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HOMOLOGY CLASSES OF REAL ALGEBRAIC SETS

by Wojciech KUCHARZ

Abstract. — There is a large research program focused on comparison be-
tween algebraic and topological categories, whose origins go back to 1952 and the
celebrated work of J. Nash on real algebraic manifolds. The present paper is a
contribution to this program. It investigates the homology and cohomology classes
represented by real algebraic sets. In particular, such classes are studied on alge-
braic models of smooth manifolds.

Résumé. — Il existe un vaste programme de recherche portant sur la comparai-
son entre catégories topologiques et algébriques, dont l’origine remonte à 1952 avec
les travaux célèbres de J. Nash sur les variétés algébriques réelles lisses. Ce papier
est une contribution à ce programme. Il contient l’étude des classes d’homologie et
de cohomologie représentées par des ensembles algébriques réels. En particulier, de
telles classes sont étudiées dans les modèles algébriques de variétés lisses.

1. Introduction and main results

Throughout this paper the term real algebraic variety designates a locally
ringed space isomorphic to an algebraic subset of Rn, for some n, endowed
with the Zariski topology and the sheaf of R-valued regular functions (in
[12] such objects are called affine real algebraic varieties). By convention,
subvarieties are assumed to be closed in the Zariski topology. Morphisms
between real algebraic varieties will be called regular maps. Basic facts on
real algebraic varieties and regular maps can be found in [12]. Every real
algebraic variety carries also the Euclidean topology, which is determined
by the usual metric topology on R. Unless explicitly stated otherwise, all
topological notions related to real algebraic varieties will refer to the Eu-
clidean topology.

Given a compact real algebraic variety X(as in [5, 12], nonsingular means
that the irreducible components of X are pairwise disjoint, nonsingular

Keywords: Real algebraic variety, algebraic cycles, cohomology.
Math. classification: 14P05, 14P25, 14C25, 14F25.
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and of the same dimension), we denote by Halg
p (X,Z/2) the subgroup of

the homology group Hp(X,Z/2) generated by the homology classes of p-
dimensional subvarieties of X, cf. [5, 11, 12, 16, 17]. For technical reasons
it is advantageous to work with cohomology rather than homology. We let
Hq

alg(X,Z/2) denote the inverse image of Halg
p (X,Z/2) under the Poincaré

duality isomorphism Hq(X,Z/2) → Hp(X,Z/2), where p + q = dimX.
The groups Hq

alg(−,Z/2) of algebraic cohomology classes play the central
role in real algebraic geometry [3, 4, 5, 6, 8, 10, 9, 11, 12, 13, 14, 23, 30,
32, 39] (cf. [16] for a short survey of their properties and applications).
They have the expected functorial property: if f : X → Y is a regular
map between compact nonsingular real algebraic varieties, then the induced
homomorphism f∗ : Hq(Y,Z/2) → Hq(X,Z/2) satisfies

f∗(Hq
alg(Y,Z/2)) ⊆ Hq

alg(X,Z/2).

Furthermore, H∗
alg(X,Z/2) = ⊕

q>0
Hq

alg(X,Z/2) is a subring of the coho-

mology ring H∗(X,Z/2). The qth Stiefel-Whitney class wq(X) of X is in
Hq

alg(X,Z/2) for all q > 0.
Recently a certain subgroup of Hq

alg(X,Z/2), defined below, proved to
be very useful. A cohomology class u in Hq

alg(X,Z/2) is said to be alge-
braically equivalent to 0 if there exist a compact irreducible nonsingular
real algebraic variety T , two points t0 and t1 in T , and a cohomology class
z in Hq

alg(X × T,Z/2) such that u = i∗t1(z)− i
∗
t0(z), where given t in T , we

let it : X → X × T denote the map defined by it(x) = (x, t) for all x in X

(note analogy with the definition of an algebraic cycle algebraically equiva-
lent to 0 [21, Chapter 10]). The subset Algq(X) of Hq

alg(X,Z/2) consisting
of all elements algebraically equivalent to 0 forms a subgroup [32, p. 114],
which is often highly nontrivial [1, 29, 32, 33]. It allows to detect transcen-
dental cohomology classes: the quotient group Hp(X,Z/2)/Hp

alg(X,Z/2)
maps homomorphically onto Algq(X), where p + q = dimX, cf. [29, The-
orem 2.1] or Theorem 4.1(i) in this paper. Some substantial constructions
in [32], at the borderline between real algebraic geometry and differential
topology, depend on Algq(−). It was R. Silhol [38] who first demonstrated
that Alg1(−) is important for understanding of H1

alg(−,Z/2). In [31] it is
proved, among other things, that Alg1(−) is a birational invariant (while,
obviously, H1

alg(−,Z/2) is not). For f : X → Y as above,

f∗(Algq(Y )) ⊆ Algq(X).

ANNALES DE L’INSTITUT FOURIER
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Moreover, Alg∗(X) = ⊕
q>0

Algq(X) is an ideal in the ring H∗
alg(X,Z/2).

These last two assertions readily follow from the definition, cf. [32, pp. 114,
115].

The basic properties, listed above, of H∗
alg(−,Z/2) and Alg∗(−) will be

used without further comments. An alternative description of H∗
alg(−,Z/2)

and Alg∗(−), relating these groups to algebraic cycles on schemes over R,
is given in Section 3.

We will first deal with the groups H1
alg(−,Z/2) and Alg1(−), for which

we have a quite general Noether-Lefschetz type theorem (Theorem 1.4).
Notation. — Unless stated to the contrary, in the remainder of this

section, X will denote a compact irreducible nonsingular real algebraic
variety.

Definition 1.1. — Given a nonsingular subvariety Y of X, the groups
H1

alg(Y,Z/2) and Alg1(Y ) are said to be determined by X if

H1
alg(Y,Z/2) = i∗(H1

alg(X,Z/2)) and Alg1(Y ) = i∗(Alg1(X)),

where i : Y ↪→ X is the inclusion map.

In general it is hard to decide whether or not we have the desirable
situation described in Definition 1.1, unless Y is allowed to “move” in X.
This is made precise below.

We say that a subset Σ of Rk is thin if it is contained in the union of a
countable family of proper subvarieties of Rk. In particular, Rk\Σ is dense
in Rk, provided Σ is thin.

Definition 1.2. — A nonsingular subvariety Y of X is said to be mov-
able if there exist a positive integer k, a nonsingular subvariety Z of X×Rk,
and a thin subset Σ of Rk such that the family {Yt}t∈Rk of subvarieties of
X defined by

Yt × {t} = (X × {t}) ∩ Z
has the following properties:

(i) X × {0} is transverse to Z in X × Rk and Y0 = Y ,
(ii) if t is in Rk\Σ, then X×{t} is transverse to Z in X×Rk and either

Yt = ∅ or else Yt is irreducible and nonsingular with

H1
alg(Yt,Z/2) = i∗t (H

1
alg(X,Z/2)), Alg1(Yt) = i∗t (Alg1(X)),

where it : Yt ↪→ X is the inclusion map.

Roughly speaking, Definition 1.2 means that Y “moves” in the family
{Yt}t∈Rk , and for general t, the subvariety Yt of X is irreducible and non-
singular, with the groups H1

alg(Yt,Z/2) and Alg1(Yt) determined by X.

TOME 58 (2008), FASCICULE 3



992 Wojciech KUCHARZ

Denote by Diff(X) the space of all smooth (that is, C∞) diffeomorphisms
of X endowed with the C∞ topology. We wish to emphasize the following
straightforward consequence of Definition 1.2.

Proposition 1.3. — With notation as in Definition 1.2, for any neigh-
borhood U of the identity map in Diff(X), there exists a neighborhood U

of 0 in Rk such that for each t in U\Σ, there is a diffeomorphism ϕt in U
satisfying ϕt(Y ) = Yt.

Proof. — Given t in Rk, let jt : X → X×Rk be defined by jt(x) = (x, t)
for all x in X. Note that jt is transverse to Z for t = 0 and for all t in
Rk\Σ. The proof is complete since Yt = j−1

t (Z), cf. [2, Theorem 20.2]. �

Our first result asserts that movable subvarieties of X occur in a natural
way.

Theorem 1.4. — Let ξ be an algebraic vector bundle on X with 2 +
rankξ 6 dimX. If s : X → ξ is an algebraic section transverse to the zero
section, then the nonsingular subvariety Y = s−1(0) of X is movable.

Here, as in [12], an algebraic vector bundle on X is, by definition, isomor-
phic to an algebraic subbundle of the trivial vector bundle X×R` for some
` (such an object is called a strongly algebraic vector bundle in the earlier
literature [10, 9, 11, 13, 14, 44]). Of course, s−1(0) = {x ∈ X | s(x) = 0}.
Theorem 1.4 will be proved in Section 3, whereas now we will derive some
consequences.

By an algebraic hypersurface in X we mean an algebraic subvariety of
pure codimension 1.

Corollary 1.5. — Let Y = Y1 ∩ . . . ∩ Yc, where Y1, . . . , Yc are non-
singular algebraic hypersurfaces in X that are in general position (when
regarded as smooth submanifolds of X) at each point of Y . If dimY > 2,
then Y is movable.

Proof. — It is well known that there are an algebraic line bundle ξi on
X and an algebraic section si : X → ξi such that Yi = s−1

i (0) and si

is transverse to the zero section, 1 6 i 6 c, cf. [12, Remarks 12.2.5 and
12.4.3]. Then Y = s−1(0), where s = s1⊕ · · · ⊕ sc is an algebraic section of
ξ1⊕· · ·⊕ξc. Since s is transverse to the zero section, the conclusion follows
from Theorem 1.4. �

We will now examine the problem under consideration from a slightly
different point of view. All manifolds in this paper will be without bound-
ary. Submanifolds will be closed subsets of the ambient manifold. Given
a compact smooth manifold N , we denote by [N ] its fundamental class

ANNALES DE L’INSTITUT FOURIER



HOMOLOGY CLASSES OF REAL ALGEBRAIC SETS 993

in Hn(N,Z/2), n = dimN . If N is a submanifold of a compact smooth
manifold M , we write [N ]M for the cohomology class in Hk(M,Z/2),
k = dimM − dimN , Poincaré dual to the image of [N ] under the ho-
momorphism Hn(N,Z/2) → Hn(M,Z/2) induced by the inclusion map
N ↪→M .

