ANNALES

DE

L'INSTITUT FOURIER

Mark ADLER
PDE's for the Dyson, Airy and Sine processes
Tome 55, n ${ }^{\circ} 6$ (2005), p. 1835-1846.
http://aif.cedram.org/item?id=AIF_2005___55_6_1835_0

Abstract

© Association des Annales de l'institut Fourier, 2005, tous droits réservés.

L'accès aux articles de la revue «Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

PDE'S FOR THE DYSON, AIRY AND SINE PROCESSES

by Mark ADLER(*)

1. Results.

The Dyson Brownian motion (see [4]) is defined as the motion of n particles $\lambda_{i}(t)$ diffusing according to Brownian motions and forced not to intersect one another. Then it is well-known that the transition density $p(t, \mu, \lambda)$ for this motion $\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right) \in \mathbb{R}^{n}$, satisfies the diffusion equation

$$
\begin{aligned}
\frac{\partial p}{\partial t} & =\frac{1}{2} \sum_{1}^{n} \frac{\partial}{\partial \lambda_{i}} \Phi(\lambda) \frac{\partial}{\partial \lambda_{i}} \frac{1}{\Phi(\lambda)} p \\
& =\sum_{1}^{n}\left(\frac{1}{2} \frac{\partial^{2}}{\partial \lambda_{i}^{2}}-\frac{\partial}{\partial \lambda_{i}} \frac{\partial \log \sqrt{\Phi(\lambda)}}{\partial \lambda_{i}}\right) p
\end{aligned}
$$

with

$$
\Phi(\lambda)=\Delta^{2}(\lambda) \prod_{1}^{n} e^{-\lambda_{i}^{2}}
$$

In other terms, this describes n Brownian motions repelling each other, but held together by the exponential term in $\Phi(\lambda)$. In other words, each of the particles (at λ_{i}) evolve locally according to Brownian motion, but at λ_{i} we have an additional external electric force

$$
\frac{\partial}{\partial \lambda_{i}} \sqrt{\Phi(\lambda)}
$$

[^0]According to Dyson [4], the motion also corresponds to the motion of the eigenvalues of an Hermitian matrix $B=\left(B_{i j}\right)$ evolving according to n^{2} independent Ornstein-Uhlenbeck processes

$$
\frac{\partial P}{\partial t}=\sum_{i, j=1}^{n^{2}}\left(\frac{1}{4}\left(1+\delta_{i j}\right) \frac{\partial^{2}}{\partial B_{i j}^{2}}+\frac{\partial}{\partial B_{i j}} B_{i j}\right) P
$$

with transition density $\left(c=e^{-t}\right)$

$$
P(t, \bar{B}, B)=Z^{-1} \frac{1}{\left(1-c^{2}\right)^{n^{2} / 2}} e^{-\frac{1}{\left(1-c^{2}\right)} \operatorname{Tr}(B-c \bar{B})^{2}}
$$

The $B_{i j}$'s denote the n^{2} free real quantities in the Hermitian matrix B and in particular the $B_{i i}$ are its diagonal elements; moreover, one may view \bar{B} as parametrizing initial data. Here each of the $B_{i j}$'s execute independent uncoupled Brownian motions, subject to a harmonic force towards the origin. In the limit $t \rightarrow \infty$ we find the stationary distribution

$$
Z^{-1} e^{-\operatorname{Tr} B^{2}} d B=Z^{-1} \Delta^{2}(\lambda) \prod_{1}^{n} e^{-\lambda_{i}^{2}} d \lambda_{i}
$$

and taking this invariant measure as the initial condition, one finds for the joint distribution $\left(c=e^{-\left(t_{2}-t_{1}\right)}\right)$

$$
\begin{aligned}
P\left(B\left(t_{1}\right) \in d B_{1},\right. & \left.B\left(t_{2}\right) \in d B_{2}\right) \\
= & Z^{-1} \frac{d B_{1} d B_{2}}{\left(1-c^{2}\right)^{n^{2} / 2}} e^{-\frac{1}{1-c^{2}} \operatorname{Tr}\left(B_{1}^{2}-2 c B_{1} B_{2}+B_{2}^{2}\right)} \\
& =\frac{\Delta_{n}(\mu) \Delta_{n}(\lambda)}{Z_{n}\left(1-c^{2}\right)^{n^{2} / 2}} \operatorname{det}\left[e^{-\frac{2 \mu_{i} \lambda_{j}}{1-c^{2}}}\right]_{1 \leqslant i, j \leqslant n} \prod_{1}^{n} e^{-\frac{\mu_{i}^{2}+\lambda_{i}^{2}}{1-c^{2}}},
\end{aligned}
$$

and similarly for the joint distribution involving more times. The latter identity is obtained using the Harish-Chandra-Itzykson-Zuber formula.

