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COMBINATORIAL CONSTRUCTION OF

TORIC RESIDUES

by Amit KHETAN (*) & Ivan SOPROUNOV

1. Introduction.

Toric residues are fundamental invariants of sparse polynomial
systems. They were first studied by Cox [13] who defined the residue
of n+1 sections of an ample line bundle on a toric variety X. The definition
was extended by Cattani, Cox, and Dickenstein to sections of n+1 arbitrary
line bundles [4]. There are numerous applications to sparse resultants and
resultant or subresultant complexes [7], [14], mixed Hodge structures [2],
and mirror symmetry [3].

The related notion of global residue in the torus, a sum of Grothendiek
local residues, was studied by Gelfond, Khovanskii, and Soprounov [17], [18].
Cattani, Cox and Dickenstein [4] showed that the global residue could
always be computed as an instance of the toric residue. Applications of the
toric and global residue include GKZ hypergeometric systems [6], [9], [10]
and computations on sparse polynomial systems such as counting the
number of real roots and computing elementary symmetric functions on
the roots [8], [17].

Given n + 1 arbitrary sparse Laurent polynomials f0, . . . , fn in n

affine variables, let P0, . . . , Pn be their corresponding Newton polytopes.
The Minkowski sum P = P0 + · · · + Pn determines a toric variety X, and
each Pi corresponds to a semi-ample divisor class. In the homogeneous

(*) Amit Khetan was supported by NSF postdoctoral fellowship DMS-0303292.
Keywords: Toric varieties, toric residues, semi-ample degrees, facet colorings,
combinatorial degree.
Math.classification: 14M25, 52B20, 06A07.



512 Amit KHETAN & Ivan SOPROUNOV

coordinate ring S of X each fi can be homogenized to a polynomial Fi
of degree αi corresponding to the divisor class of Pi. The toric residue ResF
is a linear function on homogeneous polynomials of a certain critical degree
corresponding to the interior of P which vanishes on the ideal of the Fi.

In many cases of interest, for example when all of the Pi are full
dimensional, the ideal of the Fi has codimension 1 in the critical degree.
Hence knowing a single element of non-zero residue will allow a full
computation of the residue map. More generally, we show in Section 3
that there is an element of non-zero residue whenever the polytopes
form an essential family. The goal of this paper is a general framework
for the construction of specific elements whose residue we can compute.
The construction depends only on the combinatorics and affine geometry
of the polytopes Pi.

THEOREM 1.1. — Let X be a complete toric variety of dimension n.

Fix n + 1 semi-ample degrees α0 , . . . ,αn on X and let P0 , . . . ,Pn be their

polytopes. Let

Pi ∩ Zn = Mi0 � . . . �Min , 0 ≤ i ≤ n,

be a collection of partitions of the lattice points of the Pi such that

1) for any lattice point u ∈ Mij , at least one vertex of the minimal

face of Pi containing u lies in Mij ,

2) for any permutation ε of {0, . . . ,n}:
n∑
i=0

Mε(i)i ⊂ int
( n∑

i=0

Pi

)
,

where int(P ) denotes the interior of P .

Given a collection of Laurent polynomials f0 , . . . ,fn

fi =
∑

u∈Pi∩Zn
cut

u , 0 ≤ i ≤ n,

supported on P0 , . . . ,Pn, define polynomials

fij =
∑

u∈Mij

cut
u , 0 ≤ i,j ≤ n.

Then h = det(fij) is a Laurent polynomial supported on int(
∑n

i=0 Pi). The

toric residue ResF (H) of the corresponding homogeneous polynomial H of

critical degree for the homogenized F0 , . . . ,Fn is an integer that depends

only on the combinatorics of the Pi and the partitions of their lattice points.
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COMBINATORIAL CONSTRUCTION OF TORIC RESIDUES 513

Using this theorem we are able to find an element of residue ±1, i.e.
find an appropriate collection of partitions, in two important cases. The first
is when Pi share a complete flag of faces. This will generalize earlier results
of D’Andrea and Khetan when all of the αi were ample degrees. The second
application is a complete analysis when n = 2. We show that, except for one
degenerate family of supports, we can always find a collection of partitions
yielding an element of residue ±1.

The proof of the theorem makes use of some very elegant combinato-
rics. Starting with a partition of the lattice points we will show that there
are induced colorings of the faces of the polytope P =

∑
Pi. Moreover, the

matrix will yield a canonical coloring of the facets of the barycentric refine-
ment of P . Such a facet coloring will allow us to reduce the computation to
that of the residue of a monomial with respect to a monomial ideal. By an
earlier theorem of Soprounov [19], the residue is the combinatorial degree
of the coloring which can be computed by counting the number of flags of
certain colors.

The paper is organized as follows. Section 2 provides the definitions of
the toric residue and some basic properties. Section 3 proves the existence
of elements of non-zero residue if and only if the polytopes are essential.
Section 4 introduces facet colorings of polytopes and their connection
to the toric residue of monomials. The residue for general polynomials is
reduced to the monomial case via the Global Transformation Law. Section 5
and Section 6 discuss the relationships between partitions, colorings, and
residue matrices used to complete the proof of Theorem 1.1. Section 7
uses the previous results to give an explicit element of residue 1 when
the polytopes Pi share a complete flag of faces. Section 8 is a complete
analysis when X is of dimension 2. Finally, Section 9 discusses progress in
dimensions 3 and higher.

2. Preliminaries.

We begin by setting up the notation and reviewing some basic
definitions and facts about toric varieties and toric residues. For details and
proofs we refer the reader to [4], [12], [13], [15].

2.1. Toric residue.

Consider an n-dimensional complete toric variety X determined by
a rational complete fan Σ ⊂ Rn. Let Σ(1) denote the set of 1-dimensional

TOME 55 (2005), FASCICULE 2



514 Amit KHETAN & Ivan SOPROUNOV

cones (rays) of Σ. Each ray ρ ∈ Σ(1) determines a T-invariant irreducible
divisor Dρ on X. As introduced by Cox in [12] the variety X has the
homogeneous coordinate ring S = C[xρ : ρ ∈ Σ(1)] graded by the Chow
group An−1(X) so that a monomial xa =

∏
ρ x

aρ
ρ has degree

deg(xa) =
[ ∑
ρ∈Σ(1)

aρDρ

]
∈ An−1(X).

Denote by Sα the graded piece of S consisting of all polynomials of degree
α ∈ An−1(X).

Let D =
∑

ρ aρDρ be a representative of α ∈ An−1(X). It defines
a continuous piecewise linear function ψD on the support |Σ| such that
ψD(vρ) = −aρ for all ρ ∈ Σ(1), where vρ denotes the primitive generator
of ρ (see [15, Section 3.3]). It also determines a convex polytope

PD =
{
u ∈ Rn : 〈u, vρ〉 ≥ −aρ, ρ ∈ Σ(1)

}
=

{
u ∈ Rn : u ≥ ψD on |Σ|

}
.

To every lattice point u of PD we can assign a monomial χu in S of degree α:

χu =
∏

ρ∈Σ(1)

x〈u,vρ〉+aρ
ρ , u ∈ PD ∩ Zn.

One can check that this map is a bijection. Furthermore, given a Laurent
polynomial f(t) =

∑
u cut

u supported in PD its PD-homogenization is the
homogeneous polynomial

(2.1) F =
∑

u∈PD∩Zn
cuχ

u =
∑

u∈PD∩Zn
cu

∏
ρ∈Σ(1)

x〈u,vρ〉+aρ
ρ ∈ Sα.

Notice that if f is supported on the interior of PD then the PD-homo-
genization is divisible by the product of all the variables xρ, ρ ∈ Σ(1). It is
easy to see that if D and D′ are linearly equivalent then ψD−ψD′ is a linear
function, and PD and PD′ are the same up to a translation. Therefore,
PD-homogenization is independent of the choice of the representative D of
the divisor class α. In what follows the polytope of α will mean the polytope
of any representative of α and will be denoted by Pα.

Recall the construction of the Euler form Ω from [4]. Let (e1, . . . , en)
be a basis for Zn and for every subset I ⊂ Σ(1) of size n denote

det(ηI) = det
(
〈ei, vρ〉 : 1 ≤ i ≤ n, ρ ∈ I

)
,

dxI =
∧
ρ∈I

dxρ, x̂I =
∏
ρ�∈I

xρ.
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Then the Euler form on X is the sum over all size n subsets I ⊂ Σ(1):

Ω =
∑
|I|=n

det(ηI) x̂I dxI .

Now we recall the definition of the toric residue [13], [4]. Consider
n + 1 homogeneous polynomials Fi ∈ Sαi , for 0 ≤ i ≤ n. Their critical
degree is defined to be

ν =
n∑
i=0

αi −
∑
ρ

deg(xρ).

Then for every polynomial H of degree ν consider a meromorphic n-form
on X :

ωF (H) =
HΩ

F0 · · ·Fn
,

where Ω is the Euler form. We use F to denote the list (F0, . . . , Fn).
Suppose that the Fi do not vanish simultaneously on X. Then X has an
open cover U by the n+ 1 sets Ui = {x ∈ X :Fi(x) �= 0} and ωF (H) defines
a Čech cohomology class [ωF (H)] ∈ Hn(X, Ω̂n

X) relative to the cover U .
Here Ω̂n

X denotes the sheaf of Zariski n-forms on X. One can check that the
class [ωF (H)] is alternating in the order of the Fi and is zero if H belongs
to the ideal of F0, . . . , Fn. Therefore, [ωF (H)] depends on the equivalence
class of H modulo the ideal 〈F0, . . . , Fn〉. The toric residue map

ResXF :Sν/〈F0, . . . , Fn〉ν −→ C,

is given by
ResXF (H) = TrX([ωF (H)]),

where TrX is the trace map on X. When there is no danger of confusion we
will write ResF (H) instead of ResXF (H).