Definition 1.6. — A smooth submanifold M of X is said to be admis-
sible if for any neighborhood U of the identity map in Diff(X), there exists
a diffeomorphism ϕ in U such that Y = ϕ(M) is an irreducible nonsingu-
lar subvariety of X, with the groups H1

alg(Y,Z/2) and Alg1(Y ) determined
by X.

Corollary 1.7. — Let ξ be an algebraic vector bundle on X with
2 + rankξ 6 dimX. If σ : X → ξ is a smooth section transverse to the zero
section, then the smooth submanifold M = σ−1(0) of X is admissible.

Proof. — By [12, Theorem 12.3.2], there exists an algebraic section s :
X → ξ arbitrarily close to σ in the C∞ topology. Hence there is a diffeomor-
phism ψ in Diff(X), close to the identity map, such that ψ(M) = s−1(0),
cf. [2, Theorem 20.2]. The conclusion follows in view of Theorem 1.4. and
Proposition 1.3. �

Corollary 1.8. — Let M = M1 ∩ . . . ∩ Mc, where M1, . . . ,Mc are
smooth hypersurfaces in X that are in general position at each point of M .
If dimM > 2 and the cohomology class [Mi]X belongs to H1

alg(X,Z/2) for
1 6 i 6 c, then M is admissible.

Proof. — There exist a smooth line bundle ξi on X and a smooth section
σi : X → ξi such that Mi = σ−1

i (0) and σi is transverse to the zero section,
cf. for example [12, Remark 12.4.3]. Since [Mi]X belongs to H1

alg(X,Z/2),
we may assume that ξi is an algebraic line bundle on X, cf. [12, Theorem
12.4.6]. Then M = σ−1(0), where σ = σ1 ⊕ · · · ⊕ σc is a smooth section of
ξ1⊕· · ·⊕ ξc. Since σ is transverse to the zero section, the proof is complete
in virtue of Corollary 1.7. �

Given an arbitrary nonsingular subvariety Y of X, what relationships
are there between the following triples of groups:

(H1(X,Z/2), H1
alg(X,Z/2), Alg1(X))

and (H1(Y,Z/2), H1
alg(Y,Z/2), Alg1(Y ))?

Our next theorem provides a complete answer to this question for X and
Y connected with dimX > dimY > 3, assuming that no additional alge-
braic geometric conditions are imposed on X and Y . First we need some
preparation.

TOME 58 (2008), FASCICULE 3



994 Wojciech KUCHARZ

For any smooth manifold P , we let

SW ∗(P ) = ⊕
k>0

SW k(P )

denote the graded subring of the cohomology ring H∗(P,Z/2) generated by
the Stiefel-Whitney classes of P . More generally, if E1, . . . , Er are subsets
of H∗(P,Z/2), write

SW ∗(P ;E1, . . . , Er) = ⊕
k>0

SW k(P ;E1, . . . , Er)

for the graded subring of the cohomology ring H∗(P,Z/2) generated by the
Stiefel-Whitney classes of P and the union of the E1, . . . , Er. Let

ρP : H∗(P,Z) → H∗(P,Z/2)

denote the reduction modulo 2 homomorphism. As usual, we will use ∪ and
〈 , 〉 to denote the cup product and scalar (Kronecker) product.

Theorem 1.9. — Let M be a compact connected smooth manifold and
let N be a connected smooth submanifold of M , with dimM = m >

dimN = n > 3. Given subgroups ΓM ⊆ GM of H1(M,Z/2) and ΓN ⊆ GN

of H1(N,Z/2), the following conditions are equivalent:
(a) There exist a nonsingular real algebraic variety X, a nonsingular

subvariety Y of X, and a smooth diffeomorphism ϕ : X →M such
that ϕ(Y ) = N and

ϕ∗(GM ) = H1
alg(X,Z/2), ϕ∗(ΓM ) = Alg1(X),

ψ∗(GN ) = H1
alg(Y,Z/2), ψ∗(ΓN ) = Alg1(Y ),

where ψ : Y → N is the restriction of ϕ.
(b) w1(M) ∈ GM , w1(N) ∈ GN , ΓM ⊆ ρM (H1(M,Z)), ΓN ⊆

ρN (H1(N,Z)), e∗(GM ) ⊆ GN , e
∗(ΓM ) ⊆ ΓN , where e : N ↪→ M

is the inclusion map, and
(b1) 〈a ∪ w, [M ]〉 = 0 for all a ∈ ΓM , w ∈ SWm−1(M ;GM ),
(b2) 〈b∪z, [N ]〉=0 for all b∈ΓN , z∈SWn−1(N ;GN , e

∗(SW ∗(M))).
Furthermore, if m − n = 1, the cohomology class [N ]M belongs to
GM .

Theorem 1.9 will be proved in Section 4. Although the groups
Hk

alg(−,Z/2) and Algk(−), with k > 2, do not appear in the statement
of this theorem, they play a crucial role in its proof, which is rather long
and involved. Perhaps it is useful to note here that condition (b) becomes
less complicated if M and N are stably parallelizable, so that all their
Stiefel-Whitney classes are trivial.

ANNALES DE L’INSTITUT FOURIER



HOMOLOGY CLASSES OF REAL ALGEBRAIC SETS 995

If one is interested only in H1
alg(−,Z/2) and ignores Alg1(−), then The-

orem 1.9 can be significantly simplified.

Corollary 1.10. — Let M be a compact connected smooth mani-
fold and let N be a connected smooth submanifold of M , with dimM =
m > dimN = n > 3. Given subgroups GM of H1(M,Z/2) and GN of
H1(N,Z/2), the following conditions are equivalent:

(a) There exist a nonsingular real algebraic variety X, a nonsingular
subvariety Y of X, and a smooth diffeomorphism ϕ : X →M such
that ϕ(Y ) = N and

ϕ∗(GM ) = H1
alg(X,Z/2), ψ∗(GN ) = H1

alg(Y,Z/2)

where ψ : Y → N is the restriction of ϕ.
(b) w1(M) ∈ GM , w1(N) ∈ GN , and GN ⊆ e∗(GM ), where e : N ↪→

M is the inclusion map. Moreover, if m − n = 1, the cohomology
class [N ]M belongs to GM .

Proof. — It suffices to apply Theorem 1.9 with ΓM = 0 and ΓN = 0. �

It is plausible that in Theorem 1.9 and Corollary 1.10 the assumption
dimN > 3 can be replaced by dimN > 2, but our technique does not allow
us to do it.

Theorem 1.11. — Let N be a compact connected smooth manifold of
dimension n > 2. Given subgroups Γ ⊆ G of H1(N,Z/2), the following
conditions are equivalent:

(a) There exist a nonsingular real algebraic variety Y and a smooth
diffeomorphism ψ : Y → N such that

ψ∗(G) = H1
alg(Y,Z/2) and ψ∗(Γ) = Alg1(Y ).

(b) w1(N) ∈ G, Γ ⊆ ρN (H1(N,Z)), and for all nonnegative integers
k, `, i1, . . . , ir with ` > 1, k + `+ i1 + · · ·+ ir = n, one has

〈u1 ∪ . . . ∪ uk ∪ v1 ∪ . . . ∪ v` ∪ wi1(N) ∪ . . . ∪ wir (N), [N ]〉 = 0

for all u1, . . . , uk in G and v1, . . . , v` in Γ.

We postpone the proof of Theorem 1.11 to Section 4. The case dimN = 2
requires special care.

Corollary 1.12. — Let N be a compact connected smooth manifold
of dimension n > 2. Given a subgroup G of H1(N,Z/2), the following
conditions are equivalent:

TOME 58 (2008), FASCICULE 3



996 Wojciech KUCHARZ

(a) There exist a nonsingular real algebraic variety Y and a smooth
diffeomorphism ψ : Y → N such that

ψ∗(G) = H1
alg(Y,Z/2).

(b) w1(N) ∈ G.

Proof. — It suffices to take Γ = 0 in Theorem 1.11. �

For dimN > 3 a different proof of Corollary 1.12 can be found in [13,
Theorem 1.3]. However, for dimN = 2 only a much weaker result has been
known until now [13, Theorem 1.4].

Theorems 1.9 and 1.11 together with Corollaries 1.10 and 1.12 are exam-
ples of results belonging to a large research program focused on comparison
between algebraic and topological categories. The origins of this program
go back to 1973, when A. Tognoli [43], improving upon an earlier work of
J. Nash [36], demonstrated that every compact smooth manifold M has an
algebraic model, that is, M is diffeomorphic to a nonsingular real algebraic
variety. This fundamental theorem has several important generalizations,
which allow to realize algebraically not only M alone, but also some objects
attached to it, such as submanifolds, vector bundles, certain homology or
cohomology classes, etc. [3, 4, 10, 9, 11, 44]. It came as a surprise when
R. Benedetti and M. Dedò [8] found a compact smooth manifold, whose
each algebraic model has H2

alg(−,Z/2) 6= H2(−,Z/2). In particular, [8]
provided a counterexample to a conjecture of S. Akbulut and H. King [4]
that was to be a major step towards a topological characterization of all
real algebraic sets. Below we give a generalization of the main result of [8],
based on a simple obstruction discovered in a later paper [6]. Although our
generalization is easy to prove, it has not been noticed heretofore.

Theorem 1.13. — Let k be a positive even integer. For any integer
m with m > 2k + 2, there exist a compact connected orientable smooth
manifold M of dimension m and a cohomology class uM in Hk(M,Z/2)
such that if X is a nonsingular real algebraic variety and ϕ : X → M is a
homotopy equivalence, then ϕ∗(uM ) does not belong to Hk

alg(X,Z/2).

Proof. — Let X be a compact nonsingular real algebraic variety. By [6,
Theorem A(b)], if a is in Hr

alg(X,Z/2) then a ∪ a is in ρX(H2r(X,Z)) (in
fact, [6] contains a much more precise result).

In [41, Lemmas 1, 2] there are constructed a compact connected ori-
entable smooth manifold N of dimension 6 and a cohomology class u in
H2(N,Z/2) such that u∪u is not in ρN (H4(N,Z)). Let P2(C) be the com-
plex projective plane and let z be the generator of H2(P2(C),Z/2) ∼= Z/2.

