ordα(a) > e}.

These subset are called contact loci of an ideal a. The subset Cont>m(a)
is closed and Contm(a) is locally closed. Both are cylinders. We can define
in the obvious way also subsets Conte(a)m (if e 6 m) and Cont>e(a)m (if
e 6 m+ 1) in Xm.

Proposition 2.9 ([9]). — Let X be an affine variety, and let ai ⊂
OX (i = 1, . . . , r) be non-zero ideals. Then, for e1, . . . , er ∈ N, every fat
irreducible component of the intersection Cont>e1(a1) ∩ · · · ∩ Cont>er (ar)
is a maximal divisorial set.

ANNALES DE L’INSTITUT FOURIER
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Note that [9, Proposition 2.12] is formulated for the case r = 1. But its
proof works also for r > 1.

2.10. — As X is a variety over C, the arc space X∞ is irreducible ([16]).
Therefore ψm(X∞) is an irreducible constructible subset in Xm of dimen-
sion (m + 1)n, where n = dimX. Let C ⊂ X∞ be a cylinder ψ−1

p (A)
contained in Conte(JX). Then, codimension of C is defined as follows:

codim(C,X∞) := (m+ 1)n− dimψm(C)

for m > max{p, e}.
For an arbitrary cylinder C, the codimension is defined as follows:

codim(C,X∞) := min
{

codim(C ∩ Conte(JX)) | e ∈ N
}
.

We sometimes write codim(C) for codim(C,X∞), when there is no possible
confusion. Note that these are well defined by the following lemma. (For
details, see [6, Section 5].)

Lemma 2.11 ([3], [6]). — Let X be a variety of dimension n and e a
nonnegative integer. Let JX be the Jacobian ideal of X. Fix m > e and let
ψm+e,m : Xm+e −→ Xm, ψm : X∞ −→ Xm be the truncation morphisms.

(i) We have ψm(Conte(JX)) = ψm+e,m (Conte(JX)m+e) .
(ii) The truncation morphism ψm+1,m : Xm+1 −→ Xm induces a piece-

wise trivial fibration

ψm+1 (Conte(JX)) −→ ψm (Conte(JX))

with fiber An.

Lemma 2.12 ([6]). — Let X be a variety of dimension n. If m, p and e
are nonnegative integers such that 2p > m > p + e, then the truncation
morphism ψm,p : Xm −→ Xp induces a piecewise trivial fibration

Conte(JX)m −→ Conte(JX)p ∩ Im(ψm,p)

with fiber A(m−p)n+e.

Proposition 2.13 ([9]). — For a divisorial valuation q valE , we have
the codimension of the corresponding maximal divisorial set

q(k̂E + 1) = codim(CX(q valE)).

TOME 63 (2013), FASCICULE 1



94 Shihoko ISHII

3. Invariants based on Mather discrepancy

First we start this section with the well known invariants.

Definition 3.1. — Let (X, a) be a pair consisting of Q-Gorenstein va-
riety X and a non-zero ideal a of OX . The log-canonical threshold of (X, a)
is defined as follows:

lct(X, a) = sup
{
c | kE − c ordE(a) + 1 > 0, E divisor over X

}
.

Let W be a closed subset of X. The minimal log-discrepancy of (X, a)
along W is defined as follows:
If dimX > 2,

mld(W ;X, a) = inf
{
kE−ordE(a)+1 | E divisor overX with center in W

}
.

When dimX = 1 we use the same definition of minimal log discrepancy,
unless the infimum is negative, in which case we make the convention that
mld(W,X, a) = −∞.
Remark 3.2.
(i) The log-canonical threshold is also presented as

lct(X, a) = max
{
c | kEi

− c ordEi
(a) + 1 > 0,

Ei : exceptional prime divisor on Y
}

for a fixed log-resolution f : Y −→ X of (X, a).
(ii) If mld(W ;X, a) < 0, then mld(W ;X, a) = −∞. This is known when

dimX > 2, while it follows from the definition when dimX = 1.

Now we will define the invariants modified from these invariants.

Definition 3.3. — Let (X, a) be a pair consisting of an arbitrary vari-
ety X and a non-zero ideal a of OX . The Mather log-canonical threshold
of (X, a) is defined as follows:

l̂ct(X, a) = sup
{
c | k̂E − c ordE(a) + 1 > 0, E divisor over X

}
.

Let W be a closed subset of X. The Mather minimal log-discrepancy of
(X, a) along W is defined as follows:

If dimX > 2,

m̂ld(W ;X, a) = inf
{
k̂E−ordE(a)+1 | E divisor overX with center in W

}
.

When dimX = 1 we use the same definition of Mather minimal log discrep-
ancy, unless the infimum is negative, in which case we make the convention
that m̂ld(W,X, a) = −∞.

ANNALES DE L’INSTITUT FOURIER
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Remark 3.4.
(i) The Mather log-canonical threshold is represented as

l̂ct(X, a) = max
{
c | k̂Ei − c ordEi(a) + 1 > 0,

Ei : exceptional prime divisor on Y
}

for a fixed log-resolution f : Y −→ X of (X, a) factoring through
the Nash blow up, because for a sequence Y ′ g−→ Y

f−→ X of such
log resolutions of (X, a), we have K̂Y ′/X = KY ′/Y + g∗K̂Y/X with
KY ′/Y > 0.

