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ANALYSIS OF JOINT SPECTRAL MULTIPLIERS
ON LIE GROUPS OF POLYNOMIAL GROWTH

by Alessio MARTINI

Abstract. — We study the problem of Lp-boundedness (1 < p < ∞) of opera-
tors of the formm(L1, . . . , Ln) for a commuting system of self-adjoint left-invariant
differential operators L1, . . . , Ln on a Lie group G of polynomial growth, which gen-
erate an algebra containing a weighted subcoercive operator. In particular, when
G is a homogeneous group and L1, . . . , Ln are homogeneous, we prove analogues
of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.
Résumé. — On étudie la bornitude Lp (1 < p < ∞) des opérateurs de la forme

m(L1, . . . , Ln) pour un système commutatif L1, . . . , Ln d’opérateurs différentiels
autoadjoints invariants à gauche sur un groupe de Lie G à croissance polynomiale,
qui engendrent une algèbre contenant un opérateur sous-coercif pondéré. En parti-
culier, quand G est un groupe homogène et L1, . . . , Ln sont homogènes, on prouve
des analogues des theorèmes de multiplicateurs de Mihlin-Hörmander et Marcin-
kiewicz.

1. Introduction

Let (X,µ) be a measure space, and let L1, . . . , Ln be (possibly un-
bounded) self-adjoint operators on L2(X,µ) which commute strongly, i.e.,
which admit a joint spectral resolution E on Rn. Then a joint functional
calculus for L1, . . . , Ln is defined via spectral integration and, for every
Borel function m : Rn → C, the operator

m(L) = m(L1, . . . , Ln) =
∫
Rn
mdE

is bounded on L2(X,µ) if and only if the function m is (E-essentially)
bounded. The characterization of the boundedness of m(L) on other func-
tion spaces, such as Lp(X,µ) for p 6= 2, in terms of properties of the func-
tion m — which will be called (spectral) multiplier for L1, . . . , Ln — is

Keywords: spectral multipliers, joint functional calculus, differential operators, Lie
groups, polynomial growth, singular integral operators.
Math. classification: 43A22, 22E30, 42B15.



1216 Alessio MARTINI

a much more difficult question, even in particular cases. Several problems
and results of harmonic analysis fall into this frame, the classical exam-
ples being the Mihlin-Hörmander and Marcinkiewicz theorems for Fourier
multipliers on Rn, which give sufficient conditions for the Lp boundedness
(1 < p <∞) of joint functions m(−i∂1, . . . ,−i∂n) of the partial derivatives
on Rn, in terms of smoothness properties of the multiplier m.
Here we are interested in the case X = G is a (connected) Lie group

of polynomial volume growth (with a Haar measure µ) and L1, . . . , Ln
belong to the algebra D(G) of left-invariant differential operators on G,
with particular reference to homogeneous operators L1, . . . , Ln on a ho-
mogeneous (nilpotent) Lie group G. For n = 1, i.e., for a single operator
L = L1, several results of Mihlin-Hörmander type are known (see, e.g.,
[28, 4, 17, 30, 1, 18, 20, 42, 8, 9] and references therein), dealing mainly
with a sublaplacian L on G, or more generally with a positive operator L
for which Gaussian-type heat kernel estimates hold. For n > 1, instead,
most of the known results [27, 31, 32, 13, 52, 14, 15] refer to a specific
class of groups G (namely, the H-type groups) and to specific choices of the
operators L1, . . . , Ln (i.e., sublaplacians and central derivatives); a recent
work of Sikora [43], which has no such restrictions (in fact it applies to
more general settings than Lie groups), is however limited to the case of
direct products (G = G1 × · · · × Gn and each Lj operates on a different
factor Gj of G), so that it does not cover the mentioned results on H-type
groups.

In this paper, we propose a quite general setting where spectral mul-
tiplier theorems of Mihlin-Hörmander and Marcinkiewicz type for a sys-
tem of operators can be obtained. Starting from the weighted subcoercive
operators(1) of ter Elst and Robinson [10] — which are a large class of
left-invariant differential operators on a Lie group (including positive ellip-
tic operators, sublaplacians, and positive Rockland operators on homoge-
neous groups) for which Gaussian-type heat kernel estimates hold — we
define a weighted subcoercive system to be a system L1, . . . , Ln of pairwise
commuting, formally self-adjoint, left-invariant differential operators on a
connected Lie group G which generate a subalgebra of D(G) containing a
weighted subcoercive operator. An “abstract” study of weighted subcoer-
cive systems, in relation with the algebraic structure and the representation

(1)The definition of weighted subcoercive operator given in [26], to which we refer, may
appear more restrictive than the original in [10] (see [26, footnote 1] for details); however,
a slight modification of the argument in [10, §11] (namely, a basis change may be needed
before eliminating the “over-weight” directions) shows that the original definition is
actually equivalent to the one in [26].

ANNALES DE L’INSTITUT FOURIER



JOINT SPECTRAL MULTIPLIERS ON GROUPS 1217

theory of the environment Lie group, is performed in [26], from which we
get in particular that:

• the members of a weighted subcoercive system L1, . . . , Ln on G are
essentially self-adjoint and commute strongly (so that they admit a
joint spectral resolution) in every unitary representation of G;

• the operators of the form m(L) = m(L1, . . . , Ln) are convolution
operators:

m(L)φ = φ ∗ KLm = φ ∗ m̆
for some distribution m̆ = KLm; in fact, if m is bounded and com-
pactly supported, then KLm ∈ L2(G) together with all its left-
invariant derivatives;

• a Plancherel formula holds:

‖KLm‖L2(G) = ‖m‖L2(Rn,σ)

for some regular Borel measure σ, which is called the Plancherel
measure associated with L1, . . . , Ln, and whose support is their joint
L2 spectrum;

• if G is a homogeneous group (with automorphic dilations δt), a
commuting system L1, . . . , Ln of homogeneous, formally self-adjoint
left-invariant differential operators is a weighted subcoercive system
if and only if L1, . . . , Ln are jointly injective on the smooth vectors
v of every non-trivial irreducible representation π of G:

dπ(L1)v = · · · = dπ(Ln)v = 0 =⇒ v = 0

(this is a multi-variate analogue of the Rockland condition [35, 22]);
in this case, we speak of a homogeneous weighted subcoercive sys-
tem and, if L1, . . . , Ln are homogeneous of degrees w1, . . . , wn re-
spectively, then

(1.1) σ(εt(A)) = tQδσ(A), KL(m ◦ εt) = t−Qδ(KLm) ◦ δt−1 ,

where Qδ is the homogeneous dimension (det δt = tQδ) and

εt(λ1, . . . , λn) = (tw1λ1, . . . , t
wnλn)

are the dilations on Rn associated with L1, . . . , Ln.
In the following, under the hypothesis that L1, . . . , Ln is a weighted sub-

coercive system on a Lie group G of polynomial growth of degree QG, we
prove weighted L1 estimates for the kernels KLm corresponding to multi-
pliers m with compact support, in terms of a Sobolev norm of m. If we
suppose further that G is a homogeneous group and that L1, . . . , Ln are
homogeneous operators (with degrees w1, . . . , wn and associated dilations

TOME 62 (2012), FASCICULE 4



1218 Alessio MARTINI

εt), then a theorem of Mihlin-Hörmander type can be obtained: the oper-
ator m(L) is of weak type (1, 1) and bounded on Lp(G) for 1 < p < ∞
whenever the multiplier m satisfies an Lq Mihlin-Hörmander condition of
order s, i.e.,

(1.2) ‖m‖MεW s
q

def= sup
t>0
‖(m ◦ εt) η‖W s

q
<∞,

with q ∈ [2,∞] and

(1.3) s >
QG
2 + n− 1

q
,

whereW s
q (Rn) is the Lq Sobolev space of (fractional) order s and η is a non-

negative smooth cut-off function on Rn supported on an annulus centered
at the origin. Notice that the condition (1.2) is independent of the choice
of the cut-off η; moreover, an L∞ Mihlin-Hörmander condition of integral
order s is essentially equivalent to the pointwise conditions

(1.4) sup
λ6=0
|λ|‖α‖εε |∂αm(λ)| <∞

for α ∈ Nn with |α| = α1 + · · · + αn 6 s, where | · |ε is a εt-homogeneous
norm on Rn and ‖α‖ε = w1α1 + · · ·+ wnαn.

In particular cases, the previous theorem can be improved by lowering
the regularity threshold, i.e., the right-hand side of (1.3). For instance,
by extending a technique due to Hebisch and Zienkiewicz [20], we prove
that, if G is the direct product of Euclidean and Métivier groups, then
the dimension at infinity QG can be replaced in (1.3) by the topological
dimension dimG; in fact, in § 3 we propose a systematic approach for
exploiting such technique, by introducing the notion of h-capacious groups,
for which QG can be replaced in (1.3) by QG−h. The term (n−1)/q in (1.3)
can be lowered too, by determining the volume growth rate with respect
to the Plancherel measure σ of Euclidean balls with small radius: namely,
if σ(B(λ, r)) 6 Crd for |λ| = 1 and r 6 1, then n − 1 can be replaced in
(1.3) by n− d.
Finally, a sort of product theory can be developed, by considering several

homogeneous Lie groups Gl, each of which endowed with a homogeneous
weighted subcoercive system Ll,1, . . . , Ll,nl , for l = 1, . . . , %. Let (εl,t)t>0 be
the dilations on Rnl associated with the system Ll,1, . . . , Ll,nl , and define
the multi-parameter dilations

t~ג = ε1,t1 × · · · × ε%,t%
on R~n = Rn1 × · · · × Rn% ; set moreover X~n = {λ ∈ R~n : |λ1| · · · |λ%| = 0}.
If G is a connected Lie group, υl : Gl → G are Lie group homomorphisms,

ANNALES DE L’INSTITUT FOURIER
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and L[l,j = υ′l(Ll,j), then we have a system

(1.5) L[1,1, . . . , L
[
1,n1

, . . . , L[%,1, . . . , L
[
%,n%

of essentially self-adjoint, left-invariant differential operators on G. Under
the sole hypothesis of (strong) commutativity of the operators (1.5) on
L2(G), we prove a multi-variate analogue of the previous theorem: the
operatorm(L[) is bounded on Lp(G) for 1 < p <∞ whenever the multiplier
m : R~n → C vanishes on X~n and satisfies an Lq Marcinkiewicz condition
of order ~s = (s1, . . . , s%), i.e.,

(1.6) ‖m‖MגS~sqW
def= sup

t1,...,t%>0
‖(m ◦ (t~ג η1 ⊗ · · · ⊗ η%‖S~sqW <∞,

with q ∈ [2,∞] and

(1.7) sl >
QGl

2 + nl − 1
q

for l = 1, . . . , %,

where S~sqW (R~n) is the Lq Sobolev space with dominating mixed smooth-
ness of order ~s (see, e.g., [40, 38]) and the ηl : Rnl → R are cut-off functions
as before. This result can also be improved in particular cases: in fact, each
of the components (1.7) of the regularity threshold can be independently
lowered, by the same techniques and amounts as for the threshold (1.3)
in the previous result. The hypothesis m|X~n = 0, related to the possibility
that the spectral measure of X~n is not null, can be relaxed too, by applying
iteratively our Marcinkiewicz-type result to subsystems of (1.5).
Both our theorems can be applied to the direct-product setting of [43]

(in the case of homogeneous groups), and also to the systems of operators
considered in the above-mentioned works on H-type groups; in fact, the
results of [32, 52] are sharper than ours, since they require a weaker con-
dition on the multiplier. On the other hand, our theorems have a much
wider range of applicability, with respect both to the groups and to the
systems of differential operators under consideration. In particular, the en-
vironment group G in the second theorem need not be homogeneous. As a
corollary, we obtain Lp multiplier theorems for distinguished sublaplacians
on some non-nilpotent solvable Lie groups G of polynomial growth (such
as the plane motion group, the oscillator groups, the diamond groups) with
regularity threshold (dimG)/2; to our knowledge, this threshold had been
previously reached only for some homogeneous groups (i.e., Heisenberg and
related groups [17, 30]) and for the compact group SU2 [8].

TOME 62 (2012), FASCICULE 4
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Notation and preliminary remarks

For a topological space X, we denote by C(X) the space of continuous
(complex-valued) functions on X, whereas C0(X) is the subspace of contin-
uous functions vanishing at infinity. If X is a smooth manifold, then D(X)
is the space of compactly supported smooth functions on X.
If G is a Lie group, f is a function on G and x, y ∈ G, then we set

Lx f(y) = f(x−1y), Rx f(y) = f(yx).

R : x 7→ Rx is the (right) regular representation of G. For a fixed right
Haar measure µ on G, Rx is an isometry of Lp(G) for 1 6 p 6 ∞. With
respect to such measure, convolution and involution take the form

f ∗ g(x) =
∫
G

f(xy−1)g(y) dy, f∗(x) = ∆(x)f(x−1)

(where ∆ is the modular function) and we set, for every representation π,

π(f) =
∫
G

f(x)π(x−1) dx

(differently from the common usage), so that in particular

R(g)f = f ∗ g, π(f ∗ g) = π(g)π(f), π(Df) = dπ(D)π(f)

for every D ∈ D(G). We denote by D+ the formal adjoint of a smooth
differential operator D on G (with respect to the measure µ).
The above conditions (1.2), (1.6) on the multiplierm have been expressed

in terms of Sobolev norms. In fact, there are several scales of spaces which
can be used to express a differentiability condition of fractional order and
with an Lq flavour; since the inequalities (1.3), (1.7) involving the order
are strict, it does not really matter which of the various scales is used.
In the following, we will use the scale of Besov spaces Bsq,r(Rn) and their
dominating-mixed-smoothness variants S~sq,rB(R~n), which are particularly
convenient because of their embedding and interpolation properties (see,
e.g., [2, 47, 49, 40, 37, 39, 38, 41] for a reference); accordingly, we will use
the quantities ‖ · ‖MεBsq,q

, ‖ · ‖MגS~sq,qB
in place of the ones in (1.2), (1.6).

