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ISOTROPIC RANDOM WALKS
ON AFFINE BUILDINGS

by James PARKINSON

Abstract. — In this paper we apply techniques of spherical harmonic analysis
to prove a local limit theorem, a rate of escape theorem, and a central limit theorem
for isotropic random walks on arbitrary thick regular affine buildings of irreducible
type. This generalises results of Cartwright and Woess where Ãn buildings are
studied, Lindlbauer and Voit where Ã2 buildings are studied, and Sawyer where
homogeneous trees are studied (these are Ã1 buildings).

Résumé. — Dans cet article, nous utilisons les techniques de l’analyse har-
monique sphérique pour démontrer un théorème local limite, un théorème sur la
vitesse de fuite et un théorème central limite pour les marches aléatoires isotropes
sur des immeubles affines épais arbitraires de type irréductible. Cela généralise des
résultats de Cartwright et Woess sur les immeubles de type Ãn, de Lindlbauer et
Voit sur les immeubles de type Ã2 et de Sawyer sur les arbres homogènes (qui sont
des immeubles de type Ã1).

Introduction

Let X be a thick locally finite regular affine building of irreducible type.
By regular we mean that the number of chambers containing a panel de-
pends only on the cotype of the panel, and by thick we mean that this
number is always at least 3. The simplest example of such a building is
a homogeneous tree with degree q + 1 > 3, where the chambers are the
edges of the graph. In this case, Sawyer [18] studied isotropic random
walks (Zk)k>0 on the vertices of X , meaning that the transition prob-
abilities p(x, y) = P(Zk+1 = y | Zk = x) depend only on the graph distance
d(x, y) between x and y. To motivate our results, let us briefly describe
these random walks on trees.

Keywords: Affine buildings, random walks, Macdonald spherical functions.
Math. classification: 20E42, 60G50, 33D52.



380 James PARKINSON

Let V be the vertex set of the tree, and for each x ∈ V and k ∈ N =
{0, 1, . . .}, write Vk(x) for the set of all y ∈ V such that d(x, y) = k. It is
easily seen that the cardinalities |Vk(x)| are independent of the particular
x ∈ V , and we write Nk for this value. For each k ∈ N there is a natural
operator Ak acting on the space of all functions f : V → C, where for each
x ∈ V , (Akf)(x) is the average value of f over Vk(x). The operator Ak may
be regarded as the transition operator of the isotropic random walk with
matrix (pk(x, y))x,y∈V , where pk(x, y) = 1

Nk
if y ∈ Vk(x) and pk(x, y) = 0

otherwise. Indeed it is easily seen that a random walk on V is isotropic if
and only if it has a transition operator of the form

A =
∑
k∈N

akAk

where ak > 0 for all k ∈ N and
∑

k∈N ak = 1.
The linear span over C of the operators {Ak}k∈N is a commutative alge-

bra A with a rich theory of harmonic analysis (see [7]). In particular, the
algebra homomorphisms h : A → C may be explicitly described, and local
limit theorems, central limit theorems, and rate of escape theorems can be
proved as applications.

Now consider a regular affine building X of irreducible type. Thus X

may be regarded as a simplicial complex made by ‘gluing together’ many
copies of a given Coxeter complex, each Coxeter complex called an apart-
ment of X (these are regular tessellations of Euclidean space by simplices).
There is an irreducible (but not necessarily reduced) root system R associ-
ated to X , as described in Section 1.3, and the coweight lattice P of R is
a subset of the vertex set of the standard Coxeter complex Σ. We consider
random walks on a related subset VP of the vertices of X , which in most
cases is the set of all special vertices of X .

Let P+ be the set of dominant coweights of R (relative to some fixed
base). For each x ∈ VP there is a natural partition of VP into subsets
Vλ(x), λ ∈ P+, as described in Definition 1.4. Roughly speaking, y ∈ Vλ(x)
means that there exists an apartment A containing x and y and a ‘suitable’
isomorphism ψ : A → Σ such that ψ(x) = 0 and ψ(y) = λ ∈ P+ (in other
words, y is in position λ from x). It is shown in [15, Theorem 5.15] that for
all λ ∈ P+ the cardinality of the set Vλ(x) is independent of the particular
x ∈ VP , and we write Nλ for this value. Following the tree case, for each
λ ∈ P+ let Aλ be the operator acting on the space of functions f : VP → C
with (Aλf)(x) being the average value of f over Vλ(x). The linear span
of these operators over C is a commutative algebra A , which has been
studied extensively in [15]. As shown in [16], the algebra homomorphisms
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RANDOM WALKS ON BUILDINGS 381

h : A → C may be explicitly described both in terms of the Macdonald
spherical functions and in terms of an integral over the boundary of X .

We call a random walk (Zk)k∈N on VP with transition matrix
(p(x, y))x,y∈VP

isotropic if p(x, y) = p(x′, y′) whenever y ∈ Vλ(x) and
y′ ∈ Vλ(x′) for some λ ∈ P+. As in the tree case, the operators Aλ may be
regarded as the transition operators of isotropic random walks with ma-
trices (pλ(x, y))x,y∈VP

, where pλ(x, y) = 1
Nλ

if y ∈ Vλ(x) and pλ(x, y) = 0
otherwise. It is easily seen that a random walk on VP is isotropic if and
only if it has a transition operator of the form

A =
∑

λ∈P+

aλAλ(0.1)

where aλ > 0 for all λ ∈ P+ and
∑

λ∈P+ aλ = 1.
In this paper we apply the spherical harmonic analysis associated to the

algebra A to prove a local limit theorem, a central limit theorem, and a
rate of escape theorem for isotropic random walks on VP . These results
generalise the results in [5] where Ãn buildings are studied (which in turn
generalise the corresponding results for homogeneous trees). Our results
may also be viewed as ‘building analogues’ of well known results concerning
random walks on semisimple Lie groups (see [1] for example).

Let us briefly outline the structure of this paper. In Section 1 we give
a summary of some background material, mostly from [15] and [16]. This
section includes a discussion of root systems, Coxeter complexes and build-
ings, the algebra A , and the spherical harmonic analysis associated to this
algebra. The main sections of this paper are Sections 2, 3 and 4.

In Section 2 we give our local limit theorem for isotropic random walks
on VP , describing the asymptotic behaviour of the k-step transition prob-
abilities p(k)(x, y) = P(Zk = y | Z0 = x). We also give necessary and
sufficient conditions for irreducibility and aperiodicity of the random walk,
and in Remark 2.19 we outline some applications of our local limit theorem
to random walks on groups acting on buildings.

In Section 3 we prove our rate of escape theorem. For each k ∈ N, let
νk ∈ P+ be such that Zk ∈ Vνk

(Z0). We show that, with probability 1,
the vector 1

kνk converges to a vector γ in the underlying vector space of
the root system R. We apply our local limit theorem to show that each
component of γ (relative to a set of fundamental coweights of P ) is strictly
positive.

In Section 4 we prove our central limit theorem, showing that there is a
positive definite matrix Γ such that, with γ as above, the vector 1√

k
(νk−kγ)

tends in distribution to the normal distribution N(0,Γ).
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382 James PARKINSON

In Appendix A we determine the algebra homomorphisms h : A → C
which are bounded (generalising [10, Theorem 4.7.1]).

1. Affine Buildings and Spherical Harmonic Analysis

1.1. Root Systems and Weyl Groups

Root systems play a significant role in this work. We fix the following
notations and conventions, generally following [2, Chapter VI].

Let R be an irreducible, but not necessarily reduced, root system in
a real vector space E with inner product 〈·, ·〉. The rank of R is n, the
dimension of E. Let I0 = {1, 2, . . . , n} and I = {0, 1, 2, . . . , n}, and let
B = {αi | i ∈ I0} be a fixed base of R. Write R+ for the set of positive
roots (relative to B), and let R∨ = {α∨ | α ∈ R} be the dual root system
of R, where for each α ∈ R we write α∨ = 2α

〈α,α〉 . Since R is irreducible, by
[2, VI, § 1, N° 8, Proposition 25] there is a unique highest root

α̃ =
∑
i∈I0

miαi(1.1)

with the property that if β =
∑

i∈I0
kiαi ∈ R then mi > ki for each i ∈ I0.

For each i ∈ I0 define λi ∈ E by 〈λi, αj〉 = δi,j for all j ∈ I0. The
elements {λi}i∈I0 are called the fundamental coweights of R. The coweight
lattice of R is P =

∑
i∈I0

Zλi, and elements λ ∈ P are called coweights of
R. A coweight λ ∈ P is said to be dominant if 〈λ, αi〉 > 0 for all i ∈ I0, and
we write P+ for the set of all dominant coweights. Let Q =

∑
α∈R Zα∨ be

the coroot lattice of R, and let Q+ =
∑

α∈R+ Nα∨. Note that Q ⊆ P , and
by [2, VI, § 1, N° 8, Proposition 25] we have α̃∨ ∈ P+.

For each α ∈ R and k ∈ Z let Hα;k = {x ∈ E | 〈x, α〉 = k}. We call
these sets affine hyperplanes, or simply hyperplanes. For each α ∈ R and
k ∈ Z let sα;k denote the orthogonal reflection in Hα;k. Thus sα;k(x) =
x − (〈x, α〉 − k)α∨ for all x ∈ E. Write sα in place of sα;0, si in place of
sαi

(for i ∈ I0), and let s0 = sα̃;1. Let W0 = W0(R) be the Weyl group
of R, and let W = W (R) be the affine Weyl group of R. Thus W0 is the
subgroup of GL(E) generated by S0 = {si}i∈I0 , and W is the subgroup of
Aff(E) generated by S = {si}i∈I . Both (W0, S0) and (W,S) are Coxeter
systems, and clearly W0 6 W . Given w ∈ W , we define the length `(w) of
w to be smallest k ∈ N such that w = si1 . . . sik

, with i1, . . . , ik ∈ I.
The extended affine Weyl group of R is W̃ (R) = W̃ = W0 n P . Since

W ∼= W0 n Q (see [2, VI, § 2, N° 1, Proposition 1]) and Q ⊆ P , we may
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RANDOM WALKS ON BUILDINGS 383

regard W as a subgroup of W̃ . Note that W̃ contains all translations by
elements of P , while W only contains those translations by elements of Q.

Remark 1.1. — We make the following comments for those readers not
so familiar with the non-reduced root systems. For each n > 1 there is
exactly one irreducible non-reduced root system (up to isomorphism) of
rank n, denoted by BCn. To describe this root system we may take E = Rn

with the usual inner product, and let R consist of the vectors ±ei,±2ei and
±ej ± ek for 1 6 i 6 n and 1 6 j < k 6 n. Let αi = ei − ei+1 for 1 6 i < n

and αn = en. Then B = {αi}i∈I0 is a base of R, and R+ consists of
the vectors ei, 2ei and ej ± ek for 1 6 i 6 n and 1 6 j < k 6 n. The
fundamental coweights are λi = e1 + · · · + ei for each 1 6 i 6 n. Note
that R∨ = R and Q = P . The subsystem R1 = {α ∈ R | 2α /∈ R} is
a root system of type Cn, and the subsystem R2 = {α ∈ R | 1

2α /∈ R}
is a root system of type Bn (with the convention that C1 = B1 = A1).
We have Q(R) = P (R) = Q(R1) ⊂ P (R1) (with strict inclusion), and so
W (R) = W (R1) but W̃ (R) 6= W̃ (R1).

1.2. The Coxeter Complex

There is a natural geometric realisation Σ = Σ(R) of the Coxeter complex
of W = W (R). Let H denote the family of the hyperplanes Hα;k, α ∈ R,
k ∈ Z, and define chambers of Σ to be open connected components of
E\

⋃
H∈HH. Since R is irreducible each chamber is an open (geometric)

simplex [2, V, § 3, N° 9, Proposition 8]. We call the extreme points of the
closure of chambers vertices of Σ, and we write V (Σ) for the set of all
vertices of Σ.

The set P of coweights of R is a subset of V (Σ), and we call elements of
P the good vertices of Σ. When R is reduced, P is the set of more familiar
special vertices of Σ [2, VI, § 2, N° 2, Proposition 3].

The choice of the base B = {αi}n
i=1 gives a natural choice of a funda-

mental chamber

C0 = {x ∈ E | 〈x, αi〉 > 0 for all i ∈ I0 and 〈x, α̃〉 < 1} .(1.2)

In the notation of (1.1), the vertices of C0 are the points {0}∪{λi/mi}i∈I0

[2, VI, § 2, N° 2]. There is a natural simplicial complex structure on Σ with
maximal simplices being the vertex sets of chambers of Σ, and simplices
being subsets of the maximal simplices. We define τ : V (Σ) → I to be
the unique labelling of Σ (as a simplicial complex) such that τ(0) = 0 and
τ(λi/mi) = i for each i ∈ I0.

TOME 57 (2007), FASCICULE 2



384 James PARKINSON

We write IP = {τ(λ) | λ ∈ P} ⊆ I. Let {mi}i∈I0 be as in (1.1), and
define m0 = 1. We have IP = {i ∈ I | mi = 1}, which shows that 0 ∈ IP
for all root systems, and that IP = {0} if R is non-reduced [15, Lemma 4.3].
This also shows that in the non-reduced case, and only in the non-reduced
case, there are special vertices which are not good vertices.