(ii) If m̂ld(W ;X, a) < 0, then m̂ld(W ;X, a) = −∞. This is proved by
using the previous formula of K̂Y ′/X when dimX > 2, while it
follows from the definition when dimX = 1.

Proposition 3.5. — Let X be an arbitrary variety and a be a non-zero
ideal of OX . Then,

l̂ct(X, a) = min
m∈N

codim(Cont>m(a))
m

.

Proof. — First we prove that

(3.1) l̂ct(X, a) 6 inf
m∈N

codim(Cont>m(a))
m

.

Form ∈ N, take an irreducible component CX(v) ⊂ Cont>m(a) which gives
the codimension of Cont>m(a). Let v = q valE for a prime divisor E over X
and let rE := ordE(a). Then, CX(v) ⊂ Cont>m(a) implies qrE = v(a) > m.
Therefore,

codim(Cont>m(a)) = codim(CX(v)) = q(k̂E + 1) > mk̂E + 1
rE

.

Here, by the definition of l̂ct, the last term is > m · l̂ct(X, a), which gives
the inequality (3.1). For the theorem, it is sufficient to prove that there is
m such that

(3.2) codim(Cont>m(a))
m

6 l̂ct(X, a).

By Remark 3.4 (i), there is a prime divisor E over X such that
l̂ct(X, a) = (k̂E + 1)/ordE(a). Let m = ordE(a), then we have the inclusion
CX(valE) ⊂ Cont>m(a) and this implies the inequality

codim(Cont>m(a)) 6 codim(CX(valE)) = k̂E + 1 = m · l̂ct(X, a),

which gives the required inequality (3.2). �

TOME 63 (2013), FASCICULE 1



96 Shihoko ISHII

As a corollary, we obtain the formula of lct for non-singular case.

Corollary 3.6 ([4]). — Let (X, a) be a pair consisting of a non-singular
variety X and an ideal a ⊂ OX . Let Z be the subscheme defined by a. Then
the log-canonical threshold is obtained as follows:

lct(X, a) = min
m∈N

codim(Zm−1, Xm−1)
m

.

This follows immediately from the theorem, since the equality
codim(Cont>m(a)) = codim(Zm−1, Xm−1) holds for non-singular X.

The next is the formula for the Mather minimal log-discrepancy in terms
of the arc space.

Proposition 3.7. — Let (X, a) be a pair consisting of an arbitrary
variety X and a non-zero ideal a ⊂ OX . Let W be a proper closed subset
of X and IW be the (reduced) ideal of W . Then,

(3.3) m̂ld(W ;X, a) = inf
m∈N

{
codim(Contm(a) ∩ Cont>1(IW ))−m

}
.

We also have

(3.4) m̂ld(W ;X, a) = inf
m∈N

{
codim(Cont>m(a) ∩ Cont>1(IW ))−m

}
.

Proof. — For the proof of > at (3.3), let E be any prime divisor over
X with the center in W . Let m = ordE(a) and v = valE . Then, there is a
non-empty open subset C of CX(v) such that C ⊂ Contm(a)∩Cont>1(IW ).
Hence,

k̂E − ordE(a) + 1 = codim(CX(v))−m

> codim(Contm(a) ∩ Cont>1(IW ))−m,

which yields the required inequality unless dimX = 1 and m̂ld(X, a) =
−∞.
When dimX = 1 and m̂ld(X, a) = −∞, there is a prime divisor E over

X with the center in W such that k̂E − ordE(a) + 1 < 0. Let m = ordE(a),
then codimCX(valE)−m < 0. Here, for every q ∈ N, by Proposition 2.13,

codimCX(q valE)− qm = q(codimCX(valE)−m) < 0.

As a non-empty open subset of CX(q valE) is in Contqm ∩Cont>1(IW ), we
have

codim(Contqm ∩Cont>1(IW ))− qm 6 codim(CX(q valE))− qm
= q(codim(CX(valE))−m) < 0.

ANNALES DE L’INSTITUT FOURIER
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Here, if q −→∞, then we have

codim(Contqm ∩Cont>1(IW ), )− qm −→ −∞,

which implies the right hand side of (3.3) in the theorem is −∞.
For the proof of 6 at (3.3), we may assume that k̂E − ordE(a) + 1 > 0

for every prime divisor E over X with the center in W . Indeed if there
is a prime divisor E with the center in W and k̂E − ordE(a) + 1 < 0,
then m̂ld(W ;X, a) = −∞ by Remark 3.4, (ii) and therefore the required
inequality is trivial.
Form ∈ N, let C ⊂ Contm(a)∩Cont>1(IW ) be an irreducible component

which gives the codimension of Contm(a)∩Cont>1(IW ). Then, the closure
C is CX(v) for some divisorial valuation v, since a fat irreducible component
of Cont>m(a) ∩ Cont>1(IW ) is a maximal divisorial set (Proposition 2.9)
and Contm(a)∩Cont>1(IW ) is an open subset of Cont>m(a)∩Cont>1(IW ).
Let v = q valE and m = v(a), then E is a prime divisor over X with the
center in W , m = q ordE(a) and

codim(Contm(a) ∩ Cont>1(IW ))−m = codim(CX(v))−m

= q(k̂E + 1)− q ordE(a) > k̂E + 1− ordE(a),

which yields the required inequality.
For the proof of (3.4) of the theorem, let

am = codim(Contm(a) ∩ Cont>1(IW ))−m,

bm = codim(Cont>m(a) ∩ Cont>1(IW ))−m.