2. Weighted estimates

Let G be a Lie group of polynomial growth of degree QG, and set

|x|G = dG(x, e), 〈x〉G = 1 + |x|G,

ANNALES DE L’INSTITUT FOURIER
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where dG is a left-invariant connected distance on G [51, § III.4] and e ∈ G
is the identity element. Let L1, . . . , Ln be a weighted subcoercive system
on G, with associated Plancherel measure σ, and let O be the subalgebra of
D(G) generated by them. The aim of this section is to obtain inequalities
of the form

‖〈·〉αGKLm‖Lp(G) 6 CK,α,β‖m‖Bβq,q(Rn)

for multipliers m with support contained in a fixed compact K ⊆ Rn, and
for suitable p, q, α, β. In order to do this, we will subsequently perform
two “changes of variables” on the spectral side: the former corresponds to
choosing a system of generators of O made of positive weighted subcoercive
operators, while the latter is the multi-variate analogue of an exponential
change of variables which has often been used in the literature (see, e.g., [12,
§ 6.B]) and which allows, together with a Fourier-series decomposition, heat
kernel estimates, and Hölder’s inequality, to obtain the required estimates.
Properties of the Plancherel measure σ and interpolation will then be used
(as in [28] and subsequent works) to improve the obtained inequalities.
As in [26, § 3.2], we can find a polynomial p∗ > 0 on Rn such that, if

p0(λ) = p∗(λ) +
n∑
j=1

λ2
j + 1, pν(λ) = p0(λ) + λν for ν = 1, . . . , n,

then p∗(L), p0(L), p1(L), . . . , pn(L) are all positive and weighted subcoer-
cive, and moreover p0(L), . . . , pn(L) generate O. Let p : Rn → R1+n be the
map whose components are the polynomials p0, . . . , pn. For l ∈ Z1+n, set

El(λ) = eil·e
−p(λ)

− 1 = ei(l0e
−p0(λ)+l1e−p1(λ)+···+lne−pn(λ)) − 1.

Then El ∈ C0(Rn), and in fact

El =
∑

0 6=k∈N1+n

(il0)k0 · · · (iln)kn
k0! · · · kn! e−k0p0 · · · e−knpn ,

with uniform convergence on Rn. This means that, if hν,t is the heat kernel
of pν(L) for ν = 0, . . . , n (with hν,0 denoting the Dirac delta at the identity
of G), then

(2.1) Ĕl =
∑

0 6=k∈N1+n

(il0)k0 · · · (iln)kn
k0! · · · kn! h0,k0 ∗ · · · ∗ hn,kn

with convergence in the norm of the corresponding convolution operators
on L2(G).

Lemma 2.1. — There exists C > 0 such that

‖Ĕl‖2 6 C|l| for all l ∈ Z1+n.

TOME 62 (2012), FASCICULE 4



1222 Alessio MARTINI

Proof. — We have

|El(λ)| 6 |l · e−p(λ)| 6
n∑
ν=0
|lν |e−pν(λ) 6 (1 + n)|l|e−p∗(λ),

so that in particular, if f = ep∗El, then

‖Ĕl‖2 = ‖f(L)KL(e−p∗)‖2 6 ‖f‖∞‖KL(e−p∗)‖2 6 (1 + n)‖KL(e−p∗)‖2|l|,

which is the conclusion. �

Lemma 2.2. — There exist c, ω > 0 such that

‖Ĕl‖L2(G,e2|x|G dx) 6 ce
ω|l| for all l ∈ Z1+n.

Proof. — Since all the connected left-invariant distances on G are equiv-
alent in the large [51, Proposition III.4.2], by interpolating the inequalities
(e) and (f) of [26, Theorem 2.3], we have that there exist c > 1 and ω > 0
such that

‖hν,t e|·|G‖q 6 ceωt for t > 1, ν = 0, . . . , n and q ∈ [1,∞].

By Young’s inequality and submultiplicativity of e|·|G , we then get

‖(h0,k0 ∗ · · · ∗ hn,kn) e|·|G‖q 6 c1+neω(k0+···+kn)

for k ∈ N1+nr {0} and q ∈ [1,∞]. This means in particular that the series
in (2.1) converges absolutely in L2(G, e2|x|G dx), with∑

0 6=k∈N1+n

∥∥∥∥ (il0)k0 · · · (iln)kn
k0! · · · kn! h0,k0 ∗ · · · ∗ hn,kn

∥∥∥∥
L2(G,e2|x|G dx)

6 c1+nee
ω|l|,

and we are done. �

Lemma 2.3. — For all α > 0, we have

‖Ĕl‖L2(G,〈x〉2α
G
dx) 6 Cα|l|α+1 for l ∈ Z1+n.

Proof. — By Lemma 2.2, it is sufficient to check the estimate for |l| large,
but then∫

G

|Ĕl(x)|2〈x〉2αG dx 6
∫
|x|G6ω|l|

+
∫
|x|G>ω|l|

6 (1 + ω|l|)2α‖Ĕl‖22 + sup
r>ω|l|

(1 + r)2α

e2r ‖Ĕl‖2L2(G,e2|x|G dx) 6 Cα|l|
2(α+1)

by Lemmata 2.1 and 2.2. �

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.4. — Let K ⊆ Rn be compact. For every f ∈ D(Rn) sup-
ported in K, there exists g ∈ D(T1+n), depending linearly on f , such that

f(λ) = g
(
eie
−p(λ)

)
= g

(
eie
−p0(λ)

, . . . , eie
−pn(λ)

)
,(2.2)

g(1, . . . , 1) = 0,(2.3)
‖g‖Bs2,2(T1+n) 6 CK,s‖f‖Bs2,2(Rn) for all s > 0.(2.4)

In particular, if g(eit) =
∑
l∈Z1+n ĝ(l)eil·t is the Fourier-series development

of g, then we have

(2.5) f =
∑

0 6=l∈Z1+n

ĝ(l)El,

with uniform convergence on Rn.

Proof. — Since K ⊆ Rn is compact and the polynomials p0, . . . , pn are
strictly positive, p(K) is a compact subset of Ω = ]0,+∞[1+n. Therefore
we can choose ψK ∈ D(Ω) such that ψK |p(K) ≡ 1. If we put

f̃(y) = f(y1 − y0, . . . , yn − y0)ψK(y) for y ∈ R1+n,

we then have that f̃ ∈ D(Ω), f = f̃ ◦ p and

‖f̃‖Bs2,2(R1+n) 6 CK,s‖f‖Bs2,2(Rn) for all s > 0,

since the change of variables has maximal rank.
Notice now that the map

Φ : Ω 3 y 7→ eie
−y

= (eie
−y0

, . . . , eie
−yn ) ∈ T1+n

is a smooth diffeomorphism with its image, which is an open subset of T1+n

not containing (1, . . . , 1). The function g = f̃ ◦Φ−1 ∈ D(Φ(Ω)) can be then
extended by zero to a smooth function on T1+n, and we have clearly

‖g‖Bs2,2(T1+n) 6 CK,s‖f̃‖Bs2,2(R1+n) for all s > 0.

The construction shows that g depends linearly on f and satisfies (2.2)-
(2.4). In particular, we have

∑
l∈Z1+n ĝ(l) = 0, so that the Fourier decom-

position of g can be rewritten as

g(eit) =
∑

0 6=l∈Z1+n

ĝ(l)(eil·t − 1)

(with uniform convergence since g is smooth), which gives (2.5). �

Proposition 2.5. — LetK ⊆ Rn be compact, α > 0, β > α+(n+3)/2.
For all f ∈ D(Rn) with supp f ⊆ K, we have

‖f̆‖L2(G,〈x〉2α
G
dx) 6 CK,α,β‖f‖Bβ2,2(Rn).

TOME 62 (2012), FASCICULE 4
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Proof. — Let g ∈ D(T1+n) be given by Lemma 2.4. Then

f̆ =
∑

0 6=l∈Z1+n

ĝ(l)Ĕl

in the norm of convolution operators on L2(G). However, the series in the
right-hand side converges absolutely in L2(G, 〈x〉2αG dx), since∑

0 6=l∈Z1+n

|ĝ(l)| ‖Ĕl‖L2(G,〈x〉2α
G
dx) 6 Cα

∑
0 6=l∈Z1+n

|ĝ(l)| |l|α+1

6 Cα,β‖g‖Bβ2,2(T1+n) 6 CK,α,β‖f‖Bβ2,2(Rn)

by Lemma 2.3 and Hölder’s inequality, and the conclusion follows. �

The previous proposition contains a “preliminary version” of the required
inequalities, which we are now going to sharpen by interpolation with the
Plancherel formula. In order to control the L2(σ) norm with a Besov norm,
we will use a refined trace theorem due to Triebel.
Let τ be a (positive) regular Borel measure on Rn, and let 0 6 d 6 n; we

say that τ is locally d-bounded on an open Ω ⊆ Rn if, for every compact
K ⊆ Ω and for 0 6 γ < d, there exist C, r̄ > 0 such that

τ(B(λ, r)) 6 Crγ for λ ∈ K and r 6 r̄.

Notice that every regular Borel measure τ is locally 0-bounded on the whole
Rn; moreover, if τ is homogeneous with respect to some system of dilations
εt on Rn (i.e., if τ(εt(A)) = taτ(A) for some a > 0 and every Borel A ⊆ Rn),
then τ is locally 1-bounded on Rn r {0}.

Lemma 2.6. — Let τ be a regular Borel measure which is locally d-
bounded on an open Ω ⊆ Rn. If s > (n − d)/2 and K ⊆ Ω is compact,
then

‖f‖L2(τ) 6 CK,s‖f‖Bs2,2(Rn)

for every f ∈ D(Rn) with supp f ⊆ K.

Proof. — If d = 0, then ‖f‖∞ 6 Cs‖f‖Bs2,2(Rn) and the result is trivial.
Suppose instead that 0 < d 6 n, and let K ⊆ Ω be compact, ε > 0. Choose
a compact neighborhood K ′ ⊆ Ω of K, and let C, r̄ > 0 such that

τ(B(λ, r)) 6 Crd−ε for λ ∈ K ′ and 0 < r 6 r̄.

Let moreover r̄′ = min{r̄,dist(Ω r K̊ ′,K)}, C ′ = max{C, τ(K)/(r̄′)d−ε}.
The identity τK(E) = τ(E ∩K) defines a positive regular Borel measure
τK on Rn, which coincides with τ on K, and with supp τK ⊆ K. Moreover

τK(B(λ, r)) 6 C ′rd−ε for every r > 0 and λ ∈ Rn,
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by construction. Therefore, since the Besov space Bs2,2(Rn) coincides with
the Triebel-Lizorkin space F s2,2(Rn), by [50, Corollary 9.8(ii)] we have

‖f‖L2(τ) = ‖f‖L2(τK) 6 CK,s‖f‖Bs2,2(Rn)

for s > (n − d)/2 + ε/2 and f ∈ D(Rn) with supp f ⊆ K. The conclusion
follows from the arbitrariness of ε > 0. �

Theorem 2.7. — Suppose that, for some open Ω ⊆ Rn, the Plancherel
measure σ is locally d-bounded on Ω. Let K ⊆ Ω be compact, D ∈ D(G),
p, q ∈ [1,∞], α > 0,

β > α+QG

(
1

min{2, p} −
1
2

)
+ n

q
− d

max{2, q} .

For all m ∈ Bβq,q(Rn) with suppm ⊆ K, we have

‖〈·〉αGDm̆‖Lp(G) 6 CK,D,α,β,p,q‖m‖Bβq,q(Rn).

Proof. — Consider first the case p = 2, D = 1. Let ξ ∈ D(Rn) be such
that supp ξ ⊆ Ω, ξ|K ≡ 1, and let K ′ ⊆ Ω be a compact neighborhood of
supp ξ. Proposition 2.5, together with the continuous inclusion Bβq,2(Rn) ⊆
B
β−n/2
2,2 (Rn), then yields, for m ∈ D(Rn) with suppm ⊆ K ′, that

(2.6) ‖m̆‖L2(G,〈x〉2α
G
dx) 6 CK,α,β,q‖m‖Bβq,2(Rn)

for β > α+ (2n+ 3)/2. By the use of a suitable approximate identity, (2.6)
can be easily extended to all m ∈ Bβq,2(Rn) with suppm ⊆ supp ξ. Hence,
if we consider the linear map M : m 7→ KL(mξ), then we have that

(2.7) M is bounded Bβq,2(Rn)→ L2(G, 〈x〉2αG dx) for β > α+ (2n+ 3)/2.

On the other hand, for α = 0, the Plancherel formula and Lemma 2.6 give

(2.8) M is bounded Bβq,2(Rn)→ L2(G) for β > n

q
− d

max{2, q}
(this is clear for q = 2 and q =∞; for 1 6 q < 2, we exploit the continuous
inclusion Bβq,2(Rn) ⊆ B

β−n/q+n/2
2,2 (Rn); for 2 < q < ∞, we interpolate).

Therefore, by interpolating (2.7) and (2.8), we get

M is bounded Bβq,2(Rn)→ L2(G, 〈x〉2αG dx) for β > α+ n

q
− d

max{2, q} .

In order to conclude, it is sufficient to notice that, if β > α + n/q −
d/max{2, q}, then for any β′ ∈ ]α+ n/q − d/max{2, q}, β[ we have the
continuous inclusion Bβq,q(Rn) ⊆ Bβ

′

q,2(Rn) , and moreover Mm = m̆ for
every m with suppm ⊆ K.
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Take now an arbitrary D ∈ D(G). Form ∈ Bβ∞,∞(Rn) with suppm ⊆ K,
set m0 = mep∗ , ξ = e−p∗ ; then m̆ = m̆0 ∗ ξ̆, so that, by Young’s inequality,

‖〈·〉αGDm̆‖2 6 ‖〈·〉αG m̆0‖2‖〈·〉αGDξ̆‖1 . ‖m0‖Bβq,q(Rn) . ‖m‖Bβq,q(Rn)

for β > α+n/q−d/max{2, q}. This concludes the proof for the case p = 2.
The case 1 6 p < 2 follows by Hölder’s inequality, since

∫
G
〈x〉−αG dx <∞

for α > QG.
Let now p =∞. If ζ ∈ D(Rn) is nonnegative and ζ(e) > 0, and if we set

wα = 〈·〉αG ∗ ζ for α > 0, then wα is smooth and nonnegative,

〈x〉αG 6 Cαwα(x), Dwα(x) 6 CD,α〈x〉αG
for all D ∈ D(G). If D∗ is a basis of the A ∈ D(G) of order up to
b(dimG)/2c + 1, then we have, for β > α + n/q − d/max{2, q} and D ∈
D(G),

‖〈·〉αGDm̆‖∞ . ‖wαDm̆‖∞ .
∑
A∈D∗

‖A(wαDf̆)‖2

.
∑

A1,A2∈D∗

‖(A1wα)(A2Dm̆)‖2 .
∑
A∈D∗

‖〈·〉αGADm̆‖2 . ‖m‖Bβq,q

by Sobolev’s embedding, Leibniz’s rule and the case p = 2.
The remaining case 2 < p <∞ follows by interpolation. �

3. Improved weighted estimates

The weighted estimates given by Theorem 2.7 for p = 1 yield a “weak
multiplier theorem” for a weighted subcoercive system L1, . . . , Ln on a Lie
group G of polynomial growth: the operator m(L) is bounded on Lp(G)
for 1 6 p 6 ∞ if the multiplier m is compactly supported and sufficiently
smooth; more precisely, by taking q =∞, we require an order of smoothness
γ > QG/2, where QG is the dimension at infinity of G. If G = Rn, then
QG coincides with the topological dimension dimG = n; for non-abelian
(simply connected) nilpotent groups, however, QG > dimG. Nevertheless,
for a particular class of 2-step nilpotent groups (namely, Heisenberg and
related groups) multiplier theorems have been proved with (dimG)/2 as
the regularity threshold [17, 30, 20, 32, 52]. In this section, we extend to
our context of weighted subcoercive systems the technique of Hebisch and
Zienkiewicz [20], which allows in some cases to lower the threshold in the
weighted L1 estimates.
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Let G be a nilpotent Lie group, with Lie algebra g. Let z be the center
of g and set

(3.1) y = {v ∈ g : [v, g] ⊆ z};

y is a characteristic ideal of g containing z (in fact, it is the term following
z in the ascending central series of g). Let moreover P : g → g/z be the
canonical projection. The bilinear map [·, ·] : g× g→ g induces, by restric-
tion, passage to the quotient and transposition, another bilinear map

J : g/z× z∗ → y∗,

which we will call the capacity map of g, and is uniquely determined by

J(P (x), τ)(y) = τ([x, y])

for x ∈ g, y ∈ y, τ ∈ z∗. The group G is said to be an H-type group if there
exists an inner product on g such that, for every τ ∈ z∗ of norm 1, the map
J(·, τ) : g/z → y∗ is an isometric embedding (this condition implies that
g = y, so that G is 2-step). If G is an H-type group, then in particular

(3.2) |J(x̄, τ)| > |x̄||τ |

for suitable norms on g/z, z∗ and y∗; the validity of such an inequality
defines the class of Métivier groups, which has been introduced in the
study of analytic hypoellipticity of Rockland operators [29, 21]; this class
is strictly larger than that of H-type groups (see [33] for an example), but
is still contained in the class of 2-step groups.
In the following, we consider a more general inequality of the form

|J(x̄, τ)| > w(x̄)ζ(τ)

for some non-negative functions w : g/z → R, ζ : z∗ → R, which may hold
also on higher-step groups. Rewritten as

w(x̄)γ 6 |J(x̄, τ)|γζ(τ)−γ

for some γ > 0, this inequality will be interpreted via the spectral theo-
rem, in order to control a multiplication operator (corresponding to w(x̄)γ)
with a function of the central derivatives (corresponding to ζ(τ)−γ); in this
interpretation, it turns out that |J(x̄, τ)|2 corresponds to a sum of prod-
ucts of left- and right-invariant differential operators on G, therefore the
term |J(x̄, τ)|γ can be dominated by an a priori estimate for a weighted
subcoercive operator on the direct product G×G.

In order to fill in the details, it is convenient to introduce some notation.
For every smooth differential operator D on G, the identity

(3.3) (Df)∗ = D◦f∗
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defines another differential operator D◦ on G; the map D 7→ D◦ is a
conjugate-linear involutive automorphism of the unital algebra of all smooth
differential operators on G, which maps left-invariant operators to right-
invariant ones and vice versa.

The Lie algebra g̃ of the direct product G̃ = G×G is canonically isomor-
phic to g⊕g; we define the correspondence D 7→ D• on D(G̃) as the unique
conjugate-linear automorphism of the unital algebra D(G̃) ∼= U((g ⊕ g)C)
extending the Lie algebra automorphism (X,Y ) 7→ (Y,X) of g⊕ g.

Let ξ be the unitary representation of G̃ on L2(G) given by ξ(x, y)f =
Rx Ly f . Then, for every D ∈ D(G̃), dξ(D) is a smooth differential operator
on G, and

dξ(D•) = dξ(D)◦.
Finally, for D ∈ D(G), let D̃ ∈ D(G̃) be defined by D̃(f ⊗ g) = (Df)⊗ g,
so that in particular dξ(D̃) = D.

Lemma 3.1. — Let B = B+ ∈ D(G) be weighted subcoercive, and set
∆ = B2. Then ∆̃ + ∆̃• is positive weighted subcoercive on G̃.

Proof. — For D ∈ D(G), let D ∈ D(G) be the differential operator
uniquely determined by the identity Df = Df . The map D 7→ D defines a
conjugate-linear involutive automorphism of the unital algebra D(G), and
it is easily proved that D̃•(f ⊗ g) = f ⊗ (Dg). In particular, we have

(∆̃ + ∆̃•)(f ⊗ g) = (B2f)⊗ g + f ⊗ (B2
g).

In view of [26, Theorem 5.4], since B is self-adjoint and weighted subcoer-
cive, in order to conclude it will be sufficient to show that B is weighted
subcoercive too.
As in [26, §2], fix a weighted structure of g and a weighted subcoercive

form C such that dRG(C) = B. If C is the form defined by C(α) = C(α),
then it is easy to see that B = dRG(C), and, on the other hand,

<〈φ, dRG(C)φ〉 = <〈φ, dRG(C)φ〉,

thus C is also weighted subcoercive by definition. �

Let L1, . . . , Ln ∈ D(G) be a weighted subcoercive system on the nilpotent
Lie group G, and let ∆ = p(L)2, where p is a real polynomial such that
p(L) is weighted subcoercive. We define

Ã = (∆̃ + ∆̃•)/2, A = dξ(Ã) = (∆ + ∆◦)/2.

By Lemma 3.1, Ã is a (left-invariant) positive weighted subcoercive oper-
ator on G̃, whereas A is a differential operator on G which in general is

ANNALES DE L’INSTITUT FOURIER



JOINT SPECTRAL MULTIPLIERS ON GROUPS 1229

neither left- nor right-invariant; since Ã, ∆̃, ∆̃• form a weighted subcoer-
cive system, the corresponding operators A,∆,∆◦ in the representation ξ
admit a joint spectral resolution.
Let ht (t > 0) be the convolution kernel of e−t∆.

Lemma 3.2. — Suppose that u ∈ L2(G) commutes with all the ht (t >
0). For all Borel m : R→ C, u is in the domain of m(∆) if and only if it is
in the domain of m(A), and in this case

(3.4) m(A)u = m(∆)u.

Proof. — From (3.3) we easily deduce

e−t∆
◦
f = (f∗ ∗ ht)∗ = ht ∗ f

and
e−tAf = e−t∆/2e−t∆

◦/2f = ht/2 ∗ f ∗ ht/2,
so that e−tAu = e−t∆u. If ξt(λ) = e−tλ and J0 = span{ξt : t > 0}, then
we obtain (3.4) for m ∈ J0. It is not difficult to extend (3.4) to m ∈ C0(R)
by the Stone-Weierstrass theorem, and then to all Borel m : R→ C by the
spectral theorem and dominated convergence. �

Lemma 3.3. — Let X ∈ g. Then, for all v ∈ g,

(X +X◦)|exp(v) = d expv([v,X]).

Proof. — The semigroup associated to X̃+X̃• is t 7→ (exp(tX), exp(tX)),
so that, for all f ∈ D(G), v ∈ g,

(X +X◦)|exp(v)f = d

dt

∣∣∣∣
t=0

f(exp(−tX) exp(v) exp(tX)).

Since exp(−tX) exp(v) exp(tX) = exp(Ad(exp(−tX))(v)), we have
d

dt

∣∣∣∣
t=0

(exp(−tX) exp(v) exp(tX)) = d expv(ad(−X)(v)) = d expv([v,X]),

which is the conclusion. �

In the following, we will identify G with g via the exponential map.
Choose a basis ν1, . . . , νr of (g/z)∗ and a basis T1, . . . , Td of z, and set
Pj = νj ◦P . The functions Pj : G→ R can be thought of as multiplication
operators on L2(G), and it is not difficult to show that the operators

P1, . . . , Pr,−iT1, . . . ,−iTd

are (essentially) self-adjoint on L2(G) and commute strongly pairwise, so
that they admit a joint spectral resolution.
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Through the chosen bases, J can be identified with a bilinear map
Rr × Rd → y∗. Therefore, for every Y ∈ y, we have a bilinear form
J(·, ·)(Y ) : Rr×Rd → R, which in fact is a polynomial; we can then evaluate
this particular polynomial in the operators P1, . . . , Pr,−iT1, . . . ,−iTd, and
denote by J(P,−iT )(Y ) the resulting operator on L2(G). Finally, choose
an inner product on y (which induces an inner product on y∗) and an or-
thonormal basis {Yl}l of y; then also the map |J(·, ·)|2 is a polynomial, thus
as before we can consider the operator |J(P,−iT )|2 on L2(G), and clearly
|J(P,−iT )|2 =

∑
l(J(P,−iT )(Yl))2.

Lemma 3.4. — For all Y ∈ y, J(P,−iT )(Y ) is a differential operator
on G; more precisely, J(P,−iT )(Y ) = −i(Y + Y ◦). In particular

|J(P,−iT )|2 = −
∑
l

(Yl + Y ◦l )2 = dξ

(
−
∑
l

(Ỹl + Ỹ •l )2

)
.

Proof. — Let T̂1, . . . , T̂d ∈ z∗ and ν̂1, . . . , ν̂r ∈ g/z be the dual bases of
T1, . . . , Td and ν1, . . . , νr respectively. Then, by bilinearity, for every Y ∈ y,

J(P,−iT )(Y ) = −i
∑
j,k

J(ν̂j , T̂k)(Y )PjTk.

This shows that J(P,−iT )(Y ) is a differential operator on G. In fact, for
all x ∈ G = g, we have

∑
j Pj(x)ν̂j = P (x), therefore

J(P,−iT )(Y )|x = −i
∑
k

J(P (x), T̂k)(Y )Tk

= −i
∑
k

T̂k([x, Y ])Tk = −i[x, Y ] = −i(Y + Y ◦)|x

by Lemma 3.3 (notice that, since T1, . . . , Td are central, they are constant
vector fields in exponential coordinates). �

Since T1, . . . , Td are central, the left-invariant differential operators

(3.5) L1, . . . , Ln,−iT1, . . . ,−iTd

on G are a weighted subcoercive system. We can thus consider the Planche-
rel measure σ′ on Rn × z∗ associated to this system, which can be shown
not to depend on the choice of the basis of z.

The core of the technique under discussion is contained in the following

Proposition 3.5. — Suppose that, for some nonnegative Borel func-
tions w : g/z→ R and ζ : z∗ → R, we have

|J(x̄, τ)| > w(x̄) ζ(τ) for all x̄ ∈ g/z, τ ∈ z∗.
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IfK ⊆ Rn is compact and γ > 0, then, for allm ∈ D(Rn) with suppm ⊆ K,

‖|w ◦ P |γm̆‖22 6 CK,γ
∫
Rn×z∗

|m(λ)|2 ζ(τ)−2γ dσ′(λ, τ).

Proof. — From the hypothesis we deduce, by the spectral theorem,

‖|w ◦ P |γf‖2 6 Cγ‖|J(P,−iT )|γζ(−iT )−γf‖2
for f ∈ L2(G). By Lemma 3.4, |J(P,−iT )|2 = dξ(D) for some D ∈ D(G̃);
since Ã is weighted subcoercive on G̃, by [26, Theorem 2.3(iii)], for some
polynomial qγ we have, in the representation ξ,

‖|J(P,−iT )|γψ‖2 6 Cγ‖qγ(A)ψ‖2,

therefore, by putting the two inequalities together, we get

‖|w ◦ P |γf‖2 6 Cγ‖ζ(−iT )−γqγ(A)f‖2
(since the Tj commute strongly with A). In particular, if we take f = m̆,

‖|w ◦ P |γm̆‖2 6 Cγ‖ζ(−iT )−γqγ(A)m̆‖2 = Cγ‖ζ(−iT )−γqγ(∆)m̆‖2
by Lemma 3.2, since m̆ commutes with all the ht. On the other hand, by
the Plancherel formula for the system (3.5),

‖ζ(−iT )−γqγ(∆)m̆‖22 6 CK,γ
∫
Rn×z∗

|m̆(λ)|2 ζ(τ)−2γ dσ′(λ, τ),

where CK,γ = supλ∈K qγ(p(λ)2)2, and we are done. �

Simple manipulations give a slightly more general form of the previous
estimate:

Corollary 3.6. — Suppose that, for some nonnegative Borel functions
wj : g/z→ R and ζj : z∗ → R (j = 1, . . . , h), we have

|J(x̄, τ)| > wj(x̄) ζj(τ) for all x̄ ∈ g/z, τ ∈ z∗,

and set w̃j(x) = 1 + wj(P (x)). If K ⊆ Rn is compact, then for all m ∈
D(Rn) with suppm ⊆ K and for all ~γ = (γ1, . . . , γh) > 0 we have

‖w̃γ1
1 · · · w̃

γh
h m̆‖2L2(G) 6 CK,~γ

∫
Rn×z∗

|m(λ)|2
h∏
j=1

(1 + ζj(τ)−2γj ) dσ′(λ, τ).

Proof. — If we set, for I ⊆ {1, . . . , h},

γI =
∑
j∈I

γj , w~γ,I(x̄) =
∏
j∈I

wj(x̄)γj/γI , ζ~γ,I(τ) =
∏
j∈I

ζj(τ)γj/γI ,

then clearly

|J(x̄, τ)| > w~γ,I(x̄) ζ~γ,I(τ) for all x̄ ∈ g/z, τ ∈ z∗,
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and moreover
h∏
j=1

w̃
2γj
j 6 C~γ

∑
I⊆{1,...,h}

(w~γ,I ◦ P )2γI ,

h∏
j=1

(1 + ζ
−2γj
j ) =

∑
I⊆{1,...,h}

ζ−2γI
~γ,I ,

therefore the conclusion follows by repeated application of Proposition 3.5.
�

Under some particular hypotheses, we may therefore control a weighted
L2 norm of m̆ in terms of an L2(σζ̃) norm of m, where σζ̃ is the push-
forward of

(3.6) ζ̃(τ) dσ′(λ, τ)

on the first factor of Rn × z∗, for some nonnegative function ζ̃ : z∗ → R.

Lemma 3.7. — (i) Suppose that ζ̃ ∈ L1
loc(z∗) is nonnegative. Then σζ̃ is

a regular Borel measure on Rn.
(ii) Suppose moreover that G is a homogeneous group, with dilations

δt and homogeneous dimension Qδ, and that L1, . . . , Ln is a homogeneous
system, with associated dilations εt. If ζ̃ is homogeneous of degree a, i.e.,
ζ̃(τ ◦δt) = taζ̃(τ), then σζ̃ is homogeneous of degree Qδ+a, i.e., σζ̃(εt(A)) =
tQδ+aσζ̃(A).