ANNALES DE L’INSTITUT FOURIER
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Let P = P2(C) × · · · × P2(C) be the `-fold product, where 2` = k − 2,
and let v = z × · · · × z in Hk−2(P,Z/2) be the `-fold cross product; if
` = 0, we assume that P consists of one point and v = 1. Let Q be the
unit (m− (2k + 2))-sphere; if m = 2k + 2, then by convention, Q consists
of one point. Set M = N × P × Q and uM = u × v × 1. Then M is a
compact connected orientable smooth manifold of dimension m and uM is
a cohomology class in Hk(M,Z/2). Making use of Künneth’s theorem in
cohomology, one readily checks that uM ∪ uM is not in ρM (H2k(M,Z)).
Hence the conclusion follows from the opening paragraph in this proof. �

It seems likely that the only restriction on k one needs in Theorem 1.13
is k > 2. However, our proof does not work if k is odd. Indeed, if P is
a smooth manifold and b is in Hr(P,Z/2) with r odd, then b ∪ b be-
longs to ρP (H2r(P,Z)). The last assertion holds since b ∪ b = Sqr(b) =
Sq1(Sqr−1(b)), where Sqi is the ith Steenrod square (cf. [40, p. 281; 35, p.
182]), and each class in the image of Sq1 belongs to ρP (H∗(P,Z)) (cf. [35,
p. 182]).

2. Other consequences of the main theorems

Recall that real projective n-space Pn(R) is a real algebraic variety in the
sense of this paper [12, Theorem 3.4.4] (in other words, using terminology
of [12], Pn(R) is an affine real algebraic variety). We have

Hk
alg(Pn(R),Z/2) = Hk(Pn(R),Z/2) ∼= Z/2, Algk(Pn(R)) = 0

for 0 6 k 6 n (the first equality is obvious, whereas the second one follows
from [29, Theorem 2.1] or Theorem 4.1(i) in this paper). Therefore a non-
singular subvariety Y of Pn(R) has the groups H1

alg(Y,Z/2) and Alg1(Y )
determined by Pn(R) precisely when H1

alg(Y,Z/2) = i∗(H1(Pn(R),Z/2)),
where i : Y ↪→ Pn(R) is the inclusion map, and Alg1(Y ) = 0. It is well
known that every topological real vector bundle on Pn(R) is isomorphic
to an algebraic vector bundle [12, Example 12.3.7c]. Moreover, if ξ is an
algebraic vector bundle on Pn(R) and σ : Pn(R) → ξ is a smooth section
transverse to the zero section and such that Y = σ−1(0) is a nonsingu-
lar subvariety of Pn(R), then there is an algebraic section s : Pn(R) → ξ

transverse to the zero section and with Y = s−1(0), cf. for example [30, p.
571].

Corollary 2.1. — Let Y (resp. M) be a nonsingular subvariety (resp.
a smooth submanifold) of Pn(R) of dimension at least 2 and of codimension

TOME 58 (2008), FASCICULE 3



998 Wojciech KUCHARZ

1, 2, 4 or 8. If the normal vector bundle of Y (resp. M) in Pn(R) is trivial,
then Y is movable (resp. M is admissible) in Pn(R).

Proof. — There are a smooth real vector bundle ξ on Pn(R) and a smooth
section s : Pn(R) → ξ (resp. σ : Pn(R) → ξ) such that Y = s−1(0) (resp.
M = σ−1(0)) and s (resp. σ) is transverse to the zero section; this is a
special case of [15, Theorem 1.5]. We may assume that ξ is an algebraic
vector bundle and s is an algebraic section. Hence the conclusion follows
from Theorem 1.4 and Corollary 1.7. �

If Y (resp. M) in Corollary 2.1 is of codimension 1, triviality of the
normal vector bundle is not necessary, cf. Corollaries 1.5 and 1.8. For Y
(resp. M) of codimension 2 one can also prove a stronger result.

Corollary 2.2. — Let Y (resp. M) be a nonsingular subvariety (resp.
a smooth submanifold) of Pn(R), n > 4, of codimension 2. Then Y is
movable (resp.M is admissible) in Pn(R) if and only if w1(Y ) (resp. w1(M))
belongs to the image of the homomorphism

i∗Y : H1(Pn(R),Z/2) → H1(Y,Z/2)

(resp. i∗M : H1(Pn(R),Z/2) → H1(Y,Z/2))
induced by the inclusion map iY : Y ↪→ Pn(R) (resp. iM : M ↪→ Pn(R)).

Proof. — In one direction the required implication is obvious: if Y is
movable (resp. M is admissible), then w1(Y ) ∈ Im i∗Y (resp. w1(M) ∈
Im i∗M ). To prove the converse, one makes use of a purely topological Lemma
2.3 below (only (b) ⇒ (a) in Lemma 2.3 is needed) and argues as in the
proof of Corollary 2.1. �

Lemma 2.3. — Let P be a smooth manifold and let M be a smooth sub-
manifold of P of codimension 2. Then the following conditions are equiva-
lent:

(a) There exist a smooth real vector bundle ξ on P and a smooth section
s : P → ξ such that rank ξ = 2, M = s−1(0), and s is transverse to
the zero section,

(b) w1(M) belongs to the image of the homomorphism i∗:H1(P,Z/2)→
H1(M,Z/2) induced by the inclusion map i : M ↪→ P .

Proof. — Assume that (a) holds. Denote by Z the image of the zero
section P → ξ. We identify the normal vector bundle of Z in the total
space of ξ with ξ. Hence s∗ξ|M is isomorphic to the normal vector bundle
ν of M in P . Since s∗ξ|M ∼= ξ|M , we get

w1(ν) = w1(s∗ξ|M) = w1(ξ|M) = i∗(w1(ξ)).
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Let τM and τP denote the tangent bundles to M and P . Making use of
τM ⊕ ν ∼= τP |M , we obtain

w1(M) = w1(ν) + w1(τP |M)

= i∗(w1(ξ)) + i∗(w1(P ))

= i∗(w1(ξ) + w1(P ))

and hence w1(M) is in the image of i∗. In other words, (b) is satisfied.
Suppose now that (b) holds, that is, w1(M) = i∗(v) for some cohomology

class v in H1(P,Z/2). Let λ be a smooth line bundle on P with w1(λ) =
v + w1(P ).

Let π : T → M be a tubular neighborhood of M in P . We identify
(T, π,M) with the normal vector bundle ν of M in P . Clearly, there exists
a smooth section σ : T → π∗ν such that σ is transverse to the zero section
and σ−1(0) = M . We have

π∗ν|T\M = η ⊕ εσ,(1)

where εσ is the trivial line subbundle of ν|T\M generated by σ and η is a
smooth line bundle on T\M . We assert that

w1(η) = w1(λ|T\M).(2)

Indeed, we have ν ⊕ τM = τP |M and hence

w1(ν) = w1(τM ) + w1(τP |M) = w1(λ|M) = i∗(w1(λ)).

Let j : T ↪→ P be the inclusion map. Since i ◦ π and j are homotopic, we
get

w1(π∗ν) = π∗(w1(ν)) = π∗(i∗(w1(λ))) = j∗(w1(λ)) = w1(λ|T ).

Hence (2) is a consequence of (1).
Let ε be the trivial line bundle on P with total space P × R and let

τ : P → λ⊕ ε be the smooth section defined by τ(x) = (0, (x, 1)) for all x
in P . By (2), η and λ|T\M are isomorphic and hence there exists a smooth
isomorphism

ϕ : π∗ν|T\M → (λ⊕ ε)|T\M

such that ϕ ◦ σ = τ on T\M .
Let ξ be the smooth vector bundle on P obtained by gluing π∗ν and (λ⊕

ε)|P\M over T\M using ϕ. Similarly, let s : P → ξ be the smooth section
obtained by gluing σ and τ |P\M over T\M using ϕ. By construction, ξ is
of rank 2, s−1(0) = M , and s is transverse to the zero section. Thus (a) is
satisfied. �
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3. Noether-Lefschetz type theorems

To begin with we give an alternative description of the groups
Hk

alg(−,Z/2) and Algk(−). Let V be a reduced quasiprojective scheme over
R. The set V (R) of R-rational points of V is contained in an affine open
subset of V . Thus if V (R) is dense in V , we can regard V (R) as a real
algebraic variety whose structure sheaf is the restriction of the structure
sheaf of V ; up to isomorphism, each real algebraic variety is of this form.

Assume that V is nonsingular (our convention is that all irreducible
components of V have the same dimension) with V (R) compact and dense
in V . Then V (R) is a compact nonsingular real algebraic variety and we
have the cycle homomorphism:

c`R : Zk(V ) → Hk(V (R),Z/2),

defined on the group Zk(V ) of algebraic cycles on V of codimension k: for
any integral subscheme W of V of codimension k, the cohomology class
c`R(W ) is Poincaré dual to the homology class in H∗(V (R),Z/2) repre-
sented by W (R), provided that W (R) has codimension k in V (R), and
otherwise c`R(W ) = 0. By construction,

Hk
alg(V (R),Z/2) = c`R(Zk(V )).

Moreover, we readily see that

Algk(V (R)) = c`R(Zk
alg(V )),

where Zk
alg(V ) is the subgroup of Zk(V ) consisting of all cycles algebraically

equivalent to 0 (cf. [21, Chapter 10] for the theory of algebraic equivalence).
It will be convenient to express H1

alg(V (R),Z/2) and Alg1(V (R)) using
line bundles on V . Given a vector bundle E on V , we denote by E(R) the
algebraic vector bundle on V (R) determined by E. The correspondence
which assigns to any line bundle L on V the first Stiefel-Whitney class
w1(L(R)) of L(R) gives rise to a canonical homomorphism

ωV : Pic(V ) → H1(V (R),Z/2),

defined on the Picard group Pic(V ) of isomorphism classes of line bundles
on V . When no confusion is possible, we make no distinction between line
bundles and their isomorphism classes. If O(D) is the line bundle associated
with a Weil divisor D on V , then ωV (O(D)) = c`R(D), cf. [17, p. 498]
(obviously, Z1(V ) is the group of Weil divisors on V ). Since every element
of Pic(V ) is of the form O(D) for some D in Z1(V ), we have

(3.1) H1
alg(V (R),Z/2) = ωV (Pic(V )).
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Moreover,

(3.2) Alg1(V (R)) = ωV (Pic0(V )),

where Pic0(V ) is the subgroup of Pic(V ) consisting of the isomorphism
classes of line bundles of the form O(D) for D in Z1

alg(V ). The homo-
morphism ωV is natural in V . Given another quasiprojective nonsingular
scheme W over R with W (R) compact and dense in W and given a mor-
phism f : V →W over R, we have the following commutative diagram:

(3.3)

Pic(W )
f∗−−−−→ Pic(V )

ωW

y ωV

y
H1(W (R),Z/2)

f(R)∗−−−−→ H1(V (R),Z/2),

where f(R) : V (R) →W (R) is the regular map determined by f .
In order to make use of formulas (3.1) and (3.2) we need to study Pic(V )

and Pic0(V ). To this end we consider the scheme VC = V ×R C over C
and the corresponding groups Pic(VC) and Pic0(VC) on VC. The Galois
group G = Gal(C/R) of C over R acts on Pic(VC) and Pic0(VC); denote
by Pic(VC)G and Pic0(VC)G the subgroups consisting of the elements fixed
by G. Given a vector bundle E on V , we write EC for the corresponding
vector bundle on VC. There is a canonical group homomorphism

αV : Pic(V ) → Pic(VC)G, αV (L) = LC.