We define the fundamental sector of Σ to be the open simplicial cone

S0 = {x ∈ E | 〈x, αi〉 > 0 for all i ∈ I0}.(1.3)

The sectors of Σ are then the sets λ + wS0, where w ∈ W0 and λ ∈ P

(equivalently, the sectors are the sets w̃S0, w̃ ∈ W̃ ).
An automorphism of Σ is a bĳection ψ of E which maps chambers, and

only chambers, to chambers, with the property that chambers C and D

are adjacent if and only if ψ(C) is adjacent to ψ(D). We write Aut(Σ)
for the automorphism group of Σ. An automorphism ψ of Σ is called type
preserving if τ(v) = τ(ψ(v)) for all v ∈ V (Σ). By [17, Lemma 2.2] ψ ∈
Aut(Σ) is type preserving if and only if ψ ∈ W . Generally we have W0 <

W 6 W̃ 6 Aut(Σ) (with the possibility that W < W̃ and W̃ < Aut(Σ)).

1.3. Buildings and Regularity

Recall ([3]) that a building of type W is a nonempty simplicial complex
X which contains a family of subcomplexes called apartments such that:

(i) each apartment is isomorphic to the (simplicial) Coxeter complex
of W ,

(ii) given any two chambers of X there is an apartment containing
both, and

(iii) given any two apartments A and A′ that contain a common cham-
ber, there exists an isomorphism ψ : A → A′ fixing A∩A′ pointwise.

Since W is an affine Weyl group, X is called an affine building.
It is a consequence of this definition that X is a labellable simplicial

complex, and all the isomorphisms in the above definition may be taken
to be type preserving (this ensures that the labellings of X and Σ are
compatible).

Let V and C be the vertex and chamber sets of X , respectively (with
chambers being maximal simplices of X ). Chambers c and d are declared
to be i-adjacent (written c ∼i d) if and only if either c = d, or if all the
vertices of c and d are the same except for those of type i.

Throughout this paper we assume that our buildings are:

ANNALES DE L’INSTITUT FOURIER



RANDOM WALKS ON BUILDINGS 385

(i) locally finite, meaning that |I| <∞ and |{d ∈ C | d ∼i c}| <∞ for
each c ∈ C and i ∈ I,

(ii) regular, meaning that |{d ∈ C | d ∼i c}| is independent of c ∈ C for
each i ∈ I, and

(iii) thick, meaning that |{d ∈ C | d ∼i c}| > 3 for each c ∈ C and each
i ∈ I.

By [15, Theorem 2.4] we see that thickness and regularity are intimately
connected. Indeed, the only thick affine buildings of irreducible type which
may fail to be regular are those of dimension 1 (thus regularity is a very
weak hypothesis).

Since X is assumed to be regular, we may define numbers qi, i ∈ I,
called the parameters of the building, by qi + 1 = |{d ∈ C | d ∼i c}|.
These numbers satisfy qj = qi if sj = wsiw

−1 for some w ∈ W (see [15,
Corollary 2.2]), and by thickness qi > 1 for all i ∈ I. If w = si1 · · · sik

∈
W is a reduced expression (that is, `(w) = k) we define qw = qi1 · · · qik

,
which is independent of the particular reduced expression for w (see [15,
Proposition 2.1(i)]).

To each locally finite regular affine building of irreducible type we asso-
ciate an irreducible root system R (depending on the parameter system of
the building) as follows (see [15, Appendix]):

(i) If X is a regular Ã1 building with q0 = q1, then we take R = A1

(these buildings are homogeneous trees).
(ii) If X is a regular Ã1 building with q0 6= q1, then we take R = BC1

(these buildings are semi-homogeneous trees).
(iii) If X is a regular C̃n building with n > 2 and q0 = qn, then we take

R = Cn.
(iv) If X is a regular C̃n building with n > 2 and q0 6= qn, then we take

R = BCn.
(v) If X is a regular building of type X̃n, where X = A and n > 2, or

X = B and n > 3, or X = D and n > 4, or X = E and n = 6, 7
or 8, or X = F and n = 4, or X = G and n = 2, then we take
R = Xn.

The choices above are made to ensure that the coweight lattice P of R
preserves the parameter system of X in the sense that if v ∈ V (Σ) then
qτ(v) = qτ(v+λ) for all λ ∈ P . Thus, for example, (iv) above is motivated by
the general parameter system of a C̃n building (embodied in the Coxeter
graph):

TOME 57 (2007), FASCICULE 2
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... 44q0 q1 qnq1 q1 q1 q1

Figure 1.1

(see [15, Appendix]). If we take R = Cn, then by the definition of the type
map (see Section 1.2) and the fact that mn = 1 (see (1.1) and [2, Plate III])
we have τ(λn) = n. Thus in general we have qτ(λn) = qn 6= q0 = qτ(0). If
we instead choose R = BCn, then P = Q, and so τ(v + λ) = τ(v) for all
v ∈ V (Σ) and λ ∈ P (and hence qτ(v) = qτ(v+λ)).

Definition 1.2. — Let X be a regular affine building with associated
root system R and vertex set V . A vertex x ∈ V is said to be good if and
only if τ(x) ∈ IP (recall that IP = {τ(λ) | λ ∈ P}). Write VP for the set of
all good vertices of X .

It is clear that VP is a subset of the more familiar special vertices of X .
In fact if R is reduced then VP equals the set of special vertices. If R is
non-reduced (so R is of type BCn for some n > 1), then VP is the set of all
type 0 vertices of X (whereas the special vertices are those with types 0
or n).

1.4. The Algebra A

In this section we describe a commutative algebra A of vertex set aver-
aging operators. This algebra has been studied in detail in [15], where it is
shown that A is isomorphic to the center of an appropriate affine Hecke
algebra.

Definition 1.3. — Let A be an apartment of X . An isomorphism
ψ : A → Σ is called type rotating if and only if it is of the form ψ = w ◦ψ0,
where ψ0 : A → Σ is a type preserving isomorphism, and w ∈ W̃ .

Definition 1.4. — Given x ∈ VP and λ ∈ P+, let Vλ(x) be the set
of all y ∈ VP such that there exists an apartment A containing x and y,
and a type rotating isomorphism ψ : A → Σ such that ψ(x) = 0 and
ψ(y) = λ. Equivalently, y ∈ Vλ(x) if and only if there exists an apartment
A containing x and y and a type rotating isomorphism ψ : A → Σ such
that ψ(x) = 0 and ψ(y) ∈W0λ.

The requirement that ψ is type rotating in Definition 1.4 ensures that if
y ∈ Vλ(x) ∩ Vµ(x) then λ = µ. Indeed, in [15, Proposition 5.6] we showed
that for each x ∈ VP , {Vλ(x)}λ∈P+ forms a partition of VP .
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Remark 1.5. — To get a feel for Definition 1.4 in a special case, suppose
that X is a homogeneous tree with degree q+1. Thus R has type A1, and
we may take R = {α,−α} where α = e1 − e2 (the underlying vector space
here is E = {ξ ∈ R2 | ξ1 + ξ2 = 0}). Taking B = {α} we have λ1 = α

2 and
P+ = {kλ1 | k ∈ N}. We have VP = V (all vertices are ‘good’), and writing
Vk(x) in place of Vkλ1(x), we have

Vk(x) = {y ∈ V | d(x, y) = k},

where d : V × V → N is the usual graph metric.
Note that in this example all isomorphisms ψ : A → Σ where A is

an apartment of X are type rotating. To understand why the type ro-
tating hypothesis becomes important, suppose that X is a regular Ã2

building, and take vertices x, y ∈ VP with y ∈ Vλ1(x). Thus there ex-
ists an apartment A containing x and y and a type rotating isomorphism
ψ : A → Σ with ψ(x) = 0 and ψ(y) = λ1. The map ϕ : Σ → Σ given by
a1λ1+a2λ2 7→ a2λ1+a1λ2 is an automorphism of Σ, and so ϕ◦ψ : A → Σ is
an isomorphism (however it is not type rotating). Notice that (ϕ◦ψ)(x) = 0
and (ϕ ◦ψ)(y) = λ2, and so if we drop the type rotating hypothesis in Def-
inition 1.4 we would conclude that y ∈ Vλ1(x) ∩ Vλ2(x).

For λ ∈ P let λ∗ = −w0λ, where w0 is the unique longest element of W0.
In [15, Proposition 5.8] we showed that if λ ∈ P+ then λ∗ ∈ P+, and that
y ∈ Vλ(x) if and only if x ∈ Vλ∗(y). Note that ∗ is trivial unless w0 6= −1,
that is, unless R = An, D2n+1 or E6 for some n > 2 (see [2, Plates I-IX]).
For example, the map ϕ from Remark 1.5 is λ 7→ λ∗.

In [15, Theorem 5.15] we showed that |Vλ(x)| = |Vλ(y)| for all x, y ∈ VP

and λ ∈ P+, and we denote this common value by Nλ (see (1.5) for a
formula for Nλ). For each λ ∈ P+ define an operator Aλ, acting on the
space of functions f : VP → C, by

(Aλf)(x) =
1
Nλ

∑
y∈Vλ(x)

f(y) for all x ∈ VP

(thus (Aλf)(x) is the average value of f over the set Vλ(x)). The linear
span A of {Aλ}λ∈P+ over C is a commutative algebra [15, Theorem 5.24].

Remark 1.6. — (i) In the situation of the first example of Remark 1.5,
writing Nk in place of Nkλ1 we have N0 = 1 and Nk = (q+1)qk−1 for k > 1.
In this case the operators Ak = Akλ1 have been studied by many authors
(see [7, p.57], [18] or [20, § III.19.C]). They satisfy the simple recurrence

AkA1 =
q

q + 1
Ak+1 +

1
q + 1

Ak−1 for k > 1,

TOME 57 (2007), FASCICULE 2
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although for general affine buildings such a formula is not readily available.
(ii) Let AQ denote the linear span (over C) of {Aλ | λ ∈ Q ∩ P+}. It

is easily seen that AQ is a subalgebra of A . In the case when X is the
Bruhat-Tits building of a group G of p-adic type with maximal compact
subgroup K (as in [10, § 2.4–2.7]), AQ is isomorphic to L (G,K), the space
of continuous compactly supported bi-K-invariant functions on G.

1.5. Isotropic Random Walks

As mentioned in the introduction, we call a random walk on VP with tran-
sition probability matrix A = (p(x, y))x,y∈VP

isotropic if p(x, y) = p(x′, y′)
whenever y ∈ Vλ(x) and y′ ∈ Vλ(x′) for some λ ∈ P+. In particular,
each operator Aλ, λ ∈ P+, represents an isotropic random walk with
transition matrix (also called Aλ) given by Aλ = (pλ(x, y))x,y∈VP

, where
pλ(x, y) = N−1

λ if y ∈ Vλ(x) and pλ(x, y) = 0 otherwise.
It is easily seen that a random walk is isotropic if and only if its transition

matrix (operator) A is as in (0.1). To avoid triviality we always assume that
aλ > 0 for at least one λ 6= 0 (so that A is not the identity). In this paper
we will prove a local limit theorem, a rate of escape theorem, and a central
limit theorem for such random walks, generalising the work of [18] (where
homogeneous trees are studied) and [5] (where Ãn buildings are studied).
The main techniques we use are those of spherical harmonic analysis, as
recalled in the following sections. We note that isotropic random walks on
Ã2 buildings have also been studied by Lindlbauer and Voit [9] where more
hypergroup oriented techniques are used (see [15, §7] for a discussion of
the hypergroups that arise in the setting of general affine buildings).

In the case of Remark 1.6(ii), the theorems we prove in this paper can
be translated into theorems concerning probability measures on groups of
p-adic type. We briefly discuss this in Remark 2.19.

1.6. The Algebra Homomorphisms h : A → C

Our proofs of the local limit theorem, rate of escape theorem and central
limit theorem rely heavily on two formulae for the algebra homomorphisms
h : A → C. In this section we recall these formulae from [16]. The first
formula is in terms of the Macdonald spherical functions, and the second
is in terms of an integral over the boundary of X .
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To simultaneously deal with the reduced and non-reduced cases we in-
troduce the following notation. Let R1 = {α ∈ R | 2α /∈ R}, R2 = {α ∈
R | 1

2α /∈ R} and R3 = R1 ∩ R2. Notice that R1 = R2 = R3 = R if R is
reduced. For α ∈ R2, write qα = qi if |α| = |αi| (if |α| = |αi| then neces-
sarily α ∈ R2). Since qj = qi whenever sj = wsiw

−1 for some w ∈ W (see
[15, Corollary 2.2]), it follows that qi = qj whenever |αi| = |αj |, and so the
definition of qα is unambiguous. Note that R = R3 ∪ (R1\R3) ∪ (R2\R3)
where the union is disjoint. Define a set of numbers {τα}α∈R related to the
numbers {qα}α∈R2 by

τα =


qα if α ∈ R3

q0 if α ∈ R1\R3

qαq
−1
0 if α ∈ R2\R3.