The probability of the distribution of the eigenvalues for the GUE ensemble is expressible as a Fredholm determinant involving the wellknown Hermite kernel [5]. P. Forrester, T. Nagao and G. Honner [5] showed that the Dyson process goes with a so-called "extended Hermite kernel", following K. Johansson [6,7], to wit the matrix kernel

$$
K_{t_{i} t_{j}}^{H, n}(x, y):= \begin{cases}\sum_{k=1}^{\infty} e^{-k\left(t_{i}-t_{j}\right)} \varphi_{n-k}(x) \varphi_{n-k}(y), & \text { if } t_{i} \geqslant t_{j} \tag{1.1}\\ -\sum_{k=-\infty}^{0} e^{k\left(t_{j}-t_{i}\right)} \varphi_{n-k}(x) \varphi_{n-k}(y), & \text { if } t_{i}<t_{j}\end{cases}
$$

where

$$
\begin{aligned}
\varphi_{k}(x) & =e^{-x^{2} / 2} p_{k}(x), & & \text { for } k \geqslant 0, \quad \text { with } p_{k}(x)=\frac{H_{k}(x)}{2^{k / 2} \sqrt{k!\pi^{1 / 4}}}, \\
& =0, & & \text { for } k<0,
\end{aligned}
$$

with $p_{k}(x)$ the normalized Hermite polynomials. Then we have

$$
\begin{equation*}
P\left(\text { all } \lambda_{i}\left(t_{1}\right) \in E_{1}^{c}, \text { all } \lambda_{i}\left(t_{2}\right) \in E_{2}^{c}\right)=\operatorname{det}\left(I-K^{H, E}\right), \tag{1.2}
\end{equation*}
$$

with the matrix kernel

$$
\begin{equation*}
K^{H, E}(x, y)=\left(I_{E_{i}}(x) K_{t_{i} t_{j}}^{H, n}(x, y) I_{E_{j}}(y)\right)_{1 \leqslant i, j \leqslant 2} \tag{1.3}
\end{equation*}
$$

$I_{E}(x)$ is the indicator function of E.
The Airy process is defined by an appropriate rescaling of the largest eigenvalue λ_{n} in the Dyson process

$$
A(t)=\lim _{n \rightarrow \infty} \sqrt{2} n^{1 / 6}\left(\lambda_{n}\left(n^{-1 / 3} t\right)-\sqrt{2 n}\right),
$$

in the sense of convergence of distributions for a finite number of t 's. Prähofer and Spohn [8] introduced this process in the context of polynuclear growth models and showed it is a stationary process with continuous sample paths; hence the probability $P(A(t) \leqslant u)$ is actually independent of t and given by the Tracy-Widom distribution [9] Painlevé II equation,

$$
\begin{equation*}
P(A(t) \leqslant u)=F(u):=\exp \left(-\int_{u}^{\infty}(\alpha-u) q^{2}(\alpha) d \alpha\right) \tag{1.4}
\end{equation*}
$$

with $q(\alpha)$ the solution of the Painlevé II equation,

$$
q^{\prime \prime}=\alpha q+2 q^{3} \text { with } q(\alpha) \cong \begin{cases}-\frac{e^{-\frac{2}{3} \alpha^{\frac{3}{2}}}}{2 \sqrt{\pi} \alpha^{1 / 4}} & \text { for } \alpha \nearrow \infty \tag{1.5}\\ \sqrt{-\alpha / 2} & \text { for } \alpha \searrow-\infty\end{cases}
$$

Similarly the Sine process, introduced by Tracy-Widom [11], is an infinite collection of non-colliding processes $S_{i}(t)$, obtained by rescaling the bulk of the Dyson process, in the same way as the bulk of the spectrum of a large Gaussian random matrix; namely

$$
S_{i}(t):=\lim _{n \rightarrow \infty} \frac{\sqrt{2 n}}{\pi} \lambda_{\frac{n}{2}+i}\left(\frac{\pi^{2} t}{2 n}\right) \quad \text { for }-\infty<i<\infty
$$

in the sense of convergence of distributions for a finite number of t 's. Now rescale the extended kernel by

$$
\begin{equation*}
\text { Airy process : } x=\sqrt{2 n}+\frac{u}{\sqrt{2} n^{1 / 6}}, y=\sqrt{2 n}+\frac{v}{\sqrt{2} n^{1 / 6}}, t=\frac{\tau}{n^{1 / 3}} \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\text { Sine process : } \quad x=\frac{u \pi}{\sqrt{2 n}}, \quad y=\frac{v \pi}{\sqrt{2 n}}, \quad t=\frac{\pi^{2} \tau}{2 n} . \tag{1.8}
\end{equation*}
$$

One is lead, upon letting $n \rightarrow \infty$, to the Airy and Sine kernels

$$
\begin{align*}
& K_{t_{i} t_{j}}^{A}(u, v):= \begin{cases}\int_{0}^{\infty} e^{-z\left(\tau_{i}-\tau_{j}\right)} \operatorname{Ai}(u+z) \operatorname{Ai}(v+z) d z, & \text { if } \tau_{i} \geqslant \tau_{j} \\
-\int_{-\infty}^{0} e^{z\left(\tau_{j}-\tau_{i}\right)} \operatorname{Ai}(u+z) \operatorname{Ai}(v+z) d z, & \text { if } \tau_{i}<\tau_{j}\end{cases} \tag{1.9}\\
& K_{t_{i} t_{j}}^{S}(u, v):= \begin{cases}\frac{1}{\pi} \int_{0}^{\pi} e^{z^{2}\left(\tau_{i}-\tau_{j}\right) / 2} \cos z(u-v) d z, & \text { if } \tau_{i} \geqslant \tau_{j} \\
-\frac{1}{\pi} \int_{\pi}^{\infty} e^{-z^{2}\left(t_{j}-t_{i}\right) / 2} \cos z(u-v) d z, & \text { if } \tau_{i}<\tau_{j} .\end{cases} \tag{1.10}
\end{align*}
$$