It is well known that under certain natural assumptions αV is an isomor-
phism. Note that if V is irreducible and nonsingular with V (R) nonempty
(hence V (R) automatically dense in V ), then VC is irreducible and nonsin-
gular.

Theorem 3.1. — Let V be an irreducible nonsingular projective scheme
over R. If V (R) is nonempty, then αV : Pic(V ) → Pic(VC)G is an isomor-
phism and αV (Pic0(V )) = Pic0(VC)G.

Reference for the proof. — This is a special case of a far more general
descent theory [22]. A simple treatment of the case under consideration can
also be found in [23]. �

We write V (C) for the set of C-rational points of V and identify it with
the set VC(C) of C-rational points of VC. If f : V → W is a morphism of
schemes over R, then fC : VC → WC will denote the morphism of schemes
over C after the base extension, while f(C) : V (C) → W (C) will denote
the map induced by f . The following is a straightforward, but very useful
consequence of Theorem 3.1.
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Corollary 3.2. — Let f : V → W be a morphism of irreducible non-
singular projective schemes over R. Assume that V (R) is nonempty (so
W (R) is nonempty too). If f∗C : Pic(WC) → Pic(VC) is an isomorphism, then
f∗ : Pic(W ) → Pic(V ) is an isomorphism and f∗(Pic0(W )) = Pic0(V ).

Proof. — Suppose that f∗C : Pic(WC) → Pic(VC) is an isomorphism. Con-
sequently, f∗C(Pic0(WC)) = Pic0(VC), as one readily sees. Clearly, f∗C is
G-equivariant and the restriction f∗C : Pic(WC)G → Pic(VC)G also is an
isomorphism. The proof is complete in view of Theorem 3.1. �

Let H be a finite-dimensional vector space over R or C. A subset Σ of
H is said to be thin if it is contained in the union of a countable family of
proper algebraic subsets of H.

Given a vector bundle E on a quasiprojective scheme V over R and
a section s of E, we denote by Z(s) the subscheme of V of zeros of s.
Assuming that V is nonsingular, we say that s is transverse to the zero
section if the holomorphic section s(C) : V (C) → E(C) of the holomorphic
vector bundle E(C) on V (C) is transverse to the zero section (note that
then Z(s) is nonsingular). Given a line bundle L on V , we write Lm for the
m-fold tensor product L⊗ · · · ⊗ L. We will need the following analogue of
Max Noether’s theorem.

Theorem 3.3. — Let V be an irreducible nonsingular projective scheme
over R. Let E be a vector bundle on V with 2 + rankE 6 dimV and let L
be an ample line bundle on V . There exists a positive integer m0 such that
for each integer m > m0, there is a thin subset Σ(m) of H0(V,E⊗Lm) with
the property that each section s in H0(V,E ⊗ Lm)\Σ(m) is transverse to
the zero section, the subscheme W = Z(s) of zeros of s is irreducible, and
whenever V (R) andW (R) are nonempty, the homomorphism j∗ : Pic(V ) →
Pic(W ) is an isomorphism with j∗(Pic0(V )) = Pic0(W ), where j : W ↪→ V

is the inclusion morphism.

Proof. — Set E(m) = E ⊗ Lm. By [20, Theorems 2.2 and 2.4], there
exists a positive integer m0 such that for each integer m > m0, there is a
thin subset Σ(m)C of H0(VC, E(m)C) with the property that each section
σ in H0(VC, E(m)C)\Σ(m)C is transverse to the zero section, Z = Z(σ) is
irreducible (note that Z is defined over C), and i∗ : Pic(VC) → Pic(Z) is
an isomorphism, where i : Z ↪→ VC is the inclusion morphism.

The canonical map H0(V,E(m)) → H0(VC, E(m)C), s→ sC, is injective,
and hence we can regard H0(V,E(m)) as a subset of H0(VC, E(m)C). Since

H0(V,E(m))⊗R C ∼= H0(VC, E(m)C),
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it suffices to take Σ(m) = Σ(m)C ∩H0(V,E(m)) and apply Corollary 3.2.
�

Our next observation is a useful technical fact.

Lemma 3.4. — Let ξ be an algebraic vector bundle on a compact irredi-
cible nonsingular real algebraic variety X. Then there exist an irreducible
nonsingular projective scheme V over R with V (R) 6= ∅ (hence V (R) dense
in V ), an isomorphism ϕ : X → V (R), and a vector bundle E on V such
that ξ and ϕ∗E(R) are algebraically isomorphic.

Proof. — In view of Hironaka’s desingularization theorem [26], we may
assume that X = W (R), where W is an irreducible nonsingular projective
scheme over R. Furthermore, we may assume that ξ = F (R) for some
vector bundle F defined on an affine neighborhood W0 of W (R) in W .
Indeed, the category of algebraic vector bundles on X is equivalent to
the category of finitely generated projective modules over the ring R(X)
of regular functions on X (cf. [12, Theorem 12.1.7]), while the category
of vector bundles on an affine open subset U of W is equivalent to the
category of finitely generated projective OW (U)-modules, where OW is the
structure sheaf of W . Since R(X) = dir limOW (U), where U runs through
the family of affine neighborhoods of X = W (R) in W , directed by ⊇, the
required W0 and F exist.

Denote by Gn,r the Grassmann scheme over R corresponding to the
r-dimensional vector subspaces of Rn. Let Γn,r be the universal vector
bundle on Gn,r. Since W0 is affine, F is generated by global sections on
W0, and hence taking r = rankF and n sufficiently large, one can find
a morphism f : W0 → Gn,r over R such that F is isomorphic to f∗Γn,r.
Regard f as a rational map from W into Gn,r. By Hironaka’s theorem
on resolution of points of indeterminacy [26], there exist an irreducible
nonsingular projective scheme V over R and two morphisms π : V →
W, g : V → Gn,r over R such that the restriction π : π−1(W0) →W0 is an
isomorphism and g = f ◦ π as rational maps. The conclusion follows if we
take E = g∗Γn,r and ϕ = π(R)−1 : W (R) = X → V (R). �

Theorem 3.5. — Let X be a compact irreducible nonsingular real al-
gebraic variety. Let ξ be an algebraic vector bundle on X with 2+rank ξ 6
dimX and let s : X → ξ be an algebraic section. Then there exist a regular
function f : X → R, algebraic sections si : X → ξ, 1 6 i 6 k, and a thin
subset Σ of Rk such that

(i) f−1(0) = ∅,
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(ii) s1, . . . , sk generate ξ, that is, for each point x in X, the vectors
s1(x), . . . , sk(x) generate the fiber of ξ over x,

(iii) the family of algebraic sections {σt}t∈Rk , where t = (t1, . . . , tk),

σt = fs+ t1s1 + · · ·+ tksk,

has the property that for each t in Rk\Σ, the section σt is transverse
to the zero section and the nonsingular subvariety Yt = σ−1

t (0) of X
is either empty or else it is irreducible with the groups H1

alg(Yt,Z/2)
and Alg1(Yt) determined by X.

Proof. — In view of Lemma 3.4, we may assume that X = V (R) and
ξ = E(R), where V is an irreducible nonsingular projective scheme over
R and E is a vector bundle on V . Furthermore, we may assume V ⊆ Pn

R
for some n. There exist an open neighborhood V0 of X in V and a section
s0 : V0 → E such that s0 is an extension of s, that is, s0(R) : V0(R) = X →
E(R) = ξ is equal to s. We have

V0 = V \Z(H1, . . . ,H`),

where the Hj are homogeneous polynomials in R[T0, . . . , Tn] and
Z(H1, . . . ,H`) is the closed subset of Pn

R described by the equations H1 =
0, . . . ,H` = 0. Set dj = degHj , d = max{d1, . . . , d`}, and

H =
∑̀
j=1

(T 2
0 + · · ·+ T 2

n)d−djH2
j .

Then H is a homogeneous polynomial of degree 2d, and the closed subset
Z(H) of Pn

R defined by the equation H = 0 satisfies

X = V (R) ⊆ V \Z(H) ⊆ V0.

Let O(1) be the Serre line bundle on Pn
R. Let h : Pn

R → O(2d) be the
section determined by the homogeneous polynomial H. Note that Z(h) =
Z(H), where Z(h) is the set of zeros of h.

Let L = O(2d)|V and u = h|V . Then L is an ample line bundle on V

and u : V → L is a section. By construction,

X ⊆ V \Z(u) = V \Z(H) ⊆ V0.

Note that L(R) is a trivial algebraic line bundle onX. Indeed, sinceO(2d) ∼=
O(1)2d, it immediately follows that w1(L(R)) = 0, which implies that
L(R) is topological trivial. Consequently, L(R) is algebraically trivial, as
required, cf. [12, Theorem 12.3.1].
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Given a positive integer m, we set E(m) = E ⊗ Lm. There exists a
positive integer m0, such that for each integer m > m0, the vector bundle
E(m) is generated by global sections (cf. [25, p. 153]), the section

s0 ⊗ um : V \Z(u) → E(m),

where um = u⊗ · · · ⊗ u : V → Lm, can be extended to a section vm : V →
E(m) (cf. [25, Lemma 5.14]), and the conclusion of Theorem 3.3 holds.

Fixm>m0. Let w1, . . . , wk be a basis for the R-vector spaceH0(V,E(m)).
Given t = (t1, . . . , tk) in Rk, set

τt = vm + t1w1 + · · ·+ tkwk.