It is convenient to define τα = 1 if α /∈ R. Note that τα = qα if R is reduced
(and many subsequent formulae will simplify in this case).

If u ∈ Hom(P,C×) we write uλ in place of u(λ). The homomorphism
r ∈ Hom(P,C×) defined by

rλ =
∏

α∈R+

τ
1
2 〈λ,α〉

α for all λ ∈ P(1.4)

plays an important role. By [16, Proposition 1.5] and [16, Proposition A.1]
we have

Nλ = Nλ∗ =
W0(q−1)
W0λ(q−1)

r2λ(1.5)

where W0λ = {w ∈ W0 | wλ = λ} and where X(q−1) =
∑

w∈X q−1
w for

subsets X ⊆W0.
For w ∈W0 and u ∈ Hom(P,C×) we write wu ∈ Hom(P,C×) for the ho-

momorphism with (wu)λ = uwλ for all λ ∈ P . Following [10, Chapter IV],
for λ ∈ P+ and u ∈ Hom(P,C×) we define the Macdonald spherical func-
tion Pλ(u) by

Pλ(u) =
r−λ

W0(q−1)

∑
w∈W0

c(wu)uwλ where

c(u) =
∏

α∈R+

1− τ−1
α τ

−1/2
α/2 u−α∨

1− τ
−1/2
α/2 u−α∨

,

(1.6)

provided that the denominators of the c(wu) functions do not vanish. Since
Pλ(u) is a Laurent polynomial (see [16, (1.8)]), these singular cases can
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be obtained from the general formula by taking an appropriate limit (see
Lemma 2.9 for one example).

For u ∈ Hom(P,C×), let hu : A → C be the linear map with hu(Aλ) =
Pλ(u) for each λ ∈ P+. By [16, Proposition 2.1] every algebra homomor-
phism h : A → C is of the form h = hu for some u ∈ Hom(P,C×), and
hu′ = hu if and only if u′ = wu for some w ∈ W0. We call the formula
hu(Aλ) = Pλ(u) the Macdonald formula for the algebra homomorphisms
h : A → C.

Remark 1.7. — (i) In the situation of homogeneous trees from Re-
marks 1.5 and 1.6(i), if u ∈ Hom(P,C×), then writing z = uλ1 ∈ C×

we have

hu(Ak) =
q−k/2

1 + q−1

(
1− q−1z−2

1− z−2
zk +

1− q−1z2

1− z2
z−k

)
provided that z 6= ±1 (with the values at z = ±1 found by taking ap-
propriate limits). More generally, in the Ãn case the functions Pλ(u) are
essentially the Hall-Littlewood polynomials of [12] (see [4]).

(ii) At times the BCn case (see Remark 1.1) requires separate treatment.
Recall the description of the parameter system from Figure 1.1. For u ∈
Hom(P,C×), by writing ti = uei for 1 6 i 6 n (noting that in this case
ei ∈ P for each 1 6 i 6 n), we have

c(u) =
{ n∏

i=1

(1− a−1t−1
i )(1 + b−1t−1

i )
1− t−2

i

}

×
{ ∏

16j<k6n

(1− q−1
1 t−1

j tk)(1− q−1
1 t−1

j t−1
k )

(1− t−1
j tk)(1− t−1

j t−1
k )

}
,

where a =
√
qnq0 and b =

√
qn/q0 (see [16, Section 5.2]).

We now recall the second formula for the homomorphisms h : A → C. A
sector of X is a subcomplex S ⊂ X such that there exists an apartment
A with S ⊂ A, and an isomorphism ψ : A → Σ such that ψ(S) is a sector
of Σ. The base vertex of S is ψ−1(λ), where λ ∈ P is the base vertex of
ψ(S). If S and S ′ are sectors of X with S ′ ⊆ S, then we say that S ′ is a
subsector of S. The boundary Ω of X is the set of equivalence classes of
sectors, where we declare two sectors to be equivalent if and only if they
contain a common subsector. Given x ∈ VP and ω ∈ Ω there exists a unique
sector, denoted Sx(ω), in the class ω with base vertex x [17, Lemma 9.7].
For each x ∈ VP , ω ∈ Ω and λ ∈ P+, the intersection Vλ(x) ∩ Sx(ω)
contains exactly one vertex, denoted vx

λ(ω). By [16, Theorem 3.4], for each
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ω ∈ Ω and x, y ∈ VP there exists a coweight h(x, y;ω) ∈ P such that

vx
µ(ω) = vy

µ−h(x,y;ω)(ω)(1.7)

for µ ∈ P+ with each 〈µ, αi〉, i ∈ I0, sufficiently large. Indeed, if y ∈
Vλ(x) then (1.7) holds, for all ω ∈ Ω, whenever µ − Πλ ⊂ P+ (see [16,
Theorem 3.6]). Here Πλ ⊂ P is the saturated set with highest coweight λ
relative to the partial order on P given by µ � λ if and only if λ− µ ∈ Q+

(recall that Q+ is the N-span of {α∨ | α ∈ R+}). We have

Πλ = {wν | ν ∈ P+, ν � λ,w ∈W0}

(see [8, Lemma 13.4B] for example). The vectors h(x, y;ω) are generalisa-
tions of the so called horocycle numbers for homogeneous trees.

By [16, Proposition 3.5], for all ω ∈ Ω and all x, y, z ∈ VP we have the
cocycle relation

h(x, y;ω) = h(x, z;ω) + h(z, y;ω).(1.8)

Thus h(x, x;ω) = 0 and h(x, y;ω) = −h(y, x;ω) for all ω ∈ Ω and all
x, y ∈ VP .

There is a natural topology on Ω (discussed in [16]) in which for each
x ∈ VP the sets Ωx(y) = {ω ∈ Ω | y ∈ Sy(ω)}, y ∈ VP , form a basis
of open and closed sets (this topology is independent of the particular
x ∈ VP chosen). For each x ∈ VP there is a unique regular Borel probability
measure νx on Ω such that νx(Ωx(y)) = N−1

λ if y ∈ Vλ(x). For x, x′ ∈ VP

the measures νx and νx′ are mutually absolutely continuous with Radon-
Nikodym derivative (dνx′/dνx)(ω) = r2h(x,x′;ω) (see [16, Theorem 3.17]).

The integral formula for the algebra homomorphisms h : A → C is

Pλ(u) = hu(Aλ) =
∫

Ω

(ur)h(x,y;ω)dνx(ω)(1.9)

for any x, y ∈ VP with y ∈ Vλ(x). Equality of the Macdonald and integral
formulae is proved in [16, Corollary 3.23 and Theorem 6.2].

1.7. The Plancherel measure

The Plancherel measure of A is instrumental in our proof of the local
limit theorem. In this section we recall some details about the Plancherel
measure and the `2-spectrum of A from [10] (see also [16]).

It is easy to see that each A ∈ A maps `2(VP ) into itself, and for λ ∈ P+

and f ∈ `2(VP ) we have ‖Aλf‖2 6 ‖f‖2 (see [4, Lemma 4.1] for a proof in
a similar context). So we may regard A as a subalgebra of the C∗-algebra
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L (`2(VP )) of bounded linear operators on `2(VP ). The facts that y ∈ Vλ(x)
if and only if x ∈ Vλ∗(y), and Nλ∗ = Nλ, imply that A∗λ = Aλ∗ , and so the
adjoint A∗ of any A ∈ A is also in A .

Let A2 denote the completion of A with respect to ‖ · ‖, the `2-operator
norm. So A2 is a commutative C∗-algebra. The algebra homomorphisms
h : A2 → C are precisely the extensions h = h̃u of those algebra homomor-
phisms hu : A → C which are continuous with respect to the `2-operator
norm. Let us describe the latter homomorphisms.

The analysis here splits into two cases. Following [10, Chapter V] we call
the situation where τα > 1 for all α ∈ R the standard case, and the situation
where τα < 1 for some α ∈ R the exceptional case (the use of the word
“exceptional” here is unrelated to the so called exceptional root systems).
It is immediate from the definition of the numbers τα that the exceptional
case occurs exactly when R = BCn for some n > 1 and qn < q0 (see [16,
Lemma 5.1]). In particular, if R is reduced then we are in the standard
case.

Let us consider the standard case first. Let

U = {u ∈ Hom(P,C×) : |uλ| = 1 for all λ ∈ P}.

In the standard case the algebra homomorphism hu : A → C is contin-
uous with respect to the `2-operator norm if and only if u ∈ U (see [16,
Corollary 5.4]). If h = h̃u, u ∈ U, we write Â(u) = h(A) for A ∈ A2. In
particular, Âλ(u) = Pλ(u) for u ∈ U.

In the standard case, let π be the measure on U given by dπ(u) =
W0(q

−1)
|W0| |c(u)|−2du, where du is normalised Haar measure on U (note that

in [16] we write π0 instead of π). Then for A ∈ A2 we have

(Aδy)(x) =
∫

U
Â(u)Pλ(u)dπ(u) whenever y ∈ Vλ(x)

where δy(x) = 1 if x = y and δy(x) = 0 otherwise (see [16, Theorem 5.2
and Corollary 5.5]). The measure π is essentially the Plancherel measure
of A (more precisely, the Plancherel measure is the image of the measure
π under the homeomorphism $ : U/W0 → Hom(A2,C), u 7→ h̃u).

Let us consider the exceptional case, and so R = BCn for some n > 1
and qn < q0. For u ∈ Hom(P,C×), recall the definition of the numbers ti =
ti(u), 1 6 i 6 n, from Remark 1.7(ii). We use the isomorphism U → Tn,
u 7→ (t1, . . . , tn) to identify U with Tn (here T = {t ∈ C : |t| = 1}). Define
U′ = {−b} × Tn−1, and write U = U ∪ U′ (recall from Remark 1.7(ii) that
b =

√
qn/q0). Let dt = dt1 · · · dtn, where dti is normalised Haar measure
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on T. Let φ0(u) = c(u)c(u−1), and let

φ1(u) = lim
t1→−b

φ0(u)
1 + b−1t1

and dt′ = dδ−b(t1)dt2 · · · dtn.

Note that this limit exists since there is a factor 1 + b−1t1 in c(u−1) (see
Remark 1.7(ii)).

In the exceptional case, let π be the measure on U = U ∪ U′ given by
dπ(u) = W0(q

−1)
|W0|

dt
φ0(u) on U and dπ(u) = W0(q

−1)
|W ′

0|
dt′

φ1(u) on U′, where W ′
0

is the Coxeter group Cn−1 (with C1 = A1 and C0 = {1}). Then for all
A ∈ A2,

(Aδy)(x) =
∫

U

Â(u)Pλ(u)dπ(u) whenever y ∈ Vλ(x)

(see [16, Theorem 5.7 and Corollary 5.8]).
To conveniently state formulae in both the standard and exceptional

cases simultaneously, we write U = U in the standard case and (as above)
U = U ∪ U′ in the exceptional case. Thus (in all cases), for A ∈ A2,

(Aδy)(x) =
∫

U

Â(u)Pλ(u)dπ(u) whenever y ∈ Vλ(x).(1.10)

Remark 1.8. — The form of the Plancherel measure in the exceptional
case requires that q1b > 1, which follows from a theorem of D. Higman
since the numbers qi, i ∈ I, are the parameters of a building (see [16,
Lemma 5.6]). We note that for the hypergroups associated to the BCn

case the Plancherel measure is supported on U = U∪U′ ∪U′′ ∪ · · · , where
there are k components, with k defined by qk−1

1 b > 1 > qk−2
1 b. See [10,

Theorem 5.2.10].

2. The Local Limit Theorem

The basic approach for the local limit theorem is as follows. Let A be the
transition operator for an isotropic random walk with matrix
(p(x, y))x,y∈VP

, as in (0.1). Then

p(k)(x, y) = (Akδy)(x) for all x, y ∈ VP and k ∈ N.(2.1)

Since ‖A‖ 6 1, we may regard A as in A2 and so hu(A), u ∈ U , is defined.
Writing Â(u) = hu(A) for u ∈ U , we have Âλ(u) = Pλ(u) and so

Â(u) =
∑

λ∈P+

aλPλ(u).(2.2)
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By (2.1) and (1.10) we have

p(k)(x, y) =
∫

U

(
Â(u)

)k
Pλ(u)dπ(u) whenever y ∈ Vλ(x),(2.3)

and we will prove the local limit theorem by determining the asymptotic
behaviour of the integral in (2.3) as k →∞.

Lemma 2.1. — Let λ ∈ P+, λ 6= 0, x ∈ VP , and y ∈ Vλ(x). Then

(i) there exists z ∈ Vλ(x) ∩ Vα̃∨(y), and
(ii) with z as in (i), there exists ω ∈ Ω such that h(y, z;ω) = α̃∨.