2.2. Semi-ample degrees.

LetX be a complete n-dimensional toric variety defined by a complete
fan Σ in Rn. Recall that a T-Cartier divisor D on X is called semi-ample
if the corresponding line bundle O(D) is generated by global sections.
Equivalently, D is semi-ample if and only if the corresponding piecewise
linear function ψD is convex [15, Section 3.4]. Consider the (generalized)
normal fan ΣD of the polytope PD of D, i.e. a complete fan whose cones are

σΓ =
{
v ∈ (Rn)∗ : 〈u, v〉 ≥ 〈u′, v〉, for all u ∈ PD, u′ ∈ Γ

}
,

for every face Γ of PD. It follows that if D is semi-ample then Σ refines ΣD.

TOME 55 (2005), FASCICULE 2



516 Amit KHETAN & Ivan SOPROUNOV

Indeed, by the convexity of ψD for any maximal cone σ ∈ Σ the restriction
of ψD to σ defines a vertex u of PD. Then σ ⊂ σu, σu ∈ ΣD. We will say
that a degree α = [D] ∈ An−1(X) is semi-ample if D is semi-ample.

Consider a collection of n+1 semi-ample degrees α0, . . . , αn onX. Let
P0, . . . , Pn be their polytopes (defined up to translations) and Σ0, . . . ,Σn

the normal fans of the polytopes. By above Σ refines each Σi and, thus,
refines the minimal common refinement of the Σi, which is the normal
fan ΣP of the Minkowski sum P =

∑n
i=0 Pi by [16, Chapter 5, Theorem 4.8].

Now let π :X ′ → X be a birational morphism defined by a refinement
Σ′ → Σ. If D is a T-Cartier divisor on X then the pull-back π∗(D) has
the same piecewise linear function ψD and the same polytope PD. It
follows that α′ = π∗(α) is semi-ample on X ′ if α is semi-ample on X.
Also if F is a homogeneous polynomial in Sα and f the corresponding
Laurent polynomial supported in Pα then the pull-back F ′ = π∗(F ) is
the Pα-homogenization of f in the homogeneous coordinate ring S′ of X ′,
and hence F ′ ∈ S′α′ .

Next we will see how the toric residue ResXF behaves under the
birational morphism π :X ′ → X.

PROPOSITION 2.1. — Let X be a complete n-dimensional toric

variety defined by a complete fan Σ. Let π :X ′ → X be a birational

morphism induced by a refinement Σ′ → Σ. Suppose α0 , . . . ,αn are

semi-ample degrees with polytopes P0 , . . . ,Pn and consider n + 1 poly-

nomials Fi ∈ Sαi not vanishing simultaneously onX. Then the polynomials

F ′i = π∗(Fi) ∈ S′α′
i

do not vanish simultaneously on X ′. Furthermore, let g

be any Laurent polynomial supported in the interior of P =
∑n

i=0 Pi,
and G (resp. G′) be the P -homogenization of g in S (resp. S′). Then the

homogeneous polynomials H = G/xΣ(1) and H ′ = G′/xΣ′(1) are of critical

degree for the Fi and the F ′i , respectively, and satisfy

ResXF (H) = ResX
′

F ′ (H
′).

Here xΣ(1) denotes the product of the homogeneous variables
∏

ρ∈Σ(1) xρ.

Proof. — First the sets U ′i = {x ∈ X ′ :F ′i (x) �= 0} form a covering
of X ′ since it is the pull-back of the covering U of X. In particular, the F ′i
do not vanish simultaneously on X ′.
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Now let Ω and Ω′ be the Euler forms on X and X ′, respectively.
We have

π∗
(
Ω/xΣ(1)

)
= Ω′/xΣ′(1),

since both are rational extensions of the T-invariant regular n-form
dt1/t1 ∧ . . . ∧ dtn/tn on the torus, where the ti are affine coordinates.
Therefore

π∗
(
ωF (H)

)
= π∗

(GΩ/xΣ(1)

F0 · · ·Fn

)
=
G′ Ω′/xΣ′(1)

F ′0 · · ·F ′n
= ωF ′(H ′).

Since TrX = TrX′ ◦π∗ both ωF (H) and ωF ′(H ′) have the same toric
residue. The proposition follows.

3. Residues and essential polytopes.

DEFINITION 3.1. — A collection of polytopes P0 , . . . ,Pn is said to be
essential if for every I � {0, . . . ,n} the dimension of the polytope

∑
i∈I Pi

is at least |I|. Given a toric variety X of dimension n, a collection of semi-
ample degrees α0 , . . . ,αn is called essential if the corresponding polytopes
P0 , . . . ,Pn are essential.

The goal of this section is to prove that the toric residue is not
identically zero if and only if the degrees αi are essential.

THEOREM 3.2. — Consider degrees α0 , . . . ,αn on a complete toric

variety X. The toric residue with respect to polynomials F0 , . . . ,Fn, viewed

as a rational function in the coefficients of the Fi, is identically zero if and

only if the αi are not essential. For essential αi there is a polynomial H of

critical degree and homogeneous of degree 1 in the coefficients of each Fi
such that ResF (H) = 1.

Proof. — The first implication is that for the non-essential degrees
the toric residue is identically 0. By Proposition 2.1, we can refine X to
a simplicial variety without changing the toric residue. So assume X is
simplicial. In this case the toric residue ResF (H) is the sum of the Grothen-
dieck local residues of any H/Fk with respect to the common zeros of the
remaining Fi [4, Theorem 0.4].

Suppose there exists a proper subset I such that
∑

i∈I Pi has
dimension less than |I|. Let XI be the toric variety corresponding to
PI =

∑
i∈I Pi, and π :X → XI the morphism defined by the natural

map of fans ΣX → ΣPI . The polynomial Fi for i ∈ I is the pull-back

TOME 55 (2005), FASCICULE 2
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of a polynomial of semi-ample degree on XI with polytope Pi. Clearly,
generic polynomials supported on the Pi, i ∈ I, do not have a common
zero on XI since |I| > dimXI . Thus the corresponding {Fi : i ∈ I} do not
have a common zero on X for generic coefficients. Extend I to a subset of
size n, without loss of generality we take it to be {1, . . . , n}. For generic
coefficients F1, . . . , Fn do not have a common root. In particular there are
no local residues in the sum. So for generic coefficients the toric residue
is 0. Since, ResF is a rational function of the coefficients of the Fi it must
be identically zero.

For the converse, the main tool is the following dual Koszul complex of
sheaves with respect to F = (F0, . . . , Fn) which appears in numerous places
including [4], [11], and [14]. Given a subset I ⊂ {0, . . . , n} let αI =

∑
i∈I αi.

We have an exact sequence of sheaves

0 → O(−β0) −→
n⊕
i=0

O(αi − β0) → · · · →
⊕
|I|=p

O(αI − β0)

→ · · · → O(ν) → 0,

where as before ν is the critical degree for F and β0 =
∑

ρ deg(xρ).

One can take the Čech cohomology double complex and then pass to
a spectral sequence. The E1 terms of this spectral sequence are

Ep,q
1 =

⊕
|I|=p

Hq
(
X,O(αI − β0)

)
.

Because the αi are essential, a result of [11] gives us

Ep,q
1 = 0 when p+ q > n, except for En+1,0

1 = Sν .

As a consequence there is a unique top differential dn+1 :E0,n
n+1 → En+1,0

n+1

which must be an isomorphism since the spectral sequence is exact.
Moreover,

E0,n
n+1 = E0,n

1 = Hn
(
X,O(−β0)

)
and En+1,0

n+1 is a quotient of Sν .

So we have an induced map Sν → Hn(X,O(−β0)) which is
the composition of the projection onto En+1,0

n+1 and the inverse of the
isomorphism dn+1. We also have an isomorphism O(−β0) → Ω̂n sending
a local section s to s · Ω where Ω is the Euler form. Finally there is the
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trace isomorphism TrX :Hn(X,Ωn) → C. Composing all of these maps we
obtain a map Sν → C. The maps are illustrated via the diagram below:

Sν = En+1,0
1

En+1,0
n+1 ←−−−−

←
−−
−

dn+1



Hn(X,O(−β0)) ∼= Hn(X, Ω̂n) −−− →
→

TrX
C.

We will prove that this composition is precisely the toric residue map.
In that case if we started with a differential form ω ∈ Hn(X,Ωn) such that
TrX(ω) = 1, it would correspond to an element of Hn(X,O(−β0)) which
is mapped to an element h ∈ En+1,0

n+1 . Let H be any element of Sν lifting h.
From the above constructions it would follow that ResF (H) = 1 and the
toric residue is not identically zero as desired.

Moreover, by a theorem of Weyman [16, Chapter 3, Theorem 4.11],
the differential dn+1, and therefore the element H above, can be lifted
up to a (non-unique) map Hn(X,O(−β0)) → Sν which is polynomial of
degree 1 in the coefficients of each Fi.

To prove that the residue map coincides with the one constructed
above we compute the cohomology terms using the Čech resolutions
given by the open cover Ui = {x ∈ X :Fi(x) �= 0}. More generally, given
J ⊂ {0, . . . , n} define UJ =

⋂
j∈J Uj . In this way we have the E0 terms of

our spectral sequence

Ep,q
0 =

⊕
|I|=n+1−p

⊕
|J|=q+1

O(αÎ − β0)(UJ),

where Î denotes the complement of I. In terms of the cover, given a
polynomial H ∈ Sν we have

H

F0 · · ·Fn
∈ O(−β0)(U{0,...,n}) = E0,n

0 .

The residue map is defined to be the trace of the cohomology class of this
latter element (after multiplying by the Euler form). So it is enough to
show that dn+1([H/F0 · · ·Fn]) = [H] ∈ En+1,0

n+1 . To compute this differential
we start with H/F0 · · ·Fn ∈ E0,n

0 and map it via d1 to E1,n
0 . This can be

lifted via the Čech differential d0 to an element of E1,n−1
0 which is further

mapped to E2,n−1
0 and lifted to E2,n−2

0 and so on. At the end we obtain an
element of En,0

0 which is mapped via d1 to En+1,0
0 .

Let eIJ be the basis of Ep,q
0 and FI =

∏
i∈I Fi. We have the following

lemma.

TOME 55 (2005), FASCICULE 2
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LEMMA 3.3. — In the above mapping and lifting process, a valid choice

for the element in En−p,p
0 is

∑
|I|=p+1(H/FI) eII .