By Theorem 3.3, there exists a thin subset Σ of Rk such that for each t

in Rk\Σ, the section τt is transverse to the zero section, Wt = Z(τt) is
irreducible, and whenever Wt(R) is nonempty,

j∗t (Pic(V )) = Pic(Wt) and j∗t (Pic0(V )) = Pic0(Wt),(*)

where jt : Wt ↪→ V is the inclusion morphism.
Since the line bundle L(R) is algebraically trivial, the algebraic vector

bundles E(m)(R) and ξ on X are isomorphic. We may assume E(m)(R) =
ξ. Hence

vm(R) = fs

for some regular function f : X → R with f−1(0) = ∅.
Defining si = wi(R) for 1 6 i 6 k, one readily sees that f, s1, . . . , sk, and

Σ satisfy the required conditions. Indeed, conditions (i) and (ii) are obvious
from the construction. It is also clear that σt = τt(R) : X → ξ is transverse
to the zero section, and the nonsingular subvariety Yt = σ−1

t (0) = Wt(R) of
X is either empty or irreducible. In the latter case, the groups H1

alg(Yt,Z/2)
and Alg1(Yt) are determined by X in view of (*) and (3.1), (3.2), (3.3). �

Proof of Theorem 1.4. Let X, Y, ξ, s be as in the statement of Theorem
1.4. Choose f, s1, . . . , sk, Σ as in Theorem 3.5. Since s1, . . . , sk generate ξ,
the map F : X × Rk → ξ, defined by

F (x, t) = f(x)s(x) + t1s1(x) + · · ·+ tksk(x)

for all x in X and t = (t1, . . . , tk) in Rk, is transverse to the zero section of
ξ. The nonsingular subvariety Z = F−1(0) of X × Rk satisfies conditions
(i) and (ii) in Definition 1.2. Hence Y is movable. �

We conclude this section by describing some consequences of Larsen’s
generalization [34] of Barth’s theorem [7].
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Remark 3.6. —

(i) Let X be a nonsingular subvariety of Pn(R) with 2 dimX > n+ 2.
Assume that the Zariski closure of X in Pn(R) is nonsingular. Then

H1
alg(X,Z/2) = i∗(H1(Pn(R),Z/2)), Alg1(X) = 0,

where i : X ↪→ Pn(R) is the inclusion map. Indeed, let V be the
Zariski closure of X in Pn(R) and let j : V ↪→ Pn

R be the inclusion
morphism. By [34], the induced homomorphism j∗C : Pic(Pn

C) →
Pic(VC) is an isomorphism (cf. also [24, Corollary 6.5]). Since X =
V (R), Pn(R) = Pn

R(R) and Alg1(Pn(R)) = 0 (cf. Section 2), the
conclusion follows from Corollary3.2 and (3.1), (3.2), (3.3).

(ii) Let M be a compact smooth submanifold of Rn with 2 dimM >
n+2. Suppose w1(M) 6= 0, that is, M is nonorientable. Consider Rn

as a subset of Pn(R). If M is isotopic in Pn(R) to a nonsingular sub-
variety X of Pn(R), then the Zariski closure of X in Pn

R is singular.
This assertion follows from (i) since w1(X) is a nonzero element of
H1

alg(X,Z/2), while i∗(H1(Pn(R),Z/2)) = 0, where i : X ↪→ Pn(R)
is the inclusion map (here we useM ⊆ Rn). Such a result is obtained
in [6, Theorem B] under a stronger assumption w1(M)∪w1(M) 6= 0.

4. Varieties with prescribed H1
alg(−,Z/2) and Alg1(−)

First we will collect several facts required for the proof of Theorem
1.9. Recall that if M is a smooth manifold, then a cohomology class u
in Hk(M,Z/2), k > 1, is said to be spherical, provided u = f∗(c), where
f : M → Sk is a continuous (or equivalently smooth) map into the unit
sphere Sk and c is the unique generator of the group Hk(Sk,Z/2) ∼= Z/2.

Theorem 4.1. — Let X be a compact nonsingular real algebraic vari-
ety. Then:

(i) 〈u ∪ v, [X]〉 = 0 for all u in Algk(X) and v in H`
alg(X,Z/2), where

k + ` = dimX.
(ii) Every cohomology class in Alg1(X) is spherical.

Reference for the proof. — [29, Theorem 2.1], [1, Theorem 1.1] �

Also the next, very particular, observation concerning Alg1(−) will be
useful. Let Bk be an irreducible nonsingular real algebraic variety with
precisely two connected components Bk

0 and Bk
1 , each diffeomorphic to the

unit sphere Sk, k > 1. One can take, for example,

Bk = {(x0, . . . , xk) ∈ Rk+1|x4
0 − 4x2

0 + 1 + x2
1 + · · ·+ x2

k = 0}.
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Let Bk(d) = Bk × · · · × Bk and Bk
0 (d) = Bk

0 × · · · × Bk
0 be the d-fold

products, and let δ : Bk
0 (d) ↪→ Bk(d) be the inclusion map.

Lemma 4.2. — With notation as above,

Hq(Bk
0 (d),Z/2) = δ∗(Hq(Bk(d),Z/2)) = δ∗(Algq(Bk(d)))

for all q > 0.

Reference for the proof. — [32, Example 4.5] �

Let us now recall an important theorem from differential topology, which
will be used repeatedly in this section. Given a smooth manifold P , let
N∗(P ) denote the unoriented bordism group of P , cf. [18].

Theorem 4.3. — Let P be a smooth manifold. Two smooth maps f :
M → P and g : N → P , where M and N are compact smooth manifolds of
dimension d, represent the same bordism class in N∗(P ) if and only if for
every nonnegative integer q and every cohomology class v in Hq(P,Z/2),
one has

〈f∗(v)∪wi1(M)∪ . . .∪wir (M), [M ]〉 = 〈g∗(v)∪wi1(N)∪ . . .∪wir (N), [N ]〉

for all nonnegative integers i1, . . . , ir with i1 + · · ·+ ir = d− q.

Reference for the proof. — [18, (17.3)]. �

If W is a nonsingular real algebraic variety, then a bordism class in
N∗(W ) is said to be algebraic, provided it can be represented by a regular
map f : X → W of a compact nonsingular real algebraic variety X into
W , cf. [5, 10, 44]. Denote by N alg

∗ (W ) the subgroup of N∗(W ) consisting
of the algebraic bordism classes. Varieties W with N alg

∗ (W ) = N∗(W ) will
play a special role in various constructions.

The Grassmannian Gn,p(R) of p-dimensional vector subspaces of Rn is
a real algebraic variety in the sense of this paper, cf. [12, Theorem 3.4.4].
(Note, in particular, Gn,1(R) = Pn−1(R)). Furthermore, Gn,p(R) is non-
singular and Halg

i (Gn,p(R),Z/2) = Hi(Gn,p(R),Z/2) for all i > 0, cf. [12,
Propositions 3.4.3, 11.3.3]. It follows from Künneth’s theorem in homology
that

W = Gn1,p1(R)× · · · ×Gnr,pr
(R)

is a nonsingular real algebraic variety with Halg
i (W,Z/2) = Hi(W,Z/2) for

all i > 0. This, in view of [5, Lemma 2.7.1], implies

(4.1) N alg
∗ (W ) = N∗(W ).

Given smooth manifolds N and P , we endow the set C∞(N,P ) of all
smooth maps from N into P with the C∞ topology [27](in our applications
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N is always compact so it does not matter whether we take the weak C∞
or the strong one).

The following approximation theorem will be crucial.

Theorem 4.4. — Let M be a compact smooth submanifold of Rn and
let W be a nonsingular real algebraic variety. Let f : M →W be a smooth
map, whose bordism class in N∗(W ) is algebraic. Suppose that M contains
a (possibly empty) subset L, which is a union of finitely many nonsingular
subvarieties of Rn, the restriction f |L : L → W is a regular map, and the
restriction to L of the tangent bundle of M is topologically isomorphic to
an algebraic vector bundle on L. If 2 dimM + 1 6 n, then there exist a
smooth embedding e : M → Rn, a nonsingular subvariety X of Rn, and a
regular map g : X → W such that L ⊆ X = e(M), e|L : L → Rn is the
inclusion map, g|L = f |L, and g ◦ ē (where ē : M → e(M) is the smooth
diffeomorphism defined by ē(x) = e(x) for all x in M) is homotopic of f .
Furthermore, given a neighborhood U in C∞(M,Rn) of the inclusion map
M ↪→ Rn and a neighborhood V of f in C∞(M,W ), the objects e, X, and
g can be chosen in such a way that e is in U and g ◦ ē is in V.

Reference for the proof. — Precisely this formulation (with L nonsin-
gular), based on very similar results [3, 5, 10, 9, 44] is in [32, Theorem 4.2].
The slightly more general result needed in the present paper follows from
the argument given in [32, Theorem 4.2] since a union of finitely many
nonsingular subvarieties of Rn is a nice set, equivalently, a quasiregular
subvariety in the terminology used in [5] and [10, 44], respectively, cf. [44,
p. 75]. �

For sake of completeness we include here a simple technical lemma.

Lemma 4.5. — Let M and P be smooth manifolds, with M compact.
Let K and L be smooth submanifolds of M that are transverse in M .
Let f : M → P be a smooth map and let U be a neighborhood of f in
C∞(M,P ). Then there exists a neighborhood V of f |L in C∞(L,P ) such
that for every smooth map h : L→ P in V with h|K ∩L = f |K ∩L, there
is a smooth map g : M → P in U satisfying g|K = f |K and g|L = h.

Proof. — We may assume that P is a smooth submanifold of Rd for some
d. Since P has a tubular neighborhood in Rd, it suffices to prove the lemma
for P = R. Given a smooth submanifold N of M , denote by I(N) the ideal
of the ring C∞(M,R) consisting of all smooth functions vanishing on N .
Using partition of unity, one readily shows that the ideal I(N) is finitely
generated.
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Since K and L are transverse in M , the ideal I(K ∩ L) is generated by
I(K) ∪ I(L). Let α1, . . . , αr (resp. β1, . . . , βs) be generators of I(K) (resp.
I(L)). Note that

Λ : C∞(M,R)r+s → I(K ∩ L)

Λ(ϕ1, . . . , ϕr, ψ1, . . . , ψs) =
r∑

i=1

ϕiαi −
s∑

j=1

ψjβj

is a continuous, surjective R-linear map. Since C∞(M,R)r+s is a Fréchet
space, it follows that Λ is an open map, cf. [37, Theorem 2.11].