Proof. — (i) Let K ⊆ Rn be compact. By [26, Lemma 3.16], the canoni-
cal projection Rn× z∗ → Rn is a proper continuous map when restricted to
suppσ′, hence there is a compact K ′ ⊆ z∗ such that (K × z∗) ∩ suppσ′ ⊆
K ×K ′, and consequently

σζ̃(K) 6 CK
∫
K×K′

e−2p(λ)2
ζ̃(τ) dσ′(λ, τ) = CK‖(ζ̃χK′)1/2(−iT )h1‖22,

by the Plancherel formula. On the other hand, since h1 is in the Schwartz
class, the last quantity is easily seen to be finite by using the Euclidean
Fourier transform and the fact that (ζ̃χK′)1/2 ∈ L2(z∗). We have thus
proved that σζ̃ is finite on compacta; by [36, Theorem 2.18], this means
that σζ̃ is a regular Borel measure on Rn.

(ii) Without loss of generality, we may take the basis T1, . . . , Td of z

as composed by δt-homogeneous elements; thus (3.5) is a homogeneous
system, and the associated dilations ε′t on Rn × z∗ are given by ε′t(λ, τ) =
(εt(λ), τ ◦ δt). By (1.1), σ′ is ε′t-homogeneous of degree Qδ. Therefore, if ζ̃
is homogeneous of degree a, then clearly the measure (3.6) is homogeneous
of degree Qδ + a; since the canonical projection Rn × z∗ → Rn intertwines
the two system of dilations, we infer that also σζ̃ is homogeneous of degree
Qδ + a. �
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Via interpolation, we then obtain an improvement of Theorem 2.7, where
the role of the Plancherel measure σ is now played by some σζ̃ .

Proposition 3.8. — (i) Suppose that, for some nonnegative Borel func-
tions wj : g/z→ R and ζj : z∗ → R (j = 1, . . . , h), we have

(3.7) |J(x̄, τ)| > wj(x̄) ζj(τ) for all x̄ ∈ g/z, τ ∈ z∗,

and set w̃j(x) = 1+wj(P (x)). Suppose moreover that, for some γ1, . . . , γh >

0, if ζ̃~γ =
∏h
j=1(1 + ζ

−2γj
j ), then the measure σζ̃~γ is locally d-bounded on

some open Ω ⊆ Rn. If K ⊆ Ω is compact, q ∈ [1,∞], α > 0,

β > α+ n

q
− d

max{2, q} ,

then, for all m ∈ D(Rn) with suppm ⊆ K,

‖〈·〉αG w̃
γ1
1 · · · w̃

γh
h m̆‖L2(G) 6 CK,α,~γ,β‖m‖Bβq,q(Rn).

(ii) Suppose in addition that
∫
G
〈x〉−2α

G

∏h
j=1 w̃j(x)−2γj dx <∞ for α >

ᾱ~γ . If K ⊆ Ω is compact, q ∈ [1,∞], α > 0,

β > α+ ᾱ~γ + n

q
− d

max{2, q} ,

then, for all m ∈ D(Rn) with suppm ⊆ K,

‖〈·〉αG m̆‖L1(G) 6 CK,α,~γ,β‖m‖Bβq,q(Rn).

Proof. — (i) Since σζ̃~γ is locally d-bounded, the function ζj cannot be
everywhere null, therefore (3.7) and the bilinearity of J imply wj(P (x)) 6
C〈x〉θG for some C, θ > 0, thus also

∏h
j=1 w̃j(x)2γj 6 C~γ〈x〉2θ(γ1+···+γh)

G for
some C~γ > 0.
Let ψ ∈ D(Rn) such that ψ|K = 1 and K ′ = suppψ ⊆ Ω. The operator

m 7→ KL(mψ) is then continuous

Bβq,q(Rn)→ L2
(
G, 〈x〉2αG

h∏
j=1

w̃j(x)2γj dx
)

for α > 0, β > α + θ(γ1 + · · · + γh) + n by Theorem 2.7, whereas it is
continuous

Bβq,q(Rn)→ L2
(
G,

h∏
j=1

w̃j(x)2γj dx
)

for β > n/q − d/max{2, q} by Corollary 3.6 and Lemma 2.6 (cf. the proof
of Theorem 2.7). The conclusion then follows by interpolation.
(ii) It follows from (i) by Hölder’s inequality. �
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The hypotheses of the previous proposition are quite involved, and it
is not particularly clear which classes of groups and systems of operators
satisfy them. Hebisch and Zienkiewicz [20] treat explicitly the case of di-
rect products of H-type groups; however, as it is mentioned in a remark at
the end of [20], there are further cases of homogeneous groups for which
this technique gives an improvement of the weighted L1 estimates. In or-
der to attempt a systematic treatment of these various cases, we intro-
duce the following definition: for h ∈ N, we say that a homogeneous Lie
group G is h-capacious if there exist linearly independent homogeneous ele-
ments ω1, . . . , ωh ∈ (g/z)∗ and linearly independent homogeneous elements
z1, . . . , zh ∈ z such that, for j = 1, . . . , h,

(3.8) |J(x̄, τ)| > |ωj(x)||τ(zj)| for all x̄ ∈ g/z, τ ∈ z∗.

Clearly, every homogeneous group is 0-capacious. In the following propo-
sition, we give some criteria which may be of some use in showing that a
certain homogeneous group is h-capacious. Let us denote by

(3.9) g[1] = g, g[r+1] = [g, g[r]]

the descending central series of a Lie algebra g.

Proposition 3.9. — Let G be a homogeneous group, with dilations δt.
(i) If G is a Métivier group (with any family of automorphic dilations),

then z = [g, g] and G is (dim z)-capacious.
(ii) Suppose that, for some r > 2, dim g[r] = 1. Then G is 1-capacious.
(iii) If g admits a C-linear structure which is compatible with its ho-

mogeneous Lie algebra structure, and if moreover dimC g[r] = 1 for
some r > 2, then g is 2-capacious.

(iv) Suppose that G = G1 × G2, where G1 and G2 are homogeneous
Lie groups with dilations δ1,t and δ2,t respectively, so that δt =
δ1,t × δ2,t. If G1 is h1-capacious and G2 is h2-capacious, then G is
(h1 + h2)-capacious.

Proof. — (i) Notice that the capacity map J takes its values in the
subspace of y∗ corresponding to (y/z)∗. The condition (3.2) implies that
J(·, τ) : g/z→ (y/z)∗ is injective for τ 6= 0, and that J(x̄, ·) : z∗ → (y/z)∗ is
injective for x̄ 6= 0. Therefore dim g 6 dim y, so that g = y and [g, g] ⊆ z;
on the other hand, dim(g/z) > dim z.
The δt are automorphisms, hence z is a homogeneous ideal. Thus, if h =

dim z, we can choose linearly independent homogeneous elements z1, . . . , zh
of z, and also linearly independent homogeneous ω1, . . . , ωh ∈ (g/z)∗, since
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h 6 dim(g/z). Modulo a suitable renormalization, from (3.2) we infer (3.8)
for j = 1, . . . , h.

If [g, g] were strictly contained in z, then we would find τ ∈ z∗r{0} such
that τ |[g,g] = 0, but then also J(·, τ) = 0, which contradicts (3.2); therefore
z = [g, g].
(ii) Since G is nilpotent, it must be r-step, so that g[r] ⊆ z. Notice that

the ideal g[r−1] is preserved by every automorphism of g, therefore it is
generated by δt-homogeneous elements; since [g, g[r−1]] = g[r] 6= 0, then
there must exist a δt-homogeneous element y ∈ g[r−1] such that, for some
x0 ∈ g, [x0, y] = z 6= 0. In particular y 6= 0 and moreover, since the ideal
g[r] is δt-homogeneous and 1-dimensional, necessarily z is δt-homogeneous.
Since y ∈ g[r−1], the linear map [·, y] : g→ g takes its values in g[r] = Rz;

therefore, there exists ω ∈ (g/z)∗ such that [x, y] = ω(P (x))z for all x ∈ g.
Notice that ω(P (x0)) = 1, thus ω 6= 0; moreover, since both y and z are
homogeneous, also ω is homogeneous. Finally

(3.10) J(x̄, τ)(y) = ω(x̄)τ(z) for all x̄ ∈ g/z, τ ∈ z∗,

which implies immediately that G is 1-capacious.
(iii) Arguing as in part (ii), but with a complex Lie algebra g, one finds

an identity analogous to (3.10), where now ω is a C-linear functional on g/z,
and z ∈ z. The conclusion then follows by taking the R-linearly indepen-
dent R-linear functionals <ω,=ω on g/z, and the R-linearly independent
elements z, iz ∈ z.
(iv) Via the canonical identification g = g1 × g2, we have (with the

obvious meaning of the notation) z = z1 × z2, y = y1 × y2, thus also

z∗ = z∗1 × z∗2, y∗ = y∗1 × y∗2, g/z = (g1/z1)× (g2/z2).

Moreover clearly J((x̄1, x̄2), (τ1, τ2)) = (J1(x̄1, τ1), J2(x̄2, τ2)), therefore

|J((x̄1, x̄2), (τ1, τ2))| > max{|J1(x̄1, τ1)|, |J2(x̄2, τ2)|}

and the conclusion follows immediately. �

Notice that the previous proposition is not sufficient to exhaust all the
cases of h-capacious groups; an example is shown in § 6.2.

Lemma 3.10. — Suppose that G is h-capacious, and let ω1, . . . , ωh ∈
(g/z)∗ be as in the definition. Then the functionals ωj ◦P are null on [g, g].
In particular

h 6 min{dim z,dim g− dim(z + [g, g])}.
Moreover, we can find a homogeneous basis of g compatible with the de-
scending central series such that the functionals ω1 ◦P, . . . , ωh ◦P are part
of the dual basis.
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Proof. — Notice that [[g, g], y] ⊆ [g, [g, y]] ⊆ [g, z] = 0. Then from the
definition of J it follows that, for every x ∈ [g, g],

J(P (x), τ) = 0 for all τ ∈ z∗.

Hence, by choosing in (3.8) a τ ∈ z∗ such that τ(zj) 6= 0, we obtain that
the functional ωj ◦P is null on [g, g]. In particular, the ωj ◦P correspond to
linearly independent elements of (g/([g, g] + z))∗, and the inequality about
h follows.
Let now W = ker(ω1 ◦P )∩ · · · ∩ ker(ωh ◦P ). Then W is a homogeneous

subspace of g containing [g, g]. Moreover, if ω̃j is the element of (g/W )∗
corresponding to ωj , then ω̃1, . . . , ω̃h are a homogeneous basis of (g/W )∗.
We can then choose homogeneous elements v1, . . . , vh ∈ g such that the cor-
responding elements in the quotient g/W are the dual basis of ω̃1, . . . , ω̃h.
Finally, we append to v1, . . . , vh a homogeneous basis of W compatible
with the descending central series (which, apart from g[1], is contained in
W , and is made of homogeneous ideals), and we are done. �

Here is finally the improvement of Theorem 2.7 for h-capacious groups.

Theorem 3.11. — Suppose that G is h-capacious, and let QG be its
degree of polynomial growth. Let moreover L1, . . . , Ln be a homogeneous
weighted subcoercive system on G. If q ∈ [1,∞], α > 0 and

β > α+ QG − h
2 + n

q
− 1

max{2, q} ,

then, for every K ⊆ Rn r {0} compact,

‖m̆‖L1(G,〈x〉α
G
dx) 6 CK,α,β‖m‖Bβq,q

for all m ∈ D(G) with suppm ⊆ K.

Proof. — Let ω1, . . . , ωh ∈ (g/z)∗ and z1, . . . , zh ∈ z be as in the defini-
tion of h-capacious, and set wj(x̄) = |ωj(x̄)|, ζj(τ) = |τ(zj)|. Notice now
that, since the zj are linearly independent, for every choice of γ1, . . . , γh ∈
]0, 1/2[, the function ζ̃~γ =

∏h
j=1(1 + ζ

−2γj
j ) is in L1

loc(z∗), so that, by
Lemma 3.7, σζ̃~γ is a regular Borel measure; in fact, since the zj are ho-
mogeneous, σζ̃~γ is the sum of εt-homogeneous regular Borel measures on
Rn (with possibly different degrees of homogeneity), hence σζ̃~γ is locally
1-bounded on Rn r {0}.

By Lemma 3.10, we can find a homogeneous basis v1, . . . , vk of g, com-
patible with the descending central series, such that, if v̂1, . . . , v̂h is the
dual basis, then v̂j = ωj ◦ P for j = 1, . . . , h; in particular we have
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w̃j(x) = 1 + |v̂j(x)|. If we set κj = max{r : vj ∈ g[r]}, then QG =
∑k
j=1 κj

and 〈x〉G ∼ 1 +
∑k
j=1 |v̂j(x)|1/κj (cf. [26, Proposition 2.1]), thus

〈x〉−2αj
G 6 Cαj (1 + |v̂j(x)|)−2αj/κj

for j = 1, . . . , k and αj > 0. Moreover, since the ωj ◦ P are null on [g, g],
then κj = 1 for j = 1, . . . , h.
Notice now that, for fixed γ1, . . . , γh ∈ ]0, 1/2[, if α > 0 satisfies

2α > 2α~γ =
h∑
j=1

(1− 2γj) +
k∑

j=h+1
κj ,

then we may choose α1, . . . , αk > 0 such that

α =
k∑
j=1

αj , 2αj >
{

1− 2γj for j = 1, . . . , h,
κj for j = h+ 1, . . . , k,

therefore

〈x〉−2α
G

h∏
j=1

w̃j(x)−2γj 6
h∏
j=1

(1 + |v̂j(x)|)−2(αj+γj)
k∏

j=h+1
(1 + |v̂j(x)|)−2αj/κj ,

and the right-hand side is clearly integrable over G. We can thus apply
Proposition 3.8(ii), and the conclusion follows because, if the γj tend to
1/2, then α~γ tends to

∑k
j=h+1 κj = QG − h. �

Notice that, if G is a Métivier group, by Proposition 3.9(i) we can take
h = dim[g, g], so that QG − h = dimG; in fact, by Proposition 3.9(iv), the
same holds if G is a direct product of Métivier and Euclidean groups.

4. Mihlin-Hörmander multipliers

Let G be a homogeneous Lie group, with dimension at infinity QG, au-
tomorphic dilations δt and homogeneous dimension Qδ; as in [26, §2.1], we
suppose that the homogeneity degrees of the elements of the Lie algebra
g are not less than 1, so that Qδ > QG. Define | · |G, 〈·〉G as in § 2, and
denote by | · |δ a subadditive homogeneous norm on G (cf. [19]).
Let L1, . . . , Ln be a homogeneous weighted subcoercive system on G,

with associated dilations εt, and Plancherel measure σ. Denote moreover
by | · |ε an εt-homogeneous norm on Rn, smooth off the origin.