Proof. — The base case p = n is our starting element. For the
inductive step we need to show that

d1

( ∑
|I|=p+1

H

FI

)
eII = d0

( ∑
|I′|=p

H

FI′
eI′I′

)
.

However, by the definitions of the Koszul and Čech morphisms it is
easy to see that both of the above elements are

∑
I={i0,...,ip}

p∑
j=0

(−1)j
H

FIj
eIjI ,

where Ij = I \ {ij}.

Therefore we get the element
∑n

i=0(H/Fi) eii ∈ En,0
0 . The final

Koszul differential is multiplication by Fi in each factor so we are left with
(H,H, . . . ,H) ∈

∑n
i=0O(ν)(Ui) which corresponds to the global section

H ∈ H0(X,O(ν)). So H is a valid lifting of the image of the class
of H/F0 · · ·Fn under dn+1 completing the proof.

4. Facet coloring and toric residues for monomials.

The theorem from the previous section guaranteed the existence of
an element of toric residue one but was completely nonconstructive. This
section and the next one provide the framework for an explicit combinatorial
construction of such elements. Here we recall the definition of the facet
coloring of a polytope and the relation between the combinatorial degree
of a facet coloring and the toric residue for monomial ideals. We will
also obtain the Generalized Global Transformation Law that allows us to
reduce the computation of the toric residue for semi-ample degrees to the
monomial case.

4.1. Facet coloring.

Consider an n-dimensional polytope P in Rn. We let ∂P denote the
boundary of P and F(∂P ) the partially ordered set (poset) by inclusion
of all proper faces of P . We also let 2[n+1] denote the set of all subsets of
[n + 1] = {0, . . . , n}. It will be convenient for us to equip 2[n+1] with the
inverse partial order <, i.e. J < J ′ if and only if J ⊃ J ′ for J, J ′ ∈ 2[n+1].

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 4.1. — A map of posets C : (F(∂P ), ⊂) → (2[n+1] , <)
is called a coloring of P into n + 1 colors (or simply coloring). The image
C(Γ) is called the set of colors of a face Γ ∈ F(∂P ). We will also say that Γ
is colored by C(Γ). A coloring is called simplicial if every face Γ ∈ F(∂P ) is
colored by a non-empty proper subset of [n+ 1].

The poset (2[n+1], <) can be identified with the poset of faces of the
standard n-simplex:

∆ =
{
y = (y0, . . . , yn) ∈ Rn+1 : y0 + · · ·+ yn = 1, 0 ≤ yi ≤ 1

}
.

Indeed, each non-empty proper subset {j1, . . . , jk} ⊂ [n + 1] defines the
codimension k face of ∆:

∆j1...jk =
{
y ∈ ∆: yj1 = · · · = yjk = 0

}
.

Therefore, any simplicial coloring is, in fact, a map C :F(∂P ) → F(∂∆) of
posets.

Fix orientations of P and ∆. Given a simplicial coloring C consider a
continuous piecewise linear map fC : ∂P → ∂∆ such that fC(Γ) ⊂ C(Γ) for
any Γ ∈ F(∂P ). One can show that such a map fC always exists and the
topological degree deg fC does not depend on the choice of fC (see [19]).
We call it the combinatorial degree cdeg(C) of the simplicial coloring C.
The combinatorial degree is alternating in the ordering of the elements
of [n+ 1] as every such ordering defines an orientation of the corresponding
simplex ∆.

We have the following property of the combinatorial degree. Let C, C ′

be two simplicial colorings of P . We say that C ′ refines C if C ′(Γ) ⊂ C(Γ)
for any Γ ∈ F(∂P ).

PROPOSITION 4.2 (see [19]). — Let C, C ′ be two simplicial colorings

of P . If C ′ refines C then cdeg(C) = cdeg(C ′).

The combinatorial degree can be computed explicitly as a signed
number of certain complete flags of faces of P . To state the precise formula
we will need the following definition. Consider a complete flag F of faces
of P :

F : P 0 ⊂ P 1 ⊂ · · · ⊂ Pn−1 ⊂ Pn = P, dimP j = j.

For every 1 ≤ j ≤ n choose a vector ej that begins at P 0 and points strictly
inside P j . Define the sign of the flag to be sgnF = 1 if (e1, . . . , en) gives a
positive oriented frame for P , and sgnF = −1 otherwise. It is easy to see
that the sign is independent of the choice of the ei.
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THEOREM 4.3. — Let C be a simplicial coloring of an n-dimensional

polytope P ⊂ Rn. Fix any permutation ε on the elements of [n+ 1]. Then

the combinatorial degree of C equals the sign of ε times the number of

complete flags
P 0 ⊂ P 1 ⊂ · · · ⊂ Pn−1 ⊂ Pn = P ,

counted with signs, such that for every 1 ≤ k ≤ n the face P k−1 is colored

by {ε(k), . . . ,ε(n)}.

Proof. — This is a particular case of [18], Theorem 2.2.

In particular, this theorem says that the combinatorial degree is zero
unless for every 0 ≤ k ≤ n there is a facet in P colored by {k}, for every
0 ≤ k < 3 ≤ n there is a codimension 2 face in P colored by {k, 3},
and so on.

One way to define a coloring C :F(∂P ) → 2[n+1] is to give the colors to
every facet of P and then extend it by taking intersections, i.e. if Γ =

⋂
ν Qν

for some facets Qν then C(Γ) =
⋃

ν C(Qν) (remember we have the reversed
order in the target). The coloring obtained in this way is called a facet
coloring. In the present paper we will only be interested in facet colorings.

Next, let P be a polytope in Rn. Then one can consider the poset
of all flags of faces of P (chains in F(∂P )). The partial order is defined
as follows: If F = {Γ1 ⊂ · · · ⊂ Γk} and F ′ = {Γ′1 ⊂ · · · ⊂ Γ′�} are two
flags of faces of P then F < F ′ if and only if {Γ′1, . . . ,Γ′�} is a subset
of {Γ1, . . . ,Γk}. This poset can be realized as the poset of faces of a simple
polytope P̂ whose normal fan is the barycentric subdivision of the normal
fan of P . Indeed, one can easily see that there is a 1-1 order preserving
correspondence between codimension k faces of P̂ and length k flags of
faces of P . In particular, facets of P̂ correspond to flags of faces of length
one, i.e. to faces of P .

Later on we will be concerned with facet colorings not of the poly-
tope P itself, but the polytope P̂ associated with it. By the above, to
define a facet coloring of P̂ we need to assign a non-empty proper subset
of [n + 1] to every facet of P̂ , hence, to every face of P . Therefore, any
map C :F(∂P ) → 2[n+1] defines a facet coloring Ĉ :F(∂P̂ ) → 2[n+1]. (We
should warn the reader, however, the map C may not be a map of posets,
in general.) Clearly, for every flag Γ1 ⊂ · · · ⊂ Γk the union

⋃
i C(Γi) is the

set of colors of the face of P̂ corresponding to this flag. We thus say that
a flag Γ1 ⊂ · · · ⊂ Γk is colored by

⋃
i C(Γi). Furthermore, Ĉ is simplicial if

and only if for any flag Γ1 ⊂ · · · ⊂ Γk the union
⋃

i C(Γi) is proper.
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4.2. Toric residue for monomials.

Let X be a projective toric variety of dimension n defined by a lattice
polytope P , and let Σ denote the normal fan of P .

Consider a collection of n + 1 (monic) monomials z0, . . . , zn in
the homogeneous coordinate ring S = C[xρ : ρ ∈ Σ(1)] of X. Assume
that the product of the variables

∏
ρ xρ divides the product of the

monomials z0 · · · zn. Then the quotient z0 · · · zn/
∏

ρ xρ has critical degree
with respect to z0, . . . , zn.

On the other hand, since the variables xρ correspond to the
facet normals of P , any collection of monomials z = (z0, . . . , zn) with∏

ρ xρ | z0 · · · zn defines a facet coloring of P :

Cz :F(∂P ) −→ 2[n+1], Cz(Qρ) =
{
i ∈ [n+ 1] : xρ|zi

}
,

where Qρ is the facet of P whose inner normal generates ρ. Conversely,
any facet coloring C of P defines a collection of squarefree monomials in S
whose product is divisible by the product of the variables zi =

∏
C(Qρ)i xρ.

If z0, . . . , zn do not vanish simultaneously onX then the corresponding
coloring Cz is simplicial. Indeed, if Cz is not simplicial then there is a
vertex u of P which is colored by {0, . . . , n}, i.e. u ∈ Q0 ∩ . . . ∩ Qn for
some facets Qi, such that Qi contains i as one of its colors. But this implies
that the corresponding point xu on X lies on the irreducible divisors
Dρ0 , . . . , Dρn , where each Dρi is a component of the zero locus of zi on X,
a contradiction.

The next theorem asserts that the combinatorial degree of Cz equals
the toric residue of the quotient z0 · · · zn/

∏
ρ xρ.

THEOREM 4.4 (see [19]). — Let X be an n-dimensional projective

toric variety defined by a lattice polytope P . Let z0 , . . . ,zn be monomials

in the homogeneous coordinate ring S such that

1)
∏

ρ xρ | z0 · · · zn,

2) z0 , . . . ,zn do not vanish simultaneously on X.

Then

Resz
(
z0 · · · zn/

∏
ρ

xρ

)
= cdeg(Cz)

where Cz is the simplicial coloring of P defined by z0 , . . . ,zn.
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4.3. Reduction to toric residue for monomials.

To reduce the computation of the toric residue for arbitrary
polynomials to the case of monomials we will need the following generalized
version of the Global Transformation Law [4].

THEOREM 4.5. — Let Fj ∈ Sαj and Gj ∈ Sβj for 0 ≤ j ≤ n. Suppose

n∑
j=0

BijFj =
n∑

j=0

AijGj , 0 ≤ i ≤ n,

whereBij andAij are homogeneous of degree γi−αj and γi−βj respectively

for some fixed degrees γ0 , . . . ,γn. Assume that neither F0 , . . . ,Fn nor

G0 , . . . ,Gn vanish simultaneously on X. Let α =
∑

i αi, β =
∑

i βi,
γ =

∑
i γi, and ν0 =

∑
ρ deg(xρ). Then for any H ∈ Sα+β−γ−ν0 , the

polynomials H detA and H detB are of critical degree for F and G

respectively, and

(4.1) ResF (H detA) = ResG(H detB).