As Contm(a) ⊂ Cont>m(a), we have am > bm. Therefore, it follows

inf
m
{am} > inf

m
{bm}.

Next we prove the converse inequality. For every m ∈ N, let CX(v)
be the irreducible component of Cont>m(a) ∩ Cont>1(IW ) that gives the
codimension. Then, for m′ := v(a) > m we have

codim(Cont>m(a) ∩ Cont>1(IW )) = codim(Contm
′
(a) ∩ Cont>1(IW )).

Hence, bm > am′ , which yields infm{bm} > infm{am}. �

Remark 3.8. — Our formula can be easily extended for the combination
of ideals a1, a2, · · · , ar instead of one ideal a. I.e., we have

m̂ld(W ;X, ae1
1 ae2

2 · · · aer
r ) = inf

mi∈N

{
codim(Contm1(a1) ∩ · · ·

· · · ∩ Contmr (ar) ∩ Cont>1(IW ))−
∑
i

miei

}
,

TOME 63 (2013), FASCICULE 1



98 Shihoko ISHII

where ei’s are positive real numbers. Here, any of Contmi(ai)’s can be
replaced by Cont>mi(ai). For simplicity of the notation and the proofs, we
keep formulating the forthcoming formulas for one ideal only. But note that
the formulas in this section are also valid under this combination form.

The following lemma is a modified version of [6, Theorem 7.9] for our
discussion.

Lemma 3.9. — Let X be a variety of dimension n, then

m̂ld(W ;X, aJX) = inf
{

(s+ 1)n−m− dim
(

Cont>m(a)s∩

Conte(JX)s ∩ Cont>1(IW )s
)}

,

where the infimum is over thosem, e ∈ N and s ∈ N such that s > 2e, e+m.

Proof. — Let S := Cont>m(a)s ∩ Conte(JX)s ∩ Cont>1(IW )s ⊂ Xs.
Then, by Lemma 2.12, the truncation morphism ψs,s−e induces a piecewise
trivial fibration S −→ ψs,s−e(S) with fiber Ae(n+1). By Lemma 2.11 (i), it
follows

ψs,s−e(S) = ψs−e(Cont>m(a) ∩ Conte(JX) ∩ Cont>1(IW )).

On the other hand, by Lemma 2.11 (ii),

codim(Cont>m(a) ∩ Conte(JX) ∩ Cont>1(IW ))

= (s− e+ 1)n− dim
(
ψs−e(Cont>m(a) ∩ Conte(JX) ∩ Cont>1(IW )

)
,

as s−e > m, e, 1. The last term is equal to (s−e+1)n−(dimS−e(n+1)),
by the previous discussion. Now we obtain

m̂ld(W ;X, aJX) = inf
m,e

{
codim(Cont>m(a)

∩ Conte(JX) ∩ Cont>1(IW ))−m− e
}

= inf
{

(s+ 1)n−m− dimS
}
,

where the infimum is over those m, e ∈ N and s ∈ N such that s > 2e, e+
m. �

The following is a generalization of [6, Theorem 8.1] and [15], whose
formulation is in Corollary 3.11. But our proof is just an imitation of the
proof of [6, Theorem 8.1] and is even easier.

Proposition 3.10 (Inversion of Adjunction). — Let X be an arbitrary
variety, A a non-singular variety containing X as a closed subvariety of
codimension c and W a proper closed subset of X. Let ã ⊂ OA be an ideal

ANNALES DE L’INSTITUT FOURIER
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such that its image a := ãOX ⊂ OX is non-zero. Denote the ideal of X
in A by IX . Then,

m̂ld(W ;X, aJX) = m̂ld(W ;A, ãIcX).

Proof. — Our proof is based on the proof of [6, Theorem 8.1] which
is a formula of usual mld for a Q-Gorenstein variety X. For the reader’s
convenience, here we write down the proof with a care on the difference
between their statement and ours.
For the proof of > in the equality of the proposition, let σ = m̂ld(W ;

A, ãIcX) and let n = dimX. We assume contrary, m̂ld(W ;X, aJX) < σ, and
will induce a contradiction. By the assumption and Lemma 3.9, there exist
e,m ∈ N, s > 2e,m+ e and an irreducible component C of Cont>m(a)s ∩
Conte(JX)s ∩ Cont>1(IW )s such that

(3.5) (s+ 1)n−m− dimC < σ,

where IW is the defining ideal of W in X. As C ⊂ Cont>m(a)s ∩
Cont>1(IW )s = Cont>m(ã)s∩Cont>1(ĨW )s∩Xs, where ĨW is the defining
ideal of W in OA, we have

(ψAs )−1(C) ⊂ Cont>m(ã) ∩ Cont>1(ĨW ) ∩ Cont>s+1(IX) =: S,

where ψAs : A∞ −→ As is the truncation morphism. Here we note that
Cont>s+1(IX) = Cont>c(s+1)(IcX). Now we obtain

(n+ c)(s+ 1)− dimC = codim(C,As) = codim((ψAs )−1(C), A∞)
> codim(S,A∞) > σ +m+ c(s+ 1),

which is a contradiction to (3.5).
For the proof of 6 in the equality of the proposition, let τ = m̂ld(W ;

X, aJX). We assume contrary, τ > m̂ld(W ;A, ãIcX), and will induce a con-
tradiction. By the assumption and Proposition 3.7, there exists an irre-
ducible component C of Cont>m(ã)∩Cont>d(IX)∩Cont>1(ĨW ) such that

(3.6) codim(C,A∞) < cd+m+ τ.