Just as in the Dyson process, we find the joint probabilities for both the Airy and Since processes, can be expressed in terms of a Fredholm determinant involving the above kernels, to wit:

$$
P\left(A\left(\tau_{1}\right) \in F_{1}^{c}, A\left(\tau_{2}\right) \in F_{2}^{c}\right)=\operatorname{det}\left(I-K^{A, F}\right)
$$

$$
\begin{equation*}
P\left(\text { all } S_{i}\left(\tau_{1}\right) \in F_{1}^{c}, \text { all } S_{2}\left(\tau_{2}\right) \in F_{2}^{c}\right)=\operatorname{det}\left(I-K^{S, F}\right) \tag{1.11}
\end{equation*}
$$

with the matrix kernels

$$
\begin{aligned}
K^{A, F}(u, v) & =\left(I_{F_{i}}(u) K_{\tau_{i} \tau_{j}}(u, v) I_{F_{j}}(v)\right)_{1 \leqslant i, j \leqslant 2} \\
K_{i j}^{S, F}(u, v) & =\left(I_{F_{i}}(u) K_{\tau_{i} \tau_{j}}(u, v) I_{F_{j}}(v)\right)_{1 \leqslant i, j \leqslant 2} .
\end{aligned}
$$

For the Sine process, F_{1} and F_{2} must be compact. Natural choices for the F_{i} are

$$
\begin{aligned}
& F_{i}=\left(u_{i}, \infty\right) \text { for the Airy process } \\
& F_{i}=\left(u_{i}, v_{i}\right) \text { for the Sine process. }
\end{aligned}
$$

Indeed, it turns out that when F_{1} and F_{2} are the union of a finite number of intervals, then all three Fredholm determinants going with the Dyson, Airy and Sine processes satisfy a third order partial differential equations in the time $t=t_{2}-t_{1}$ and the end points of the intervals making up E_{1} and E_{2}.

In order to state the results, the disjoint union of intervals in \mathbb{R},

$$
\begin{equation*}
E_{1}:=\bigcup_{i=1}^{r}\left[a_{2 i-1}, a_{2 i}\right] \text { and } E_{2}:=\bigcup_{i=1}^{s}\left[b_{2 i-1}, b_{2 i}\right] \subseteq \mathbb{R} \tag{1.12}
\end{equation*}
$$

and $t=t_{2}-t_{1}, c=e^{-t}$ define an associated set of linear operators

$$
\begin{gather*}
\mathcal{A}_{1}=\sum_{1}^{2 r} \frac{\partial}{\partial a_{j}}+c \sum_{1}^{2 s} \frac{\partial}{\partial b_{j}} \\
\mathcal{A}_{2}=\sum_{1}^{2 r} a_{j} \frac{\partial}{\partial a_{j}}+c^{2} \sum_{1}^{2 s} b_{j} \frac{\partial}{\partial b_{j}}+\left(1-c^{2}\right) \frac{\partial}{\partial t}-c^{2} \\
\mathcal{B}_{1}=\mathcal{A}_{\left.1\right|_{a \longleftarrow b}}, \mathcal{B}_{2}=\left.\mathcal{A}_{2}\right|_{a \longleftarrow b} . \tag{1.13}
\end{gather*}
$$

We now state three Theorems due to $[1,2,3]$:
Theorem 1.1 (Dyson process). - Given $t_{1}<t_{2}$ and $t=t_{2}-t_{1}$, the logarithm of the joint distribution for the Dyson Brownian motion $\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right)$,

$$
\begin{equation*}
G_{n}\left(t ; a_{1}, \ldots, a_{2 r} ; b_{1}, \ldots, b_{2 s}\right):=\log P\left(\text { all } \lambda_{i}\left(t_{1}\right) \in E_{1}, \text { all } \lambda_{i}\left(t_{2}\right) \in E_{2}\right) \tag{1.14}
\end{equation*}
$$

satisfies a third order non-linear PDE in the boundary points of E_{1} and E_{2}, which takes on the simple form, setting $c=e^{-t}$,

$$
\begin{equation*}
\mathcal{A}_{1} \frac{\mathcal{B}_{2} \mathcal{A}_{1} G_{n}}{\mathcal{B}_{1} \mathcal{A}_{1} G_{n}+2 n c}=\mathcal{B}_{1} \frac{\mathcal{A}_{2} \mathcal{B}_{1} G_{n}}{\mathcal{A}_{1} \mathcal{B}_{1} G_{n}+2 n c} \tag{1.15}
\end{equation*}
$$

Similarly, the disjoint union of intervals in \mathbb{R}

$$
F_{1}:=\bigcup_{i=1}^{r}\left[u_{2 i-1}, u_{2 i}\right] \text { and } F_{2}:=\bigcup_{i=1}^{s}\left[v_{2 i-1}, v_{2 i}\right] \subseteq \mathbb{R}
$$

and $t=t_{2}-t_{1}$ define an associated set of linear operators

$$
\begin{align*}
L_{u} & :=\sum_{1}^{2 r} \frac{\partial}{\partial u_{i}}, & L_{v}:=\sum_{1}^{2 s} \frac{\partial}{\partial v_{i}}, \tag{1.16}\\
L_{v} & :=\left.L_{u}\right|_{u \longleftarrow v}, & E_{v}:=\left.E_{u}\right|_{u \longleftarrow v}
\end{align*}
$$