Proof. — For any H ∈ Sα+β−γ−ν0 the degree of H detA is α − ν0,
which is the critical degree for F0, . . . , Fn. Consider the n+ 1 homogeneous
polynomials Ki =

∑n
j=0BijFj . According to the Global Transformation

Law [4, Theorem 0.1]

ResK
(
(H detA) detB

)
= ResF (H detA).

On the other hand, Ki =
∑n

j=0AijGj and H detB has critical degree
for G0, . . . , Gn. Therefore,

ResK((H detB) detA) = ResG(H detB),

again by the Global Transformation Law. The theorem follows.

Our reduction is then based on the following assertion.

COROLLARY 4.6. — LetX be an n-dimensional projective toric variety.

Let Fj ∈ Sαj be homogeneous polynomials not vanishing simultaneously

on X. Suppose y0 , . . . ,yn and z0 , . . . ,zn are squarefree monomials such

that
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1) y0 · · · yn = z0 · · · zn/
∏

ρ xρ,

2) yiFi =
∑n

j=0Aijzj for some Aij ∈ Sαi+deg(yi)−deg(zj), 0 ≤ i ≤ n,

3) z0 , . . . ,zn do not vanish simultaneously on X.

Then we have

(4.2) ResF (detA) = Resz(y0 · · · yn) = cdeg(Cz),

where Cz is the simplicial facet coloring defined by z0 , . . . ,zn.

Proof. — The first statement in (4.2) follows from Theorem 4.5 and
the second statement follows from Theorem 4.4.

5. Partition matrix for polytopes and residue matrix.

5.1. Partition matrix.

Let P be a lattice polytope in Rn. Consider any partition of the set of
vertices of P into n+ 1 disjoint (possibly empty) subsets:

(5.1) Vert(P ) = V0 � . . . � Vn.

Extend this partition to a partition of the set of lattice points of P by
adding to Vi lattice points in the relative interior of faces containing a
vertex from Vi:

(5.2) P ∩ Zn = M0 � . . . �Mn.

Any such extension (5.2) will be called an induced partition of P ∩ Zn
defined by the vertex partition (5.1).

Now consider n + 1 lattice polytopes P0, . . . , Pn in Rn. For each
polytope Pi fix an (ordered) vertex partition

Vert(Pi) = Vi0 � . . . � Vin.

We say that these partitions are compatible if for any permutation ε

of {0, . . . , n}

(5.3)
n∑
i=0

Vε(i)i ⊂ int
( n∑

i=0

Pi

)
,

where int(P ) denotes the relative interior of P .
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DEFINITION 5.1. — Let P0 , . . . ,Pn be lattice polytopes in Rn. Then
subsetsMij ⊂ Pi∩Zn, 0 ≤ i,j ≤ n, form a partition matrix for P0 , . . . ,Pn if

Pi ∩ Zn = Mi0 � . . . �Min , 0 ≤ i ≤ n

is a collection of induced partitions defined by a compatible collection of
vertex partitions

Vert(Pi) = Vi0 � . . . � Vin , 0 ≤ i ≤ n.

Remark 5.2. — It is not hard to see that the compatibility condition
on the Vij (5.3) implies the same condition on any induced partitions:

(5.4)
n∑
i=0

Mε(i)i ⊂ int
( n∑

i=0

Pi

)
.

Example 5.3. — Consider three polygons P0, P1 and P2 in Figure 5.1.
We partition their lattice points in accordance with the labels: the set Mij

consists of points of Pi labeled with j (0 ≤ i, j ≤ 2).

1 0 01 1

2 2 2

2 2

P0

P1

P2

Figure 5.1

Clearly these are induced partitions. To show that they are compatible
it is enough to check that for any linear functional v �= 0 any three vertices
u0, u1 and u2 that minimize v on P0, P1 and P2, respectively, will not have
all different labels.

5.2. Coloring matrices.

Let P be a polytope in Rn. Recall that every vector v in the dual
space (Rn)∗ defines a face P v of P on which v restricted to P attains its
minimal value.

DEFINITION 5.4. — LetM be a partition matrix for P0 , . . . ,Pn. Define
a map from (Rn)∗ to the set of (0,1)-matrices of dimension (n+1)×(n+1):

M: (Rn)∗ −→ Mat(n+ 1,{0,1})
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where the value of M at v ∈ (Rn)∗ is the matrix Mv whose (i,j)-th entry is

Mv
ij =

{
1 if Mij ∩ P v

i �= ∅,
0 otherwise.

The matrix Mv is called the coloring matrix of v.

Informally speaking, the coloring matrix Mv “encodes” the partitions
of the lattice points of the Pi restricted to the corresponding faces P v

i .

The compatibility condition implies that for any non-zero v the
coloring matrix Mv has permanent zero. Indeed, if the permanent is non-
zero then there exists a permutation ε of {0, . . . , n} such that Mv

ε(i)i = 1 for
all 0 ≤ i ≤ n. By the definition of Mv this implies that for each i there is a
point ui in Mε(i)i that lies on the face P v

i . But then the sum u0 + · · ·+ un
gives a point on the face P v of the Minkowski sum P =

∑
i Pi, which

contradicts the compatibility condition (5.4).

The following statement is known as the Frobenius-König Theorem
(it is also equivalent to Hall’s Marriage Theorem [1]).

THEOREM 5.5. — Let A be a (0,1)-matrix of dimension n × n with

zero permanent. Then A has a submatrix of zeroes of dimension r × s for

some positive r,s such that r + s = n+ 1.

By the above theorem for every non-zero v the (n + 1) × (n + 1)
matrix Mv has a zero submatrix (not unique, in general) of dimension r× s
with r + s = n+ 2. The rows (resp. columns) of the submatrix are indexed
by a subset of {0, . . . , n} which we denote by Iv (resp. Jv). We thus have
|Iv|+ |Jv| = n+ 2 for all non-zero v.

Now consider a polytope P whose normal fan Σ is a common
refinement of the normal fans of P0, . . . , Pn. Clearly, Mv is the same
for all v in the intersection of the cones of the P v

i . Therefore, M is constant
on the cones of Σ. Since cones of Σ correspond to faces of P we arrive at
the following definition.

DEFINITION 5.6. — Let M be a partition matrix for P0 , . . . ,Pn. Let P
be a polytope whose normal fan is a common refinement of the normal fans
of P0 , . . . ,Pn. Given a face Γ of P define its coloring matrix MΓ to be the
coloring matrix of any v ∈ σΓ, where σΓ is the cone of Γ.

We will need the following simple observation. Let Γ1,Γ2 be faces
of P . Then

(5.5) if Γ1 ⊂ Γ2 then (MΓ2
ij = 0) =⇒ (MΓ1

ij = 0).
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5.3. Residue from a partition matrix.

Consider a projective n-dimensional toric variety X defined by a
projective fan Σ. Let α0, . . . , αn be n + 1 semi-ample degrees on X and
let P0, . . . , Pn be their polytopes.

DEFINITION 5.7. — Consider a collection of n + 1 homogeneous
polynomials F = (F0 , . . . ,Fn) of degrees α0 , . . . ,αn:

Fi =
∑

u∈Pi∩Zn
cuχ

u , Fi ∈ Sαi , 0 ≤ i ≤ n.

Given a partition matrix M for P0 , . . . ,Pn define the residue matrix MF

of F to be the matrix whose entries are the homogeneous polynomials

Fij =
∑

u∈Mij

cuχ
u , Fij ∈ Sαi , 0 ≤ i,j ≤ n.

The determinant det(MF ) is a homogeneous polynomial of degree
α = α0 + · · · + αn. Since the αi are semi-ample, α is also semi-ample and
its polytope is the Minkowski sum

∑
i Pi. As follows from the definition

of homogeneous coordinates (see (2.1)) a monomial χu of degree α is
divisible by all the variables if and only if the corresponding lattice point
u lies in the interior of the polytope of α. Therefore, by the compatibility
condition (5.4) every monomial in det(MF ) is divisible by all the variables,
and hence the quotient det(MF )/

∏
ρ xρ is a homogeneous polynomial of

critical degree α−
∑

ρ deg(xρ).

PROPOSITION 5.8. — Let α0 , . . . ,αn be semi-ample degrees on X with

polytopes P0 , . . . ,Pn. Fix a partition matrix M for P0 , . . . ,Pn. For every

coloring matrix Mρ, ρ ∈ Σ(1), make any choice of an r × s zero submatrix

with r + s = n + 2 and let its rows and columns be indexed by subsets Iρ

and Jρ of {0, . . . ,n}, respectively. Define squarefree monomials

yi =
∏
Iρ �i

xρ , zj =
∏
Jρj

xρ , 0 ≤ i,j ≤ n.

Then for any homogeneous polynomials F0 , . . . ,Fn of degrees α0 , . . . ,αn

1) y0 · · · yn = z0 · · · zn/
∏

ρ xρ,

2) yiFi =
∑n

j=0Aijzj for some Aij ∈ Sαi+deg(yi)−deg(zj), 0 ≤ i ≤ n.

Moreover, Aij can be chosen so that

det(MF )/
∏
ρ

xρ = det(A),

where MF is the residue matrix defined by the partition matrix M .
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Proof. — 1) For every ρ ∈ Σ(1) the variable xρ appears in the
product z0 · · · zn with multiplicity |Jρ| and in y0 · · · yn with multiplicity
n+ 1− |Iρ| = |Jρ| − 1 since |Iρ|+ |Jρ| = n+ 2.

2) For every 0 ≤ i ≤ n we have

Fi =
∑

u∈Pi∩Zn
cuχ

u.