Our starting point is, for some q ∈ [1,∞] and s ∈ R, the following
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hypothesis (Iq,s): for some compact K0 ⊆ Rn r {0} such
that ⋃

t>0
εt(K̊0) = Rn r {0},

for all β > s and for all m ∈ D(Rn) with suppm ⊆ K0, we
have

‖m̆‖L1(G) 6 Cβ‖m‖Bβq,q(Rn).

From Theorems 2.7 and 3.11 we deduce immediately

Proposition 4.1. — For every q ∈ [1,∞], the hypothesis (Iq,s) holds
in each of the following cases:

• s = QG/2 + n/q − 1/max{2, q};
• the Plancherel measure σ is locally d-bounded on Rn r {0} and
s = QG/2 + n/q − d/max{2, q};

• G is h-capacious and s = (QG − h)/2 + n/q − 1/max{2, q}.

In the rest of this section, we forget how such hypothesis may be checked,
and we focus on its consequences.

Proposition 4.2. — Suppose that (Iq,s) holds for some q ∈ [1,∞] and
s ∈ R. Then s > n/q. Moreover, for every compact K ⊆ Rnr{0}, for every
α > 0 and β > α + s, for every D ∈ D(G), for every m ∈ Bβq,q(Rn) with
suppm ⊆ K, we have

(4.1) ‖〈·〉αGDm̆‖L1(G) 6 CK,D,α,β‖m‖Bβq,q(Rn).

Proof. — Let λ ∈ K̊0∩ suppσ. For every m ∈ D(Rn) with suppm ⊆ K̊0,
we have |m(λ)| 6 ‖m‖L∞(σ) 6 ‖m̆‖1 6 Cβ‖m‖Bβq,q for all β > s. Such an
inequality gives easily ‖f‖∞ 6 Cβ‖f‖Bβq,q for all f in the Schwartz class and
β > s, which however can hold only if s > n/q (cf. [48, § 2.6.2, Theorem 1]).
The hypothesis (Iq,s) gives (4.1) in the case α = 0, D = 1, m smooth,

K = K0. The extension to a generic compact K ⊆ Rn r {0} is performed
by a partition-of-unity argument and exploiting homogeneity. The full gen-
erality is then reached by approximation and interpolation, as in the proof
of Theorem 2.7. �

Notice that, by [26, Proposition 2.1], there are constants a,C > 0 such
that

(4.2) 1 + |x|δ 6 C〈x〉aG.
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Corollary 4.3. — Suppose that (Iq,s) holds. Let K ⊆ Rn r {0} be
compact, β > s. If m ∈ Bβq,q(Rn) and suppm ⊆ K, then m̆ ∈ L1(G).
Moreover, for 0 6 α < (β − s)/a,

(4.3)
∫
G

(1 + |x|δ)α|m̆(x)| dx 6 CK,α,β‖m‖Bβq,q

and, for all h ∈ G,
‖Rh m̆− m̆‖1 6 CK,β‖m‖Bβq,q |h|δ,

‖Lh m̆− m̆‖1 6 CK,β‖m‖Bβq,q |h|δ.
(4.4)

Proof. — Since β > s+ aα, by Proposition 4.2 and (4.2) we have∫
G

(1 + |x|δ)α|m̆(x)| dx 6 Cα
∫
G

〈x〉aαG |m̆(x)| dx 6 CK,α,β‖m‖Bβq,q ,

and in particular m̆ ∈ L1(G).
Starting from the inequality ‖Rexp(tX) m̆− m̆‖1 6 ‖Xm̆‖1|t|, true for all

X ∈ g and t ∈ R, having chosen a basis X1, . . . , Xk of g, with Xj homoge-
neous of degree dj , we easily obtain ‖Rh m̆− m̆‖1 6 C

∑k
j=1 ‖Xjm̆‖1|h|

dj
δ ,

so that also

‖Rh m̆− m̆‖1 6 C

(
‖m̆‖1 +

k∑
j=1
‖Xjm̆‖1

)
|h|δ,

since dj > 1. However ‖m̆‖1 +
∑k
j=1 ‖Xjm̆‖1 6 CK,β‖m‖Bβq,q by Proposi-

tion 4.2, thus we get the former of (4.4); the latter is obtained by replacing
m with m. �

Lemma 4.4. — Let m be a bounded Borel function on Rn. Then we can
find bounded Borel functions mj on Rn (for j ∈ Z) such that

(4.5) suppmj ⊆ {λ : 2−1 6 |λ|ε 6 2}, ‖mj‖Bβq,q 6 Cq,β‖m‖MεB
β
q,q

for all q ∈ [1,∞] and β > 0, and moreover

(4.6) m̆ =
∑
j∈Z

2−Qδjm̆j ◦ δ2−j ,

in the sense of strong convergence of the corresponding convolution opera-
tors.

Proof. — Set K = {λ : 2−1 6 |λ|ε 6 2}. Choose a nonnegative η ∈
D(Rn) supported in K and such that

∑
j∈Z η ◦ ε2j = 1 off the origin,

and let mj = (m ◦ ε2−j ) η. Then clearly (4.5) is satisfied, and moreover
m =

∑
j∈Zmj ◦ ε2j off the origin. In fact, this is locally a finite sum and

the convergence is dominated by the constant ‖m‖∞. Since σ({0}) = 0, by
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the spectral theorem and (1.1) we then have (4.6), in the sense of strong
convergence of the corresponding convolution operators. �

Proposition 4.5. — Suppose that (Iq,s) holds. Let β > s. If m is a
bounded Borel function on Rn such that ‖m‖MεB

β
q,q
<∞, then m̆|Gr{e} ∈

L1
loc(Gr {e}), and moreover∫

|x|δ>2|h|δ
|m̆(xh)− m̆(x)| dx 6 Cβ‖m‖MεB

β
q,q
,(4.7) ∫

|x|δ>2|h|δ
|m̆(hx)− m̆(x)| dx 6 Cβ‖m‖MεB

β
q,q

(4.8)

for all h ∈ Gr {e}.

Proof. — Let themj be given by Lemma 4.4 and set uj = 2−Qδjm̆j◦δ2−j .
Firstly we prove that the convergence in (4.6) holds also in L1

loc(Gr{e}).
In fact, let Bk = {x ∈ G : 2k 6 |x|δ 6 2k+1}; it is sufficient to prove the
convergence in each L1(Bk). We have

∫
Bk
|uj | dµ =

∫
Bk−j

|m̆j | dµ and, for
j 6 k,∫

Bk−j

|m̆j(x)| dx 6 2α(j−k)
∫
Bk−j

|m̆j(x)||x|αδ dx 6 C2α(j−k)‖m‖MεB
β
q,q

(where α > 0 is as in (4.3)), whereas, for j > k,∫
Bk−j

|m̆j(x)| dx 6 ‖m̆j‖2
√
µ(Bk−j) 6

√
σ(K)µ(B0)‖m‖∞ 2Qδ(k−j)/2,

(here we use a uniform estimate on the L2-norms of the m̆j) so that∑
j

∫
Bk

|uj | dµ 6 C ′
∑
j6k

2α(j−k) + C ′′
∑
j>k

2Qδ(k−j)/2 <∞.

This shows (by uniqueness of limits) that the restriction of the distribution
m̆ to Gr {e} coincides with a function in L1

loc(Gr {e}).
Since m̆ =

∑
j∈Z uj in L1

loc(Gr{e}), then Rh m̆−m̆ =
∑
j∈Z(Rh uj−uj)

in L1
loc(Gr {e, h−1}), so that in particular

(4.9)
∫
|x|δ>2|h|δ

|m̆(xh)− m̆(x)| dx 6
∑
j∈Z

∫
|x|δ>2|h|δ

|uj(xh)− uj(x)| dx.

Let k ∈ Z. Then, for j < k, the j-th summand in the right-hand side of
(4.9) is not greater than

2
∫
|x|δ>|h|δ

|uj(x)| dx 6 Cβ
2αj

|h|αδ
‖m‖MεB

β
q,q
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by (4.3), whereas, for j > k, it is not greater than∫
G

|m̆j(yδ2−j (h))− m̆j(y)| dy 6 Cβ
|h|δ
2j ‖m‖MεB

β
q,q

by (4.4). Putting all together, the left-hand side of (4.9) is majorized by

Cβ‖m‖MεB
β
q,q

(
2kα

|h|αδ

∑
j<0

2jα + |h|δ2k
∑
j>0

2−j
)

and, in order to obtain an estimate independent of h, it is sufficient to
choose a k such that 2k 6 |h|δ < 2k+1. Hence we have proved (4.7); the
inequality (4.8) is obtained analogously. �

Here is finally the multiplier theorem.

Theorem 4.6. — Suppose that (Iq,s) holds. If m is a bounded Borel
function on Rn such that ‖m‖MεB

β
q,q
<∞ for some β > s, then the operator

m(L) is of weak type (1, 1) and bounded on Lp(G) for 1 < p <∞, with

‖m(L)‖p→p 6 Cp,q,β‖m‖MεB
β
q,q
.

Proof. — Notice that ‖m‖L∞(σ) 6 Cq,β‖m‖MεB
β
q,q

, since β > n/p by
Proposition 4.2. In view of Proposition 4.5, the conclusion then follows
from the Calderón-Zygmund theory of singular integral operators [45, § I.5,
Theorem 3 and § I.7.4(iii)]. �

Notice that a compactly supported m ∈ Bβq,q(Rn) does satisfy an Lq

Mihlin-Hörmander condition of order β, at least for β sufficiently large.
More precisely, let Q̃ε =

∑
j wj/minj wj denote the normalized homoge-

neous dimension associated with the dilations εt(λ) = (tw1λ1, . . . , t
wnλn);

then we have

Proposition 4.7. — If K ⊆ Rn is compact, q ∈ [1,∞], β > Q̃ε/q, then

‖m‖MεB
β
q,q
6 CK,q,β‖m‖Bβq,q

for all m ∈ Bβq,q(Rn) with suppm ⊆ K.

Recall that ‖m‖MεB
β
q,q

= supt>0 ‖(m ◦ εt) η‖Bβq,q for a suitable cut-off
function η ∈ D(Rn) supported away from the origin. If suppm ⊆ K, then,
for some tK > 0 sufficiently large, we have ‖(m ◦ εt) η‖Bβq,q = 0 for t > tK ;
therefore Proposition 4.7 follows immediately from

Lemma 4.8. — If p, q ∈ [1,∞], β > Q̃ε/p and η ∈ D(Rn), then

sup
0<t61

‖(f ◦ εt) η‖Bβp,q 6 Cη,p,q,β‖f‖Bβp,q .
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Proof. — Without loss of generality, we may suppose that β is not an
integer (the missing values can be recovered a posteriori by interpolation),
thus there exists m ∈ N such that m− 1 < β < m.

Define the k-th order difference operator ∆k
y and the modulus of conti-

nuity ωkp as in [2, § 6.2]. In view of the characterization by differences of
the Besov norm given in [2, Theorem 6.2.5], we have to estimate

(4.10) ‖(f ◦ εt) η‖p +
(∫ 1

0

(
ωmp (r, (f ◦ εt)η)

rβ

)q
dr

r

)1/q

.

The former summand in (4.10) is immediately majorized by Hölder’s
inequality and embeddings, since η is compactly supported and β > n/p:

‖(f ◦ εt) η‖p 6 Cη,p‖f ◦ εt‖∞ = Cη,p‖f‖∞ 6 Cη,p,q,β‖f‖Bβp,q .

For the latter summand, notice first that

(4.11) ‖∆k
yψ‖p 6 Ck,p‖ψ‖Wk

p
|y|k;

this inequality, together with the Leibniz rule for finite differences, Hölder’s
inequality and the fact that η ∈ D(Rn), gives easily

‖∆m
y ((f ◦ εt) η)‖p 6 Cη,m,p,p0,...,pm

m∑
k=0
|y|m−k‖∆k

y(f ◦ εt)‖pk

for any choice of p0, . . . , pk > p; since

‖∆k
y(f ◦ εt)‖pk = t−Qε/pk‖∆k

εt(y)f‖pk and |εt(y)|∞ 6 tw∗ |y|∞

for t 6 1, where w∗ = min{w1, . . . , wn}, we then get also

ωmp (r, (f ◦ εt)η) 6 Cη,m,p,p0,...,pm

m∑
k=0

rm−kt−Qε/pkωkpk(tw∗r, f).

Choose now pm = p, and pk = pβ/k for k < m. Then, for k < m, we have

pk>p, k− n

pk
= k

β

(
β − n

p

)
< β−n

p
, w∗k−

Qε
pk

= w∗k

β

(
β − Q̃ε

p

)
> 0,

so that, by (4.11) and the embeddings Bβp,q ⊆ Bkpk,1 ⊆W
k
pk
,

rm−kt−Qε/pkωkpk(tw∗r, f)
rβ

6 Cp,q,βr
m−β‖f‖Bβp,q .

For k = m, instead,

t−Qε/pωmp (tw∗r, f)
rβ

= tw∗β−Qε/p
ωmp (tw∗r, f)

(tw∗r)β 6
ωmp (tw∗r, f)

(tw∗r)β .
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Putting all together, the latter summand in (4.10) is majorized by

Cη,p,q,β

(
‖f‖Bβp,q

(∫ 1

0
(rm−β)q dr

r

)1/q

+
(∫ 1

0

(
ωmp (r, f)

rβ

)q
dr

r

)1/q)
,

and the conclusion follows again by [2, Theorem 6.2.5]. �

5. Marcinkiewicz multipliers

Let G be a homogeneous Lie group, with automorphic dilations δt and
homogeneous dimension Qδ. For w ∈ L1(G), we define the maximal oper-
ator Mwφ(x) = supt>0 |φ ∗ (t−Qδw ◦ δt−1)(x)|. We say that the function w
is M-admissible if Mw is bounded on Lp(G) for 1 < p <∞.

In terms of maximal operators, we formulate the following hypothesis
about the homogeneous group G and a chosen homogeneous weighted sub-
coercive system L1, . . . , Ln on it:

hypothesis (Js,d): for every β > s there exist
• a Borel function uβ on G with uβ = u∗β and uβ > c〈·〉−θG
for some c, θ > 0,

• a positive regular Borel measure σβ on Rn, which is
locally d-bounded on Rn r {0},

• a non-negative real number γβ < 2β,
such that
• the function 〈·〉−γβG uβ is M-admissible, and
• for every compact K ⊆ Rnr{0} and every m ∈ D(Rn)

with suppm ⊆ K, we have

(5.1) ‖m̆‖L2(G,u−1
β

(x) dx) 6 CK,β‖m‖L2(σβ).

Proposition 5.1. — Let G be a homogeneous group, with degree of
polynomial growth QG, and let L1, . . . , Ln be a homogeneous weighted
subcoercive system on G.

(i) The hypothesis (JQG/2,1) holds. More generally, if the Plancherel
measure σ is locally d-bounded on Rn r {0}, then (JQG/2,d) holds.