We now state the analogous equations for the Airy and Sine processes.
Theorem 1.2 (Airy process). - Given $t_{1}<t_{2}$ and $t=t_{2}-t_{1}$, the joint distribution for the Airy process $A(t)$,

$$
\begin{equation*}
G\left(t ; u_{1}, \ldots, u_{2 r} ; v_{1}, \ldots, v_{2 s}\right):=\log P\left(A\left(t_{1}\right) \in F_{1}, A\left(t_{2}\right) \in F_{2}\right) \tag{1.17}
\end{equation*}
$$

satisfies a third order non-linear $P D E^{1}$ in the u_{i}, v_{i} and t,

$$
\begin{align*}
\left(\left(L_{u}+L_{v}\right)\left(L_{u} E_{v}-L_{v} E_{u}\right)\right. & \left.+t^{2}\left(L_{u}-L_{v}\right) L_{u} L_{v}\right) G \tag{1.18}\\
= & \frac{1}{2}\left\{\left(L_{u}^{2}-L_{v}^{2}\right) G,\left(L_{u}+L_{v}\right)^{2} G\right\}_{L_{u}+L_{v}}
\end{align*}
$$

[^1]When

$$
\begin{equation*}
F_{1}:=\left(-\infty, \frac{y+x}{2}\right), \quad F_{2}:=\left(-\infty, \frac{y-x}{2}\right) \tag{1.19}
\end{equation*}
$$

the Airy joint probability

$$
\begin{equation*}
H(t ; x, y):=\log P\left(A\left(t_{1}\right) \leqslant \frac{y+x}{2}, A\left(t_{2}\right) \leqslant \frac{y-x}{2}\right) \tag{1.20}
\end{equation*}
$$

satisfies the simple PDE in x, y and t^{2} :

$$
\begin{equation*}
2 t \frac{\partial^{3} H}{\partial t \partial x \partial y}=\left(t^{2} \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right)\left(\frac{\partial^{2} H}{\partial x^{2}}-\frac{\partial^{2} H}{\partial y^{2}}\right)+8\left\{\frac{\partial^{2} H}{\partial x \partial y}, \frac{\partial^{2} H}{\partial y^{2}}\right\}_{y} \tag{1.21}
\end{equation*}
$$

with initial condition

$$
\lim _{t \searrow 0} H(t ; x, y)=\log F\left(\min \left(\frac{y+x}{2}, \frac{y-x}{2}\right)\right),
$$

with F as in (1.4).

Theorem 1.3 (Sine process). - For $t_{1}<t_{2}$, and compact E_{1} and $E_{2} \subset \mathbb{R}$, the log of the joint probability for the sine processes $S_{i}(t)$,

$$
\begin{equation*}
G\left(t ; u_{1}, \ldots, u_{2 r} ; v_{1}, \ldots, v_{2 s}\right):=\log P\left(\text { all } S_{i}\left(t_{1}\right) \in E_{1}^{c}, \text { all } S_{i}\left(t_{2}\right) \in E_{2}^{c}\right), \tag{1.22}
\end{equation*}
$$

satisfies the third order non-linear $P D E$,

$$
\begin{equation*}
L_{u} \frac{\left(2 E_{v} L_{u}+\left(E_{v}-E_{u}-1\right) L_{v}\right) G}{\left(L_{u}+L_{v}\right)^{2} G+\pi^{2}}=L_{v} \frac{\left(2 E_{u} L_{v}+\left(E_{u}-E_{v}-1\right) L_{u}\right) G}{\left(L_{u}+L_{v}\right)^{2} G+\pi^{2}} \tag{1.23}
\end{equation*}
$$

In the case of single intervals, the joint probability for the Sine process

$$
\begin{array}{r}
H(t ; x, y)=\log P\left(\text { all } S_{i}\left(t_{1}\right) \notin\left[x_{1}+x_{2}, x_{1}-x_{2}\right],\right. \tag{1.24}\\
\text { all } \left.S_{i}\left(t_{2}\right) \notin\left[y_{1}+y_{2}, y_{1}-y_{2}\right]\right)
\end{array}
$$

satisfies the PDE

$$
\begin{align*}
\frac{\partial}{\partial x_{1}} \frac{\left(2 E_{y} \frac{\partial}{\partial x_{1}}+\left(E_{y}-E_{x}-1\right) \frac{\partial}{\partial y_{1}}\right) H}{\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial y_{1}}\right)^{2} H}+ & \pi^{2} \tag{1.25}\\
& =\frac{\partial}{\partial y_{1}} \frac{\left(2 E_{x} \frac{\partial}{\partial y_{1}}+\left(E_{x}-E_{y}-1\right) \frac{\partial}{\partial x_{1}}\right) H}{\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial y_{1}}\right)^{2} H+\pi^{2}} .
\end{align*}
$$

The PDE's are an effective tool to compute large time asymptotics for these processes, if one accepts an assumption on the interchange of sum
and limits. We now illustrate these asymptotics in the case of the Airy process, as done in [1].

Theorem 1.4 (Large time asymptotics for the Airy process). For large $t=t_{2}-t_{1}$, the joint probability admits the following asymptotic series

$$
\begin{align*}
P\left(A\left(t_{1}\right)\right. & \left.\leqslant u, A\left(t_{2}\right) \leqslant v\right) \tag{1.26}\\
& =F(u) F(v)+\frac{F^{\prime}(u) F^{\prime}(v)}{t^{2}}+\frac{\Phi(u, v)+\Phi(v, u)}{t^{4}}+O\left(\frac{1}{t^{6}}\right)
\end{align*}
$$

in terms of the Tracy-Widom distribution (see (1.4), (1.5))

$$
F(u)=\exp \left(-\int_{u}^{\infty}(\alpha-u) q^{2}(\alpha) d \alpha\right)
$$

with

$$
\Phi(u, v):=F_{2}(u) F_{2}(v)\left(\begin{array}{l}
\frac{1}{4}\left(\int_{u}^{\infty} q^{2} d \alpha\right)^{2}\left(\int_{v}^{\infty} q^{2} d \alpha\right)^{2} \tag{1.27}\\
+q^{2}(u)\left(\frac{1}{4} q^{2}(v)-\frac{1}{2}\left(\int_{v}^{\infty} q^{2} d \alpha\right)^{2}\right) \\
+\int_{v}^{\infty} d \alpha\left(2(v-\alpha) q^{2}+q^{\prime 2}-q^{4}\right) \int_{u}^{\infty} q^{2} d \alpha
\end{array}\right)
$$