We need to show that every monomial yiχu is divisible by at least one
of z0, . . . , zn. Since every monomial χu is divisible by a vertex monomial we
can assume that u is a vertex of Pi. Recall that in homogeneous coordinates

χu =
∏
ρ

x〈u,vρ〉+aρ
ρ ,

where D =
∑

ρ aρDρ is a representative of αi (see (2.1)). Therefore xρ
divides χu if and only if ρ �∈ σu, where σu is the cone of Σi corresponding
to u.

The vertex u is contained in Mij for some 0 ≤ j ≤ n. We show
that zj divides yiχu. Indeed, take any xρ with Jρ containing j. If i ∈ Iρ

then Mρ
ij = 0. From the definition of Mρ it follows that P vρ

i does not
contain the vertex u, i.e. ρ �∈ σu and so xρ | χu by above. If i �∈ Iρ

then xρ | yi by the definition of yi.

The above argument shows that yiFij = Aijzj for some homogeneous
polynomial Aij . Taking the determinant we obtain y0 · · · yn det(MF ) =
z0 · · · zn det(A). Now the last statement follows from part 1).

The above proposition shows that given a partition matrix M , any
choice of zero submatrices in Mρ, for ρ ∈ Σ(1), defines a collection of
squarefree monomials y0, . . . , yn and z0, . . . , zn that satisfy the conditions
1) and 2) of Corollary 4.6. If the facet coloring Cz defined by the monomials
z0, . . . , zn is simplicial the condition 3) of Corollary 4.6 is satisfied and that
would imply the result of Theorem 1.1, namely that the residue ofMF equals
the combinatorial degree of Cz. However, there are examples of P0, . . . , Pn
when the condition 3) fails no matter how one chooses a partition matrix
and zero submatrices. To avoid this obstruction we are going to change the
variety X by taking the barycentric refinement of its fan Σ̂ → Σ. This gives
a birational morphism X̂ → X which allows us to transfer our construction
to the variety X̂ (see Proposition 2.1). The advantage of this is that for any
partition matrix M there is a canonical choice of a zero submatrix in every
coloring matrix Mρ, for ρ ∈ Σ̂, which guarantees that the corresponding
monomials ẑ0, . . . , ẑn do not vanish simultaneously on X̂.
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6. Canonical colorings.

Let P0, . . . , Pn be n + 1 lattice polytopes in Rn and Σ0, . . . ,Σn their
normal fans. Let P be any polytope whose normal fan Σ is a common
refinement of the Σi. Given a partition matrix we will define a canonical
facet coloring of a polytope P̂ whose normal fan Σ̂ is the barycentric
refinement of Σ. We will then prove that this coloring is simplicial. This will
allow us to define monomials ẑ0, . . . , ẑn on the toric variety corresponding
to P̂ that satisfy all the conditions of Corollary 4.6 and thus obtain our
main result (Theorem 1.1).

6.1. Canonical coloring.

Let M be a partition matrix for polytopes P0, . . . , Pn and let the
polytopes P and P̂ be as above. As mentioned in Section 4.1, to define a
facet coloring of P̂ it suffices to assign a subset C(Γ) ⊂ {0, . . . , n} to every
face Γ of P . We will start by describing all possible candidates for C(Γ),
so called admissible colorings of Γ.

DEFINITION 6.1. — Let Γ be a face of P and MΓ its coloring matrix.
A subset J ⊂ {0, . . . ,n} is called an admissible coloring of Γ if MΓ contains
an r×s zero submatrix with r+s = n+2 whose columns are indexed by J .

It turns out that the set of admissible colorings of a face possesses
very nice properties.

First, for any flag of faces of P we have the reversed inclusion of the
corresponding sets of admissible colorings:

(6.1) If Γ1 ⊂ · · · ⊂ Γk then J1 ⊃ · · · ⊃ Jk,

where Ji is the set of admissible colorings of Γi. Indeed, (5.5) implies that
every zero submatrix in the coloring matrix of Γi is also a zero submarix of
the coloring matrix of Γi−1.

Second, let MΓ be the coloring matrix of a face Γ ⊂ P . (In what
follows we will only use that MΓ is an (n+ 1)× (n+ 1) matrix with (0, 1)-
entries and zero permanent.) Denote by B the set of all zero submatrices B
in MΓ of dimension r × s such that r + s = n + 2. This set is non-
empty by Theorem 5.5. For B ∈ B we let I(B) (resp. J(B)) denote the
subset in {0, . . . , n} of indices of rows (resp. columns) of B. We have
the following lemma.

LEMMA 6.2. — Let B1 ,B2 ∈ B. Then there is B ∈ B such that either

J(B) = J(B1) ∪ J(B2) or J(B) = J(B1) ∩ J(B2).
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Proof. — Let B′ be the submatrix whose rows are indexed by
I(B1) ∩ I(B2) and whose columns are indexed by J(B1) ∪ J(B2). Clearly
B′ is a zero submatrix. Similarly, let B′′ be the zero submatrix with rows
indexed by I(B1) ∪ I(B2) and columns indexed by J(B1) ∩ J(B2). Denote
ri = |I(Bi)|, r∩ = |I(B1) ∩ I(B2)|, and r∪ = |I(B1) ∪ I(B2)|. By the
inclusion/exclusion formula r∪+ r∩ = r1 + r2. Similarly, s∪+ s∩ = s1 + s2,
where si = |J(Bi)|, s∩ = |J(B1) ∩ J(B2)|, and s∪ = |J(B1) ∪ J(B2)|.
Summing up these two equations we obtain

(r∩ + s∪) + (r∪ + s∩) = (r1 + s1) + (r2 + s2) = 2(n+ 2).

Therefore, either r∩+ s∪ ≥ n+ 2 or r∪+ s∩ ≥ n+ 2. In other words, either
B′ or B′′ contains a zero submatrix B with r + s = n+ 2, as required.

Remark 6.3. — The above lemma means that if J1 and J2 are two
admissible colorings of Γ then either J1 ∩ J2 or J1 ∪ J2 is also an admissible
coloring. As follows from the proof, a slightly stronger statement is true:
If J1∪J2 is not an admissible coloring then any single color can be removed
from J1 ∩ J2 and the remaining set will still be an admissible coloring of Γ.

LEMMA 6.4. — Let B be as above and consider the partially ordered

by inclusion set
J =

{
J(B) ⊂ {0, . . . ,n}:B ∈ B

}
.

Let J∪ be the set of maximal elements, and J∩ the set of minimal elements

of J . Then the subsets

c =
⋃

J∈J∩
J and C =

⋂
J∈J∪

J

belong to J and satisfy c ⊂ C.

Proof. — To prove C ∈ J we show that J1 ∩ . . . ∩ Jk ∈ J for any
Ji ∈ J∪, 1 ≤ i ≤ k. We proceed by induction. The case k = 1 is trivial.
Assume J = J1 ∩ . . . ∩ Jk ∈ J and let Jk+1 ∈ J∪. If J ∩ Jk+1 ∈ J we
are done, otherwise J ∪ Jk+1 ∈ J by Lemma 6.2. Since Jk+1 is maximal
we have J ⊂ Jk+1, i.e. J = J ∩ Jk+1 = J1 ∩ . . . ∩ Jk ∩ Jk+1 ∈ J . Similar
arguments show that c ∈ J .

To show c ⊂ C it is enough to notice that for any J ∈ J∩ and any
J ′ ∈ J∪ we have J ⊂ J ′. Indeed, either J ∩ J ′ ∈ J and so J = J ∩ J ′ ⊂ J ′

by minimality of J , or J ∪ J ′ ∈ J and so J ⊂ J ∪ J ′ = J ′ by maximality
of J ′.

The above lemma supplies us with two canonical coloring of a face Γ:
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DEFINITION 6.5. — Let MΓ be the coloring matrix of a face Γ ⊂ P

and JΓ the set of all admissible colorings of Γ. Maximal (minimal) elements
of JΓ are called maximal (minimal) colorings of Γ. The union c(Γ) of
minimal colorings is called the minimal canonical coloring of Γ. The
intersection C(Γ) of maximal colorings is called the maximal canonical
coloring of Γ.

Example 6.6. — Consider the three polygons P0, P1 and P2

from Example 5.3. Let Γ be the horizontal edge of the Minkowski sum
P = P0 + P1 + P2. Then it has the coloring matrix

MΓ =


 0 1 0

1 1 0
1 0 0


 .

We get JΓ = {{2}} and c(Γ) = C(Γ) = {2}. Next let Γ′ be the edge of P
with 45◦ slope. (It is the sum of the highest vertex of P0 and the two edges
of P1 and P2 of slope 45◦.) Its coloring matrix is

MΓ′ =


 0 0 1

1 0 1
0 0 1


 .

This time we have JΓ′ = {{1}, {0, 1}} and c(Γ′) = {1}, C(Γ′) = {0, 1}.
To obtain less trivial example we need to consider the case n = 3.

Here is an example of a coloring matrix whose set of admissible colorings
has more than one maximal (and minimal) element.

MΓ =




1 0 0 0
0 0 1 0
0 0 1 0
1 0 0 0


 .

Indeed, the set of admissible colorings is

JΓ =
{
{1}, {3}, {1, 3}, {0, 1, 3}, {1, 2, 3}

}
.

Therefore, c(Γ) = {1}∪{3} = {1, 3} andC(Γ) = {0, 1, 3}∩{1, 2, 3} = {1, 3}.
According to the discussion in Section 4.1 the maps c : Γ !→ c(Γ) and

C : Γ !→ C(Γ) defined above give rise to two facet coloring ĉ and Ĉ of P̂
which we call the minimal and maximal canonical facet colorings of P̂ ,
respectively.
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It is easy to see that under Ĉ no facet of P̂ gets all the colors. Indeed,
for any face Γ ⊂ P its coloring matrix MΓ cannot contain zero rows, thus
every maximal coloring J ∈ JΓ is a proper subset of {0, . . . , n}. The next
theorem shows that an even stronger statement is true: no face of P̂ gets
all the colors.

THEOREM 6.7. — The maximal and minimal canonical facet colorings

of P̂ are simplicial and have the same combinatorial degree.