(ii) If G is h-capacious, then (J(QG−h)/2,1) holds.

Proof. — (i) Let σ be the Plancherel measure associated with the system
L1, . . . , Ln. For β > QG/2, we choose uβ ≡ 1, σβ = σ. By (1.1), σ is δt-
homogeneous, so that it is locally 1-bounded on Rn r {0}. Therefore, by
the Plancherel formula, in order to conclude, it is sufficient to show that,
for γβ ∈ ]QG, 2β[, the function wβ = 〈·〉−γβG is M-admissible.
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The ideals composing the descending central series (3.9) are character-
istic and thus δt-invariant, hence we can find δt-invariant complements Vk
of g[k+1] in g[k]. The dilations δ̃t of g defined by δ̃t(x) = tkx for x ∈ Vk in
general are not automorphic, but commute with the δt, and moreover, by
[26, Proposition 2.1], if | · |δ̃ is a δ̃t-homogeneous norm, then 〈·〉G ∼ 1+ | · |δ̃.
We then have∣∣∣∣∫

G

φ(x δt(y)−1)wβ(y) dy
∣∣∣∣ =

∣∣∣∣∣
∫
|y|δ̃61

+
∑
h>1

∫
2h−1<|y|δ̃62h

∣∣∣∣∣
6 Cγβ

∑
h>0

2−h(γβ−QG)
∫
|y|δ̃61

|φ(x δt(δ̃2h(y))−1)| dy.

Since γβ > QG, if Mstrong is the strong maximal function on G associated
to a basis of simultaneous eigenvectors of the δt and the δ̃t [5, § 2], we
obtain

Mwβφ 6 CγβMstrongφ,

which gives the conclusion by [5, Theorem 2.1].
(ii) Let z be the center of g, and P : g→ g/z be the canonical projection.

Let ω1, . . . , ωh ∈ (g/z)∗ and z1, . . . , zh ∈ z be as in the definition of h-
capacious. By Lemma 3.10, there exists a homogeneous basis v1, . . . , vk
of g compatible with the descending central series such that, if v̂1, . . . , v̂k
is the dual basis, then ωj ◦ P = v̂j for j = 1, . . . , h. Moreover, if we set
κj = max{r : vj ∈ g[r]}, then κj = 1 for j = 1, . . . , h and

(5.2) QG =
k∑
j=1

κj , 〈x〉G ∼ 1 +
k∑
j=1
|v̂j(x)|1/κj

by [26, Proposition 2.1].
Let k~t be the k-parameter family of dilations on g given by k~t(vj) = tjvj .

Clearly the k~t are in general not automorphisms, but the automorphic
dilations δt can be obtained as a particular case: δt = k(tb1 ,...,tbk ), where bj
is the δt-homogeneous degree of vj .

If β > (QG − h)/2, then 2β > QG − h =
∑k
j=h+1 κj , so that we can find

ηβ,1, . . . , ηβ,h ∈ [0, 1[ and γβ,1, . . . , γβ,k > 0 such that

2β > γβ =
k∑
j=1

γβ,j , γβ,j >

{
1− ηβ,j for j = 1, . . . , h,
κj for j = h+ 1, . . . , k.

Let now σ′ be the Plancherel measure on Rn × z∗ associated to the sys-
tem L1, . . . , Ln extended with the central derivatives, as in § 3, and let σβ
be the push-forward of the measure

∏h
j=1(1+ |τ(zj)|−ηβ,j ) dσ′(λ, τ) via the
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canonical projection on the first factor of Rn × z∗. By Lemma 3.7, since
ηβ,1, . . . , ηβ,h < 1, the measure σβ is a regular Borel measure on Rn; more-
over, since the zj are δt-homogeneous, σβ is the sum of εt-homogeneous
regular Borel measures of different degrees (where εt are the dilations as-
sociated with the system L1, . . . , Ln), and consequently σβ is locally 1-
bounded on Rnr{0}. Finally, if we set uβ(x) =

∏h
j=1(1+|ωj(P (x))|)−ηβ,j =∏h

j=1(1 + |v̂j(x)|)−ηβ,j , then uβ = u∗β and, by (5.2), u−1
β is dominated

by some power of 〈·〉G; moreover, by Corollary 3.6, for every compact
K ⊆ Rn r {0} and every m ∈ D(Rn) with suppm ⊆ K, we have (5.1).

In order to conclude, we must show that wβ = 〈·〉−γβG uβ is M-admissible.
In fact, again by (5.2),

wβ(x) 6 Cβ
h∏
j=1

(1 + |v̂j(x)|)−(γβ,j+ηβ,j)
k∏

j=h+1
(1 + |v̂j(x)|)−γβ,j/κj ,

and the exponents γβ,j + ηβ,j , γβ,j/κj are all greater than 1 by construc-
tion. The conclusion then follows as in part (i), but with a multi-variate
decomposition, by [5, Theorem 2.1] applied to the multi-parameter dila-
tions k~t. �

Suppose now that, for l = 1, . . . , %, Gl is a homogeneous Lie group,
with dilations (δl,t)t>0, and that Ll,1, . . . , Ll,nl is a homogeneous weighted
subcoercive system on Gl. Set G× = G1 × · · · ×G%, and let L×l,j ∈ D(G×)
be defined by

L×l,j(f1 ⊗ · · · ⊗ f%) = f1 ⊗ · · · ⊗ (Ll,jfj)⊗ · · · ⊗ f%

for l = 1, . . . , %, j = 1, . . . , nl. By [26, Corollary 5.5], we know that

L×1,1, . . . , L
×
1,n1

, . . . , L×%,1, . . . , L
×
%,n%

is a homogeneous weighted subcoercive system on G×.
We then show how the hypotheses on the factor groups Gl can be put

together in order to obtain weighted estimates on the product group G×. In
the following, inequalities involving vectors are to be read componentwise.

Proposition 5.2. — Suppose that, for l = 1, . . . , %, the homogeneous
group Gl, with the system Ll,1, . . . , Ll,nl , satisfies (Jsl,dl). For q ∈ [1,∞], if

~β > ~s+ ~n

q
−

~d

max{2, q} ,

where ~s = (s1, . . . , s%), ~d = (d1, . . . , d%), then there exists

w~β = w~β,1 ⊗ · · · ⊗ w~β,% ∈ L
1(G×),
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with w~β > 0, w∗~β = w~β , such that w~β,l is M-admissible onGl for l = 1, . . . , %,
and moreover, for every compact K =

∏%
l=1Kl ⊆

∏%
l=1(Rnl r {0}), and

for every m ∈ S~βq,qB(R~n) with suppm ⊆ K, we have

‖KL×m‖L2(G×,w−1
~β

(x) dx) 6 CK,~β,p,q‖m‖S~βq,qB(R~n)
.

Proof. — Take ~α such that ~α > ~s, ~β > ~α + ~n/q − ~d/max{2, q}. For
l = 1, . . . , %, since αl > sl, by (Jsl,dl) we can find a function u~α,l = u∗~α,l > 0
on Gl such that u~α,l > cl〈·〉−θlGl

for some cl, θl > 0, a positive regular
Borel measure σ~α,l on Rnl locally dl-bounded on Rnl r {0}, and a positive
real number γ~α,l < 2αl such that the function w~β,l = 〈·〉−γ~α,lGl

u~α,l is M-
admissible on Gl and

(5.3) ‖KLlml‖L2(Gl,u−1
~α,l

(xl) dxl) 6 CKl,αl‖ml‖L2(σ~α,l)

for every compact Kl ⊆ Rnl r {0} and every ml ∈ D(Rnl) with suppml ⊆
Kl.
Set u~α = u~α,1⊗· · ·⊗u~α,%, σ~α = σ~α,1×· · ·×σ~α,%. By “taking the Hilbert

tensor product” of the inequalities (5.3), from [26, Corollary 5.5] we deduce
that

‖KL×m‖L2(G×,u−1
~α

(x) dx) 6 CK,~α‖m‖L2(σ~α)

for every compact K =
∏%
l=1Kl ⊆

∏%
l=1(Rnl r {0}) and every m ∈ D(R~n)

with suppm ⊆ K.
Notice now that, again by taking tensor products, Lemma 2.6 gives

‖m‖L2(σ~α) 6 CK,~α,~η‖m‖S~η2,2B(R~n)

for ~η > (~n− ~d)/2, whereas trivially

‖m‖L2(σ~α) 6 CK,~α‖m‖∞ 6 CK,~α‖m‖S0
∞,1B(R~n),

so that, by embeddings and interpolation (cf. the proof of Theorem 2.7),

‖m‖L2(σ~α) 6 CK,~α,~η,q‖m‖S~ηq,qB(R~n)

for ~η > ~n/q − ~d/max{2, q}.
Putting all togehter, we have

‖KL×m‖L2(G×,u−1
~α

(x) dx) 6 CK,~α,~η,q‖m‖S~ηq,qB(R~n)

for ~η > ~n/q − ~d/max{2, q}. On the other hand, by Theorem 2.7,

‖KLlml‖L2(Gl,〈xl〉
γl
Gl
u−1
~α,l

(xl) dxl) 6 CKl,~α,γl,ηl‖ml‖Bηl2,2(Rnl )
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for ηl > γl/2 + θl/2 + nl/2, so that, by tensor products and embeddings,

‖KL×m‖L2(G×,〈x1〉
γ1
G1
···〈x%〉

γ%
G%
u−1
~α

(x) dx) 6 CK,~α,~γ,~η,q‖m‖S~ηq,qB(R~n)

for ~η > ~γ/2 + ~θ/2 + ~n. By interpolation, we obtain that

‖KL×m‖L2(G×,〈x1〉
γ1
G1
···〈x%〉

γ%
G%
u−1
~α

(x) dx) 6 CK,~α,~γ,~η,q‖m‖S~ηq,qB(R~n)

for ~η > ~γ/2 + ~n/q − ~d/max{2, q}.
In particular, if we take ~γ = (γ~α,1, . . . , γ~α,%), ~η = ~α+ ~n/q− ~d/max{2, q}

and set w~β = w~β,1 ⊗ · · · ⊗ w~β,%, we get

‖KL×m‖L2(G×,w−1
~β

(x) dx) 6 CK,~β,q‖m‖S~ηq,qB(R~n),

for every compact K =
∏%
l=1Kl ⊆

∏%
l=1(Rnl r {0}) and every m ∈ D(R~n)

with suppm ⊆ K. The conclusion then follows by approximation. �

Notice that, in the particular case % = 1, the previous proposition, to-
gether with Hölder’s inequality and Proposition 4.2, gives the following

Corollary 5.3. — Suppose that a homogeneous weighted subcoercive
system L1, . . . , Ln on a homogeneous Lie group G satisfies (Js,d). Then, for
q ∈ [1,∞], it satisfies also (Iq,s+n/q−d/max{2,q}). In particular, s > d/2.

The weighted estimate on G× given by Proposition 5.2 are the starting
point for the following multi-variate multiplier results. In fact, we are going
to consider a setting which is more general than the product group G×.

LetG be a connected Lie group, endowed with Lie group homomorphisms

υl : Gl → G for l = 1, . . . , %.

Then, for l = 1, . . . , %, the operators Ll,1, . . . , Ll,nl correspond (via the
derivative υ′l of the homomorphism) to operators L[l,1, . . . L[l,nl ∈ D(G),
which are essentially self-adjoint. Since we want to give a meaning to
joint functions of these operators on G, we suppose in the following that
L[1,1, . . . L

[
1,n1

, . . . , L[%,1, . . . , L
[
%,n% commute strongly, i.e., they admit a joint

spectral resolution E[ on L2(G).
In order to obtain multiplier results on G, we would like to “transfer” to

G the estimates obtained on the product group G×. However, we cannot
apply directly the classical transference results (cf. [6, 3, 7]), since the map

υ× : G× 3 (x1, . . . , xn) 7→ υ1(x1) · · · υ%(x%) ∈ G

in general is not a group homomorphism and consequently it does not yield
an action of G× on Lp(G) by translations. Nevertheless, under the sole
assumption of (strong) commutativity of the differential operators L[l,j on
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G, we are able to express the operator m(L[) on G by a sort of convolution
with the kernel KL×m of the operator m(L×) on G×.

Proposition 5.4. — (i) For every m ∈ D(R~n) and φ ∈ L2 ∩ C0(G),

m(L[)φ(x) =
∫
G×

φ(x υ×(y)−1)KL×m(y) dy.

(ii) Under the hypotheses of Proposition 5.2, the previous identity holds
for everym ∈ S~βq,qB(R~n) with compact support suppm ⊆

∏%
l=1(Rnlr{0}).

Proof. — (i) If m ∈ D(R~n), then we can decompose m =
∑
k∈N gk,1 ⊗

· · · ⊗ gk,%, where gk,l ∈ D(Rnl) for k ∈ N, l = 1, . . . , %, and the convergence
is in D(R~n). In particular, by applying [26, Corollary 5.5] and Theorem 2.7
to the group G×, we obtain that

KL×m =
∑
k∈N
KL1gk,1 ⊗ · · · ⊗ KL%gk,%

in L1(G×). On the other hand, for all φ ∈ L2 ∩ C0(G), we have

gk,l(L[l )φ(x) =
∫
Gl

φ(x υl(yl)−1)KLlgk,l(yl) dyl

by [26, Proposition 3.7], and in particular (being KLlgk,l ∈ L1(Gl)) also
gk,l(L[l )φ ∈ L2 ∩ C0(G), so that, by iterating,

(gk,1 ⊗ · · · ⊗ gk,%)(L[)φ(x) =
∫
G×

φ(x υ×(y)−1)
%∏
l=1
KLlgk,l(yl) dy.

Summing over k ∈ N, the left-hand side converges in L2(G) to m(L[)φ,
whereas (since y 7→ φ(x υ×(y)−1) is bounded) the right-hand side converges
pointwise to

∫
G×

φ(x υ×(y)−1)KL×m(y) dy, and the conclusion follows.
(ii) Choose ~β′ such that ~β > ~β′ > ~s + ~n/q − ~d/max{2, q}. Take a com-

pact K =
∏%
l=1Kl ⊆

∏%
l=1(Rnl r {0}) and a sequence mk ∈ D(R~n) with

suppmk ⊆ K such that mk → m in S
~β′

q,q(R~n). By Proposition 5.2 and
Hölder’s inequality, we then have KL×mk → KL×m in L1(G×); moreover,
by Corollary 5.3, β′l > nl/q for l = 1, . . . , %, so that mk → m uniformly.
Therefore the conclusion follows by applying (i) to the functions mk and
passing to the limit. �

We are now going to exploit the Littlewood-Paley theory. An important
tool will be the following result, which summarizes a well-known argument
for proving properties of square functions.