Proof. — Note first that if c and d are distinct i-adjacent chambers,
i ∈ IP , with type i vertices u and v respectively, then v ∈ Vα̃∨(u) (and
u ∈ Vα̃∨(v)). To see this, let A be any apartment containing c and d, and
let ψ : A → Σ be a type rotating isomorphism such that ψ(u) = 0 and
ψ(c) = C0. Since ψ(d) is 0-adjacent to ψ(c) we have ψ(d) = sα̃;1(C0), and
so ψ(v) = sα̃;1(0) = α̃∨. Thus v ∈ Vα̃∨(u).

Part (i) now follows exactly as in [5, Lemma 5.1]; we include the proof
for completeness. Let A be an apartment containing x and y, and let
c0, c1, . . . , cm be a gallery (that is, a sequence of adjacent chambers with
ci−1 6= ci for 1 6 i 6 m) with x ∈ c0 and y ∈ cm and m minimal. Let
π be the panel cm\{y}, and let c′ be the chamber of A with c′ 6= cm and
π ⊂ c′ (so c′ = cm−1 if m > 1). Let H be the wall of A determined by π,
and let A+ be the half apartment of A determined by H containing c′.
By thickness there exists a chamber d 6= c′, cm with π ⊂ d, and writing z
for the vertex in d\π we have z ∈ Vα̃∨(y) by the above discussion. We now
show that z ∈ Vλ(x). By the proof of [17, Lemma 9.4] there exists an apart-
ment B containing A+ ∪ d. Let ρA,c′ be the retraction of X onto A with
center c′ (see [3, § IV.3]), and so the map ϕ = ρA,c′ |B : B → A is a type
preserving isomorphism with ϕ(x) = x and ϕ(z) = y (since ϕ(d) = cm).
Since y ∈ Vλ(x) there exists a type rotating isomorphism ψ : A → Σ with
ψ(x) = 0 and ψ(y) = λ (see [15, Proposition 5.6(iii)]), and so the map
φ = ψ ◦ ϕ : B → Σ is a type rotating isomorphism with φ(x) = 0 and
φ(z) = λ. Thus z ∈ Vλ(x).

Part (ii) is a consequence of the following fact. Let u, v ∈ VP with v ∈
Vλ(u). Then there exists ω ∈ Ω such that h(u, v;ω) = λ. To see this, let
A be any apartment containing u and v, and let ψ : A → Σ be a type
rotating isomorphism such that ψ(u) = 0 and ψ(v) = λ. Let ω be the
class of ψ−1(S0). Since ψ−1(S0) = Su(ω) and ψ−1(λ + S0) = Sv(ω), we
have ψ−1(µ) = vu

µ(ω) = vv
µ−λ(ω) for sufficiently large µ ∈ P+, and so

h(u, v;ω) = λ. �
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Recall that U = {u ∈ Hom(P,C×) : |uλ| = 1 for all λ ∈ P}. Let

UQ = {u ∈ Hom(P,C×) | uγ = 1 for all γ ∈ Q}.

Thus UQ is isomorphic to the dual of the finite abelian group P/Q, and so
UQ

∼= P/Q. Hence UQ is finite, and UQ ⊂ U.

Proposition 2.2. — The set W0α̃
∨ spans Q over Z. Thus if

u ∈ Hom(P,C×) and uwα̃∨ = 1 for all w ∈W0, then u ∈ UQ.

Proof. — Let Q′ denote the Z-span of W0α̃
∨. We show that R∨ ⊂ Q′,

from which it follows that Q = Q′, hence the result. Suppose first that
R is reduced, and let β ∈ R. By [2, VI, § 1, N°3, Proposition 11] all
roots of a given length are conjugate under W0, and so if |β| = |α̃| then
β∨ ∈ Q′. Suppose that |β| 6= |α̃|. Since at most 2 root lengths occur in R

(see [8, Lemma 10.4.C]), and since R is irreducible, there exists v, v′ ∈W0

such that 〈vα̃, v′β〉 6= 0 (for otherwise W0α̃ ∪W0β is a partition of R into
nonempty pairwise orthogonal sets). Thus 〈wα̃, β〉 6= 0, where w = v′−1v,
and so by [2, VI, § 1, N° 8, Proposition 25(iv)] we have 〈wα̃∨, β〉 = 1
or 〈wα̃∨, β〉 = −1, depending on if w−1β ∈ R+ or w−1β ∈ R−. Since
sβ(wα̃∨) = wα̃∨ − 〈wα̃∨, β〉β∨ we have β∨ ∈ Q′.

Finally, if R is non-reduced, then Q(R) = Q(R1) and W0(R) = W0(R1).
Since α̃ is also the highest root of the reduced root system R1 (with respect
to the natural base), we have Q′(R) = Q′(R1), and so Q′ = Q in all
cases. �

Remark 2.3. — Since α̃ is a long root [8, Lemma 10.4.D] (with the
convention that all roots are called long if there is only one root length),
Proposition 2.2 is true whenever α̃ is replaced with an arbitrary long root α
(for W0α = W0α̃). However for general α ∈ R the proposition fails, despite
the fact that W0α

∨ spans E (by [8, Lemma 10.4.B]). For example let R be
the standard B2 root system, and take α = e2. Then the Z-span of W0α

∨

is 2Z2, whereas Q = Z2.

As usual, if u, v ∈ Hom(P,C×), define uv ∈ Hom(P,C×) by (uv)λ =
uλvλ for all λ ∈ P .

Lemma 2.4. — Let u ∈ U and λ ∈ P+. Then |Pλ(u)| 6 Pλ(1), and
equality holds for λ 6= 0 if and only if u ∈ UQ. Moreover, if u0 ∈ UQ then
Pλ(u0u) = uλ

0Pλ(u) for all u ∈ Hom(P,C×).

Proof. — (cf. [5, Lemma 5.3]) Let x, y ∈ VP be any vertices with y ∈
Vλ(x). The inequality is clear from the integral formula (1.9). Suppose
equality holds for some λ 6= 0. Write f(ω) for the integrand in (1.9).
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Then f is a continuous function on Ω and f(ω) 6= 0 for all ω ∈ Ω. So
|
∫
Ω
f(ω)dνx(ω)| =

∫
Ω
|f(ω)|dνx(ω) implies that f(ω)/|f(ω)| is constant,

since νx(O) > 0 for all non-empty open sets O ⊂ Ω. Thus uh(x,y;ω) takes
the constant value Pλ(u)/Pλ(1) for all ω ∈ Ω. Let z be as in Lemma 2.1(i).
Since the value of the integral in (1.9) is unchanged if y is replaced by z,
it follows that uh(x,y;ω) = uh(x,z;ω) for all ω ∈ Ω. Choosing ω ∈ Ω as in
Lemma 2.1(ii) and using the cocycle relations we have uα̃∨ = uh(y,z;ω) = 1.
Furthermore, since the value of the integral in (1.9) is unchanged if u is
replaced by wu for any w ∈ W0, then uwα̃∨ = 1 for all w ∈ W0. It follows
from Proposition 2.2 that u ∈ UQ.

Conversely, if u0 ∈ UQ and y ∈ Vλ(x), then u
h(x,y;ω)
0 = uλ

0 for all ω ∈ Ω,
because λ − h(x, y;ω) ∈ Q (see [16, Theorem 3.4(ii)]). Thus it follows
from (1.9) that Pλ(u0u) = uλ

0Pλ(u) for all u ∈ Hom(P,C×). In particular,
|Pλ(u0)| = Pλ(1). �

In the following series of estimates we will write C for a positive constant,
whose value may vary from line to line.

For each ω ∈ Ω, x, y ∈ VP and 1 6 j 6 n, define

hj(x, y;ω) = 〈h(x, y;ω), αj〉.

Lemma 2.5. — Let x ∈ VP and λ ∈ P+. Then |h(x, y;ω)| 6 |λ| and
|hj(x, y;ω)| 6 C|λ| for all ω ∈ Ω, all y ∈ Vλ(x), and all j = 1, . . . , n.

Proof. — Recall from [16, Theorem 3.4(ii)] that h(x, y;ω) ∈ Πλ for all
ω ∈ Ω and y ∈ Vλ(x). By [13, (2.6.2)] we have that Πλ ⊂ conv(W0λ) (the
usual convex hull in E here), and since |wλ| = |λ| for all w ∈ W0, this
implies that |h(x, y;ω)| 6 |λ| for all ω ∈ Ω and for all y ∈ Vλ(x). We have
|〈h(x, y;ω), αj〉| 6 |h(x, y;ω)||αj |, proving the final claim. �

Remark 2.6. — There is a natural graph with vertex set VP and vertices
x, y ∈ VP joined by an edge if and only if y ∈ Vλi

(x) for some i ∈ I0. In
this graph we have d(x, y) =

∑n
i=1〈λ, αi〉 if y ∈ Vλ(x). Lemma 2.5 shows

that |h(x, y;ω)| and |hj(x, y;ω)| are bounded by Cd(x, y).

Notation. — Let θ1, . . . , θn ∈ R and write θ = θ1α1 + · · · + θnαn (so
θ ∈ E). Write eiθ for the element of Hom(P,C×) with (eiθ)λ = ei〈λ,θ〉 for
all λ ∈ P+. With this notation (1.9) gives

Pλ(eiθ) =
∫

Ω

rh(x,y;ω)ei〈h(x,y;ω),θ〉dνx(ω) for all y ∈ Vλ(x),(2.4)
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and since Pλ(w−1eiθ) = Pλ(eiθ) for all w ∈W0, it follows that

Pλ(eiθ) =
∫

Ω

rh(x,y;ω)ei〈h(x,y;ω),wθ〉dνx(ω) for all w ∈W0, y ∈ Vλ(x).

(2.5)

Corollary 2.7. — For all λ ∈ P+, Pλ(eiθ) = Pλ(1)(1 +Eλ(θ)), where
|Eλ(θ)| 6 |λ||θ|.

Proof. — We have

|Pλ(eiθ)− Pλ(1)| 6
∫

Ω

rh(x,y;ω)|ei〈h(x,y;ω),θ〉 − 1|dνx(ω),

and the result follows from Lemma 2.5 since |eiz−1| 6 |z| for all z ∈ R. �

Let λ ∈ P+ and y ∈ Vλ(x). For each 1 6 j, k 6 n define

bλj,k =
1
2

∫
Ω

hj(x, y;ω)hk(x, y;ω)rh(x,y;ω)dνx(ω).(2.6)

This is independent of the particular pair x, y ∈ VP with y ∈ Vλ(x), for by
(2.4) we have

∂2

∂θj∂θk
Pλ(eiθ)

∣∣∣∣
θ=0

= −
∫

Ω

hj(x, y;ω)hk(x, y;ω)rh(x,y;ω)dνx(ω).

(Indeed any expression
∫
Ω
p(h1(x, y;ω), . . . , hn(x, y;ω))rh(x,y;ω)dνx(ω),

where p is a polynomial, is independent of the particular pair x, y ∈ VP

with y ∈ Vλ(x)).

Lemma 2.8. — Let λ ∈ P+, and θ1, . . . , θn ∈ R, and as usual write
θ = θ1α1 + · · ·+ θnαn. Then

Pλ(eiθ) = Pλ(1)−
n∑

j,k=1

bλj,kθjθk +Rλ(θ)(2.7)

where |Rλ(θ)| 6 C|λ|3|θ|3Pλ(1). Furthermore,
∑n

j,k=1 b
λ
j,kθjθk > 0, and

when λ 6= 0, equality holds if and only if θ = 0.

Proof. — For ϕ ∈ R we have eiϕ = 1 + iϕ− 1
2ϕ

2 +R(ϕ) where |R(ϕ)| 6
1
6 |ϕ|

3. Applying this to ϕ = 〈h(x, y;ω), θ〉 and using (2.4) we have

Pλ(eiθ) = Pλ(1) + i

∫
Ω

〈h(x, y;ω), θ〉rh(x,y;ω)dνx(ω)

− 1
2

∫
Ω

〈h(x, y;ω), θ〉2rh(x,y;ω)dνx(ω) +Rλ(θ),

where |Rλ(θ)|6 1
6 |〈h(x, y;ω), θ〉|3Pλ(1)6 1

6 |h(x, y;ω)|3|θ|3Pλ(1). The bound
for |Rλ(θ)| follows from Lemma 2.5.
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We claim that for all j = 1, . . . , n and for all y ∈ VP ,∫
Ω

hj(x, y;ω)rh(x,y;ω)dνx(ω) = 0.

To see this, let j ∈ {1, . . . , n} and set θ = θjαj (that is, θk = 0 for all
k 6= j). By differentiating (2.5) with respect to θj , and then evaluating at
θj = 0, firstly with w = 1 and secondly with w = sj , we see that∫

Ω

hj(x, y;ω)rh(x,y;ω)dνx(ω) = −
∫

Ω

hj(x, y;ω)rh(x,y;ω)dνx(ω),

proving the claim. Thus (2.7) holds, and
∑n

j,k=1b
λ
j,kθjθk > 0. If equality

holds, then ∫
Ω

〈h(x, y;ω), θ〉2rh(x,y;ω)dνx(ω) = 0.