Proof. — Recall from Section 4.1 that to prove Ĉ simplicial we need
to show that for any maximal flag of faces of P

Γ0 ⊂ · · · ⊂ Γn−1, dim Γi = i,

the union
⋃n−1

i=0 C(Γi) is a proper subset of {0, . . . , n}. We will prove by
induction that for any n− 1 ≥ k ≥ 0

(6.2)
n−1⋃
i=k

C(Γi) ⊂ Jk,

for some maximal coloring Jk of Γk. For k = 0 this implies the statement of
the theorem, since J0 is a proper subset of {0, . . . , n}. The base k = n − 1
is clear since C(Γn−1) is the intersection of maximal elements of Jn−1.
For the inductive step assume that (6.2) is true for some maximal Jk ∈ Jk.
By (6.1) Jk ⊂ Jk−1, thus there exists a maximal element Jk−1 ∈ Jk−1

such that Jk ⊂ Jk−1. Also C(Γk−1) ⊂ Jk−1, by definition. This together
with (6.2) gives

⋃n−1
i=k−1 C(Γi) ⊂ Jk−1, as required.

By Lemma 6.4 c(Γ) ⊂ C(Γ) for any face Γ ⊂ P . Therefore, ĉ is also
simplicial. Finally, cdeg(ĉ) = cdeg(Ĉ ) follows from Proposition 4.2.

When the maximal canonical coloring of a face consists of a single
element we can say more about admissible colorings of this face:

LEMMA 6.8. — Suppose a face Γ ⊂ P is maximally canonically colored

by a single color C(Γ) = {k}. Then this is the only admissible coloring of Γ.

Moreover, any face containing Γ is also singly canonically colored by {k}
while every subface of Γ is canonically colored by a set containing k.

Proof. — Suppose J1, . . . , Js, s ≥ 2, are maximal colorings of Γ such
that {k} = J1∩. . .∩Js, but {k} � J1∩. . .∩Js−1. By the proof of Lemma 6.4
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J = J1 ∩ . . . ∩ Js−1 is an admissible coloring of Γ. By the remark after
Lemma 6.2 Γ can either be colored by J ∪ Js or else by J ∩ Js with any
single color removed. The first is a coloring strictly larger than Js which is
impossible since Js is maximal. The second is empty since J ∩ Js is already
a single color. Both are contradictions. Thus, the unique maximal coloring
of Γ is {k} which is therefore the only admissible coloring.

If Γ ⊂ Γ′ then JΓ ⊃ JΓ′ by (6.1) and, hence, JΓ′ = JΓ = {k}.
If Γ ⊃ Γ′′ then {k} is an admissible coloring of Γ′′. But {k} can be
appended to any coloring of Γ′′. Thus k is contained in every maximal
coloring of Γ′′, i.e. in the maximal canonical coloring of Γ′′.

6.2. Main theorem.

We now turn back to residues and prove the result of Theorem 1.1.
As before X is a complete n-dimensional toric variety defined by a fan Σ
and α0, . . . , αn are semi-ample degrees with polytopes P0, . . . , Pn. We can
assume that X is projective and take P to be the polytope of an ample
divisor on X. (If X is not projective it can be dominated birationally by a
projective toric variety. This will not affect the toric residue computation
by Proposition 2.1.) We also let P̂ denote a polytope whose normal fan is
the barycentric subdivision of Σ.

Let M be a partition matrix for P0, . . . , Pn. According to Section 6.1
M produces a map C :F(∂P ) → 2[n+1] which assigns to every proper
face Γ of P its maximal canonical coloring C(Γ). The induced canonical
facet coloring Ĉ of P̂ is simplicial by Theorem 6.7. The next theorem
says that for any F0, . . . , Fn of degrees α0, . . . , αn the determinant of the
residue matrix MF (see Definition 5.7) gives an element whose residue is
the combinatorial degree of Ĉ.

THEOREM 6.9. — Let X be a complete toric variety of dimension n.

Let α0 , . . . ,αn be semi-ample degrees and P0 , . . . ,Pn their polytopes.

Consider a partition matrix M for P0 , . . . ,Pn. For any collection of

homogeneous polynomials F0 , . . . ,Fn of degrees α0 , . . . ,αn consider the

corresponding residue matrix MF . Then the residue of det(MF )/
∏

ρ xρ

is equal to the combinatorial degree of the canonical facet coloring of P̂ :

ResF
(

det(MF )/
∏
ρ

xρ

)
= cdeg(Ĉ).

Proof. — First notice that we can work on the variety X̂ defined
by the polytope P̂ . Indeed, let π : X̂ → X be the birational morphism
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defined by the barycentric refinement Σ̂ → Σ and π∗ :S → Ŝ the induced
homomorphism of homogeneous coordinate rings. Then each polynomial
F̂i = π∗(Fi) is of semi-ample degree α̂i = π∗(αi) and by Proposition 2.1

ResXF (H) = ResX̂
F̂

(Ĥ),

where H = det(MF )/
∏

ρ xρ and Ĥ = π∗(det(MF ))/
∏

ρ̂ xρ̂, for ρ̂ ∈ Σ̂(1).

Since the degrees α̂i have the same polytopes Pi we did not change
the partition matrix and the pull-back π∗(MF ) is the residue matrix M

F̂

for the F̂i. Therefore we can apply Proposition 5.8 for the canonical facet
coloring of P̂ to obtain squarefree monomials ŷ0, . . . , ŷn and ẑ0, . . . , ẑn in Ŝ
which satisfy

1) ŷ0 · · · ŷn = ẑ0 · · · ẑn/
∏

ρ̂ xρ̂,

2) ŷiF̂i =
∑n

j=0 Âij ẑj for some Âij ∈ Ŝαi+deg(ŷi)−deg(ẑj), 0 ≤ i ≤ n,

3) ẑ0, . . . , ẑn do not vanish simultaneously on X̂,

4) det(M
F̂
)/

∏
ρ̂ xρ̂ = det Â.

(Part 3 follows since the ẑi define the canonical facet coloring Ĉ

of P̂ which is simplicial according to Theorem 6.7.) By Corollary 4.6
Res

F̂
(det Â) = cdeg(Ĉ), which completes the proof.

7. Locally Unmixed Degrees.

In this section we consider the special case when the n+ 1 polytopes
share a complete flag of faces. An essential family of degrees with such
collection of polytopes is called locally unmixed. We show that for any
family of locally unmixed degrees one can write an explicit partition matrix
yielding an element of residue ±1 (Theorem 7.3).

DEFINITION 7.1. — Polytopes P0 , . . . ,Pm ⊂ Rn are said to share a
complete flag if for each Pi there is a complete flag of faces:

P 0
i ⊂ P 1

i ⊂ · · · ⊂ Pn−1
i , dimP j

i = j ,

such that the sums of the corresponding entries P j =
∑m

i=0 P
j
i form a

complete flag of faces of P =
∑m

i=0 Pi:

P 0 ⊂ P 1 ⊂ · · · ⊂ Pn−1 ⊂ Pn = P , dimP j = j.
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An immediate consequence of the above definition is that if I is any
non-empty subset of {0, . . . ,m} we can similarly define PI =

∑
i∈I Pi such

that the P j
I =

∑
i∈I P

j
i also form a complete flag of faces of PI :

P 0
I ⊂ P 1

I · · · ⊂ Pn−1
I .

DEFINITION 7.2. — Let X be a complete toric variety of dimension n.
An essential family of semi-ample degrees α0 , . . . ,αn is said to be locally
unmixed if the corresponding polytopes P0 , . . . ,Pn share a complete flag.

Note that the Pi themselves may be only n− 1 dimensional, although
at least two of them must be n-dimensional since the family is essential.

THEOREM 7.3. — Let α0 , . . . ,αn be locally unmixed degrees on X.

Define partitions

Mij =
{
u ∈ P j

i ∩ Zn with u /∈ P j−1
i ∩ Zn

}
.

This is a compatible collection of partitions and the corresponding residue

matrix gives an element of residue ±1 for any homogeneous polynomials

Fi ∈ Sαi not vanishing simultaneously on X.

Before we begin the proof let us illustrate the partition using the
following 3-dimensional example.

Example 7.4. — The four 3-dimensional polytopes P0, P1, P2 and P3

in Figure 7.1 share a complete flag of faces. For each 0 ≤ i ≤ 3 set Mi0

consists of the vertex of the flag (point marked as “0”), set Mi1 consists
of the other lattice points on the edge of the flag (lattice points marked
as “1”), set Mi2 consists of the lattice points on the face of the flag, but
not on the edge (points marked as “2”), and the rest of the lattice points
constitute Mi3 (points marked as “3”).

3

3

3

3

3
3

P0 P1 P2 P3

0 01 1 1

2 2

2

0 01 1

2 2

3 3

3
3

3

3

3

Figure 7.1

We start with a simple lemma.
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LEMMA 7.5. — Let P be a polytope of dimension n and P ′ a polytope

such that P + P ′ is also a polytope of dimension n. For any facet Q of P

there is a unique face Γ′ of P ′ such that Q + Γ′ is a proper face (in fact

a facet) of P + P ′. Hence, if u ∈ P is a point in the relative interior of Q

and u′ ∈ P ′ is not on the corresponding face Γ′ of P ′ then u + u′ is in the

interior of P + P ′.

Proof. — Let Rn be the affine span of P . Since P + P ′ is also n-
dimensional, we must have P ′ ⊂ Rn and P +P ′ ⊂ Rn. For any facet Q of P
there is a unique linear functional (up to scaling) vQ ∈ (Rn)∗ minimized
on Q in P . Let Γ′ be the unique maximal face of P ′ on which vQ is
minimized. The Minkowski sum Q+ Γ′ is the facet of P + P ′ on which vQ
is minimized and conversely any face of P + P ′ with Q a summand must
minimize vQ and so must be Q+ Γ′.

For the second statement, note that Q is the only face of P

containing u. By the first part, every face Γ′′ of P ′ such that Q + Γ′′

is contained in a proper face of P +P ′ must have Γ′′ ⊂ Γ′. As a consequence
if u′ is not on Γ′, hence not on any such Γ′′, u+ u′ is not contained in any
proper face of P + P ′.