Lemma 5.5. — Let (X,µ) be a σ-finite measure space, 1 6 p < ∞, T~k
(~k ∈ N%) bounded linear operators on Lp(X,µ). Let A > 0 be such that,
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for all choices of εik ∈ {−1, 1} (1 6 i 6 %, k ∈ N) and of a finite subset
I ⊆ N%, we have

(5.4)

∥∥∥∥∥∑
~k∈I

ε1
k1
· · · ε%k%T~k

∥∥∥∥∥
p→p

6 A.

Then, for all f ∈ Lp(X,µ),

(5.5)

∥∥∥∥∥
( ∑
~k∈N%

|T~kf |
2

)1/2∥∥∥∥∥
p

6 C%,pA‖f‖p.

Moreover, if p > 1, for all {f~k}~k∈N% ⊆ L
p(X,µ), if

(∑
~k |f~k|

2)1/2 ∈ Lp(X,µ),
then ∥∥∥∥∥ ∑

~k∈N%
T~kf~k

∥∥∥∥∥
p

6 C%,p′A

∥∥∥∥∥
( ∑
~k∈N%

|f~k|
2

)1/2∥∥∥∥∥
p

where the series on the left-hand side converges unconditionally in Lp.

Proof. — For n ∈ N, let rn : [0, 1]→ R be the n-th Rademacher function,
rn(t) = (−1)b2ntc, and set r~k = rk1 ⊗ · · · ⊗ rk% for ~k ∈ N%. Then (r~k)~k is an
(incomplete) orthonormal system in L2([0, 1]%), and Khinchin’s inequalities
hold: for 1 6 p <∞, there exist c%,p, C%,p > 0 such that

c−1
%,p‖f‖p 6 ‖f‖2 6 C%,p‖f‖p for all f ∈ span{r~k : ~k ∈ N%}.

(see [44, Appendix D] or [16, Appendix C]).
Consequently, for all finite I ⊆ N% and f ∈ Lp(X,µ), we have∥∥∥∥∥
(∑
~k∈I

|T~kf |
2

)1/2∥∥∥∥∥
p

p

=
∫
X

(∑
~k∈I

|T~kf(x)|2
)p/2

dµ(x)

6 Cp%,p

∫
X

∫
[0,1]%

∣∣∣∣∣∑
~k∈I

T~kf(x)r~k(t)

∣∣∣∣∣
p

dt dµ(x)

= Cp%,p

∫
[0,1]%

∥∥∥∥∥
(∑
~k∈I

r~k(t)T~k

)
f

∥∥∥∥∥
p

dt 6 Cp%,pA
p‖f‖pp.

Since I ⊆ N% was arbitrary, (5.5) follows by monotone convergence.
Notice now that the vector-valued Lebesgue space Vp = Lp(X,µ; l2(N%))

can be thought of as a space of sequences of Lp(X,µ)-functions:

Vp =
{

(f~k)~k∈N% ∈ L
p(X,µ)N

%

:
(∑

~k

|f~k|
2

)1/2

∈ Lp(X,µ)
}
,
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with norm ‖(f~k)~k∈N%‖Vp = ‖(
∑
~k |f~k|

2)1/2‖p. The inequality (5.5) therefore
means that the operator f 7→ (T~kf)~k∈N% is bounded Lp(X,µ) → Vp, with
norm not greater than C%,pA.
If p > 1, the hypothesis (5.4) is equivalent to∥∥∥∥∥∑

~k∈I

ε1
k1
· · · εnknT

∗
~k

∥∥∥∥∥
p′→p′

6 A;

consequently we have that S : f 7→ (T ∗~k f)~k∈N% is bounded Lp′(X,µ)→ Vp′ ,
with norm not greater than C%,p′A. This means that the transpose operator
S∗ : Vp → Lp(X,µ) is bounded too, with the same norm; since

S∗
(
(f~k)~k

)
=
∑
~k

T~kf~k,

where the series on the right-hand side converges unconditionally in Lp,
the remaining part of the conclusion follows. �

For l = 1, . . . , %, let εl,t be the dilations on Rnl associated to the weighted
subcoercive system Ll,1, . . . , Ll,nl , and fix an εl-homogeneous norm | · |εl on
Rnl , smooth off the origin. Choose a non-negative ξ ∈ D(R) with supp ξ ⊆
[1/2, 2] and such that, if ξk(t) = ξ(2−kt), then

(5.6)
∑
k∈Z

ξ2
k(t) = 1 for t > 0,

and set, for l = 1, . . . , % and k ∈ Z, χl,k(λ) = ξ(|εl,2−k(λ)|εl) = ξk(|λ|εl) for
λ ∈ Rnl . Moreover, for ~k = (k1, . . . , k%) ∈ Z%, let χ~k = χ1,k1 ⊗ · · · ⊗ χ%,k% ,
T~k = χ~k(L[), and define the square function

g(φ) =
(∑
~k∈Z%
|T~kφ|

2

)1/2

.

Finally, set X~n = {λ ∈ R~n : |λ1|ε1 · · · |λ%|ε% = 0}.

Lemma 5.6. — For 1 < p <∞ and for all φ ∈ L2 ∩ Lp(G),

cp‖E[(R~n rX~n)φ‖p 6 ‖g(φ)‖p 6 Cp‖φ‖p.

Proof. — Using the characterization (1.4) of L∞ Mihlin-Hörmander con-
ditions, it is not difficult to prove, for l = 1, . . . , %, s ∈ N, (εlk)k∈Z ∈
{−1, 0, 1}Z, N ∈ N, that∥∥∥∥∥ ∑

|k|6N

εlkχl,k

∥∥∥∥∥
Mεl

Bs∞,∞

6 Cl,s,

where Cl,s > 0 does not depend on (εlk)k or N .
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By Theorem 4.6 applied to the group Gl, and by transference to the
group G (see [3, Theorem 2.7] and [26, Proposition 3.7]), we then have∥∥∥∥∥ ∑

|k|6N

εlkχl,k(L[l )

∥∥∥∥∥
p→p

6

∥∥∥∥∥ ∑
|k|6N

εlkχl,k(Ll)

∥∥∥∥∥
p→p

6 Cl,p

for 1 < p < ∞, l = 1, . . . , %, where Cl,p > 0 does not depend on (εlk)k or
N , and consequently also∥∥∥∥∥ ∑

|k1|,...,|k%|6N

ε1
k1
· · · ε%k%T~k

∥∥∥∥∥
p→p

6 C1,p · · ·C%,p.

Moreover, by (5.6) and the properties of the spectral integral,
∑
~k∈Z% T

2
~k

converges strongly to E[(R~n r X~n). The conclusion follows then immedi-
ately by Lemma 5.5. �

In the following, we will consider Marcinkiewicz conditions on R~n adapted
to the system t~ג = ε1,t1 × · · · × ε%,t% of multi-variate dilations.

Theorem 5.7. — Suppose that, for l = 1, . . . , %, the homogeneous group
Gl, with the system Ll,1, . . . , Ll,nl , satisfies (Jsl,dl). If q ∈ [1,∞] and

~β > ~s+ ~n

q
−

~d

max{2, q} ,

then, for every Borel m : R~n → C with m|X~n = 0 and ‖m‖
MגS

~β
q,qB

< ∞,
the operator m(L[) is bounded on Lp(G) for 1 < p <∞ and

‖m(L[)‖p→p 6 C~β,p,q‖m‖MגS
~β
q,qB

.

Proof. — Choose a non-negative ζ ∈ D(R) with supp ζ ⊆ [1/4, 4] and
such that ζ ≡ 1 on [1/2, 2]. For l = 1, . . . , %, set ηl(λ) = ζ(|λ|εl) and
η = η1⊗· · ·⊗η%. If we set m~k = (m◦2)גk1 ,...,2k% ))η, f~k = m~k k1−2)ג◦ ,...,2−k% )

for ~k ∈ Z%, then we have χ~km = f~kχ~k, so that T~km(L[) = f~k(L[)T~k.
Let w~β = w~β,1 ⊗ · · · ⊗ w~β,% ∈ L1(G×) be given by Proposition 5.2.

Set w~β,l,k = 2kQδlw~β,l ◦ δl,2k for k ∈ Z, l = 1, . . . , %, and let w~β,~k =
w~β,1,k1

⊗ · · ·⊗w~β,%,k% for ~k ∈ Z%. For l = 1, . . . , %, if πl denotes the unitary
representation of Gl on L2(G) induced by the homomorphism υl, since w~β,l
is M-admissible on Gl, then the maximal function M~β,l on G defined by
M~β,lφ(x) = supk∈Z |πl(w~β,l,k)φ(x)| is bounded on Lp(G) for 1 < p < ∞,
by transference [3, Theorem 2.11].
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If φ ∈ L2 ∩ C0(G), then we have, by Proposition 5.4(ii) and Hölder’s
inequality,

|f~k(L[)T~kφ(x)|2 6
(∫

G×
|T~kφ(x υ×(y)−1)||KL×f~k(y)| dy

)2

6
∫
G×
|T~kφ(x υ×(y)−1)|2w~β,~k(y) dy

∫
G×
|KL×m~k(y)|2w−1

~β
(y) dy

6 C~β,q‖m~k‖
2
S
~β
q,qB(R~n)

π1(w~β,1,k1
) · · ·π%(w~β,%,k%)(|T~kφ|

2)

thus

‖g(m(L[)φ)‖p

6 C~β,q‖m‖MגS
~β
q,qB

∥∥∥∥∥∑
~k∈Z%

π1(w~β,1,k1
) · · ·π%(w~β,%,k%)(|T~kφ|

2)

∥∥∥∥∥
1/2

p/2

for 2 6 p <∞.
On the other hand, since w~β = w∗~β , for every ψ ∈ L

(p/2)′(G) we have∣∣∣∣∣
∫
G

(∑
~k∈Z%

π1(w~β,1,k1
) · · ·π%(w~β,%,k%)(|T~kφ|

2)
)
ψ dµG

∣∣∣∣∣
6
∑
~k∈Z%

∫
G

(
π1(w~β,1,k1

) · · ·π%(w~β,%,k%)(|T~kφ|
2)
)
|ψ| dµG

6
∫
G

(∑
~k∈Z%
|T~kφ|

2

)
M~β,% · · ·M~β,1(|ψ|) dµG

6 C~β,p

∥∥∥∥∥∑
~k∈Z%
|T~kφ|

2

∥∥∥∥∥
p/2

‖ψ‖(p/2)′ ,

that is, ∥∥∥∥∥∑
~k∈Z%

π1(w~β,1,k1
) · · ·π%(w~β,%,k%)(|T~kφ|

2)

∥∥∥∥∥
p/2

6 C~β,p‖g(φ)‖2p.

Putting all together, and applying Lemma 5.6, we get the conclusion for
2 6 p < ∞ (notice that E[(R~n rX~n)m(L[) = m(L[) because m|X~n = 0).
Thus we are done when m(L[) is self-adjoint, i.e., when m is real-valued;
in the general case, one can decompose m in its real and imaginary parts
and then apply the previous result to each part. �

The hypothesis m|X~n = 0 in Theorem 5.7 does not have an analogue in
Theorem 4.6, because the spectral measure of the origin for a homogeneous
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weighted subcoercive system on a homogeneous group is zero. On the other
hand, if E[l is the joint spectral resolution of L[l,1, . . . , L[l,nl , then E

[
l ({0})

need not be zero. However we have the following

Proposition 5.8. — E[l ({0}) is bounded on Lp(G) for 1 6 p 6 ∞. If
moreover υl(Gl) is not compact in G, then E[l ({0}) = 0.

Proof. — Choose ψ ∈ D(Rnl) with ψ(0) = 1, so that ψt = ψ◦εl,t → χ{0}
pointwise for t → +∞, and then ψt(L[l ) → E[l ({0}) strongly as operators
on L2(G). By [26, Proposition 3.7] we have ψt(L[l ) = πl(KLlψt), thus

‖ψt(L[l )‖Lp(G)→Lp(G) 6 ‖KLlψt‖L1(Gl) = ‖KLlψ‖L1(Gl) <∞

by (1.1) and Theorem 2.7. For every f ∈ L2 ∩Lp(G) and g ∈ L2 ∩Lp′(G),
we then have

|〈E[l ({0})f, g〉| = lim
t→+∞

|〈ψt(L[l )f, g〉| 6 ‖KLlψ‖L1(Gl)‖f‖Lp(G)‖g‖Lp′ (G),

which gives the required boundedness of E[l ({0}).
Suppose now that υl(Gl) is not compact and that E[l ({0})f = f for

some f ∈ L2(G). This means that dπl(Ll,1)f = · · · = dπl(Ll,nl)f = 0, and
proceeding analogously as in the proof of [26, Theorem 5.2] one gets that
πl(y)f = f for every y ∈ Gl. If f 6= 0, we can find a compact K ⊆ G such
that

∫
K
|f(x)|2 dx 6= 0; on the other hand, since υl(Gl) is not compact, it is

easy to construct inductively a sequence {yk}k∈N in Gl such that the sets
Kυl(yk) for k ∈ N are pairwise disjoint, but then∫

G

|f(x)|2 dx >
∑
k∈N

∫
Kυl(yk)

|f(x)|2 dx =
∑
k∈N

∫
K

|f(x)|2 dx =∞,

contradiction. Hence f = 0, and then E[l ({0}) = 0 by arbitrariness of f . �
Proposition 5.8 allows to relax the hypothesis m|X~n = 0 in Theorem 5.7.

Namely, for I ⊆ {1, . . . , %}, let ~nI = (nl)l∈I , so that R~nI =
∏
l∈I Rnl ; let

moreover ιI : R~nI → R~n be the canonical linear embedding, and define on
R~nI the system of multi-variate dilations I,(tl)l∈Iג =

∏
l∈I εl,tl . Then the

decomposition

m(L[) =
∑

I⊆{1,...,%}

∏
l/∈I

E[l ({0})
∏
l∈I

E[l (Rnl r {0})(m ◦ ιI)(L[I),

where L[I = (L[l,j)l∈I,16j6nl , shows that the Lp-boundedness of m(L[) can
be obtained by applying Theorem 5.7 to the subsystems L[I of L[:
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Corollary 5.9. — Suppose that, for l = 1, . . . , %, the homogeneous
group Gl, with the system Ll,1, . . . , Ll,nl , satisfies (Jsl,dl). If q ∈ [1,∞] and

~β > ~s+ ~n

q
−

~d

max{2, q} ,

then, for every Borel m : R~n → C we have

(5.7) ‖m(L[)‖p→p 6 C~β,p,q
∑
I∈I
‖m ◦ ιI‖

MגIS
~βI
q,qB

,

where I is the set of the I ⊆ {1, . . . , %} such that
∏
l/∈I E

[
l ({0}) 6= 0, and

where ‖m ◦ ιI‖
MגIS

~βI
q,qB

= |m(0)| for I = ∅.