Just as in the proof of [6, Theorem 8.1], there is an open subcylinder C0 ⊂ C
such that codim(C0 ∩ X∞, X∞) 6 codim(C0, A∞) + e − cd, where e =
minγ∈C∩X∞{ordγ(JX)}. Therefore, we have

codim(C0 ∩X∞, X∞) < m+ τ + e.
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On the other hand, as C0∩X∞ ⊂ Cont>m(a)∩Cont>e(JX)∩Cont>1(IW ),
we obtain

τ 6 codim(Cont>m(a) ∩ Cont>e(JX) ∩ Cont>1(IW ))−m− e
6 codim(C0 ∩X∞, X∞)−m− e < τ,

which is a contradiction. �

As mld(W ;X, aJ1/r
r ) = m̂ld(W ;X, aJX) for Q-Gorenstein X we obtain

the following:

Corollary 3.11 ([7], [6], [15]). — Let X be a normal closed subvariety
in a non-singular variety A of codimension c and let W be a proper closed
subset of X. Assume that X is Q-Gorenstein variety of index r. Let ã ⊂ OA
be an ideal such that its image a := ãOX ⊂ OX is non-zero. Then,

mld(W ;X, aJ1/r
r ) = mld(W ;A, ãIcX),

where IX is the defining ideal of X in A and Jr is as in 2.2.

Corollary 3.12 (Adjunction formula). — LetX be a closed subvariety
of a variety X ′ of codimension c and let W be a proper closed subset of X.
Let a′ ⊂ OX′ be an ideal such that its image a := a′OX ⊂ OX is non-zero.
Let IX/X′ be the defining ideal of X in X ′. Then,

m̂ld(W ;X, aJX) > m̂ld(W ;X ′, a′JX′IcX/X′).

Proof. — We may assume that X ′ is affine. Let A be a non-singular
variety containing X ′ and IX/A and IX′/A be the ideals of X and X ′ in A,
respectively. Let ã ⊂ OA is an ideal whose image in OX′ is a′. Let c′ be the
codimension of X ′ in A. By Proposition 3.10, we have

m̂ld(W ;X, aJX) = m̂ld(W ;A, ãIc+c
′

X/A),
and

m̂ld(W ;X ′, a′JX′IcX/X′) = m̂ld(W ;A, ãIcX/AIc
′

X′/A).

As we have an inclusion

ãIc+c
′

X/A ⊃ ãIcX/AI
c′

X′/A

of ideals, the inequality of our corollary follows. �

Example 3.13 (L. Ein, M. Mustaţǎ). — The inequality in Corollary 3.12
is not the equality in general. Indeed the following is a counter example.
Let A = A4

C, X ′ ⊂ A be a hypersurface defined by xy− zw = 0 and X ⊂ A
be defined by x = z = 0. Let 0 be the origin of A. Then,

m̂ld(0;X,JX) = 2 > 1 > m̂ld(0;X ′,JX′IX/X′).
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Actually, asX is a non-singular surface, m̂ld(0;X,JX) = mld(0;X,OX) = 2.
On the other hand, by Proposition 3.10, it follows

m̂ld(0;X ′,JX′IX/X′) = mld(0;A, IX/AIX′/A).

Let E be the exceptional divisor of the blow-up Ã −→ A at the origin 0.
Then, ordE IX/AIX′/A = 3, since the ideal is a homogeneous ideal generated
by polynomials of degree 3. Hence,

ordE KÃ/A − ordE IX/AIX′/A + 1 = 1,

which yields mld(0;A, IX/AIX′/A) 6 1.

Corollary 3.14. — Let (X, a) be a pair consisting of an arbitrary vari-
ety X and a non-zero ideal a ⊂ OX , then the function x 7→ m̂ld(x;X, aJX),
(x ∈ X closed point) is lower semicontinuous.

Proof. — The following proof is the same as in [5]. Since the statement
is local, it is sufficient to prove the corollary for an affine variety X. So, we
may assume that X is a closed subvariety of an affine space A = AN . By
Proposition 3.10, for x ∈ X,

m̂ld(x;X, aJX) = m̂ld(x;A, ãIcX).

Here, the right hand side is mld(x;A, ãIcX) since A is non-singular and it
is known that the function x 7→ mld(x;A, ãIcX) is lower semicontinuous
for non-singular A ([1], [7]). Now we have only to restrict the function
on X. �

In general, the map x 7→ m̂ld(x;X, a), (x ∈ X closed point) is not nec-
essarily lower semi-continuous (see Example 4.9).

Corollary 3.15. — Let X be a variety of dimension n. Then, for every
closed point x ∈ X, the following inequality holds:

m̂ld(x;X,JX) 6 n,

where the equality holds if and only if (X,x) is non-singular.

Proof. — The first statement is an immediate consequence of the lower
semicontinuity. But for the second statement we give a different and direct
proof of the first statement. We may assume that X is affine, therefore it
is a closed subvariety of an affine space A = AN . Let IX and Mx be the
defining ideals of X and x in A and c = N − n. By Proposition 3.10,

m̂ld(x;X,JX) = m̂ld(x;A, IcX).
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By Proposition 3.7 and Remark 3.8

m̂ld(x;A, IcX) = inf
m

{
codim(Cont>m(IX) ∩ Cont>1(Mx), A∞)− cm

}
= inf

m

{
codim(Xm−1 ∩ π−1

m−1(x), Am−1)− cm
}
,

where πm−1 : Am−1 −→ A is the canonical projection. Since the restriction
(Xreg)m−1 −→ X of the projection has the relative dimension (m− 1)n, it
follows

(3.7) (m− 1)n 6 dim (Xreg)m−1 ∩ π−1
m−1(x) 6 dimXm−1 ∩ π−1

m−1(x).

