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THE EQUIVALENCE OF HARNACK’S PRINCIPLE
AND HARNACK’S INEQUALITY
IN THE AXIOMATIC SYSTEM OF BRELOT

by PETER A. LOEB () AND BERTRAM WALSH (%)

During the last ten years, Marcel Brelot [2] and others have
investigated elliptic differential equations in an abstract
setting, a setting in which the Harnack principle is assumed
to be valid. When necessary, the Harnack principle has been
replaced by another axiom which establishes a form of the
Harnack inequality. In 1964, Gabriel Mokobodzki showed
that the two axioms are equivalent when the underlying space
has a countable base for its topology (see [1], pp- 16-18).
We shall show that this restriction is unnecessary. First we
recall some basic definitions.

Let W be a locally compact Hausdorff space which is
connected and locally connected but not compact. Let § bea
class of real-valued continuous functions with open domains
in W such that for each open set QcW the set g, (consis-
ting of all functions in &) with domains equal to Q, is a real
vector space. An open subset Q of W is said to be regular
for § or regular iff its closure in W is compact and for every
continuous real-valued function f defined on dQ there is a
unique continuous function h defined on Q such that

RpQ =f, h|Qe®, and h>0 if f>0
Moreover, the class § 1s called a harmonic class on W if it
satisfies the following three axioms which are due to Brelot [2]:

Axiom I. — A function g with an open domain Q<W is an
element of § if for every point x e Q there is a function h e §
and an open set © with ze o <Q such that glo = h|o.
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Axiom II. — There is a base for the topology of W such that
each set in the base is a regular region (non empty connected
open set).

Axiom III. — If § ts a subset of g, where Q is aregion
in W, and § is directed by increasing order on Q, then the
upper envelope of § is either identically + oo or is a funciion
in Ho.

It follows immediately from Axiom I that if A 1s in Hq,
then the restriction of h to any nonempty open subset of
its domain 1s again in §. Given Axioms I and II, Constanti-
nescu and Cornea ([3], p. 344 and p. 378) have shown that the

following axioms are equivalent to Axiom III:

Axrom Ill,. — If Q is a region in W and {h.} is an increa-
sing sequence of functwns in §q, then either hm h, ts identi-
cally + o or llm h, s in Hq.

Axiom IIl,. — If Q is a region in W, K a compact subset
of Q, and z, a point in K, then there is a constant M >1 such
that every nonnegative function he q satisfies the inequality

h(z) < M- h(z,)
at every point z € K.

Given Axioms I and II, we shall show that the following
axiom 1s equivalent to Axiom III.

Axiom IIl;. — If Q is a region in W then every nonnegative
function in q is either identically 0 or has no zeros in Q. Fur-
thermore, for any point z,e Q the set

®,,={heHa: h>0  and h(z,) = 1}

1s equicontinuous at x,.

Axiom III,; 1s, of course, just the Harnack principle, and
Axiom III; gives a « weak » Harnack inequality for §gq. On
the other hand, a consequence of Axiom III; is the fact that
for any region Q@ and any compact subset K< Q there is a
constant M > 1 such that for every nonnegative h e g and
every pair of points z; and z; in K the relation

1

(1) ) S hlze) < M-h(z,)
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holds. Moreover, for any point z in Q and any constant M > 1
there is a compact neighborhood K of z in which (1) holds.
Thus Axiom III; establishes a strong Harnack inequality
for $q. Mokobodzki has established the equivalence of III,
and III for the case in which the topology of W has a coun-
table base; it is this restriction which we shall now remove.

That Axioms II1 and IIl; are equivalent follows from the

TaeoreM. — Let §) be a harmonic class and Q be a region
in W. Let x, be a point in Q, and set ® = {he§Hq: h >0
and h(z,) = 1. Then ® is equicontinuous at m,.

Proof. — Let w be a regular region and K a compact neigh-
borhood of z, such that z,e Kc o c®<c Q. Each continuous
function f on dw has a unique extension H(f) e §,, and for
each z € o the mapping f — H(f)(z) from C(dw) into the reals
is a nonnegative Radon measure on dw, which we denote
by ¢,. Axiom III, (which follows from Axiom III) gives for
each pair of points z; and z, in » a constant M (depending
on those points) for which H(f)(z;) << M. H(f)(=,), 1.e.

pzl < M' P‘F!

in the usual ordering of measures on dw. Hence all the measures
{02} 2ew are absolutely continuous with respect to one another,
and the Radon-Nikodym density of any one with respect
to any other is essentially bounded (« essentially » being
unambiguous because all the measures have the same null
sets). Following an idea of Mokobodzki’s, we now consider
for each z € ® the Radon-Nikodym density of p, with respect
to p,,, which we denote by g,; each g, is essentially bounded,
and dp, = g,-dp,,

Let A = {h|ow: he®}. Axiom III; states that the func-
tions in A are uniformly bounded on dw, and of course they
are continuous there. Thus, if S is any countably infinite
subset of A, there is a function fe L*(p,,) which is an accumu-
lation point of S with respect to the weak* topology of L*(p,,)
(i.e. the topology determined by L'(p,); see [4], p. 424).
Since L®(p,,) c L*(ps,), f 1s also an accumulation point of S
with respect to the weak topology of L(p,,) (i.e. the topology

determined by L=(p,.).) Thus by the Eberlein-Smulian theorem.
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([4], p. 430), any sequence in A has a subsequence which
converges weakly to an element of L'(p,). Since each

g-’c € Lw(P“f‘o) = Ll(on)*7

it follows that any sequence {k,} in ® has a subsequence
(which we may also denote by {k,}) for which

ho(@) = [, bl ) 8a(y) o)

converges for each z € w; the pointwise limit function & on o
belongs to §,, since it 1s the extension in §), of the weak limit
(in L(p,,)) of the sequence {h,[dw{. By a result of R.-M. Hervé
(I5), p. £32) e

h = sup (inf A,)

n k>n

where f(z) = sup (inf f(y)) as & ranges over the neighborhood
3 resd

system of x. Thus A i1s the limit of the increasing sequence of
lower-semicontinuous functions inf A,, and that limit 1s attai-

ned umformly on the compact Set K. It follows that h, —>h
uniformly on K, and thus ®|K is relatively sequentially
compact, hence relatively compact, in the uniform norm
topology of C(K). So ®|K is equicontinuous (Arzela; see
[4], p. 266), whence ® is equicontinuous at the interior points
of K, and in particular at x,.
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