Thus 〈h(x, y;ω), θ〉 = 0 for almost all ω ∈ Ω, and thus for all ω ∈ Ω. Thus,
since 〈h(x, y;ω), tθ〉 = 0 for all t ∈ R and ω ∈ Ω, we have Pλ(ei(tθ)) = Pλ(1)
for all t ∈ R by (2.4), and so ei(tθ) ∈ UQ for all t ∈ R by Lemma 2.4. Thus
θ = 0 since |UQ| <∞. �

Lemma 2.9. — There exists a polynomial p(x1, . . . , xn) of degree at
most M such that

Pλ(1) = r−λp(〈λ, α1〉, . . . , 〈λ, αn〉)(2.8)

for all λ ∈ P+, where M > 0 is some integer depending only on the
underlying root system. Furthermore, (by thickness) there exists some q > 1
such that

Pλ(1) 6 C(|λ|+ 1)Mq−|λ|.(2.9)

Proof. — Assuming that u−α∨ 6= 1 for any α ∈ R+
2 , by (1.6) and the

definition of the numbers τα we have

c(u) =
∏

α∈R+
2

(1− τ−1
2α τ

−1/2
α u−α∨/2)(1 + τ

−1/2
α u−α∨/2)

1− u−α∨
.(2.10)

Write σ = λ1 + · · ·+ λn. It follows from [2, VI, § 3, N° 3, Proposition 2]
that ∏

α∈R+
2

(1− u−wα∨) = (−1)`(w)uσ−wσ
∏

α∈R+
2

(1− u−α∨)

for all w ∈W0, and so by (1.6) and (2.10) we have

Pλ(u) = r−λ F (λ)∏
α∈R+

2
(1− u−α∨)

(2.11)
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where F (λ) equals 1
W0(q−1) times

∑
w∈W0

{
(−1)`(w)uwλ+wσ−σ

∏
α∈R+

2

(1− τ−1
2α τ

−1/2
α u−wα∨/2)(1+τ−1/2

α u−wα∨/2)
}
.

We know that Pλ(u) is a Laurent polynomial in u1, . . . , un, and so (2.8)
follows from (2.11) by repeated applications of L’Hôpital’s rule. The in-
equality (2.9) follows from Proposition 3.3(ii) and the proof of Proposi-
tion 3.3(iv) in Section 3. �

Let A be as in (0.1) and Â(u) = hu(A) be as in (2.2). It follows from
Lemma 2.5 that |bλj,k| 6 C|λ|2Pλ(1), and thus the inequality (2.9) implies
that

∑
λ∈P+ aλb

λ
j,k is absolutely convergent for each 1 6 j, k 6 n. We define

bj,k =
1

Â(1)

∑
λ∈P+

aλb
λ
j,k.(2.12)

Corollary 2.10. — Let A be as in (0.1), and let θ1, . . . , θn ∈ R. Then

Â(eiθ) = Â(1)
(

1−
n∑

j,k=1

bj,kθjθk +R(θ)
)
,

where
∑n

j,k=1 bj,kθjθk > 0 unless θ = 0, and where |R(θ)| 6 C|θ|3.

Proof. — This follows from Lemma 2.8, using (2.9) to bound R(θ). �

Lemma 2.11. — Let θ1, . . . , θn ∈ R. Then

1
|c(eiθ)|2

=
∏

α∈R+
2

〈α∨, θ〉2(
1− τ−1

2α τ
−1/2
α

)2(1 + τ
−1/2
α

)2 (1 + Eα(θ))

where |Eα(θ)| 6 C〈α∨, θ〉2 for each α ∈ R+
2 .

Proof. — Observe that for x ∈ R and p > 1∣∣∣∣ 1− e−ix

1− p−1e−ix

∣∣∣∣2 =
x2

(1− p−1)2
(1 + E1(x)),(2.13)

where |E1(x)| 6 Cx2, and for p > 0∣∣∣∣ 1 + e−ix

1 + p−1e−ix

∣∣∣∣2 =
4

(1 + p−1)2
(1 + E2(x))(2.14)

where |E2(x)| 6 Cx2. The result follows by using (2.10), (2.13) and (2.14).
�
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Let UA = {u ∈ U : |Â(u)| = Â(1)}. This set will play a role in the local
limit theorem, and in the conditions for irreducibility and aperiodicity of
the random walk. The following lemma gives a description of UA in terms
of the coefficients aλ appearing in (0.1).

Lemma 2.12. — We have

UA = {u ∈ UQ | uµ = uν for all µ, ν ∈ P+ with aµ, aν > 0}.

If u0 ∈ UA then Â(u0u) = uµ
0 Â(u) for all u ∈ Hom(P,C×) and all µ ∈ P+

such that aµ > 0.

Proof. — For u ∈ U we have

|Â(u)| 6
∑

λ∈P+

aλ|Pλ(u)| 6
∑

λ∈P+

aλPλ(1) = Â(1).(2.15)

Suppose that |Â(u)| = Â(1). If u = u0 ∈ UA, then since equality must
hold in the second inequality in (2.15) we have |Pλ(u0)|=Pλ(1) whenever
aλ > 0. Since we assume that aλ>0 for at least one nonzero λ ∈ P+ we have
u0 ∈ UQ by Lemma 2.4. Thus by Lemma 2.4 we have Pλ(u0) = uλ

0Pλ(1)
for all λ ∈ P+, and so since equality must hold in the first inequality in
(2.15) we have uµ

0 = uν
0 whenever aµ, aν > 0, proving that

UA ⊆ {u ∈ UQ | uµ = uν for all µ, ν ∈ P+ with aµ, aν > 0}.

Conversely, if u0 ∈ UQ and uµ
0 = uν

0 for all µ, ν ∈ P+ with aµ, aν > 0,
then by Lemma 2.4 we see that Â(u0u) = uµ

0 Â(u) for all u ∈ U and any
µ ∈ P+ such that aµ > 0, and so taking u = 1 we have |Â(u0)| = Â(1), so
u0 ∈ UA. �

For k ∈ N and λ ∈ P+ let

Ik,λ =
∫

U

(
Â(u)

)k
Pλ(u)dπ(u).

If y ∈ Vλ(x), then by (2.3)

p(k)(x, y) =

{
Ik,λ in the standard case, and
Ik,λ + I ′k,λ in the exceptional case,

(2.16)

where

I ′k,λ =
∫

U′

(
Â(u)

)k
Pλ(u)dπ(u).(2.17)

Thus to give an asymptotic formula for p(k)(x, y) we need to give estimates
for Ik,λ and I ′k,λ.
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Given ε>0 and u0 ∈ U, letNε(u0)={u ∈ U : |uλi−uλi
0 |<ε for all i ∈ I0}.

Since |UA| <∞ we may choose ε > 0 sufficiently small so that

Nε(u0) ∩Nε(u′0) = ∅ whenever u0, u
′
0 ∈ UA are distinct.(2.18)

Write Nε = Nε(1) and Nε(UA) =
⋃

u0∈UA
Nε(u0).

Define ρ1 =ρ1(ε)=sup{|Â(u)|/Â(1) : u ∈ U\Nε(UA)}, and so 0 < ρ1 < 1.
Let

Iε
k,λ =

∫
Nε

(
Â(u)

)k
Pλ(u)dπ(u).

Lemma 2.13. — Fix µ ∈ P+ such that aµ > 0, and let ε > 0 satisfy
(2.18). If ukµ

0 = uλ
0 for all u0 ∈ UA, then

Ik,λ = |UA|Iε
k,λ +O

(
ρk
1Â(1)k

)
.

Otherwise, Ik,λ = 0.

Proof. — It is clear from the formula for c(u) that c(u0u) = c(u) for all
u0 ∈ UQ and u ∈ U. Thus by Lemmas 2.4 and 2.12, if u0 ∈ UA we have

Ik,λ = ukµ−λ
0

∫
U

(
Â(u−1

0 u)
)k
Pλ(u−1

0 u)dπ(u−1
0 u) = ukµ−λ

0 Ik,λ.(2.19)

This shows that Ik,λ = 0 if there exists u0 ∈ UA such that ukµ−λ
0 6= 1.

Suppose now that ukµ−λ
0 = 1 for all u0 ∈ UA. It is clear that

Ik,λ =
∫

Nε(UA)

(
Â(u)

)k
Pλ(u)dπ(u) +O

(
ρk
1Â(1)k

)
,(2.20)

and since Nε(u0) = u0Nε, the calculation in (2.19) shows that for each
u0 ∈ UA,∫

Nε(u0)

(
Â(u)

)k
Pλ(u)dπ(u) = ukµ−λ

0

∫
Nε

(
Â(u)

)k
Pλ(u)dπ(u) = Iε

k,λ,

since ukµ−λ
0 = 1. The result follows from (2.20) by the choice of ε. �

It is clear from Corollary 2.10 that if each |θj |, j = 1, . . . , n, is sufficiently
small, then

Â(eiθ) = Â(1)e−
∑n

i,j=1
bi,jθiθj+G(θ) where

G(θ) = o

( n∑
i,j=1

bi,jθiθj

)
.

(2.21)
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Writing δ = 2 sin−1(ε/2) we have Nε = {eiθ : |θj | < δ for j = 1, . . . , n},
and so we may choose ε > 0 sufficiently small so that

|G(θ)| 6 1
2

n∑
i,j=1

bi,jθiθj(2.22)

whenever eiθ ∈ Nε and |θj | 6 π for j = 1, . . . , n.
Define constants K1, K2 and K3 by K1 = W0(q−1)|W0|−1(2π)−n,

K2 =
∏

α∈R+
2

(
1− τ−1

2α τ
−1/2
α

)−2(1 + τ
−1/2
α

)−2

K3 =
∫

Rn

e
−

∑n

i,j=1
bi,jϕiϕj

∏
α∈R+

2

〈α∨, ϕ〉2dϕ1 · · · dϕn,(2.23)

where ϕ = ϕ1α1 + · · ·+ ϕnαn.

Lemma 2.14. — Let ε > 0 be such that (2.18) and (2.22) hold. Then

Iε
k,λ = KPλ(1)Â(1)k k−|R

+
2 |−n/2

(
1 +O

(
k−1/2

))
,

where K = K1K2K3.

Proof. — Let δ = 2 sin−1(ε/2) as above. We have

Iε
k,λ = K1

∫ δ

−δ

· · ·
∫ δ

−δ

(
Â(eiθ)

)k Pλ(e−iθ)
|c(eiθ)|2

dθ1 · · · dθn,

and so by making the change of variable ϕj =
√
kθj for each j = 1, . . . , n

we see that

Iε
k,λ = K1k

−n/2

∫ √
kδ

−
√

kδ

· · ·
∫ √

kδ

−
√

kδ

(
Â(eiϕ/

√
k)

)k Pλ(e−iϕ/
√

k)

|c(eiϕ/
√

k)|2
dϕ1 · · · dϕn,

(2.24)

where ϕ = ϕ1α1 + · · ·+ ϕnαn.
By Corollary 2.7 we have

Pλ(e−iϕ/
√

k) = Pλ(1)(1 + E1(ϕ)) where |E1(ϕ)| 6 |λ||ϕ|√
k
,

and it follows from Lemma 2.11 that
1

|c(eiϕ/
√

k)|2
= K2k

−|R+
2 |(1 + E2(ϕ))

∏
α∈R+

2

〈α∨, ϕ〉2,

where |E2(ϕ)| 6 k−1p(ϕ1, . . . , ϕn) for some polynomial p(x1, . . . , xn). Us-
ing these estimates (along with (2.21)) in (2.24), we see that Iε

k,λ equals
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K1K2Pλ(1)Â(1)k k−|R
+
2 |−n/2 times∫

X

e
−

∑n

i,j=1
bi,jϕiϕj+kG(ϕ/

√
k)

( ∏
α∈R+

2

〈α∨, ϕ〉2
)

×(1 + E1(ϕ))(1 + E2(ϕ)) dϕ1 · · · dϕn

where X = [−
√
kδ,

√
kδ]n. By (2.22), the above integrand is bounded by

e
− 1

2

∑n

i,j=1
bi,jϕiϕj

( ∏
α∈R+

2

〈α∨, ϕ〉2
)(

1 +
|λ||ϕ|√

k

)(
1 +

p(ϕ1, . . . , ϕn)
k

)
,

and the lemma follows by the Dominated Convergence Theorem. �

Lemma 2.15. — Let λ ∈ P+ and k ∈ N. In the exceptional case, there
exists 0 < ρ2 < 1 such that∫

U′

(
Â(u)

)k
Pλ(u)dπ(u) = O

(
ρk
2Â(1)k

)
.

Proof. — Let us sketch the proof of this result. The details are given
in [14, Appendix B.3]. Since we are in the exceptional case, we have R =
BCn for some n > 1 and qn < q0. Use the isomorphism Hom(P,C×) →
(C×)n, u 7→ (t1, . . . , tn), where ti = uei , to identify Hom(P,C×) with
(C×)n (and so U is identified with Tn). Recall that U′ consists of those
u ∈ Hom(P,C×) such that t1 = −

√
qn/q0 and tj ∈ T for 2 6 j 6 n. Write

ξt = (−
√
qn/q0, t2, . . . , tn), and set tj = eiθj for 2 6 j 6 n.