In particular, if all the υl(Gl) are not compact, then the hypothesis
m|X~n = 0 in Theorem 5.7 can be dropped.
We conclude the section with a comparison of the Mihlin-Hörmander

and Marcinkiewicz conditions, which constitute the hypotheses of Theo-
rems 4.6 and 5.7 respectively: we obtain that, under suitable hypotheses
on the orders of smoothness, a Marcinkiewicz condition is weaker than the
corresponding Mihlin-Hörmander condition.

Proposition 5.10. — If q ∈ [1,∞] and βl > Q̃εl/q for l = 1, . . . , %,
then

‖m‖
MגS

~β
q,qB
6 Cq,~β‖m‖MεB

β1+···+β%
q,q

,

where εt = (t,...,t)ג = ε1,t × · · · × ε%,t.

Proof. — For q < ∞, in view of the characterization of S~βq,qB(R~n) as a
tensor product of the Bβlq,q(Rnl) (cf. [41, Theorem 2.2]), from Lemma 4.8
we immediately get

(5.8) sup
~t>0, |~t|∞61

‖(f ◦ (t~ג η‖S~βq,qB 6 Cη,q,~β‖f‖S~βq,qB

for η = η1⊗· · ·⊗ η% ∈ D(R~n); the same holds also for q =∞, as it is easily
proved via the characterization by differences of the S~β∞,∞B-norm (cf. [40,
§ 2.3.4]).
Suppose now that supp ηl ⊆ {λl ∈ Rnl : a 6 |λl|∞ 6 b} for some b >

a > 0 and l = 1, . . . , %, and take η̃ ∈ D(R~n) such that η̃|{λ : a6|λ|∞6b} ≡ 1.
If ~t > 0 and |~t|∞ = 1, then (η̃ ◦ t)η~ג = η, thus from (5.8) we get

(5.9) sup
~t>0, |~t|∞=1

‖(f ◦ (t~ג η‖S~βq,qB 6 Cη,q,~β‖fη̃‖S~βq,qB .
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For an arbitrary ~t > 0, set r = |~t|∞, so that |r−1~t|∞ = 1; then we have
m ◦ t~ג = (m ◦ εr) ◦ ,r−1~tג so that, by (5.9) applied to f = m ◦ εr,

‖(m ◦ (t~ג η‖S~βq,qB 6 Cη,q,~β‖(m ◦ εr) η̃‖S~βq,qB 6 Cη,q,~β‖(m ◦ εr) η̃‖Bβ1+···+β%
q,q

,

and the conclusion follows by a suitable choice of η and η̃. �

Notice that a Mihlin-Hörmander condition on m : R~n → C gives some
control also on the restriction of m to X~n r {0}, so that it can be used
to satisfy the more involved hypothesis of Corollary 5.9. Namely, by the
trace theorem for Besov spaces, under the hypothesis on β1, . . . , β% of
Proposition 5.10, if m satisfies an Lq Mihlin-Hörmander condition of order
β1 + · · · + β%, then m ◦ ιI satisfies an Lq Mihlin-Hörmander condition of
order

∑
l∈I βl for ∅ 6= I ⊆ {1, . . . , %}; therefore, by Proposition 5.10, all the

summands in the right-hand side of (5.7), except possibly for |m(0)|, are
majorized by ‖m‖

MεB
β1+···+β%
q,q

.

6. Examples and applications

6.1. Multipliers for a single operator

Although the present work focuses on Lp multipliers for systems of mul-
tiple operators, some results can be deduced also for single operators.
In view of the characterization stated in § 1, a homogeneous weighted

subcoercive system made of a single operator L is simply a self-adjoint
Rockland operator. Hence from Theorem 4.6 and Proposition 4.1 we get

Corollary 6.1. — Let L be a self-adjoint Rockland operator on a
homogeneous Lie group G. Suppose that G is h-capacious, and let QG be
its dimension at infinity. If m : R → C satisfies an L2 Mihlin-Hörmander
condition of order s > (QG − h)/2, then m(L) is of weak type (1, 1) and
bounded on Lp(G) for 1 < p <∞.

This corollary summarizes several results present in the literature. For
a general (positive) Rockland operator, this result is stated in the unpub-
lished paper [18] with regularity threshold QG/2 (see also [23, 46]); the
improvement on the threshold is proved in [20] for products of Euclidean
and H-type groups. By restricting to the case of a homogeneous sublapla-
cian L on a stratified Lie group G, we recover the result of [28, 4], where
the threshold is half the homogeneous dimension of G.

Notice that, when a homogeneous Lie group G is stratified (i.e., when the
elements of degree 1 generate the whole Lie algebra), then the homogeneous
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dimension coincides with QG. However, on a nilpotent Lie group G there
may be multiple homogeneous structures, and the homogeneous dimension
Qδ depends on the chosen automorphic dilations δt (for instance, if X,Y, T
is a basis of the Lie algebra of the Heisenberg group with [X,Y ] = T , then
we can set δt(X) = tX, δt(Y ) = taY , δt(T ) = t1+aT for all a > 1, and
we have Qδ = 2 + 2a), whereas QG is intrinsic of the Lie group structure
of G. In fact (under the hypothesis that all the homogeneity degrees are
not less than 1) we always have Qδ > QG, with equality if and only if G is
stratified [26, Proposition 2.2].
The existence of a homogeneous sublaplacian forces G to be stratified

(modulo rescaling the homogeneity degrees). On the other hand, on non-
stratified homogeneous groups G there might exist higher-order self-adjoint
Rockland operators L (for instance, in the previous example of the Heisen-
berg group, one can take L = (−iX)2a − Y 2 when a ∈ N), to which Corol-
lary 6.1 applies, with threshold (at most) QG/2. Therefore our result is
also an improvement of [9, Corollary 7.1], where the required threshold is
Qδ/2.

Multiplier results for a single operator can be deduced from Theorem 5.7
too, through a sort of “spectral mapping”; some examples in the context
of a non-nilpotent Lie group are presented in the following § 6.3.

6.2. Plancherel measure and capacity map

In order to obtain the sharpest results from the previous multiplier the-
orems, properties of the Plancherel measure associated with a weighted
subcoercive system and of the capacity map of a group must be investi-
gated.

If L1, . . . , Ln is a weighted subcoercive system on a nilpotent group G,
then the associated Plancherel measure σ is related to the group Plancherel
measure, defined on the set Ĝ of (equivalence classes of) irreducible (uni-
tary) representations of G. In fact, for every irreducible representation π

of G on a Hilbert space Hπ, we can find(2) a complete orthonormal sys-
tem {vπ,α}α of Hπ made of joint eigenvectors of dπ(L1), . . . , dπ(Ln). If
λπ,α ∈ Rn denotes the eigenvalue of dπ(L1), . . . , dπ(Ln) corresponding to

(2) If ∆ = p(L1, . . . , Ln) is a positive weighted subcoercive operator, then π(KL(e−p))
is compact (since G is CCR), thus dπ(∆) has discrete spectrum and finite-dimensional
eigenspaces, and moreover it commutes with dπ(L1), . . . , dπ(Ln).

ANNALES DE L’INSTITUT FOURIER



JOINT SPECTRAL MULTIPLIERS ON GROUPS 1257

the eigenvector vπ,α, then, for every m ∈ D(Rn),∫
Rn
|m(λ)|2 dσ(λ) = ‖m̆‖2L2(G) =

∫
Ĝ

‖π(m̆)‖2HS dπ =
∫
Ĝ

∑
α

|m(λπ,α)|2 dπ

(cf. [26, Proposition 3.7]). If one is able to determine both the group
Plancherel measure and the eigenvectors vπ,α in such a way that the func-
tion (π, α) 7→ λπ,α is sufficiently regular, then the measure σ on Rn is
determined by the previous identity as the push-forward of the product of
the group Plancherel measure times a counting measure.
This route can be followed, e.g., for the free 2-step nilpotent group on 3

generators N3,2, which is determined by the relations

[X1, X2] = T3, [X2, X3] = T1, [X3, X1] = T2,

where X1, X2, X3, T1, T2, T3 is a basis of its Lie algebra n3,2; the dilations
δt given by δt(Xj) = tXj , δt(Tj) = t2Tj define a stratification of N3,2, so
that QN3,2 = Qδ = 9.
If L = −(X2

1 + X2
2 + X2

3 ) is the sublaplacian, ∆ = −(T 2
1 + T 2

2 + T 2
3 ) is

the central Laplacian and D = −(X1T1 + X2T2 + X3T3), then L,∆, D is
a homogeneous weighted subcoercive system, with Plancherel measure σ
given by

∫
R3
f dσ =

∑
α∈2N+1

∫ ∞
0

∫ 1

−1
f

(
λ, λ3/2 θ(1− θ2)

α
, λ2 (1− θ2)2

α

)
(1− θ2)3

8π4α4 dθ λ7/2 dλ

(cf. [11]). This measure is supported on a countable family of surfaces
accumulating on the axis R×{0}×{0}, and it is not difficult to show that
σ is locally 2-bounded on R3 r{0}, so that the system L,∆, D satisfies the
hypothesis (J9/2,2).
On the group N3,2 we can also consider the system L,−iT1,−iT2,−iT3;

in this case the Plancherel measure σ is given by∫
R4
f dσ =

∑
α∈2N+1

∫ ∞
0

∫
S2

∫ 1

0
f
(
λ, λ

νω

α

) ν3

32π5α4
√

1− ν
dν dω λ7/2 dλ.

One can show that σ is locally 7
2 -bounded on R4 r {0}, so that the system

L,−iT1,−iT2,−iT3 satisfies (J9/2,7/2).
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As an example of computation of the capacity map J , we consider instead
the 3-step group G6,23 of [34], which is defined by the relations

[X6, X5] = X4, [X6, X4] = X2, [X6, X3] = −X1,

[X5, X4] = X1, [X5, X3] = X2,

where X6, X5, X4, X3, X2, X1 is a basis of its Lie algebra g = g6,23. It can
be shown that the unique automorphic dilations δt (modulo automorphisms
and rescaling) are given by δt(Xj) = twjXj with w6 = w5 = 1, w4 = w3 =
2, w2 = w1 = 3, so that this is an example of a non-stratifiable group, with
12 = Qδ > QG3,2 = 11.

With the notation of § 3, we have

z = span{X2, X1}, y = span{X4, X3, X2, X1}.

If we denote by X̄6, X̄5, X̄4, X̄3 andX∗2 , X∗1 the bases induced byX6, . . . , X1
on g/z and z∗ respectively, then we have

|J(x6X̄6 + x5X̄5 + x4X̄4 + x3X̄3, t2X
∗
2 + t1X

∗
1 )|2 = (x2

6 + x2
5)(t22 + t21)

with respect to a suitable norm on y∗, therefore the dual elements X̄∗6 , X̄∗5 ∈
(g/z)∗ and X2, X1 ∈ z attest that G6,23 is 2-capacious (despite the fact
that Proposition 3.9 does not apply to this group). Consequently, every
homogeneous weighted subcoercive system on G6,23, such as

(−iX6)4k + (−iX5)4k + (−iX3)2k, −iX2, −iX1

for k ∈ Nr {0}, satisfies the hypothesis (J9/2,1).
Further examples and details may be found in [25].

6.3. Non-nilpotent groups

Theorem 5.7 allows one to obtain multiplier theorems also on groups
which are not homogeneous, even not nilpotent. An interesting class of
examples comes by considering an action of a torus Td = Rd/Zd on a ho-
mogeneous group N by automorphisms which commute with dilations, and
the corresponding semidirect product NoTd (or alternatively its universal
covering group N oRd).

Take for instance a diamond group G = Hn oTd (see [24]). If L is a Td-
invariant homogeneous sublaplacian on Hn and U1, . . . , Ud are the partial
derivatives on the torus Td, then L,−iU1, . . . ,−iUd is a weighted subco-
ercive system on G, since these operators commute and they generate an
algebra containing the sublaplacian ∆ = L + (−iU1)2 + · · · + (−iUd)2. In
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fact, each of the operators L,−iU1, . . . ,−iUd can be considered as a ho-
mogeneous weighted subcoercive system in itself: L is Rockland on Hn,
and therefore satisfies (J(dimHn)/2,1), whereas −iUj comes from the corre-
sponding derivative on the j-th factor of Rd, which satisfies (J1/2,1). By
applying Theorem 5.7, we then obtain that, if m : R1+d → C vanishes on
the coordinate hyperplanes and

‖m‖MגS~s2,2B(R1+d) <∞ for ~s >
(

dimHn

2 ,
1
2 , . . . ,

1
2

)
,

then m(L,−iU1, . . . ,−iUd) is bounded on Lp(G) for 1 < p <∞.
Thanks to Corollary 5.9 and Proposition 5.10, this result in turn yields

a multiplier theorem for the sublaplacian ∆: if m : R→ C satisfies

‖m‖MεBs2,2(R) <∞ for s > dimHn + d

2 = dimG

2 ,

then m(∆) is bounded on Lp(G) for 1 < p <∞. We remark that:
• this condition is sharper than the one following by the general result
of Alexopoulos [1], which instead requires an L∞ condition of order
s > dimG+1

2 ;
• this is an example of a group in which the regularity threshold in a
multiplier theorem can be lowered to half the topological dimension,
which is neither a Heisenberg or related group, nor SU2;

• the sublaplacian ∆ can be replaced by any operator of the form

Lk0 +−(iU1)2k1 + · · ·+ (−iUd)2kd or Lk0(−iU1)k1 · · · (−iUd)kd

for some k0, k1, . . . , kd ∈ Nr{0}, obtaining an analogous multiplier
result with identical smoothness requirement.

Spectral multipliers for operators such as the complete Laplacian

∆c = L+ (−iT )2 + (−iU1)2 + · · ·+ (−iUd)2,

where T is the central derivative on Hn, can also be studied. By considering
L,−iT together as a homogeneous system on Hn, and each of the −iUj
separately as before, one obtains a multiplier theorem for ∆c, with an L∞
condition of order s > dimG

2 .
Analogous considerations hold if one replaces Hn by any Métivier group,

and also if one takes the universal covering group Hn o Rd; this last case
comprises, for d = 1, the oscillator groups. Notice that the previous result
about the Laplacian ∆c, when stated on the universal covering group, is
sharper than [1], since the degree of growth of the group is greater than its
topological dimension.
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Further examples include the plane motion group R2oT, and the semidi-
rect product N2,3 o T determined by the action of SO2 on the free 3-step
nilpotent group N2,3 considered, e.g., in [26, § 5.3]. In these last cases, for
some distinguished sublaplacians, we still get a sharpening of the result by
Alexopoulos: although the required order of smoothness is the same, our
condition is expressed in terms of an L2 instead of an L∞ Besov norm.
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