Let U0 be a neighborhood of 0 in C∞(M,R) satisfying f −U0 ⊆ U . Since
Λ is an open map, there is a neighborhood W of 0 in C∞(M,R) such that
every function in I(K ∩ L) ∩ W can be written as f1 − f2, where f1 is
in I(K) ∩ U0 and f2 is in I(L) ∩ U0 (the fact that f2 is in U0 will not be
important). If V is a sufficiently small neighborhood of f |L in C∞(L,R) and
h : L→ R is in V, then we can find a function ϕ in C∞(M,R) with ϕ|L = h

and f −ϕ in W. Thus f −ϕ is in I(K ∩L)∩W, and hence f −ϕ = f1− f2
for some f1 in I(K) ∩ U0 and f2 in I(L). Setting g = f − f1 = ϕ− f2, we
get g|K = (f − f1)|K = f |K and g|L = (ϕ − f2)|L = ϕ|L = h. Moreover,
g is in U since f1 is in U0. �

Given a smooth manifold P and subsets E1, . . . , Er of the cohomology
ring H∗(P,Z/2), we write

[E1, . . . , Er]∗ = ⊕k>0[E1, . . . , Er]k

for the graded subring of H∗(P,Z/2) generated by the union of the subsets
E1, . . . , Er. Using also notation introduced in Secton 1, we get

SW ∗(P ;E1, . . . , Er) = [SW ∗(P ), E1, . . . , Er]∗.

Clearly, if E is a subgroup of H`(P,Z/2), then

[E]` = E.

Proof of Theorem 1.9. — Assume that (a) holds. It follows from The-
orem 4.1(ii) that ΓM ⊆ ρM (H1(M,Z)) and ΓN ⊆ ρN (H1(N,Z)). Since
Alg∗(−) and H∗

alg(−,Z/2) are functors, Alg∗(−) ⊆ H∗
alg(−,Z/2), wk(−) ∈

H∗
alg(−,Z/2) for all k > 0, and H∗

alg(−,Z/2) is a ring, one just needs to
apply Theorem 4.1(i) to see that (b) is satisfied.

We now prove that (b) implies (a); the proof is rather long and involved.
Suppose then that (b) holds. First we need several auxiliary constructions.
We may assume that M is a smooth submanifold of Rd, where d > 2m+1.
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Denote by τM the tangent bundle to M and choose a smooth map h : M →
Gd,m(R) such that

h∗γd,m is isomorphic to τM ,(1)

where γd,m is the universal vector bundle on Gd,m(R).
Let K be a sufficiently large positive integer such that if AM = PK(R)×

· · ·×PK(R) is the (dimZ/2GM )-fold product and AN = PK(R)×· · ·×PK(R)
is the (dimZ/2GN )-fold product, then there are smooth maps fM : M →
AM and fN : N → AN with

f∗M (H1(AM ,Z/2)) = GM ,(2)

f∗N (H1(AN ,Z/2)) = GN .(3)

Since e∗(GM ) ⊆ GN , the restriction fM |N : N → AM satisfies

(fM |N)∗(H1(AM ,Z/2)) ⊆ GN .(4)

Set

A = Gd,m(R)×AM ×AN , f = (h|N, fM |N, fN ) : N → A.

In view of (1), we have wq(M) = h∗(wq(γd,m)) and hence e∗(wq(M)) =
(h|N)∗(wq(γd,m)) for all q > 0. Recall that H∗(Gd,m(R),Z/2) is generated
(as a ring) by wq(γd,m), q > 0, cf. [35]. It therefore follows from (3), (4),
and Künneth’s theorem in cohomology that

f∗(Hp(A,Z/2)) = [e∗(SW ∗(M)), GN ]p for all p > 0.(5)

Taking p = 1 and making use of w1(M) ∈ GM and e∗(GM ) ⊆ GN , we get

f∗(H1(A,Z/2)) = GN .(6)

Since ΓM ⊆ ρM (H1(M,Z)) and ΓN ⊆ ρN (H1(N,Z)), it follows that ΓM

and ΓN consist of spherical cohomology classes, cf. [28, p. 49, Theorem 7.1].
Hence if

dM = dimZ/2 ΓM and dN = dimZ/2 ΓN ,

there exist smooth maps gM : M → B1(dM ) and gN : N → B1(dN )
(notation as in Lemma 4.2) such that

gM (M) ⊆ B1
0(dM ), g∗M (H1(B1(dM ),Z/2)) = ΓM ,(7)

gN (N) ⊆ B1
0(dN ), g∗N (H1(B1(dN ),Z/2)) = ΓN .(8)

Making use of e∗(ΓM ) ⊆ ΓN , we conclude that the restriction gM |N : N →
B1(dM ) satisfies

(gM |N)∗(H1(B1(dM ),Z/2)) ⊆ ΓN .(9)
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Set

Γ̄M = {u ∈ Hm−1(M,Z/2)|〈a ∪ u, [M ]〉 = 0 for all a ∈ GM},

Γ̄N = {v ∈ Hn−1(N,Z/2)|〈b ∪ v, [N ]〉 = 0 for all b ∈ GN}.

Since M is connected, given u inHm−1(M,Z/2) with 〈w1(M)∪u, [M ]〉 = 0,
we get w1(M)∪u = 0. The last equality implies that the homology class in
H1(M,Z/2) Poincaré dual to u can be represented by a compact smooth
curve in M with trivial normal vector bundle, cf. for example [13, p. 599].
This in turn implies that u is a spherical cohomology class [42, Théorème
II.1]. By assumption, w1(M) ∈ GM and hence Γ̄M consists of spherical
cohomology classes. An analogous argument shows that Γ̄N also consists
of spherical cohomology classes. Therefore, if

d̄M = dimZ/2 Γ̄M and d̄N = dimZ/2 Γ̄N ,

there exist smooth maps ḡM : M → Bm−1(d̄M ) and ḡN : N → Bn−1(d̄N )
(notation as in Lemma 4.2) such that

ḡM (M) ⊆ Bm−1
0 (d̄M ), ḡ∗M (Hm−1(d̄M ),Z/2) = Γ̄M ,(10)

ḡN (N) ⊆ Bn−1
0 (d̄N ), ḡ∗N (Hn−1(d̄N ),Z/2) = Γ̄N .(11)

If

B = B1(dM )×B1(dN )×Bm−1(d̄M )×Bn−1(d̄N ),

B0 = B1
0(dM )×B1

0(dN )×Bm−1
0 (d̄M )×Bn−1

0 (d̄N ),

g = (gM |N, gN , ḡM |N, gN ) : N → B,

then

g(N) ⊆ B0.(12)

Moreover, since m− 1 > n− 1 > 1, making use of (8), (9), and Künneth’s
theorem in cohomology, we get

g∗(Hq(B,Z/2)) = [ΓN ]q for 1 6 q 6 n− 2.(13)

Similarly, taking into account also (11), we obtain

g∗(Hn−1(B,Z/2)) = [ΓN , Γ̄N ]n−1,(14)

g∗(Hn(B,Z/2)) = [ΓN , Γ̄N ]n if m− 1 > n,(15)

while (10) yields

g∗(Hn(B,Z/2)) = [ΓN , Γ̄N , e
∗(Γ̄M )]n if m− 1 = n.(16)
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Set

ḠM = {u ∈ Hm−1(M,Z/2)|〈a ∪ u, [M ]〉 = 0 for all a ∈ ΓM},

ḠN = {v ∈ Hn−1(N,Z/2)|〈b ∪ v, [N ]〉 = 0 for all b ∈ ΓN}.

Choose smooth submanifolds (curves) Si of M and Tj of N such that

ḠM = {[S1]M , . . . , [Sk]M}, ḠN = {[T1]N , . . . , [T`]N}.

We may assume that S1, . . . , Sk, T1, . . . , T` are pairwise disjoint. Further-
more, we may choose Si so that it is transverse to N in M for 1 6 i 6 k.
By definition of [Si]M , we have

εi∗([Si]) = [Si]M ∩ [M ],

where εi : Si ↪→M is the inclusion map and ∩ stands for the cap product.
Note that

〈ε∗i (a), [Si]〉 = 〈a ∪ [Si]M , [M ]〉 for all a ∈ H1(M,Z/2).(17)

Indeed, standard properties of ∪,∩, 〈 , 〉 (cf. for example [19]) yield

〈ε∗i (a), [Si]〉 =〈a, εi∗([Si])〉

=〈a, [Si]M ∩ [M ]〉

=〈a ∪ [Si]M , [M ]〉,

as required. By Poincaré duality (cf. the version given in [19, p. 300, Propo-
sition 8.13]),

ΓM = {a ∈ H1(M,Z/2)|〈a ∪ u, [M ]〉 = 0 for all u ∈ ḠM},

and hence (17) implies

ΓM = {a ∈ H1(M,Z/2)|〈ε∗i (a), [Si]〉 = 0 for 1 6 i 6 k}.(18)

An analogous argument yields

ΓN = {b ∈ H1(N,Z/2)|〈δ∗j (b), [Tj ]〉 = 0 for 1 6 j 6 `}.(19)

where δj : Tj ↪→ N is the inclusion map.
We have completed now the basic setup necessary for the proof of (b)

⇒ (a). In what follows we will successively modify the smooth subman-
ifolds T1, . . . , T`, N, S1, . . . , Sk,M of Rd to ensure that they satisfy some
additional desirable conditions. Here ”modify“ means that a given smooth
submanifold of Rd is replaced by an isotopic copy, via a smooth isotopy
close in the C∞ topology to the appropriate inclusion map (such an isotopy
can be extended to a smooth isotopy of Rd, cf. [27, Chapter 8]; this fact
will be used repeatedly without an explicit reference). Eventually, after
modifications, all the submanifolds listed above will become nonsingular
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subvarieties of Rd, and the subvarieties corresponding to N and M will
satisfy (a). The main tool which enables us to perform the required task is
Theorem 4.4.

Since N alg
∗ (A) = N∗(A) (cf. (4.1)), Theorem 4.4 can be applied to f |Tj :

Tj → A (with L = ∅), and hence we may assume that Tj is a nonsingular
subvariety of Rd and f |Tj : Tj → A is a regular map for 1 6 j 6 `.

Let c : N → B be a constant map sending N to a point in B0.

Claim 1. — The maps (f, g)|Tj : Tj → A×B and (f, c)|Tj : Tj → A×B
represent the same bordism class in N∗(A×B).