We claim that |Pλ(ξt)| < Pλ(1) for all λ 6= 0 and all t2, . . . , tn ∈ T, from
which the result follows (since Â is continuous on U′, and U′ is compact).
The first step is to explicitly compute Pλ1(u) for arbitrary u ∈ Hom(P,C×).
By [14, Lemma B.3.2] we have

Pλ1(u) = N−1
λ1

(q0 − 1)(1 + q1 + · · ·+ qn−1
1 ) +

√
q0qnq

n−1
1

n∑
j=1

(tj + t−1
j )


for all u ∈ Hom(P,C×). From this formula we deduce that |Pλ1(ξt)| <
Pλ1(1) for all t2, . . . , tn ∈ T (see [14, Theorem B.3.3]). We now use this fact
to show that |Pλ(ξt)| < Pλ(1) for all λ 6= 0 and all t2, . . . , tn ∈ T.

Recall from [15, Corollary 5.22] that the operators {Aλ}λ∈P+ satisfy

AλAµ =
∑

ν∈P+

aλ,µ;νAν ,

where
aλ,µ;ν =

Nν

NλNµ
|Vλ(x) ∩ Vµ∗(y)| > 0,
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and where x, y ∈ VP is any pair with y ∈ Vν(x). Since λ1 = α̃∨ here, an
analogous argument to that given in Lemma 2.1(i) shows that aλ,λ;λ1 > 0
for all λ 6= 0 (see [14, Lemma B.3.4]).

Since the algebra homomorphisms hξt : A → C are continuous with
respect to the `2-operator norm, and since ‖Aµ‖ = Pµ(1) for all µ ∈ P+

(see [16, Theorem 6.3]), we have |Pµ(ξt)| 6 Pµ(1) for all µ ∈ P+. Hence for
λ 6= 0,

|Pλ(ξt)|2 = |hξt(A
2
λ)| 6

∑
µ∈P+

aλ,λ;µ|Pµ(ξt)| <
∑

µ∈P+

aλ,λ;µPµ(1) = Pλ(1)2,

where we have used the facts that |Pλ1(ξt)| < Pλ1(1) and aλ,λ;λ1 > 0. �

We now give our local limit theorem.

Theorem 2.16. — Let y ∈ Vλ(x) and k ∈ N, and suppose that aµ > 0.
If ukµ

0 = uλ
0 for all u0 ∈ UA, then

p(k)(x, y) = |UA|KPλ(1)Â(1)k k−|R
+
2 |−n/2

(
1 +O(k−1/2)

)
,

where K is as in Lemma 2.14. If ukµ
0 6= uλ

0 for some u0 ∈ UA, then
p(k)(x, y) = 0.

Proof. — In the standard case the result follows from (2.16) and Lem-
mas 2.13 and 2.14. In the exceptional case, Q = P , and so UQ = {1}, and
so UA = {1}. The result now follows from (2.16) and Lemmas 2.13, 2.14,
and 2.15. �

A random walk on a state-space X is called irreducible if for each pair
x, y ∈ X there exists k = k(x, y) ∈ N such that p(k)(x, y) > 0. The period
of an irreducible random walk is p = gcd{k > 1 | p(k)(x, x) > 0}, which is
independent of x ∈ X by irreducibility (see [20]). An irreducible random
walk is called aperiodic if p = 1.

Corollary 2.17. — Let A be as in (0.1), and suppose that aµ > 0.
Then

(i) A is irreducible if and only if for each λ ∈ P+ there exists k =
k(λ) ∈ N such that ukµ

0 = uλ
0 for all u0 ∈ UA, and

(ii) A is irreducible and aperiodic if and only if |UA| = 1.

Proof. — First let us note that in the exeptional case it is easy to see that
any walk with aµ > 0 for some µ 6= 0 is both aperiodic and irreducible, and
since Q = P we have UA = {1}. So consider the standard case, and suppose
that aµ > 0. Let y ∈ Vλ(x). If A is irreducible, then there exists k ∈ N
such that p(k)(x, y) > 0, and so ukµ

0 = uλ
0 for all u0 ∈ UA, by (2.16) and

Lemma 2.13. Conversely, if for each λ ∈ P+ there exists k0 ∈ N such that
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uk0µ
0 = uλ

0 for all u0 ∈ UA, then writing r = |UA| we have u(k0+rl)µ
0 = uλ

0

for all u0 ∈ UA and all l > 0. As k → ∞ through the values k0 + rl,
Theorem 2.16 implies irreducibility.

If |UA| = 1 then A is irreducible and aperiodic, by Theorem 2.16. Con-
versely, if A is irreducible and aperiodic, then

1 = gcd{k > 1 | p(k)(x, x) > 0} = gcd{k > 1 | ukµ
0 = 1 for all u0 ∈ UA},

and so UA = {1}. �

Remark 2.18. — It is possible to explicitly compute the constant K3

from (2.23) (at least in most cases). We refer the reader to [14, Section 8.4]
for details. A key step in the calculation is to observe that there is a number
b > 0 such that bj,k = 〈αj , αk〉b for all 1 6 j, k 6 n, and so K3 =
b−|R

+
2 |−n/2J where

J =
∫

Rn

e
−

∑n

j,k=1
〈αj ,αk〉θjθk

∏
α∈R+

2

〈α∨, θ〉2 dθ1 . . . dθn

and θ = θ1α1 + · · ·+ θnαn. The integral J depends only on the underlying
root system, and has been computed using Gram’s identity in the cases
when R = Bn, Cn, Dn or BCn (there are other techniques using orthogonal
polynomials). We have

J =


πn/22−n(n−1)

∏n
i=1(2i)! if R = Bn or R = BCn

πn/22−n2−n−1
∏n

i=1(2i)! if R = Cn

πn/22−n2+n−1n!
∏n−1

i=1 (2i)! if R = Dn.

When R = An the integral J may be written as∫
Rn

e−(x2
1+···+x2

n+1)
∏

16i<j6n+1

(xi − xj)2 dx1 · · · dxn

(up to some constant factors), where xn+1 = −(x1 + · · · + xn). We have
been unable to compute this integral. In principle the integrals for the E,F
and G cases could be explicitly computed using a computer package.

Remark 2.19. — Let us briefly discuss some applications of our local
limit theorem to probability measures on groups acting on X . An auto-
morphism ψ of X is called type rotating if there exists a type rotating
automorphism σ of the Coxeter graph of W (in the sense of [15, § 4.8])
such that τ(ψ(x)) = σ(τ(x)) for all x ∈ V . Suppose that G is a locally
compact group acting on V such that G acts transitively on VP and such
that for each x ∈ VP and g ∈ G the automorphism x 7→ gx is type rotating.
Assume that K = {g ∈ G | go = o} acts transitively on each set Vλ(o),
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λ ∈ P+, where o ∈ VP is some fixed vertex. Let ϕ be the density func-
tion of a bi-K-invariant probability measure on G. Then, exactly as in [5,
Lemma 8.1], setting p(go, ho) = ϕ(g−1h) for g, h ∈ G defines an isotropic
random walk on VP . Since the k-th convolution power ϕ(∗k)(g) is simply
p(k)(o, go), Theorem 2.16 may immediately be interpreted as a local limit
theorem for bi-K-invariant probability measures on G (the assumption that
aλ > 0 for some λ 6= 0 simply means that ϕ is not the indicator function
on K).

As an important modification, suppose now that G is a group of type
preserving simplicial complex automorphisms acting strongly transitively
on X , meaning that G acts transitively on pairs (A, c) of apartments A
and chambers c ⊂ A. Fix an apartment A0 and a chamber c0 ⊂ A0.
The subgroups B = stabG(c0) and N = stabG(A0) form a BN -pair in
G with associated Weyl group N/(B ∩ N) isomorphic to W [17, Theo-
rem 5.2]. Indeed the set of left cosets {gB | g ∈ G} defines an affine
building (as a chamber system) isomorphic to X , where gB ∼i hB if and
only if g−1h ∈ B〈si〉B (where wB means nB for any n ∈ N with image
w ∈ W ). Let o be the type 0 vertex of c0. The subgroup K = stabG(o)
of G equals BW0B =

⋃
w∈W0

BwB (see [17, Theorem 5.4(iii)]), and since
G acts strongly transitively and B∩N is transitive on the chambers of A0,
it follows that K is transitive on each set Vλ(o), λ ∈ Q ∩ P+.

Let ϕ be the density function of a bi-K-invariant probability measure
on G. To study convolution powers ϕ(∗k)(g), g ∈ G, it is natural to study
an associated random walk on VQ = {x ∈ VP | τ(x) = 0} ⊆ VP , where we
define p(go, ho) = ϕ(g−1h) for g, h ∈ G. To apply our local limit theorem
we consider these random walks as reducible isotropic random walks on
VP by setting p(x, y) = ϕ(g−1h) if y ∈ Vλ(x) and go ∈ Vλ(ho) for some
λ ∈ P+ (necessarily λ ∈ Q∩P+), and p(x, y) = 0 otherwise. These random
walks have the property that p(x, y) = 0 if τ(x) 6= τ(y), and it is simple to
see that they are indeed isotropic. Theorem 2.16 is now applicable, and in
particular, by taking X to be the Bruhat-Tits building of a group of p-adic
type (see Remark 1.6(ii)) we have a local limit theorem for these groups.

Finally we remark that the methods here can be extended to deal with
groups acting (in a type rotating fashion) on subsets VL of VP . Here L is
a lattice in E with Q ⊆ L ⊆ P , and VL = {x ∈ VP | τ(x) ∈ IL}, where
IL = {τ(λ) | λ ∈ L} ⊆ IP . Thus VQ ⊆ VL ⊆ VP , and our discussion above
deals with the extreme cases of L = P and L = Q.
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3. The Rate of Escape Theorem

Let X be any set, and let P = (p(x, y))x,y∈X be a transition probability
matrix. Let X =

⋃
i∈I Xi be a partition of X. We call P factorisable over

I if for each i, j ∈ I, the sum ∑
y∈Xj

p(x, y)

has the same value for all x ∈ Xi. In this case we write p(i, j) for this value,
and let P = (p(i, j))i,j∈I . Clearly p(i, j) > 0 for all i, j ∈ I, and for each
i ∈ I, ∑

j∈I

p(i, j) =
∑
j∈I

∑
y∈Xj

p(x, y) =
∑
y∈X

p(x, y) = 1

where x ∈ Xi. Thus P is a transition probability matrix (on I). Further-
more, if (Zk)k∈N is a Markov chain on X with transition probability matrix
P , then (Zk)k∈N, where Zk = i if Zk ∈ Xi, defines a Markov chain on I

with transition probability matrix P .
In our setting, consider the partition (for fixed o ∈ VP and ω ∈ Ω)

VP =
⋃

λ∈P Vλ, where

Vλ = {x ∈ VP | h(o, x;ω) = λ}.

Proposition 3.1. — The matrices (operators) Aλ = (pλ(x, y))x,y∈VP
,

λ ∈ P+, are factorisable over P . Moreover, pλ(µ, ν) does not depend on o

or ω, and pλ(µ, ν) = pλ(0, ν − µ).

Proof. — Let µ, ν ∈ P and x ∈ Vµ. By the cocycle relations we have
h(o, y;ω) = h(x, y;ω) + µ for all y ∈ VP , and so∑

y∈Vν

pλ(x, y) =
1
Nλ

|{y ∈ Vλ(x) | h(o, y;ω) = ν}|

=
1
Nλ

|{y ∈ Vλ(x) | h(x, y;ω) = ν − µ}|.
(3.1)

It follows from [16, Lemma 3.19] that Aλ is factorisable, and that pλ(µ, ν)
does not depend on ω ∈ Ω or o ∈ VP . The transitional invariance is imme-
diate from (3.1). �

Corollary 3.2. — Let A = (p(x, y))x,y∈VP
be as in (0.1). Then A

is factorisable over P . Moreover, for each µ, ν ∈ P we have p(µ, ν) =
p(0, ν−µ), and this value does not depend on o or ω. Finally, if (Zk)k∈N is
a Markov chain with transition probability matrixA, then Zk = h(o, Zk;ω),
so that p(µ, ν) = P(h(o, Zk+1;ω) = ν | h(o, Zk;ω) = µ).

TOME 57 (2007), FASCICULE 2



408 James PARKINSON

Proof. — The first statements follow from Proposition 3.1 and the ele-
mentary fact that a (finite or infinite) convex combination of factorisable
transition matrices is again factorisable. The final claim is immediate from
the definition of Zk. �

Let {Tj}j∈J be a partition of R2 according to root length (so |J | = 1 or
|J | = 2). For j ∈ J , let T+

j = R+
2 ∩ Tj , and Bj = B ∩ Tj (so B =

⋃
j∈J Bj ,

as B ⊂ R2). For each j ∈ J , let

ρj =
1
2

∑
α∈T+

j

α.

Finally, for each j ∈ J fix some βj ∈ T+
j .