Proof of Theorem 7.3. — The lattice point partitions Mij are induced
from the vertex partitions obtained from the same rule restricted to the
vertices of the Pi. To show that M is a partition matrix we must show that

n∑
i=0

Mε(i)i ⊂ int
( n∑

i=0

Pi

)

for any permutation ε of {0, . . . , n}. We will show by induction that

j∑
i=0

Mε(i)i ⊂ int
( j∑

i=0

P j
ε(i)

)

for j = 0, . . . , n. The case j = n is our desired result. Let I(j) =
{ε(0), . . . , ε(j)} ⊂ {0, . . . , n}. Hence, the right hand side is P j

I(j), a polytope
of dimension j.

The case j = 0 is trivial. For the induction, we assume

j−1∑
i=0

Mε(i)i ⊂ int
(
P j−1
I(j−1)

)
.
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Next, P j−1
I(j−1) is a facet of P j

I(j−1) (the case j = n requires that
Pn
I(n−1) is actually n-dimensional), so we apply Lemma 7.5. Any point in∑j−1
i=0 Mε(i)i lies in the interior of P j−1

I(j−1), and any point in Mε(j)j does

not lie on the associated face P j−1
ε(j) of P j

ε(j). Therefore, by Lemma 7.5, any

point in
∑j

i=0Mε(i)i is in the (relative) interior of P j
I(j−1) + P j

ε(j) = P j
I(j)

as desired.

To show that the combinatorial degree of the maximal canonical colo-
ring of P̂ is ±1 we apply Theorem 4.3. Recall that a face of codimension k
of P̂ is a flag of k faces Γi1 ⊂ Γi2 ⊂ · · · ⊂ Γik of P . We show that there is
only one complete flag of faces of P̂ colored ({n}, {n, n− 1}, . . . , {n, . . . , 1}),
namely (Pn−1, (Pn−1, Pn−2), . . . , (Pn−1, . . . , P 0)).

To do this we prove a few simple lemmas:

LEMMA 7.6. — The maximal canonical coloring of the face P j ⊂ P

for j < n is {j + 1, . . . ,n}.

Proof. — The polytope P j is the Minkowski sum of P j
0 , . . . , P

j
n, and

each P j
i contains precisely all of the lattice points in Mik for k = 0, . . . , j.

Thus, the corresponding coloring matrix for P j has all 1’s in columns 0, . . . , j
and all 0’s in columns j + 1, . . . , n. It follows immediately that the only
maximal coloring is {j + 1, . . . , n}, as desired.

LEMMA 7.7. — The maximal canonical coloring of any proper subface

of P j other than P j−1 contains some color k with k < j.

Proof. — Let Γ be a proper subface of P j . We decompose Γ as the
Minkowski sum Γ0 + · · · + Γn where each Γi is a subface of P j

i . If j = n

and if Γ were a counterexample to the lemma it would have to be colored
just {n}. The last column of its coloring matrix is 0. Consequently Γi

contains no points of Min and so is entirely contained in Pn−1
i . So we can

reduce to the case j < n and assume that each Γi is a proper subface of P j
i .

Now assume Γ �= P j−1. We show that we can take k to be the smallest
number such that for all i, P k

i � Γi. If P j−1
i ⊂ Γi for some i then as Γi is a

proper face of P j
i we must have Γi = P j−1

i . This is a facet of P j
i , so repeated

applications of Lemma 7.5 show that every other summand Γi′ = P j−1
i′ and

so Γ = P j−1, a contradiction. Therefore, k ≤ j − 1.

By hypothesis, for some i, P k−1
i ⊂ Γi but P k

i � Γi. In particular
Γi ∩Mik = ∅. If Γi′ ∩Mi′k �= ∅ for some i′ �= i, then another application of
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Lemma 7.5 shows that Γi + Γi′ contains a point in the relative interior
of P k

i + P k
i′ and so must contain the entire face. But this would imply Γi

contains P k
i , a contradiction. Therefore, in the coloring matrix of Γ coming

from M , the entire kth column is 0 and so k is part of the canonical
maximal coloring of Γ as desired.

Our desired result now follows by induction. By Lemma 7.6, Pn−1

is colored just {n} and by Lemma 7.7 it is the only such face of P (facet of P̂ ).
Inductively, the face of P̂ given by the flag of faces (Pn−1, Pn−2, . . . , P j)
in P is colored {n, . . . , j+1}. For the next step we must add a subface of P j

to the flag with j the only new color. But by Lemma 7.6 and Lemma 7.7,
the only such subface is P j−1.

8. Dimension two.

In this section we prove that matrices whose determinant have
residue ±1 can be found for almost all essential, 2-dimensional families
of degrees.

Recall the definition of essential in Definition 3.1. In the special
case n = 2, essential means that no Pi is zero dimensional, and while some
or all of the Pi may be one dimensional line segments, no two such are
parallel line segments. We will show we can always find a residue matrix
that gives an element of residue ±1 in all but one exceptional case.

DEFINITION 8.1. — Degrees α0 ,α1 ,α2 are exceptional if for two of
them, αi and αj , the corresponding polygons Pi and Pj are 1-dimensional,
and the third αk is an ample divisor on the toric variety defined by Pi +Pj .

THEOREM 8.2. — Let α0 ,α1 ,α2 be an essential, non exceptional family

of degrees on a toric surface X. There exists a partition matrix for the αi
which yields an element of residue ±1 for every set of Fi ∈ Sαi without a

common root.

Note that the codimension 1 theorem for the critical degrees has been
proved by Cox and Dickenstein [11] when all αi are full dimensional. Such
a case, of course, will never be exceptional. It is, however possible for the
critical degree to be of codimension 1, in which case the residue map is an
isomorphism, and still be exceptional. See Example 8.6 below.
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Proof. — Let P0, P1, P2 be the corresponding polygons and P =
P0 + P1 + P2 their Minkowski sum. Every edge e of P is the sum of edges
from one or more of the Pi and vertices from the others. Label an edge by a
subset of {0, 1, 2} corresponding to those polygons for which the summand
of e is an edge. Now consider consecutive edges of P . Proceed until we have
a sequence containing all three labels 0, 1, 2. Take the smallest subsequence
with this property. We then have the following cases:

1) The sequence has length 1, so there is a single edge labeled 0 1 2 .
This will be the locally unmixed case.

2) The sequence has length 2. Up to relabeling and change of direction
the sequence will be either:

a) 0 1 , 2 or

b) 0 1 , 1 2 .

Such sequences will be called partially unmixed.

3) The sequence has length 3 or more. All such sequences can be
represented as

The numbers in gray may or may not occur. That is to say, the first
term must contain label 0 but may or may not contain 1. Similarly for the
final term must contain label 2 and possibly also label 1. There is at least
one term labeled just 1 in the middle, but there may be others. Altogether,
sequences of this type will be called generically mixed.

• Case 1. — The three degrees share an edge, hence share a complete
flag consisting of this edge and either of the two vertices. So the polygons
are locally unmixed in the sense of the previous section. Therefore, we know
we can always find a partition yielding a residue 1 matrix. We illustrate the
partition via the diagram in Figure 8.1.

P0 P1 P2

0 11 e1 0 11 e1 0 11 e1

2 2 2

Figure 8.1. Case 1: Locally unmixed partition

Each of the three figures represents one of the three polygons. The
edge e1 on the bottom is shared by all three polygons. The white vertex
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in each Pi is in partition set Mi0 hence marked as “0” in the diagram, the
rest of the lattice points on e1 are in set Mi1, and finally any lattice points
off of e1 are in set Mi2. Hence the partition matrix Mij is exactly the one
constructed in the previous section. Since the polygons are essential, at
most one of them is 1-dimensional, thus two of them, say P0 and P2 as
shown, have at least one point off the edge e1 marked “2”.

• Case 2.a. — The polygons are partitioned according to Figure 8.2.

P0 P1 P2

0 11 e1

2

e2

0 11 e1

2

e2

0e1

2

e2

2

Figure 8.2. Case 2.a

There are two distinguished edges e1 and e2. Polygons P0 and P1

share a complete flag along edge e1 and are partitioned accordingly into
three sets Mi0, Mi1, and Mi2 for i = 0, 1 as shown. But, this time the third
polygon P2 has only one point on e1 represented by the dotted line. This
point is put into set M20 and all other points of P2 are put into set M22.
Notice that in the third polygon M21 = ∅. Also note that P0 and P1 each
have only one point (marked “1”) on the dotted lines representing edges
parallel to e2.

To see that this is a partition matrix we must show that the sum
of lattice points in Mi0, Mj1, and Mk2 with {i, j, k} = {0, 1, 2} is in the
interior of P . From the diagram this corresponds to taking three points
marked “0”, “1” and “2” respectively from three different polygons and
showing they cannot all lie on parallel edges with the same inner normal.
If “0” and “1” come from the first two polygons then their sum is in
the interior of the edge e1 of the two-dimensional (by essentiality) sum
of P0 and P1. By definition however a point marked “2” from P2 is not on
this edge.

If instead “0” comes from the P2 and “1” comes from P0 or P1

the Minkowski sum of these two points is either the vertex lying only on
edges e1 and e2 or in the interior of e1. However, the points marked “2”
from the third polygon P0 or P1 are not on either of these two edges.

For the combinatorial degree we apply Lemma 6.8. This shows that
any face of P (facet of P̂ ) maximally canonically colored by {2} must only
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be colored by {2}. Such a face must have its coloring matrix with 1’s only
in the first two columns. It is easy to see from the picture that this can only
happen for the bottom edge e1. It is also easy to see that the two vertices
of this edge are colored {1, 2} and {0, 2} respectively. In particular there is
a unique complete flag colored ({2}, {1, 2}), as desired.

• Case 2.b. — The difference between Case 2.a. and Case 2.b. is that
P1 now also contains an edge parallel to e2. One attempt to account for
this would be to use the same partition as in Case 2.a. above except all the
lattice points in P1 along the edge e2 are placed in M11.

If this were a partition matrix, edge e1 would remain the only edge
colored just {2} and its vertices would still be colored {1, 2} and {0, 2}.