Moreover, the covariance for large $t=t_{2}-t_{1}$ behaves as

$$
\begin{equation*}
E\left(A\left(t_{2}\right) A\left(t_{1}\right)\right)-E\left(A\left(t_{2}\right)\right) E\left(A\left(t_{1}\right)\right)=\frac{1}{t^{2}}+\frac{c}{t^{4}}+\cdots \tag{1.28}
\end{equation*}
$$

where

$$
c:=2 \iint_{\mathbb{R}^{2}} \Phi(u, v) d u d v
$$

Section 2 of the present paper merely gives a sketch of the proof of these results. For a complete and detailed account, see M. Adler and P. van Moerbeke [1]. In a recent paper, Tracy and Widom [10] express the joint distribution for several times t_{1}, \ldots, t_{m}, in terms of an augmented system of auxiliary variables, which satisfy an implicit closed system of non-linear PDE's. In [11], Tracy and Widom define the Sine process and find an implicit PDE for this process, with methods analogous to the Airy process. Their methods are function-theoretical and the quantities involved seem quite different from ours; the connection between the two sets of results is not transparent. Later H . Widom gave a rigorous proof to the expansion (1.27), based on the Fredholm determinant (1.9) giving the joint distribution.

2. Sketch of Proofs.

In this section we briefly sketch proofs of the results in the previous section, referring the reader to [1] and [2] for the full story. The point being what the results really depend on, which requires discussions whose depth varies case by case! Consider a product ensemble

$$
\left(M_{1}, M_{2}\right) \in \mathcal{H}_{n}^{2}:=\mathcal{H}_{n} \times \mathcal{H}_{n}
$$

of $n \times n$ Hermitian matrices, equipped with a Gaussian probability measure

$$
c_{n} d M_{1} d M_{2} e^{-\frac{1}{2} \operatorname{Tr}\left(M_{1}^{2}+M_{2}^{2}-2 c M_{1} M_{2}\right)},
$$

with Haar measure given by

$$
d M_{j}=\Delta_{n}^{2}(x) \prod_{1}^{n} d x_{i} d U_{j}, \quad j=1,2
$$

The disjoint union

$$
E=E_{1} \times E_{2}:=\bigcup_{i=1}^{r}\left[a_{2 i-1}, a_{2 i}\right] \times \bigcup_{i=1}^{s}\left[b_{2 i-1}, b_{2 i}\right] \subset \mathbb{R}^{2}
$$

specifies linear operators

$$
\begin{array}{ll}
\widetilde{\mathcal{A}}_{1}=\frac{1}{c^{2}-1}\left(\sum_{1}^{2 r} \frac{\partial}{\partial a_{j}}+c \sum_{1}^{2 s} \frac{\partial}{\partial b_{j}}\right) & \widetilde{\mathcal{A}}_{2}=\sum_{j=1}^{2 r} a_{j} \frac{\partial}{\partial a_{j}}-c \frac{\partial}{\partial c} \\
\widetilde{\mathcal{B}}_{1}=\mathcal{A}_{\left.1\right|_{a \leftrightarrows b}} & \widetilde{\mathcal{B}}_{2}=\left.\widetilde{\mathcal{A}}_{2}\right|_{a \leftrightarrows b} .
\end{array}
$$

Using integrable systems and Virasoro theory, it is established in [1] that :
Theorem 2.1. - Given the joint distribution

$$
\begin{equation*}
P_{n}(E):=P\left(\operatorname{all}\left(M_{1} \text {-eigenvalues }\right) \in E_{1}, \text { all }\left(M_{2} \text {-eigenvalues }\right) \in E_{2}\right), \tag{2.1}
\end{equation*}
$$ the function $F_{n}\left(c ; a_{1}, \ldots, a_{2 r}, b_{1}, \ldots, b_{2 s}\right):=\log P_{n}(E)$ satisfies the nonlinear third-order partial differential equation:

$$
\begin{equation*}
\widetilde{\mathcal{A}}_{1} \frac{\widetilde{\mathcal{B}}_{2} \widetilde{\mathcal{A}}_{1} F_{n}}{\widetilde{\mathcal{B}}_{1} \widetilde{\mathcal{A}}_{1} F_{n}+\frac{n c}{1-c^{2}}}=\widetilde{\mathcal{B}}_{1} \frac{\widetilde{\mathcal{A}}_{2} \widetilde{\mathcal{B}}_{1} F_{n}}{\widetilde{\mathcal{A}}_{1} \widetilde{\mathcal{B}}_{1} F_{n}+\frac{n c}{1-c^{2}}} . \tag{2.2}
\end{equation*}
$$

Remark. - Note that both $P_{n}\left(E_{1} \times E_{2}\right)$ and $P_{n}\left(E_{1}^{c} \times E_{2}^{c}\right)$ satisfy the same equation.