Proposition 3.3. — With the above definitions:

(i) For i, j ∈ J , if α ∈ Bi, then 〈α∨, ρj〉 = δi,j . Thus, for each j ∈ J ,
ρj ∈ S0.

(ii) Let λ ∈ P . Then

rλ =
∏
j∈J

(τβjτ
2
2βj

)〈λ,ρj〉

(note that this product has at most two factors).
(iii) rw0λ = r−λ for all λ ∈ P (that is, rλ∗ = rλ).
(iv) If λ ∈ P and µ � λ, then rµ 6 rλ, with equality if and only if

µ = λ.
(v) For w ∈W0, we have c(wr) = δw,1W0(q−1).

Proof. — (i) Since α ∈ B, sα permutes R+
2 \{α}, and since the sets Tj ,

j ∈ J , are W0-invariant, we have sα(T+
j ) = T+

j if j ∈ J\{i}. Thus for any
j ∈ J we have

sα(ρj) = ρj − δi,jα,

and so 〈α∨, ρj〉 = δi,j . Then 〈α∨, ρj〉 > 0 for all α ∈ B, and so ρj ∈ S0 for
all j ∈ J .

(ii) By (1.4) and the fact that R+
1 \R

+
3 = 2(R+

2 \R
+
3 ) we calculate

rλ =
( ∏

α∈R+
3

τ
1
2 〈λ,α〉

α

)( ∏
β∈R+

2 \R
+
3

(τβτ2
2β)

1
2 〈λ,β〉

)
.

Since τ2α = 1 if α ∈ R+
3 , and since τβ = τβj if β ∈ Tj , it follows that

rλ =
∏

β∈R+
2

(τβτ2
2β)

1
2 〈λ,β〉 =

∏
j∈J

(τβjτ
2
2βj

)〈λ,ρj〉.
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(iii) Since w0ρj = −ρj for j ∈ J , by (ii) we have rw0λ = r−λ for all
λ ∈ P .

(iv) Observe that τατ2
2α = qα if α ∈ R3, and τατ2

2α = q0qα if α ∈ R2\R3.
Thus, by thickness, τατ2

2α > 1 for all α ∈ R2. Since ρj ∈ S0 for j ∈ J , and
since µ � λ implies that λ − µ ∈ Q+, it follows from (ii) that rλ−µ > 1,
with equality if and only if µ = λ (for if µ 6= λ, then 〈λ− µ, ρj〉 > 0 for at
least one j ∈ J).

(v) Observe that if w 6= 1, then wR+
2 ∩ (−B) 6= ∅. To see this, if α ∈ R+

2 ,
and if −α /∈ wR+

2 , then −w−1α /∈ R+
2 , and so w−1α ∈ R+

2 . It follows that
if wR+

2 ∩ (−B) = ∅, then w−1B ⊂ R+
2 , and so w−1R+

2 = R+
2 . Thus w = 1

(for by [2, VI, § 1, N° 6, Corollary 2] we have `(w) = |{α ∈ R+
2 | wα ∈ R−2 }|

for all w ∈W0).
Suppose that w 6= 1, and take α ∈ R+

2 such that wα = −β ∈ −B. Then
by (i) and (ii),

r−wα∨ = rβ∨ = τβτ
2
2β = τατ

2
2α,

and so 1 − τ−1
2α τ

−1/2
α r−wα∨/2 = 0. Thus by (2.10) we see that c(wr) = 0

whenever w 6= 1. Since hu : A → C is an algebra homomorphism we have

1 = hu(A0) =
1

W0(q−1)

∑
w∈W0

c(wu)

for all nonsingular u ∈ Hom(P,C×). Evaluating at u = r shows that c(r) =
W0(q−1). �

Remark 3.4. — Most of Proposition 3.3 can be found on page 61 of [10].
Notice in particular that Proposition 3.3(v) gives a nice factorisation of the
Poincaré polynomial of W0, namely W0(q−1) = c(r) (at least when the q’s
come from a building). See also [11].

For each j ∈ I0, let j∗ ∈ I0 be defined by −w0αj = αj∗ . Note that
(j∗)∗ = j.

Corollary 3.5. — Let x ∈ VP , λ ∈ P+, and y ∈ Vλ(x).
(i) We have

Pλ(reiθ) =
∫

Ω

ei〈h(x,y;ω),w0θ〉dνx(ω)

where w0 is the longest element of W0.
(ii) For each j ∈ I0 the integral

γ
(λ)
j =

∫
Ω

hj∗(y, x;ω)dνx(ω)

is independent of the particular pair x, y ∈ VP with y ∈ Vλ(x) (the
j∗ here makes the statements of the main theorems simpler).
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Proof. — By Proposition 3.3(iii) (and the fact that w−1
0 = w0) we have

Pλ(reiθ) = Pλ(w0(reiθ)) = Pλ(r−1w0(eiθ)) =
∫

Ω

ei〈h(x,y;ω),w0θ〉dνx(ω),

proving (i).
Since w0θ = −

∑n
j=1 θjαj∗ , by (i) we have

∂

∂θj
Pλ(reiθ)

∣∣
θ=0

= iγ
(λ)
j ,(3.2)

proving (ii). �

The following proposition gives a symmetry property of the numbers
γ

(λ)
j generalising [5, Proposition 3.5(iii)]. We will not use this result in this

paper.

Proposition 3.6. — Let j ∈ I0 and λ ∈ P+. We have γ(λ∗)
j = γ

(λ)
j∗ .

Proof. — Observe that for u ∈ Hom(P,C×) and λ ∈ P+, Pλ∗(u) =
Pλ(u−1). It suffices to prove this for nonsingular u ∈ Hom(P,C×). Using
Proposition 3.3(iii) we see that if u ∈ Hom(P,C×) is nonsingular then

c(w0u) =
∏

α∈R+

1− τ−1
α τ

−1/2
α/2 u−w0α∨

1− τ
−1/2
α/2 u−w0α∨

=
∏

α∈R+

1− τ−1
α τ

−1/2
α/2 uα∨

1− τ
−1/2
α/2 uα∨

= c(u−1)

(we have used the facts that w0R
+ = R− and τα = τβ if β ∈W0α). Thus

Pλ∗(u) =
r−λ∗

W0(q−1)

∑
w∈W0

c(wu)uwλ∗

=
r−λ

W0(q−1)

∑
w∈W0

c(ww0u)uww0λ∗

= Pλ(u−1),

and so by (3.2) we have

γ
(λ∗)
j = −i ∂

∂θj
Pλ(r−1e−iθ)

∣∣
θ=0

= −i ∂
∂θj

Pλ(w0(re−iw0θ))
∣∣
θ=0

= −i ∂

∂ϕj∗
Pλ(reiϕ)

∣∣
ϕ=0

,

and so γ(λ∗)
j = γ

(λ)
j∗ . �
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Lemma 3.7. — Let λ ∈ P+ and j ∈ I0. Then

γ
(λ)
j = 〈λ, αj〉+O(1).

Proof. — Let us temporarily write ρθ in place of reiθ. Then for w ∈W0,
∂

∂θj
c(wρθ)ρwλ

θ = i〈wλ, αj〉c(wρθ)ρwλ
θ + ρwλ

θ

∂

∂θj
c(wρθ).

It follows from Proposition 3.3(v) that for w ∈W0,

r−λ

W0(q−1)
∂

∂θj
c(wρθ)ρwλ

θ

∣∣∣∣
θ=0

=

{
i〈λ, αj〉+O(1) if w = 1

O(1) if w 6= 1.

The result follows from (3.2). �

Lemma 3.8. — If (Zk)k∈N is a Markov chain in VP with Z0 = x and
transition operator Aλ, then for any ω ∈ Ω, E(hj(Z1, x;ω)) = γ

(λ)
j∗ .

Proof. — Since Z1 ∈ Vλ(x) with probability 1, we have
∫
Ω
hj(Z1, x;ω)

dνx(ω) = γ
(λ)
j∗ . As in [5, Proposition 3.5(ii)] we see that we may take expec-

tations under the integral sign, and so γ(λ)
j∗ =

∫
Ω

E(hj(Z1, x;ω))dνx(ω). By
Corollary 3.2, the distribution of hj(Z1, x;ω), and hence E(hj(Z1, x;ω)), is
independent of ω ∈ Ω. The result follows. �

We now prove our rate of escape theorem.

Theorem 3.9. — Let A be as in (0.1), and suppose that∑
λ∈P+

|λ|aλ <∞.

Let (Zk)k∈N be the corresponding Markov chain, and for each k ∈ N let
νk ∈ P+ be such that Zk ∈ Vνk

(x), where x = Z0. Then for each j ∈ I0,
with probability 1

1
k
〈νk, αj〉 → γj as k →∞,

where γj =
∑

λ∈P+ aλγ
(λ)
j . That is, 1

kνk → γ1λ1 + · · ·+ γnλn.

Proof. — Observe first that γj < ∞ by Lemma 2.5 and the finite first
moment assumption. By Lemma 3.7 we have 1

k 〈νk, αj〉 = 1
kγ

(νk)
j +O(k−1),

and so it suffices to prove that∫
Ω

hj∗(Zk, x;ω)
k

dνx(ω) → γj

with probability 1.
By Corollary 3.2 we see that for each fixed ω ∈ Ω, hj∗(Zk, x;ω) is a ran-

dom variable distributed like a sum of k independent real random variables,
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each with the distribution of hj∗(Z1, x;ω). Now E(hj∗(Z1, x;ω)) = γj , and
so by the classical law of large numbers we have

hj∗(Zk, x;ω)
k

→ γj

with probability 1.
By Remark 2.6 and the second part of [20, Proposition 8.8(a)] we see

that hj∗(Zk, x;ω)/k is bounded with probability 1. Thus by the Bounded
Convergence Theorem we have

lim
k→∞

∫
Ω

hj∗(Zk, x;ω)
k

dνx(ω) =
∫

Ω

lim
k→∞

hj∗(Zk, x;ω)
k

dνx(ω) = γj

with probability 1, completing the proof. �

Corollary 3.10. — The numbers γj , j = 1, . . . , n, from Theorem 3.9
are nonnegative.

Proof. — This follows from the rate of escape theorem, since νk ∈ P+

for each k ∈ N. �

We can strengthen Corollary 3.10 by applying the local limit theorem.

Theorem 3.11. — For j = 1, . . . , n we have γj > 0. In particular, by
taking A = Aλ we have γ(λ)

j > 0 for all λ 6= 0.

Proof. — We follow the outline given in [5, Remark 4.7]. By our local
limit theorem we may choose a pair (ν,K) ∈ P+×N with K large and each
〈ν, αj〉, j = 1, . . . , n, large, such that p(K)(x, y) > 0 whenever y ∈ Vν(x).
With A as in (0.1), write AK =

∑
λ∈P+ a

(K)
λ Aλ, and so a(K)

ν > 0. For each
j = 1, . . . , n let

γj,K =
∑

λ∈P+

a
(K)
λ γ

(λ)
j(3.3)

= −i ∂
∂θj

ÂK(reiθ)
∣∣
θ=0

,(3.4)

where we have used (3.2). Note that γj,K is simply the γj for the transition
matrix AK .

It follows from (3.4) and (3.2) that γj,K = Kγj , and from Corollary 3.10
and (3.3) we have γj,K > a

(K)
ν γ

(ν)
j . Now, by Lemma 3.7 we see that each

γ
(ν)
j , j = 1, . . . , n, is strictly positive (remember that each component of
ν may be chosen to be large), and thus γj,K > a

(K)
ν γ

(ν)
j > 0. Thus γj =

1
K γj,K > 0 for each j = 1, . . . , n. �
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Remark 3.12. — Fix a vertex o ∈ VP , and recall that So(ω) denotes the
unique sector in the class ω based at o, and that for each λ ∈ P+ we write
vo

λ(ω) for the unique vertex in So(ω) ∩ Vλ(o). Given vertices x, y ∈ VP ,
there is a natural notion of the convex hull conv{x, y}, as studied in [16,
Appendix B]. We say that a sequence (xk)k∈N of vertices in VP converges
to ω ∈ Ω if for each λ ∈ P+ there exists kλ ∈ N such that vo

λ(ω) is in
conv{o, xk} whenever k > kλ. This definition is independent of the o ∈ VP

chosen. Theorem 3.11 shows that for an isotropic random walk (Zk)k∈N we
have, with probability 1, Zk → ω for some random element ω ∈ Ω. The key
point to observe to show this is that if Zk ∈ Vνk

(Z0), then by Theorems 3.9
and 3.11 〈νk, αj〉, j = 1, . . . , n, becomes large as k →∞.

Remark 3.13. — We note that the random walk (Zk)k∈N on P from
Corollary 3.2 can be studied using classical methods, since P ∼= Zn. In the
notation of (A.1), by (3.1) and [16, Lemma 3.19 and Theorem 6.2] we have
pλ(0, µ) = r−µaλ,µ. Assuming that

∑
µ∈P |µ| p(0, µ) < ∞, a calculation

using (A.1) and (3.2) shows that the mean m =
∑

µ∈P µ p(0, µ) of the
random walk (Zk)k∈N is m =

∑n
j=1 γj∗λj , where γj is as in Theorem 3.9.