Therefore, for every m ∈ N,

m̂ld(x;A, IcX) 6 dimAm−1 − (m− 1)n− cm = n.

This shows the first statement.
If (X,x) is non-singular, then m̂ld(x;X,JX) = mld(x;X,OX) and it is

well known that mld(x;X,OX) = n. Conversely, if m̂ld(x;X,JX) = n,
then the equalities in (3.7) hold for every m ∈ N. Hence, in particular for
m = 2, we have dimX1 ∩ π−1

1 (x) = n. This yields dimTX,x = n, which
means that (X,x) is non-singular. �

In [17] Shokurov posed the following conjecture:

Conjecture 3.16. — Let X be a Q-Gorenstein variety of dimension
n. Then, for every closed point x ∈ X, the following inequality holds:

mld(x;X,OX) 6 n,

where the equality holds if and only if (X,x) is non-singular.

Our Corollary 3.15 is the answer to a modified version of this con-
jecture. In particular, if (X,x) is a complete intersection, then the af-
firmative answer to this conjecture follows from our corollary, because
mld(x;X,OX) = m̂ld(x;X,JX). This is already observed by Florin Ambro
(private communication to the author) who published its special case in [2].

4. A characterization of the singularities with the minimal
Mather discrepancy

In this section we think of only the pair (X,OX) for a variety X of
dimension n > 2. We write m̂ld(x;X) for m̂ld(x;X,OX). We denote the
canonical projections of jet schemes by ψm : X∞ −→ Xm, ψm′,m : Xm′ −→
Xm (m′ > m), πm : Xm −→ X and π : X∞ −→ X. When we denote the
projections for a variety, say Y , different from X, we put the symbol of the
variety on the shoulder like ψYm, etc.
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Definition 4.1. — Let x be a closed point of a variety X of dimension
n. For every m ∈ N, define λm and λ0

m as follows:

dimψm(π−1(x)) = mn− λm,

dimψm(π−1(x) r (SingX)∞) = mn− λ0
m,

where SingX is the singular locus of X.

The invariant λm is introduced by Lawrence Ein. Note that λm = λ0
m

(m ∈ N) if (X,x) is an isolated singularity by [13, Lemma 2.12]. (This is
also proved by the fact that (SingX)∞ is consisting of the trivial arc on x.)
We have some basic properties of these invariants as follows:

Lemma 4.2.
(i) For every m ∈ N, it follows λ0

m > λm > 0.
(ii) For m� 0, it holds that λm = λ0

m = λ (constant).
(iii) λ = m̂ld(x;X)− n.

Proof. — By the definition, it is clear that λm 6 λ0
m. By Denef-Loeser

[3, Lemma 4.3], the canonical projection ψm,l induces a map ψm(X∞) −→
ψl(X∞) whose fibers have dimension 6 (m − l)n, where m > l are non-
negative integers, it follows that ψm(π−1(x)) = ψm(X∞) ∩ π−1

m (x) is of
dimension 6 mn by thinking of l = 0. This yields (i).
For (ii), remember that π−1(x) is a contact locus and therefore has a

finite number of irreducible components C1, . . . , Cr, Z1, . . . , Zs, where Ci’s
are fat, while Zj ’s are thin and contained in (SingX)∞ ([9]). As Zj is thin,
we have

dimψm(Zj) 6 m(n− 1)
for every m ∈ N and j by the discussion on (i). On the other hand, by
Proposition 2.13, for m� 0,

dimψm(Ci) = (m+ 1)n− (k̂Ei
+ 1),

where Ci = CX(valEi). (Note that the valuation is reduced, since Ci is a
component of π−1(x).) Let λ = mini{k̂Ei +1}−n, then for m� 0 we have
mn−λm = dimψm(π−1(x)) = mn−λ. For λ0

m, we have the required form
from

dimψm(π−1(x) r (SingX)∞) = dimψm(C1 ∪ · · · ∪ Cr)
for m� 0.
For (iii), we have only to note that

π−1(x) =
⋃
v

CX(v),
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up to a thin set, where v are all divisorial valuation centered at {x}. Thus,
λ = m̂ld(x;X)− n. �

The following is a trivial consequence from the lemma.

Corollary 4.3. — For every closed point x of a variety X of dimen-
sion n,

m̂ld(x;X) > n.

For the characterization of singularities with m̂ld(x;X) = n, we prepare
a few lemmas.

Lemma 4.4. — Let b : Y −→ X be the blow-up at the point x and
g : Ỹ −→ Y be a resolution of the singularities of Y . Let h : Ỹ −→ X be
the composite b ◦ g. Let πỸ1 : Ỹ1 −→ Ỹ be the canonical projection from
1-jet scheme Ỹ1 of Ỹ to Ỹ . Denote the scheme theoretic fibers b−1(x) and
h−1(x) by E and E′, respectively. Then,

ψ1 (π−1(x) r (SingX)∞) = h1

(
(πỸ1 )−1(E′)

)
,

and if this subset contains a non-trivial jet, then we also have the following
equality:

h1

(
(πỸ1 )−1(E′)

)
= h1

(
(πỸ1 )−1(E′reg)

)
,

where E′reg is the non-singular locus of the scheme E′.