Theorem 1.1 is easily derived from Theorem 2.1 via the identity (see (1.14) and (2.1) for the definition of G_{n} and F_{n})

$$
\begin{aligned}
& G_{n}\left(t ; a_{1}, \ldots, a_{2 r} ; b_{1}, \ldots, b_{2 s}\right) \\
& \quad=F_{n}\left(c ; \frac{a_{1}}{\sqrt{\left(1-c^{2}\right) / 2}}, \ldots, \frac{a_{2 r}}{\sqrt{\left(1-c^{2}\right) / 2}} ; \frac{b_{1}}{\sqrt{\left(1-c^{2}\right) / 2}}, \ldots, \frac{b_{2 s}}{\sqrt{\left(1-c^{2}\right) / 2}}\right),
\end{aligned}
$$

where $c=e^{-t}, t=t_{2}-t_{1}$, which just results from a simple change of variables in the matrix integrals.

Theorem 1.2 is derived from Theorem 1.1 by first doing an asymptotic analysis, upon substituting the Airy scaling (1.7) into G_{n}, as in (1.14):

$$
\begin{array}{r}
G_{n}\left(\frac{\tau}{n^{1 / 3}} ; \sqrt{2 n}+\frac{u_{1}}{\sqrt{2} n^{1 / 6}}, \ldots, \sqrt{2 n}+\frac{u_{2 r}}{\sqrt{2} n^{1 / 6}} ; \sqrt{2 n}+\frac{v_{1}}{\sqrt{2} n^{1 / 6}}\right. \\
\left.\ldots, \sqrt{2 n}+\frac{v_{2 s}}{\sqrt{2} n^{1 / 6}}\right) \\
:=H_{n}(\tau ; u, v)=G(\tau ; u, v)+O\left(1 / n^{1 / 6}\right), \text { for } n \rightarrow \infty . \tag{2.3}
\end{array}
$$

with, as in (1.17)

$$
G(\tau, u, v):=\log P\left(A\left(\tau_{1}\right) \in F_{1}, A\left(\tau_{2}\right) \in F_{2}\right)
$$

which is gotten by analyzing the limit of the extended Hermite kernel to the Airy kernel. Then one observes upon making the following substitution in the operators $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$,

$$
\begin{equation*}
a_{i} \mapsto \sqrt{2 n}+\frac{u_{i}}{\sqrt{2} n^{1 / 6}}, \quad b_{i} \mapsto \sqrt{2 n}+\frac{v_{i}}{\sqrt{2} n^{1 / 6}}, \quad t \mapsto \frac{\tau}{n^{1 / 3}} \tag{2.4}
\end{equation*}
$$

and setting $k:=n^{1 / 6}$,

$$
\begin{equation*}
L:=L_{u}+L_{v}, \quad E:=E_{u}+E_{v} \tag{2.5}
\end{equation*}
$$

that for large k :

$$
\begin{align*}
& \mathcal{A}_{1}=\sqrt{2} k\left(L-\left(\frac{\tau}{k^{2}}-\frac{\tau^{2}}{2 k^{4}}+\frac{\tau^{3}}{6 k^{6}}\right) L_{v}+O\left(\frac{1}{k^{8}}\right)\right) \\
& \mathcal{A}_{2}=2 k^{4}\left(L-\frac{2 \tau}{k^{2}} L_{v}+\frac{1}{2 k^{4}}\left(E-1+4 \tau^{2} L_{v}\right)-\frac{\tau}{k^{6}}\left(E_{v}-1+\frac{4}{3} \tau^{2} L_{v}\right)+O\left(\frac{1}{k^{8}}\right)\right) \\
& (2.6) \quad \mathcal{B}_{1}=\left.\mathcal{A}_{1}\right|_{u \longleftrightarrow v}, \quad \mathcal{B}_{2}=\left.\mathcal{A}_{2}\right|_{u \longleftrightarrow v} . \tag{2.6}
\end{align*}
$$

Substituting the asymptotics (2.3)-(2.6) into the Wronskian form of (1.15), one finds:

$$
\begin{aligned}
0= & \left\{\mathcal{B}_{2} \mathcal{A}_{1} H_{n},\left(\mathcal{B}_{1} \mathcal{A}_{1} H_{n}+2 k^{6} e^{-\tau / k^{2}}\right)\right\}_{\mathcal{A}_{1}} \\
& -\left\{\mathcal{A}_{2} \mathcal{B}_{1} H_{n},\left(\mathcal{A}_{1} \mathcal{B}_{1} H_{n}+2 k^{6} e^{-\tau / k^{2}}\right)\right\}_{\mathcal{B}_{1}} \\
= & 16 \tau k^{6}\left[\left(\left(L_{u}+L_{v}\right)\left(L_{u} E_{v}-L_{v} E_{u}\right)+\tau^{2}\left(L_{u}-L_{v}\right) L_{u} L_{v}\right) G\right. \\
& \left.-\frac{1}{2}\left\{\left(L_{u}^{2}-L_{v}^{2}\right) G,\left(L_{u}+L_{v}\right)^{2} G\right\}_{L_{u}+L_{v}}+O\left(\frac{1}{k}\right)\right],
\end{aligned}
$$

upon using the linearity of the Wronskian $\{X, Y\}_{Z}$ in the three arguments and the following commutation relations

$$
\left[L_{u}, E_{u}\right]=L_{u},\left[L_{u}, E_{v}\right]=\left[L_{u}, L_{v}\right]=\left[L_{u}, \tau\right]=0 \text { and }\left[E_{u}, \tau\right]=\tau
$$

including their dual relations by $u \leftrightarrow v$; also $\left\{L^{2} G, 1\right\}_{L_{u}-L_{v}}=\left\{L\left(L_{u}-\right.\right.$ $\left.\left.L_{v}\right) G, 1\right\}_{L}$. It is also useful to note that the two Wronskians in the first expression are dual to each other by $u \leftrightarrow v$. The point of the computation is to preserve the Wronskian structure up to the end. This yields the first part of Theorem 1.2, the second part following from the first part by specialization.