A similar calculation shows that the characteristic function for the walk is∑
µ∈P

p(0, µ)ei〈µ,θ〉 = Â(r−1eiθ).

By Corollary 3.2 this walk is transitionally invariant, and so the usual
Fourier inversion (as in [19, § II.6, Proposition 3]) gives

p(k)(0, µ) =
1

(2π)n

∫ π

−π

· · ·
∫ π

−π

(
Â(r−1eiθ)

)k
e−i〈µ,θ〉 dθ1 · · · dθn.

The asymptotic behaviour may now be extracted using the methods in [20,
§ III.13] and the calculations in Lemma 4.4.

4. The Central Limit Theorem

Lemma 4.1. — Let λ ∈ P+. There exists a constant C, independent of
θ and λ, such that ∣∣hreiθ (Aλ)− ei〈λ,θ〉∣∣ 6 C|θ|.

Proof. — Recall that rwλ 6 rλ and c(wr) = δw,1W0(q−1) for all w ∈W0

(see Proposition 3.3). Thus∣∣hreiθ (Aλ)− ei〈λ,θ〉∣∣ 6
1

W0(q−1)

∑
w∈W0

∣∣c(w(reiθ))− c(wr)
∣∣.
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The result follows since each c(w(reiθ)) is a smooth function in θ1, . . . , θn.
�

Lemma 4.2. — (See Theorem A.3) The homomorphisms hreiθ : A → C,
θ ∈ E, are bounded.

Proof. — For each λ ∈ P+ we have |hreiθ (Aλ)| 6 1 by Corollary 3.5(i).
�

Let x ∈ VP . The spherical function (with respect to x) associated to hu

is the function F x
u : VP → C which for each λ ∈ P+ takes the constant

value hu(Aλ) on the set Vλ(x).

Lemma 4.3. — Let Z0 = x, and suppose that u ∈ Hom(P,C×) is such
that hu : A → C is bounded. Then E(F x

u (Zk)) = (Â(u))k.

Proof. — We have Ak =
∑

λ∈P+ a
(k)
λ Aλ where a(k)

λ = P(Zk ∈ Vλ(x)).
Since F x

u (Zk) = hu(Aλ) if Zk ∈ Vλ(x), we have

E(F x
u (Zk)) =

∑
λ∈P+

a
(k)
λ hu(Aλ) = hu(Ak) = (Â(u))k,

where we have used the continuity of hu on the closure of A in the space of
bounded linear operators on `1(VP ) to justify the last two equalities. �

For 1 6 j, k 6 n and λ ∈ P+, let

γ
(λ)
j,k =

∫
Ω

hj∗(y, x;ω)hk∗(y, x;ω)dνx(ω)(4.1)

where x, y ∈ VP are any vertices with y ∈ Vλ(x) (as in Corollary 3.5(ii) this
is independent of the particular pair x, y ∈ VP with y ∈ Vλ(x) chosen). If
we suppose a finite second moment assumption:∑

λ∈P+

|λ|2aλ <∞,(4.2)

then for all 1 6 j, k 6 n we have
∑

λ∈P+ aλγ
(λ)
j,k < ∞, and we denote this

value by γj,k.

Lemma 4.4. — Suppose that (4.2) holds. Then with γj , 1 6 j 6 n as
defined in Theorem 3.9, and γj,k, 1 6 j, k 6 n as defined above,

Â(reiθ) = 1 + i

n∑
j=1

γjθj −
1
2

n∑
j,k=1

γj,kθjθk + o(|θ|2).

Furthermore, if θ 6= 0 then
(∑n

j=1 γjθj

)2

<
∑n

j,k=1 γj,kθjθk.
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Proof. — Consider the case A = Aλ, λ 6= 0. Using Corollary 3.5(i), the
elementary result eiϕ = 1 + iϕ− 1

2ϕ
2 + o(ϕ2) implies that

Âλ(reiθ) = 1 + i

n∑
j=1

γ
(λ)
j θj −

1
2

n∑
j,k=1

γ
(λ)
j,k θjθk + o(|λ||θ|),

where we have used Lemma 2.5. The first claim follows.
To deduce the final claim, letBλ =

∑n
j=1 γ

(λ)
j θj and Cλ =

∑n
j,k=1 γ

(λ)
j,k θjθk.

Then

B2
λ =

( ∫
Ω

n∑
j=1

hj∗(y, x;ω)dνx(ω)
)2

6
∫

Ω

( n∑
j=1

hj∗(y, x;ω)
)2

dνx(ω) = Cλ,

and( n∑
j=1

γjθj

)2

=
( ∑

λ∈P+

aλBλ

)2

6
∑

λ∈P+

aλB
2
λ 6

∑
λ∈P+

aλCλ =
n∑

j,k=1

γj,kθjθk.

To see that the inequality is strict if θ 6= 0, recall that by hypothesis
there exists λ 6= 0 such that aλ > 0. If equality holds in the inequality
B2

λ 6 Cλ, then for y ∈ Vλ(x),

〈h(x, y;ω), w0θ〉 =
n∑

j=1

hj∗(y, x;ω)θj

is independent of ω ∈ Ω, and thus by Corollary 3.5(ii) this quantity is
independent of the particular pair x, y ∈ VP with y ∈ Vλ(x) too. Choosing
z ∈ Vλ(x) ∩ Vα̃∨(y) as in Lemma 2.1(i), we have

〈h(y, z;ω), w0θ〉 = 〈h(x, z;ω), w0θ〉 − 〈h(x, y;ω), w0θ〉 = 0.

By modifying the proof of Lemma 2.1(ii), it is easy to see that for each
w ∈W0 there exists ωw ∈ Ω such that h(y, z;ωw) = wα̃∨, and thus by the
above 〈wα̃∨, w0θ〉 = 0 for all w ∈W0. Thus θ = 0, since W0α̃

∨ spans E [8,
Lemma 10.4.B]. �

Let Γ1(θ) =
∑n

j=1 γjθj and Γ2(θ) =
∑n

j,k=1 γj,kθjθk, and write

Γ(θ) = Γ2(θ)− Γ2
1(θ) =

n∑
j,k=1

gj,kθjθk.

By Lemma 4.4, Γ = (gj,k)n
j,k=1 is a positive definite matrix.

Theorem 4.5. — Let A be as in (0.1) and suppose that (4.2) holds. As
in Theorem 3.9, for each k ∈ N let νk ∈ P+ be such that Zk ∈ Vνk

(x),
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where x = Z0. Then(
〈νk, α1〉 − γ1k√

k
, . . . ,

〈νk, αn〉 − γnk√
k

)
converges in distribution to the normal distribution N(0,Γ), with Γ as
above.

Proof. — Following the proof of the classical Central Limit Theorem (see
[19, Proposition II.8] for example), it suffices to show that

lim
k→∞

E(ei(〈νk,θ〉−kΓ1(θ))/
√

k) = e−
1
2Γ(θ).(4.3)

By Lemma 4.1 we have

ei〈νk,θ〉/
√

k = Pνk
(reiθ/

√
k) + o(k−1/2) = F x

reiθ/
√

k(Zk) + o(k−1/2),

and so by Lemmas 4.2 and 4.3 we have

E(ei〈νk,θ〉/
√

k) = (Â(reiθ/
√

k))k + o(k−1/2).

Thus using Lemma 4.4 we compute

E(ei(〈νk,θ〉−kΓ1(θ))/
√

k) =
(

1− 1
2k

Γ(θ) + o(k−1)
)k

+ o(k−1/2)

= e−
1
2Γ(θ) + o(k−1/2).

Thus (4.3) holds, completing the proof. �

Appendix A. Bounded Spherical Functions

It is straightforward to see that each A ∈ A maps `1(VP ) into itself.
Let A1 denote the closure of A in the space L (`1(VP )) of bounded linear
operators on `1(VP ). Thus A1 is a commutative unital Banach ∗-algebra.
The algebra homomorphisms h : A1 → C are precisely the extensions of
those algebra homomorphisms hu : A → C which are bounded. In this
appendix we determine the u ∈ Hom(P,C×) for which this holds.

In the notation of Remark 1.6(ii), it is shown in [10, Theorem 4.7.1] that
hu : AQ → C is bounded if and only |uwλ| 6 rλ for all λ ∈ Q ∩ P+ and all
w ∈ W0. The proof given in [10] requires some knowledge of the singular
cases (when the denominator of a c(wu) function vanishes). While it should
be possible to generalise the proof in [10] to cover the more general setting
of homomorphisms hu : A → C, we will provide a different proof which
does not require any specific details of the singular cases (instead our proof
uses the Plancherel measure).
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We restrict our attention to the standard case (where τα > 1 for all
α ∈ R). In the exceptional case (where τα < 1 for some α ∈ R) we have
R = BCn for some n > 1 and so Q = P and AQ = A . Thus Macdonald’s
analysis in [10] covers this specific case.

Remark A.1. — (i) In fact in [10, Theorem 4.7.1] Macdonald proves a
geometric analog of the result stated above. For u ∈ Hom(Q,C×), iden-
tify log |u| ∈ Hom(Q,R) with the unique element xu ∈ E which satisfies
〈λ, xu〉 = log |uλ| for all λ ∈ Q. Let D = {xwr | w ∈ W0}. Then [10, Theo-
rem 4.7.1] says that hu : AQ → C is bounded if and only if xu ∈ conv(D).

(ii) Note that we have already seen in Lemma 4.2 that the homomor-
phisms hreiθ : A → C are bounded, and that this was enough information
to prove our central limit theorem. It is, of course, still desirable to have
the much more accurate Theorem A.3 below.

For λ ∈ P+ and u ∈ Hom(P,C×), define the monomial symmetric func-
tion mλ(u) by

mλ(u) =
∑

µ∈W0λ

uµ,

where W0λ = {wλ | w ∈ W0}. By [16, (6.1)] there are numbers aλ,µ such
that

Pλ(u) =
∑
µ∈P

aλ,µu
µ =

∑
µ�λ

aλ,µmµ(u)(A.1)

(where the second sum is over those µ ∈ P+ with λ − µ ∈ Q+), and it
follows (using [15, Theorem 6.11] for example) that for λ, µ ∈ P+ there are
numbers bλ,µ such that

mλ(u) =
∑
µ�λ

bλ,µPµ(u).(A.2)

Lemma A.2. — Let λ, µ ∈ P+ and µ � λ. In the standard case there
exists a constant K > 0 independent of λ and µ such that |bλ,µ| 6 Krµ.
Thus there is a constant C > 0 independent of λ ∈ P+ such that∑

µ�λ

|bλ,µ| 6 C|Πλ|rλ.

Proof. — Since we assume that we are in the standard case, by [16,
Lemma 6.1] we have

bλ,µ = Nµ

∫
U
mλ(u)Pµ(u)dπ(u).
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Using (1.5) and the techniques used to derive [16, (5.2)] we see that

bλ,µ =
W0(q−1)

W0µ(q−1)|W0|
rµ

∫
U

∑
w∈W0

mλ(wu)u−wµc(wu)
|c(wu)|2

du

=
W0(q−1)
W0µ(q−1)

rµ

∫
U
mλ(u)

u−µ

c(u)
du,

and the first claim follows. The final claim follows from Proposition 3.3(iv).
�

Let Υ = {u ∈ Hom(P,C×) : |uwλ| 6 rλ for all λ ∈ P+ and all w ∈W0}.
Theorem A.3. — The algebra homomorphism hu : A → C is bounded

if and only if u ∈ Υ.

Proof. — In the exceptional case this follows from [10, Theorem 4.7.1], as
remarked at the beginning of this appendix. Suppose we are in the standard
case. If u ∈ Υ is nonsingular, then by (1.6) we have

|hu(Aλ)| 6 1
W0(q−1)

∑
w∈W0

|c(wu)| for all λ ∈ P+.

Thus hu : A → C is bounded, and so by [6, Theorem I.2.5], |hu(Aλ)| 6 1
for all λ ∈ P+.

If u ∈ Υ is singular, it is clear that there exists a sequence (u(k))k∈N in
Υ such that each u(k) is nonsingular and u(k) → u. By the above we have
|hu(k)(Aλ)| 6 1 for all λ ∈ P+, and since each hu(k) is a Laurent polynomial
(in the variables {uλi

(k)}i∈I0) it follows that |hu(Aλ)| 6 1 for all λ ∈ P+.
Thus hu is bounded for all u ∈ Υ.

Suppose now that hu : A → C is bounded (so |hu(Aλ)| 6 1 for all
λ ∈ P+). Then for all λ ∈ P+, by (A.2) and Lemma A.2,

|mλ(u)| 6
∑
µ�λ

|bλ,µ| 6 C|Πλ|rλ.

Thus fixing λ and considering mkλ(u) for k ∈ N gives∣∣∣∣ ∑
µ∈W0λ

(r−λuµ)k

∣∣∣∣ 6 p(k),

where p(k) is a polynomial. It is elementary that this implies that |r−λuµ| 6
1 for all µ ∈W0λ, hence the result. �
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