In order to prove Claim 1 we argue as follows. Since dimTj = 1, we have
w1(Tj) = 0, and hence in view of Theorem 4.3 and Künneth’s theorem in
cohomology, it suffices to show that

〈((f, g)|Tj)∗(ξ × η), [Tj)〉 = 〈((f, c)|Tj)∗(ξ × η), [Tj ]〉

for all ξ in Hp(A,Z/2) and η in Hq(B,Z/2) with p+ q = 1. There are two
cases to deal with: (p, q) = (1, 0) and (p, q) = (0, 1). Observing

((f, g)|Tj)∗(ξ × η) = (f |Tj)∗(ξ) ∪ (g|Tj)∗(η),

((f, c)|Tj)∗(ξ × η) = (f |Tj)∗(ξ) ∪ (c|Tj)∗(η),

we conclude that the equality under consideration holds when (p, q) =
(1, 0) ((12) implies (g|Tj)∗(η) = (c|Tj)∗(η)), while for (p, q) = (0, 1) it is
equivalent to

〈(g|Tj)∗(η), [Tj ]〉 = 0.

The last equality follows from (13) and (19) since (g|Tj)∗(η) = (g◦δj)∗(η) =
δ∗j (g∗(η)). Claim 1 is proved.

Since (f, c)|Tj : Tj → A×B is a regular map, Claim 1 allows us to apply
Theorem 4.4 to (f, g)|Tj : Tj → A × B (with L = 0). Hence modifying Tj

once again, we may assume that Tj is a nonsingular subvariety of Rd and
(f, g)|Tj : Tj → A×B is a regular map for 1 6 j 6 `. Henceforth T1, . . . , T`

will remain unchanged, but we will modify N in a suitable way.
Note that T = T1∪. . .∪T` is a nonsingular subvariety of Rd and (f, g)|T :

T → A × B is a regular map. Since dimT = 1, it follows that τN |T is
isomorphic to an algebraic vector bundle on T , cf. [12, Theorem 12.5.1]. In
view of N alg

∗ (A) = N∗(A), Theorem 4.4 can be applied to f : N → A (with
L = T ). Therefore we may assume that N is a nonsingular subvariety of
Rd, T and f |T : T → A remain unchanged, and f : N → A is a regular
map.

Claim 2. — The maps (f, g) : N → A × B and (f, c) : N → A × B

represent the same bordism class in N∗(A×B).
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The proof of Claim 2 is similar to that of Claim 1, but technically more
complicated. In view of Theorem 4.3 and Künneth’s theorem in cohomol-
ogy, it suffices to show that given cohomology classes ξ in Hp(A,Z/2) and
η in Hq(B,Z/2) with p+ q 6 n, we have

〈(f, g)∗(ξ × η) ∪ wi1(N) ∪ . . . ∪ wir (N), [N ]〉 =

〈(f, c)∗(ξ × η) ∪ wi1(N) ∪ . . . ∪ wir (N), [N ]〉

for all nonnegative integers i1, . . . , ir satisfying i1 + · · ·+ ir = n− (p+ q).
Since (f, g)∗(ξ × η) = f∗(ξ) ∪ g∗(η) and (f, c)∗(ξ × η) = f∗(ξ) ∪ c∗(η), the
equality under consideration holds if q = 0 ((12) implies g∗(η) = c∗(η)),
whereas for q > 1 it is equivalent to

〈f∗(ξ) ∪ g∗(η) ∪ wi1(N) ∪ . . . ∪ wir (N), [N ]〉 = 0.(20)

In the proof of (20) we distinguish three cases: 1 6 q 6 n − 2, q = n − 1,
and q = n.

If 1 6 q 6 n−2, then in view of (5), (13), and ΓN ⊆ GN , the cohomology
class

f∗(ξ) ∪ g∗(η) ∪ wi1(N) ∪ . . . ∪ wir (N)

is a sum of finitely many elements of the form b ∪ z, where b ∈ ΓN and
z ∈ SWn−1(N ;GN , e

∗(SW ∗(M))). Hence (20) follows from (b2), which
appears in (b) in Theorem 1.9.

If q = n − 1, then (14) implies that g∗(η) is a finite sum of elements of
the form v1 + v2, where v1 ∈ [ΓN ]n−1 and v2 ∈ Γ̄N , There are two subcases
to consider: p = 0 and p = 1.

Suppose p = 0. Then (20) is equivalent to

(20′) 〈g∗(η) ∪ w1(N), [N ]〉 = 0.

Since ΓN ⊆ GN , we conclude that v1 ∪ w1(N) is a finite sum of elements
of the form b ∪ z, where b ∈ ΓN and z ∈ SWn−1(N ;GN ), and hence (b2)
yields 〈v1 ∪ w1(N), [N ]〉 = 0. On the other hand, w1(N) ∈ GN and the
definition of Γ̄N imply 〈v2∪w1(N), [N ]〉 = 0. Thus (20′) holds when p = 0.

Suppose now p = 1. Then (20) is equivalent to

(20′′) 〈f∗(ξ) ∪ g∗(η), [N ]〉 = 0.

In view of (6), we have f∗(ξ) ∈ GN . Hence f∗(ξ) ∪ g∗(η) is a finite sum
of elements of the form (f∗(ξ) ∪ v1) + (f∗(ξ) ∪ v2). Applying (b2), we get
〈f∗(ξ)∪v1, [N ]〉 = 0, while the definition of Γ̄N implies 〈f∗(ξ)∪v2, [N ]〉 = 0.
Thus (20′′) holds when p = 1. The proof in case q = n− 1 is complete.
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If q = n, then p = 0 and (20) is equivalent to

(20′′′) 〈g∗(η), [N ]〉 = 0.

Once again, we consider two subcases: m− 1 > n and m− 1 = n.
Suppose m − 1 > n. Then (15) implies that g∗(η) is a finite sum of

elements of the form b∪z, where b ∈ ΓN and z ∈ [ΓN , Γ̄N ]n−1. Clearly, z =
z1 + z2, where z1 ∈ [ΓN ]n−1 and z2 ∈ Γ̄N . Since ΓN ⊆ GN , applying (b2),
we get 〈b∪ z1, [N ]〉 = 0, while the definition of Γ̄N yields 〈b∪ z2, [N ]〉 = 0.
Thus (20′′′) holds when m− 1 > n.

Suppose m − 1 = n. In view of (16), g∗(η) is a finite sum of elements
of the form b1 ∪ v1 + b2 ∪ v2 + e∗(u), where b1, b2 ∈ ΓN , v1 ∈ [ΓN ]n−1 ⊆
[GN ]n−1, v2 ∈ Γ̄N , and u ∈ Γ̄M . It follows from (b2) that 〈b1∪z1, [N ]〉 = 0.
Since ΓN ⊆ GN , the definition of Γ̄N yields 〈b2 ∪ z2, [N ]〉 = 0. In order to
complete the proof of (20′′′) it remains to justify 〈e∗(u), [N ]〉 = 0. To this
end observe

〈e∗(u), [N ]〉 = 〈u, e∗([N ])〉 = 〈u, [N ]M ∩ [M ]〉 = 〈u ∪ [N ]M , [M ]〉.

By assumption, [N ]M ∈ GM and hence the definition of Γ̄M implies 〈u ∪
[N ]M , [M ]〉 = 0. Thus (20′′′) holds when m− 1 = n. Claim 2 is proved.

We are now ready to construct the final modification of N . We already
know that (f, g)|T : T → A×B is a regular map and τN |T is isomorphic to
an algebraic vector bundle on T . Since (f, c) : N → A×B is a regular map,
Claim 2 allows us to apply Theorem 4.4 to the map (f, g) : N → A×B (with
L = T ). We may therefore assume that N is a nonsingular subvariety of
Rd, T and (f, g)|T : T → A×B remain unchanged, and (f, g) : N → A×B
is a regular map.

Recall that

f = (h|N, fM |N, fN ) and g = (gM |N, gN , ḡM |N, ḡN ).

In particular, fN : N → AN is a regular map, and hence (3) and
H1

alg(AN ,Z/2) = H1(AN ,Z/2) imply

(21) GN = f∗N (H1(AN ,Z/2)) ⊆ H1
alg(N,Z/2).

Since ḡN : N → Bn−1(d̄N ) is a regular map, it follows from (11) and
Lemma 4.2 that

(22) Γ̄N = ḡ∗N (Hn−1(Bn−1(d̄N ),Z/2)) ⊆ Algn−1(N).

Making use of (21), (22), Theorem 4.1(i), and the definition of Γ̄N , we
obtain

(23) H1
alg(N,Z/2) = GN .
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Since gN : N → B1(dN ) is a regular map, (8) and Lemma 4.2 imply

ΓN = g∗N (H1(B1(dN ),Z/2)) ⊆ Alg1(N).

Suppose there is an element b in Alg1(N)\ΓN . By (19), one can find j,
1 6 j 6 `, for which 〈δ∗j (b), [Tj ]〉 6= 0. This contradicts Theorem 4.1(i)
since δ∗j (b) belongs to Alg1(Tj), the map δj : Tj ↪→ N being regular. Thus

(24) Alg1(N) = ΓN .

Henceforth N will remain unchanged, but S1, . . . , Sk,M will be successively
modified. Set

C = Gd,m(R)×AM ,

α = (h, fM ) : M → C,

D = B1(dM )×Bm−1(d̄M ), D0 = B1
0(dM )×Bm−1

0 (d̄M ),

β = (gM , ḡM ) : M → D.

Using the same argument which justified (5), we get

(25) α∗(Hp(C,Z/2)) = SW p(M ;GM ) for all p > 0.

In particular, since w1(M) ∈ GM , for p = 1 we have

(26) α∗(H1(C,Z/2)) = GM .

Similarly, in view of (7) and (10), the argument which justified (13), (14),
(15), (16) yields

(27) β∗(Hq(D,Z/2)) = [ΓM ]q for 1 6 q 6 m− 2,

(28) β∗(Hq(D,Z/2)) = [ΓM , Γ̄M ]q for q = m− 1 or q = m.

By construction, we also have

(29) β(M) ⊆ D0.