Proof. — As h is a proper morphism, by the valuation criteria of proper-
ness, every arc in π−1(x)r(SingX)∞ can be lifted to an arc in (πỸ )−1(E′)r
(h−1(SingX))∞. (When x is a non-singular point, just use the surjectivity
of h∞ : Ỹ∞ −→ X∞ on a neighborhood of x.) Therefore,

ψ1(π−1(x) r (SingX)∞) = h1ψ
Ỹ
1

(
(πỸ )−1(E′) r (h−1(SingX))∞

)
.

Noting that (πỸ )−1(E′) r (h−1(SingX))∞ is dense in (πỸ )−1(E′), we
have the first equality of the lemma. As for the second equality, the in-
clusion ⊃ is trivial. To show the inclusion ⊂, take any non-trivial jet
h1(α) ∈ h1(πỸ1 )−1(E′) for α ∈ (πỸ1 )−1(E′). Let P = πỸ1 (α) ∈ E′. Then
α corresponds to a ring homomorphism

α∗ : OỸ ,P −→ C[t]/(t2)

which sends the maximal ideal mỸ ,P to (t). If the homomorphism h∗:
OX,x−→OỸ ,P corresponding to h sends mX,x to m2

Ỹ ,P
, then α∗h∗(mX,x)=0
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which means that h1(α) is the trivial 1-jet, a contradiction to the defini-
tion of h1(α). Therefore the principal ideal mX.xOỸ ,P 6⊂ m2

Ỹ ,P
, which yields

that E′ is non-singular at P . Now we have

α ∈ (πỸ1 )−1(E′reg).

On the other hand, the trivial jet is contained in the subsets

h1

(
(πỸ1 )−1(E′)

)
r {the trivial jet},

by the previous argument, the trivial jet is contained in h1

(
(πỸ1 )−1(E′reg)

)
,

which completes the proof of the second equality �

4.5. — Let TX,x be the tangent space of X at x and CX,x the tangent
cone of X at x. Let b : Y −→ X be the blow-up of X at x and E =
b−1(x) the scheme theoretic fiber. Then, it is well known that there is an
isomorphism

E ' (CX,x r {0}) /C∗ ⊂ (TX,x r {0}) /C∗.

Denote the projection TX,x r {0} −→ TX,x r {0}/C∗ by ρ.

Lemma 4.6. — Let π1 : X1 −→ X be the canonical projection from the
1-jet scheme. Then, we have the following:

(i) For a closed point x ∈ X, there is an isomorphism

φ : π−1
1 (x)−̃→TX,x,

which sends the trivial jet to the origin 0 and sends the subset
ψ1
(
π−1(x)

)
into CX,x.

(ii) For a point P ∈ E, take a 1-jet α ∈ (πY1 )−1(P ) of Y . If b1(α) is
a non-trivial jet, then, the point ρ ◦ φ(b1(α)) ∈ (CX,x r {0}) /C∗
corresponds to P under the isomorphism (CX,x r {0}) /C∗−̃→E.

Proof.
(i) The existence of the isomorphism φ is well known by the definitions

of π−1
1 (x) and Zariski tangent space. Here, we give a concrete description

of φ for the rest of the statements (i).
Let (X,x) ⊂ (AN , 0) and let I be the defining ideal of X in AN . A jet

α ∈ π−1
1 (x) corresponds to a ring homomorphism

α∗ : C[x1, . . . , xN ] −→ C[t]/(t2) ; xi 7→ a
(1)
i t,

with α∗(I) = 0. This homomorphism corresponds exactly to the point

(a(1)
1 , . . . , a

(1)
N ) ∈ Z(I1) ⊂ AN ,
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where I1 is the ideal of the linear terms of I. Here, Z(I1) is the tangent
space. This correspondence α 7→ (a(1)

1 , . . . , a
(1)
N ) is φ. It is clear that the

trivial jet corresponds to the origin. If a 1-jet α can be lifted to an arc α̃,
then there is a commutative diagram of ring homomorphisms:

C[[t]]

��
C[x1, . . . , xN ]

α̃∗
77ppppppppppp

α∗ // C[t]/(t2)

with α̃∗(I) = 0, which yields f∗(a(1)
1 , . . . , a

(1)
N ) = 0 for the initial term f∗ of

every element f ∈ I. Therefore, this jet corresponds to a point

(a(1)
1 , . . . , a

(1)
N ) ∈ Z(I∗) ⊂ AN ,

where I∗ is the ideal of the initial terms of I. Here, Z(I∗) is the tangent
cone. This completes the proof of (i).
For the proof of (ii), we may assume that (X,x) = (AN , 0). The blow-

up Y is covered by U(i) = SpecC[xi, x1
xi
, . . . , xN

xi
] (i = 1, . . . , N). We may

assume that P ∈ U(1). Then, α corresponds to the ring homomorphism

α∗ : C
[
x1,

x2

x1
, . . . ,

xN
x1

]
−→ C[t]/(t2),

x1 7→ a
(1)
1 t,

xi
x1
7→ a

(0)
i + a

(1)
i t, (i 6= 1).

Here, we note that the homogeneous coordinates of P ∈ E ' PN−1 is(
1: a(0)

2 : · · · : a(0)
N

)
.