To check if this is a partition matrix, most of the arguments from the
previous case go through. If we take points marked “0” from P2 and “1”
from P0 or P1, the sum is either the vertex between edge e1 and e2 or in the
interior of one of these edges. Taking “0” from P1 and “1” from P0 again
yields a point in the interior of edge e1. However, if we take “0” from P0

and “1” from P1 there is a problem if there is some edge other than e1
passing through both these points. But this can only happen if the edge e3
of P0 directly before e1 passes through the endpoint of e2 in P1, marked “1”
as in Figure 8.3.

P0

P1

P2

0 11 e1

12

e2

0e1

2

e2

2

e3

0 1 e1

e2

e3

Figure 8.3. Case 2.b: Failed partition

In this case the partition fails, so we try to partition in a different
way, reversing the roles of e1 and e2 as in Figure 8.4.

P0

P1

P2

1 11 e1

0

2

e2

1

11

e1

0

e2

e4

2

e3

02 e1

e2

e3

2

Figure 8.4. Case 2.b: Switched partition
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Just as before this partition works as long as the next edge e4 of P2

after e2 does not pass through the left endpoint of e1 in P1. If both of the
above attempts fail, we have that the edge e3 of P0 before e1 passes through
the end point of e2 in P1, and the edge e4 of P2 after e2 passes through the
left endpoint of e1 in P1.

In this final case, we show that we can find a partition matrix unless
we are in the exceptional case. First, assume that one of P0 or P2 is
actually two-dimensional. Assume without loss of generality it is P0. Take
the partition in Figure 8.5.

P0

P1 P2

0

0
0

11 e1
e4

e4
2

2

2
2

e2

1e1

2

e2

2

e3

110 e1

e2

e3

2

Figure 8.5. Case 2.b: Non-exceptional

Once again, a sum of points marked “0” from P0 and “1” from P1

must lie on the interior of e1 which contains no points marked “2” from P2.
If we take “0” from P1 then all the edges on which it lies are between e1
and e3. But since P0 was assumed two-dimensional, the only such edge that
could pass through a point marked “1” is e1 itself.

If we take “1” from P2 we must lie on an edge of P2 on or before e2 but
on or after e4. The edge e2 passes only through points marked “1” or “2”
in P0 and P1. The next edge before e2 is e1 which passes through only “0”
and “1” in P0 and P1. Furthermore all edges before e1 and on or after e4
pass only through “0” in P1 and, since e3 is before e4, only through “0”
in P0. In every case we do not get three points from different partition sets
from three different polygons all lying on the same edge.

A similar argument with an analogous partition applies if P2 is two-
dimensional. Finally, if both P0 and P2 are one-dimensional, the only way
the partition above can fail is if the edge e3, parallel to e1, which is known to
go through a point marked “2” in P1, also goes through a point marked “0”.
But this can only happen if this is the only other point of P1 and moreover
the edge connecting this point to the endpoint of e1 is parallel to e4 which
is also parallel to e2. In other words, we must have P1 have the same normal
fan as the Minkowski sum of the two non-parallel segments that are P0

and P2. That is to say we are in the exceptional case.
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• Case 3. — The mixed case is somewhat easier and is partitioned as
in Figure 8.6.

P0 P1 P2

0

0

0

1

1

1

1e1

2 2 2

1

e2
e2

e2e3
e3e3

0

Figure 8.6. Case 3: Mixed partition

There are now three edges e1, e2, and e3. There may actually be
several edges of P1 between e2 and e3 in which case e1 is the left most such
edge. The edge e2 intersects P1 in either a point or a whole edge, marked
as a dashed line in the diagram. All of the points on this edge are placed
in set M10. The edge e2 together with e1 and all other edges before e3
intersects P2 in a single point, represented by the dotted lines, placed in
partition set M20 hence also marked “0” in the diagram. The edge e3
together with e1 and all other edges before e3 intersects P0 in a single point
placed in set M01 Finally e3 intersects P1 in either a single point or a whole
edge marked by a dashed line and all of the points are in set M11. All the
points in P1 on the edges between e2 and e3 are also in set M11. All other
lattice points in each Pi is in partition set Mi2 thus marked as “2”.

To show that this is a partition matrix we must take a point marked
“1” from P0 or 0 from P2 (otherwise we would have to take “2” from both).
First if we took both “0” from P2 and “1” from P0, then their Minkowski
sum is on both e2 and e3. However any point marked “2” from P1 is on
neither edge nor any edge in between. If we took “0” from P2 and “1”
from P1, the Minkowski sum is a point lying only on edges on or between e1
and e3. However, any point marked “2” from P0 is not on any of these
edges. The case of “1” from P1 is similar.

For combinatorial degree we note that the only edge colored just {2}
is the edge e1. Every other edge either intersects a point marked “2” or,
if it is one of the other edges missing “2”, can be colored {0, 2}. The two
vertices of this edge are colored {0, 2}, and {1, 2} respectively, completing
the combinatorial degree computation.

To finish we show that an exceptional set of degrees never has a
compatible vertex partition resulting in an element of residue 1.

ANNALES DE L’INSTITUT FOURIER



COMBINATORIAL CONSTRUCTION OF TORIC RESIDUES 545

PROPOSITION 8.3. — Let α0 ,α1 ,α2 be an exceptional family of degrees

on a two-dimensional toric varietyX. Any compatible vertex partition yields

a residue matrix with determinant zero.

Proof. — We can assume that the corresponding polygons P0 and P1

are one-dimensional and P2 has the same normal fan as P0 + P1. Therefore
P0 and P1 each have two vertices which we denote by u0, u1 and v0, v1,
and P2 has four vertices w0, w1, w2, w3. For each pair ui, vj there is a
unique wk such that ui + vj + wk ∈ int(P0 + P1 + P2). Now suppose we
have a compatible vertex partition with associated partition matrix M .
If u0 and u1 are in the same partition set, by the above we know there
do not exist vj , wk such that both u0 + vj + wk and u1 + vj + wk are in
int(P0 + P1 + P2). Hence, there are no non-zero terms in the expansion of
the determinant of the induced residue matrix. If u0, u1, v0, v1 all lie in two
columns of the partition matrix, then again there is no possible compatible
choice of wk in the complementary entry and the induced residue matrix
will have determinant zero. Therefore, up to relabeling we are left with only
one choice of partition matrix of the form:


 u0 u1 ∅
v0 ∅ v1

P 0
2 P 1

2 P 2
2


.

For compatibility each of P i
2 can only contain a unique vertex wk. But

this implies there is some vertex wk which cannot lie in any of the P i
2, a

contradiction. Hence there are no non-trivial compatible partition matrices.
In particular there is no partition yielding an element of residue 1.

This last result shows that while we know for essential degrees there
must always exist a polynomial of residue 1 by Theorem 3.2, it cannot
always be obtained as the determinant of a matrix. On the flip side the
method does work for all but one quite degenerate situation. We illustrate
this by constructing residue matrices for some examples.

Example 8.4. — Consider the polynomials:

f0 = a0x+a1xy+a2y
2, f1 = b0 +b1x+b2x2 +b3xy, f2 = c0 +c1y+c2xy2.

The Newton polygons are shown in Figure 8.7 with the lattice points
labeled by their corresponding coefficients. This falls under Case 3 of the
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P0 P1 P2

a0 c0

c1

c2a2

a1

b0 b2

b3

b1

Figure 8.7

previous theorem so applying the partition as in Figure 5.1 yields the
following residue matrix:

 0 a0x a1xy + a2y
2

b0 b1x+ b2x
2 b3xy

c0 0 c1y + c2xy
2


.

The determinant is

a0b3c0xy − a0b0c1xy − a0b0c2xy
2 − a1b1c0x

2y

− a1b2c0x
3y − a2b1c0xy

2 − a2b2c0x
2y2.

This is a polynomial supported on the interior of the Minkowski sum
P0 + P1 + P2. The homogenization up to critical degree has toric residue
equal to 1.

Example 8.5. — Consider the polynomials:

f0 = a0 + a1x, f1 = b0 + b1x+ b2y, f2 = c0 + c1xy.

The corresponding Newton polygons are shown in Figure 8.8.

P0 P1 P2

a0a1 c0

c1

b0 b1

Figure 8.8

These polygons can be classified under Case 2.a. of the above theorem.
As such we get the following residue matrix:

 a0 a1x 0
b0 b1x b2y

c0 0 c1xy


.

The determinant is a1b2c0xy + (a0b1c1 − a1b0c1)x2y which is supported
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in the interior of P0 + P1 + P2 (consisting of two points). Once again the
homogenization up to critical degree yields the desired element of residue 1.

Example 8.6. — Let us now consider an exceptional system:

f0 = a0 + a1x, f1 = b0 + b1x+ b2y + b3xy, f2 = c0 + c1y.

The Newton polygons consist of two line segments and their Minkowski
sum (a square). Since we are in the exceptional case the theorem does
not apply.

However, there is a unique interior point of the Minkowski sum, so the
critical degree is trivial. Thus, there is a unique element of residue 1, namely
the resultant itself which in this case is a1b0c1 − a0b1c1 − a1b2c0 + b3a0c0.

By Proposition 8.3 this polynomial is not expressible as the determinant of
a residue matrix.

9. Further work and conclusions.

Given a collection of n + 1 semi-ample divisors on a toric variety X
which do not have a common zero, there exists a toric residue map which
is not identically zero if and only if the degrees of the divisors are essential.
The goal of this work was to explicitly construct an element of residue one.

We have shown how compatible partitions of the Newton polytopes
lead to matrices whose determinant is an element of critical degree with
toric residue equal to a certain integer constant, namely the combinatorial
degree of a canonical induced coloring. In the case the polytopes share a
complete flag of faces and in almost every case in dimension 2 we have
shown how to choose this partition to yield an element of residue exactly 1.

The most obvious open question is to find compatible partitions
yielding elements of residue one in higher dimensions when the polytopes
do not necessarily share a complete flag. We have computed a large number
of examples in dimension 3 where the four polytopes are simplices. In every
case we have found working partitions. Of course there will be exceptional
families, as in dimension 2, where no such partitions exist. However, it is
hoped that these will be relatively rare and perhaps nonexistent in the most
important case when the polytopes are all full dimensional.
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