Recall that Si is transverse to N in M . In particular, Si ∩N is a finite
set, and hence a nonsingular subvariety of Rd. Since N alg

∗ (C) = N∗(C)
(cf. (4.1)), Theorem 4.4 can be applied to α|Si : Si → C (with L = Si ∩
N). Thus there exist a smooth embedding ei : Si → Rd, a nonsingular
subvariety Xi of Rd, and a regular map αi : Xi → C such that Si ∩ N ⊆
Xi = ei(Si), ei|Si ∩ N : Si ∩ N → Rd is the inclusion map, αi|Si ∩ N =
α|Si∩N, ei is close in the C∞ topology to the inclusion map Si ↪→ Rd, and
αi ◦ ēi is close in the C∞ topology to α|Si, where ēi : Si → Xi is defined
by ēi(x) = ei(x) for all x in Si. Note that ei : Si → Rd can be extended
to a smooth embedding Ei : M → Rd such that Ei(y) = y for all y in
N ∪ S1 ∪ . . .∪ Si−1 ∪ Si+1 ∪ . . .∪ Sk (cf. the standard proofs of the isotopy
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extension theorems [27, Chapter 8]). Hence replacing M by Ei(M) and Si

by Xi = Ei(Si), and making use of Lemma 4.5, we may assume that Si

is a nonsingular subvariety of Rd and α|Si : Si → C is a regular map for
1 6 i 6 k, while N and α|N : N → C remain unchanged.

Let γ : M → D be a constant map sending M to a point in D0.

Claim 3. — The maps (α, β)|Si : Si → C×D and (α, γ)|Si : Si → C×D
represent the same bordism class in N∗(C ×D).

The proof of Claim 3 is entirely analogous to that of Claim 1. A minor
difference is that instead of (13) and (19) one uses (27) and (18). Details
are left to the reader.

Since (α, γ)|Si : Si → C×D is a regular map, it follows from Claim 3 that
Theorem 4.4 can be applied to (α, β)|Si : Si → C ×D (with L = Si ∩N).
Arguing as in the paragraph preceding Claim 3, we may assume that Si

is a nonsingular subvariety of Rd and (α, β)|Si : Si → C ×D is a regular
map for 1 6 i 6 k, while N and (α, β)|N : N → C ×D remain unchanged.
HenceforthN,S1, . . . , Sk will remain unchanged, but we still have to modify
M .

Note that S = S1 ∪ . . .∪ Sk is a nonsingular subvariety of Rd. Since S is
transverse to N in M , (α, β) : M → C ×D is continuous, and (α, β)|N :
N → C × D, (α, β)|S : S → C × D are regular maps, it follows (cf. for
example [10, Lemme 5] or [44, Lemma 6]) that (α, β)|(N ∪ S) : N ∪ S →
C ×D is a regular map. Furthermore, in view of (1) and the definition of
α, the restriction τM |(N ∪ S) is isomorphic to an algebraic vector bundle
on N ∪ S. The last two facts together with N alg

∗ (C) = N∗(C) imply that
Theorem 4.4 can be applied to α : M → C (with L = N ∪ S). Hence
we may assume that M is a nonsingular subvariety of Rd, N ∪ S and
α|(N ∪ S) : N ∪ S → C remain unchanged, and α : M → C is a regular
map.

Claim 4. — The maps (α, β) : M → C × D and (α, γ) : M → C × D

represent the same bordism class in N∗(C ×D).

As in the proof of Claim 2, it suffices to show that given cohomology
classes κ in Hp(C,Z/2) and λ in Hq(D,Z/2) with p+ q 6 m, we have

〈(α, β)∗(κ× λ) ∪ wj1(M) ∪ . . . ∪ wjs(M), [M ]〉 =

〈(α, γ)∗(κ× λ) ∪ wj1(M) ∪ . . . ∪ wjs(M), [M ]〉

for all nonnegative integers j1, . . . , js satisfying j1 + · · ·+ js = m− (p+ q).
Since (α, β)∗(κ×λ) = α∗(κ)∪β∗(λ) and (α, γ)∗(κ×λ) = α∗(κ)∪γ∗(λ), the
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equality under consideration holds if q = 0 ((29) implies β∗(λ) = γ∗(λ)),
whereas for q > 1 it is equivalent to

(30) 〈α∗(κ) ∪ β∗(λ) ∪ wj1(M) ∪ . . . ∪ wjs(M), [M ]〉 = 0.

In the proof of (30) we distinguish three cases: 1 6 q 6 m− 2, q = m− 1,
and q = m.

If 1 6 q 6 m − 2, then in view of (25), (27), and ΓM ⊆ GM , the
cohomology class

α∗(κ) ∪ β∗(λ) ∪ wj1(M) ∪ . . . ∪ wjs(M)

is a finite sum of elements of the form a ∪ w, where a ∈ ΓM and w ∈
SWm−1(M ;GM ). Hence (30) follows from (b1), which appears in (b) in
Theorem 1.9.

If q = m − 1, then (28) implies that β∗(λ) is a finite sum of elements
of the form u1 + u2, where u1 ∈ [ΓM ]m−1 and u2 ∈ Γ̄M . There are two
subcases to consider: p = 0 and p = 1.

Suppose p = 0. Then (30) is equivalent to

(30′) 〈β∗(λ) ∪ w1(M), [M ]〉 = 0.

Since ΓM ⊆ GM , we conclude that u1 ∪w1(M) is an finite sum of elements
of the form a ∪ w, where a ∈ ΓM and w ∈ SWm−1(M ;GM ), and hence
(b1) yields 〈u1 ∪ w1(M), [M ]〉 = 0. On the other hand, w1(M) ∈ GM and
the definition of Γ̄M imply 〈u2 ∪ w1(M), [M ]〉 = 0. Thus (30′) holds when
p = 0.

Suppose now p = 1. Then (30) is equivalent to

(30′′) 〈α∗(κ) ∪ β∗(λ), [M ]〉 = 0.

In view of (26), we have α∗(κ) ∈ GM . Hence α∗(κ) ∪ β∗(λ) is a finite sum
of elements of the form (α∗(κ) ∪ u1) + (α∗(κ) ∪ u2). Applying (b1), we get
〈α∗(κ)∪u1, [M ]〉 = 0, while the definition of Γ̄M implies 〈α∗(κ)∪u2, [M ]〉 =
0. Thus (30′′) holds when p = 1. The proof in case q = m− 1 is complete.

If q = m, then p = 0 and (30) is equivalent to

(30′′′) 〈β∗(λ), [M ]〉 = 0.

By (28), β∗(λ) is a finite sum of elements of the form a1∪u1+a2∪u2, where
a1, a2 ∈ ΓM , u1 ∈ [ΓM ]m−1 ⊆ [GM ]m−1, u2 ∈ Γ̄M . It follows from (b1)
that 〈a1 ∪ u1, [M ]〉 = 0. On the other hand, ΓM ⊆ GM and the definition
of Γ̄M imply 〈a2 ∪ u2, [M ]〉 = 0. Thus (30′′′) holds when q = m. Claim 4 is
proved.

Now the final modification of M will be constructed. We already know
that
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(α, β)|(N ∪ S) : N ∪ S → C × D is a regular map and τM |(N ∪ S) is
isomorphic to an algebraic vector bundle onN∪S. Since (α, γ) : M → C×D
is a regular map, Claim 4 allows us to apply Theorem 4.4 to the map
(α, β) : M → C × D (with L = N ∪ S). We may therefore assume that
M is a nonsingular subvariety of Rd and (α, β) : M → C ×D is a regular
map, while N ∪S and (α, β)|(N ∪S) : N ∪S → C ×D remain unchanged.

Recall that
α = (h, fM ) and β = (gM , ḡM ).

In particular, fM : M → AM is a regular map, and hence (2) and
H1

alg(AM ,Z/2) = H1(AM ,Z/2) imply

(31) GM = f∗M (H1(AM ,Z/2)) ⊆ H1
alg(M,Z/2)

Since ḡM : M → Bm−1(d̄M ) is a regular map, it follows from (10) and
Lemma 4.2 that

(32) Γ̄M = ḡ∗M (Hm−1(Bm−1(d̄M ),Z/2)) ⊆ Algm−1(M).

Making use of (31), (32), Theorem 4.1(i), and the definition of Γ̄M , we
obtain

(33) H1
alg(M,Z/2) = GM .

Since gM : M → B1(dM ) is a regular map, (7) and Lemma 4.2 imply

ΓM = g∗M (H1(dM ),Z/2) ⊆ Alg1(M).

Suppose there is an element a in Alg1(M)\ΓM . By (18), one can find i, 1 6
i 6 k, for which 〈ε∗i (a), [Sj ]〉 6= 0. This contradicts Theorem 4.1(i) since
ε∗i (a) belongs to Alg1(Si), the map εi : Si ↪→M being regular. Thus

(34) Alg1(M) = ΓM .

In view of (23), (24), (33), (34), condition (a) holds. We proved that (b)
implies (a). �

Proof of Theorem 1.11. — As in the proof of Theorem 1.9, one readily
sees that (a) implies (b). Assume then that (b) is satisfied. Below we show
that (a) holds. Let y0 be a point in the unit circle S1 and let M = N ×S1.
Note that wq(M) = wq(N) × 1 for q > 0, where 1 is the identity element
in H0(S1,Z/2) and × stands for the cross product in cohomology. Set
GN = G and ΓN = Γ. Define GM to be the subgroup of H1(M,Z/2)
generated by [N × {y}]M and all elements of the form u × 1, where u is
in GN . Similarly, let ΓM be the subgroup of H1(M,Z/2) generated by all
elements of the form v×1, where v is in ΓN . Identify N with N ×{y0} and
write e : N ↪→ M for the inclusion map. By construction, e∗(GM ) = GN ,
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e∗(ΓM ) = ΓN , and e∗(wq(M)) = wq(N). It follows that condition (b) of
Theorem 1.9 is satisfied.

If dimN > 3, then (a) immediately follows from Theorem 1.9.
Suppose then that dimN = 2. Since dimM = 3, it follows from what we

already proved that there exist a nonsingular real algebraic variety X and
a smooth diffeomorphism ϕ : X →M such that

ϕ∗(GM ) = H1
alg(X,Z/2), ϕ∗(ΓM ) = Alg1(X).

Since [ϕ−1(N)]X = ϕ∗([N ]M ) is in H1
alg(X,Z/2), Corollary 1.8 implies that

the smooth submanifold ϕ−1(N) of X is admissible. Taking into account
e∗(GM ) = GN and e∗(ΓM ) = ΓN , we conclude that (a) also holds when
dimN = 2. The proof is complete.

�
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