As b1(α) corresponds to the ring homomorphism

b1(α)∗ = α∗ ◦ b∗ : C[x1, . . . , xN ] −→ C[t]/(t2)

with x1 7→ a
(1)
1 t, xi 7→ a

(0)
i a

(1)
1 t, (i 6= 1), it corresponds to a point(

a
(1)
1 , a

(0)
2 a

(1)
1 , . . . , a

(0)
N a

(1)
1
)

in AN ' CX,x. Since b1(α) is not a trivial jet, we have a(1)
1 6= 0 and the

image of (a(1)
1 , a

(0)
2 a

(1)
1 , . . . , a

(0)
N a

(1)
1 ) by ρ has the homogeneous coordinates

(1 : a(0)
2 : · · · : a(0)

N ) that represents P . �

Theorem 4.7. — For a singularity (X,x) the following are equivalent:
(i) m̂ld(x;X,OX) = n;
(ii) λm = 0 for every m ∈ N;
(iii) λ0

m = 0 for every m ∈ N;
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(iv) λ0
1 = 0;

(v) The tangent cone of (X,x) has a reduced irreducible component,
where a reduced irreducible component means an irreducible com-
ponent which is reduced at the generic point.

Proof. — The implications (ii)⇒(i) and (iii)⇒(i) are trivial by Lemma
4.2, (iii). The implication (i)⇒(ii) follows from 0 = λ = λm for m � 0.
Indeed, fix m� 0, then by [3, Lemma 4.3] and λm = 0, for every i < m,

in > dimψi(π−1(x)) > mn− (m− i)n = in,

which means λi = 0. The implication (i)⇒(iii) follows similarly. (iii)⇒(iv)
is trivial. (iv)⇒(v) is proved as follows: By (iv) we have dimψ1(π−1(x) r
(SingX)∞) = n. Then, by Lemma 4.4,

n = dim h1

(
(πỸ1 )−1(E′reg)

)
= dim b1

(
g1(πỸ1 )−1(E′reg)

)
.

Therefore, dim ρ ◦ φ
(
b1

(
g1(πỸ1 )−1(E′reg)

))
= n − 1. By Lemma 4.6, we

have

ρ ◦ φ
(
b1

(
g1(πỸ1 )−1(E′reg)

)
r {0}

)
' πY1

(
g1(πỸ1 )−1(E′reg)

)
.

On the other hand, by commutativity of the diagram, it follows

πY1

(
g1(πỸ1 )−1(E′reg)

)
= g(E′reg).

Now we obtain
dim g(E′reg) = n− 1.

This shows that E = b−1(x) is reduced at an irreducible component, which
implies (v). The proof of (v)⇒(iii) is the following: Let C be the reduced
irreducible component of E = b−1(x). Then, by restricting Y and C by
appropriate open subsets, we may assume that a pair (Y,C) is a non-
singular pair of a variety and a divisor by [10, Chapter 0, 17.1.8]. As
ψm((πY )−1(C)) = (πYm)−1(C) is of dimension mn + n − 1 and in gen-
eral dimψm(π−1(x) r (SingX)∞) 6 mn, it is sufficient to show that the
general fiber of the morphism

bm : ψm((πY )−1(C)) −→ ψm(π−1(x) r (SingX)∞)

onto its image has dimension n− 1. Hence, we have only to prove that

dim b−1
m bm(α) = n− 1

for a general α ∈ (πYm)−1(C).
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Let (X,x) ⊂ (AN , 0) and let b̃ : ÃN −→ AN be the blow-up at the origin
0. As ÃN is covered by U(i) = SpecC[xi, x1

xi
, . . . , xN

xi
] (i = 1, . . . , N), we

may assume that
(Y,C) ⊂ (U(1), Z(x1)).

Take α ∈ (πYm)−1(C). Then, the m-jet α : SpecC[t]/(tm+1) −→ Y ⊂ U(1)
corresponding to a ring homomorphism

C
[
x1,

x2

x1
, . . . ,

xN
x1

]
−→ C[t]/(tm+1),

x1 7→
m∑
j=1

a
(j)
1 tj ,

xi
x1
7→

m∑
j=0

a
(j)
i tj(i 6= 1)

has the coordinates

(

N︷ ︸︸ ︷
0, a(0)

2 , . . . , a
(0)
N ,

N︷ ︸︸ ︷
a

(1)
1 , . . . , a

(1)
N , . . . ,

N︷ ︸︸ ︷
a

(m)
1 , . . . , a

(m)
N )

in (U(1))m = A(m+1)N . The reason why a(0)
1 = 0 is because πYm(α) ∈ C ⊂

Z(x1).
Here, as Y is non-singular and x1 is a member of a regular system

of parameters of Y at all points in C, it follows a(1)
1 6= 0 for general

α ∈ (πYm)−1(C). Indeed, we can take a regular system x1, z2, . . . , zn of
parameters of OY,P for a general point P ∈ C. Then, we obtain an m-
jet C[[x1, z2, . . . , zn]] −→ C[t]/(tm+1) which sends x1 to

∑m
j=0 a

(j)
1 tj with

a
(0)
1 = 0, a(1)