Theorem 1.3 is derived from Theorem 1.1 in the style of Theorem 1.2, by first doing an asymptotic analysis, upon substituting the bulk scaling (1.8) into (1.14) G_{n} :

$$
\begin{align*}
G_{n}\left(\frac{\tau}{n} ; \frac{u_{1}}{2 \sqrt{n}}, \ldots,\right. & \left.\frac{u_{2 r}}{2 \sqrt{n}} ; \frac{v_{1}}{2 \sqrt{n}}, \ldots, \frac{v_{2 s}}{2 \sqrt{n}}\right) \tag{2.7}\\
& :=\widetilde{H}_{n}(\tau ; u, v)=\widetilde{G}(\tau ; u, v)+O(1 / \sqrt{n}), \text { for } n \rightarrow \infty
\end{align*}
$$

with, as in (1.22)

$$
\widetilde{G}(\tau, u, v):=\log P\left(\text { all } \sqrt{2} \pi S_{i}\left(\frac{2 \tau_{1}}{\pi^{2}}\right) \in F_{1}^{c}, \text { all } \sqrt{2} \pi S_{i}\left(\frac{2 \tau_{2}}{\pi^{2}}\right) \in F_{2}^{c}\right) .
$$

Then substitute

$$
\begin{equation*}
a_{i}:=\frac{u_{i}}{2 \sqrt{n}}, \quad b_{i}:=\frac{v_{i}}{2 \sqrt{n}}, \quad t:=\frac{\tau}{n} \tag{2.8}
\end{equation*}
$$

into the operators $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$, and setting $k=\sqrt{n}$ compute

$$
\begin{array}{ll}
\mathcal{A}_{1}=2 k\left(L-\frac{\tau}{k^{2}} L_{v}+O\left(\frac{1}{k^{4}}\right)\right) & \mathcal{A}_{2}=E-1-\frac{2 \tau}{k^{2}}\left(E_{v}-1\right)+O\left(\frac{1}{k^{4}}\right) \\
\mathcal{B}_{1}=\left.\mathcal{A}_{1}\right|_{u \longleftarrow v}, & \mathcal{B}_{2}=\left.\mathcal{B}_{1}\right|_{u \longleftarrow v} . \tag{2.9}
\end{array}
$$

Finally, substituting all these asymptotics, (2.7)-(2.9) into the Wronskian form of (1.15), yields after some effort:

$$
\begin{aligned}
& 0=\left(\left\{\mathcal{B}_{2} \mathcal{A}_{1} \widetilde{H}_{n}, \mathcal{B}_{1} \mathcal{A}_{1} \widetilde{H}_{n}+2 k^{2} e^{-\tau / k^{2}}\right\}_{\mathcal{A}_{1}}\right. \\
&\left.-\left\{\mathcal{A}_{2} \mathcal{B}_{1} \widetilde{H}_{n}, \mathcal{A}_{1} \mathcal{B}_{1} \widetilde{H}_{n}+2 k^{2} e^{-\tau / k^{2}}\right\}_{\mathcal{B}_{1}}\right) \\
&=16 \tau k^{2}[\left\{(E-1) L \widetilde{G}, L^{2} \widetilde{G}+\frac{1}{2}\right\}_{L_{u}-L_{v}} \\
&-\left\{\left(2\left(E_{u}-1\right) L+(E+1) L_{v}\right) \widetilde{G}, L \widetilde{G}+\frac{1}{2}\right\}_{L} \\
&\left.+\left\{\left(2\left(E_{v}-1\right) L+(E+1) L_{u}\right) \widetilde{G}, L \widetilde{G}+\frac{1}{2}\right\}_{L}+O\left(\frac{1}{k^{2}}\right)\right],
\end{aligned}
$$

which implies the first part of Theorem 1.3; the second part following by specialization.

In order to prove Theorem 1.4, we need to show first the following a priori asymptotic expansion:

$$
\begin{aligned}
\frac{P\left(A\left(t_{1}\right) \leqslant u, A\left(t_{2}\right) \leqslant v\right)}{P\left(A\left(t_{1}\right) \leqslant u\right) P\left(A\left(t_{2}\right) \leqslant v\right)} & =\frac{\operatorname{det}\left(I-\left(\hat{K}_{t_{i} t_{j}}^{A}\right)_{1 \leqslant i, j \leqslant 2}\right)}{\operatorname{det}\left(I-\hat{K}_{t_{1} t_{1}}^{A}\right) \operatorname{det}\left(I-\hat{K}_{t_{2} t_{2}}^{A}\right)} \\
& =1+\sum_{i \geqslant 1} \frac{f_{i}(u, v)}{t^{i}}
\end{aligned}
$$

with $t=t_{2}-t_{1}$, following Widom [12], and then assume the following plausible conjecture:

$$
\begin{align*}
\lim _{u \rightarrow \infty} f_{i}(u, v) & =0, \text { for fixed } v \in \mathbb{R} \tag{2.10}\\
\lim _{z \rightarrow \infty} f_{i}(-z, z+x) & =0, \text { for fixed } x \in \mathbb{R}
\end{align*}
$$

being essentially equivalent, respectively, to the following natural conditions:

$$
\begin{gathered}
\lim _{v \rightarrow \infty} P(A(t) \leqslant v \mid A(0) \leqslant u)=1 \\
\lim _{z \rightarrow \infty} P(A(t) \leqslant z+x \mid A(0) \leqslant-z)=1 \quad \text { (non-explosion). }
\end{gathered}
$$

Remembering that $P(A(t) \leqslant u)=F(u)$ and noting $f_{i}(u, v)=f_{i}(v, u)$, the result is proven by substituting equation (2.10):

$$
\begin{aligned}
G(t ; u, v) & :=H(t ; u-v, u+v)=\log P(A(0) \leqslant u, A(t)<v) \\
& =\log F_{2}(u)+\log F_{2}(v)+\sum_{i \geqslant 1} \frac{h_{i}(u, v)}{t^{i}} \\
& =\log F_{2}(u)+\log F_{2}(v)+\frac{f_{1}(u, v)}{t}+\frac{f_{2}(u, v)-f_{1}^{2}(u, v) / 2}{t^{2}}+\ldots,
\end{aligned}
$$

into the equation (1.21), now written in the t, u, v variables:

$$
\begin{aligned}
t \frac{\partial}{\partial t}\left(\frac{\partial^{2}}{\partial u^{2}}-\frac{\partial^{2}}{\partial v^{2}}\right) G= & \frac{\partial^{3} G}{\partial u^{2} \partial v}\left(2 \frac{\partial^{2} G}{\partial v^{2}}+\frac{\partial^{2} G}{\partial u \partial v}-\frac{\partial^{2} G}{\partial u^{2}}+u-v-\tau^{2}\right) \\
& -\frac{\partial^{3} G}{\partial v^{2} \partial u}\left(2 \frac{\partial^{2} G}{\partial u^{2}}+\frac{\partial^{2} G}{\partial u \partial v}-\frac{\partial^{2} G}{\partial v^{2}}-u+v-\tau^{2}\right) \\
& +\left(\frac{\partial^{3} G}{\partial u^{3}} \frac{\partial}{\partial v}-\frac{\partial^{3} G}{\partial v^{3}} \frac{\partial}{\partial u}\right)\left(\frac{\partial}{\partial u}+\frac{\partial}{\partial v}\right) G
\end{aligned}
$$

yielding equations of the form

$$
\mathcal{L} h_{i}=\text { function }\left(h_{1}, \ldots, h_{i-1}\right),
$$

with

$$
\mathcal{L}:=\left(\frac{\partial}{\partial u}-\frac{\partial}{\partial v}\right) \frac{\partial^{2}}{\partial u \partial v}
$$

with null-space of the form $r_{1}(u)+r_{3}(v)+r_{2}(u+v)$. It precisely the conditions (2.10), (1.4) and (1.5) which enable us to kill off the unwanted null-space and deduce the first part of Theorem 1.4, the second part being an immediate consequence of the first part.

BIBLIOGRAPHY

[1] M. Adler and P. van Moerbeke, PDE's for the joint distributions of the Dyson, Airy and Sine Processes, to appear in Ann. of Probability (2005).
[2] M. Adler and P. van Moerbeke, The spectrum of coupled random matrices, Annals of Math., 149 (1999), 921-976.
[3] M. Adler and P. van Moerbeke, A PDE for the joint distribution of the Airy process, arXiv:math.PR/0302329 (2003).
[4] F.J. Dyson, A Brownian-Motion Model for the Eigenvalues of a Random Matrix, Journal of Math. Phys., 3 (1962), 1191-1198.
[5] P.J. Forrester, T. Nagao and G. Honner, Correlations for the orthogonalunitary and symplectic-unitary transitions at the hard and soft edges, Nucl. Phys. B, 553 (1999), 601-643.
[6] K. Johansson, Discrete Polynuclear Growth and Determinantal Processes, ArXiv. Math. PR/0206208 (2002).
[7] K. Johansson, The Arctic circle boundary and the Airy process, ArXiv. Math. PR/0306216 (2003).
[8] M. Prähofer and H. Spohn, Scale Invariance of the PNG Droplet and the Airy Process, J. Stat. Phys., 108 (2002), 1071-1106.
[9] C.A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys., 159 (1994), 151-174.
[10] C.A. Tracy and H. Widom, A system of differential equations for the Airy process, Elect. Comm. in Prob., 8 (2003), 93-98.
[11] C.A. Tracy and H. Widom, Differential equations for Dyson processes, ArXiv. Math. PR/0309082 (2003).
[12] H. Widom, On asymptotics for the Airy process, ArXiv. Math. PR/0308157 (2003).

Mark ADLER, Brandeis University Department of mathematics Waltham, Mass 02454 (USA) adler@brandeis.edu

[^0]: ${ }^{(*)}$ The support of a National Science Foundation grant \# DMS-01-00782 is gratefully acknowledged.
 Keywords: Dyson's Brownian motion, Airy process, coupled gaussian hermitian matrices. Math. classification: 60G60, 60G65, 35Q53, 60G10, 35Q58.

[^1]: ${ }^{1}$ in terms of the Wronskian $\{f(y), g(y)\}_{y}:=f^{\prime}(y) g(y)-f(y) g^{\prime}(y)$.