1 6= 0. This shows that a general α ∈ (πYm)−1(C) satisfies
a

(1)
1 6= 0.
Then, bm(α) corresponds to the ring homomorphism

C [x1, . . . , xN ] −→ C[t]/(tm+1),

x1 7→
m∑
j=1

a
(j)
1 tj , xi 7→

m∑
j=1

∑
l+k=j

a
(l)
1 a

(k)
i tj(i 6= 1),

because xi = x1
xi

x1
. Therefore, bm(α) has the coordinates

(4.1)
( N︷ ︸︸ ︷

0, . . . , 0 |

N︷ ︸︸ ︷
a

(1)
1 , a

(1)
1 a

(0)
2 , . . . , a

(1)
1 a

(0)
N | . . . ,

|

N︷ ︸︸ ︷
a

(m)
1 ,

m∑
l=1

a
(l)
1 a

(m−l)
2 , . . . ,

m∑
l=1

a
(l)
1 a

(m−l)
N

)
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in (AN )m = A(m+1)N . Here, in the coordinates we put slits to clarify each
block of N -coordinates for the convenience.
Let β ∈ b−1

m bm(α) and let the coordinates of β in (U(1))m = A(m+1)N be

(

N︷ ︸︸ ︷
0, d(0)

2 , . . . , d
(0)
N ,

N︷ ︸︸ ︷
d

(1)
1 , . . . , d

(1)
N , . . . ,

N︷ ︸︸ ︷
d

(m)
1 , . . . , d

(m)
N ).

Then, bm(β) has the coordinates

(4.2)
( N︷ ︸︸ ︷

0, . . . , 0 |

N︷ ︸︸ ︷
d

(1)
1 , d

(1)
1 d

(0)
2 , . . . , d

(1)
1 d

(0)
N | . . . ,

|

N︷ ︸︸ ︷
d

(m)
1 ,

m∑
l=1

d
(l)
1 d

(m−l)
2 , . . . ,

m∑
l=1

d
(l)
1 d

(m−l)
N

)
.

Assume that α ∈ (πYm)−1(C) is general, then as bm(β) = bm(α), we compare
the coordinates in (4.1) and (4.2). First, by the comparison of the first
coordinates of each block in (4.1) and (4.2), we obtain

d
(j)
1 = a

(j)
1 , (j = 1, . . . ,m).

Next, by the comparison of the second blocks in (4.1) and (4.2), we have

d
(0)
i = 1

d
(1)
1
a

(1)
1 a

(0)
i = a

(0)
i , (i = 2, . . . , N),

since a(1)
1 = d

(1)
1 6= 0. Then, by the comparison of the third blocks in (4.1)

and (4.2), we have

d
(1)
i = 1

d
(1)
1

(
a

(2)
1 a

(0)
i + a

(1)
1 a

(1)
i − d

(2)
1 d

(0)
i

)
= 1
a

(1)
1

(a(1)
1 a

(1)
i ) = a

(1)
i .

In the similar way, we obtain successively

d
(j)
i = a

(j)
i , (j = 1, . . . ,m− 1, i = 1, . . . , N)

and
d

(m)
1 = a

(m)
1 .

Therefore, for a general α, a jet β ∈ b−1
m bm(α) has the coordinates of the

form(
0, a(0)

2 , . . . , a
(0)
N | a

(1)
1 , . . . , a

(1)
N | · · ·

| a(m−1)
1 , . . . , a

(m−1)
N | a(m)

1 , c2, c3, . . . , cN

)
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for any c2, . . . , cN so that β is in Ym. Therefore,

b−1
m bm(α) = (ψYm,m−1)−1(ψYm,m−1(α)) ∩ Z(x(m)

1 − a(m)
1 ).

As Y is non-singular of dimension n, we have

(ψYm,m−1)−1(ψYm,m−1(α)) ' An.

Again as Y is non-singular and x1 is a member of a regular system of
parameters at a point in C, the equation x

(m)
1 − a(m)

1 = 0 is not trivial
on this space An. Indeed, we can take a regular system x1, z2, . . . , zn of
parameters of OY,P , where P = πY1 (α). Let an m-jet

α′ : ÔY,P = C[[x1, z2, . . . , zn]] −→ C[t]/(tm+1)

be defined by

x1 7→
m−1∑
j=1

a
(j)
1 tj + atm with a 6= a

(m)
1 ,

zi 7→
m∑
j=0

a
(j)
1 tj , (i = 2, . . . , N).

Then, α′ gives a point in (ψYm,m−1)−1(ψYm,m−1(α)) ' An which does not
vanish by x(m)

1 − a(m)
1 .

By this, x(m)
1 −a(m)

1 = 0 is not trivial equation in An, this equation gives
a hypersurface. Hence

dim b−1
m bm(α) = n− 1.

�

Example 4.8. — Let X be a hypersurface in An+1 defined by an equa-
tion f = 0. Then m̂ld(x,X) = n if and only if the initial term f∗ of f has
an irreducible factor of multiplicity one.

Example 4.9. — In general, the map x 7→ m̂ld(x;X, a), (x ∈ X closed
point) is not necessarily lower semi-continuous. Let (X,P ) be a singular-
ity of a variety X of dimension n. Assume m̂ld(P ;X,OX) > n (Such an
example actually exists, because we have only to take an hypersurface sin-
gularity whose defining polynomial has the initial term whose factors are
all with multiple powers. See Example 4.8) Every open neighborhood U

of P contains a non-singular closed point y ∈ X. As

m̂ld(y;X,OX) = mld(y;X,OX) = n,

the map x 7→ m̂ld(x;X, a), (x ∈ X closed point) is not lower semi-
continuous.
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