



## DE

# L'INSTITUT FOURIER

Amedeo MAZZOLENI

**Partially defined cocycles and the Maslov index for a local ring** Tome 54, nº 4 (2004), p. 875-885.

<http://aif.cedram.org/item?id=AIF\_2004\_\_54\_4\_875\_0>

© Association des Annales de l'institut Fourier, 2004, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble **54**, 4 (2004), 875–885

### PARTIALLY DEFINED COCYCLES AND THE MASLOV INDEX FOR A LOCAL RING

by Amedeo MAZZOLENI

#### 1. Cocycles in general position.

DEFINITION 1. — Let G be a group. Let Y be a subset of G. We say that Y is 0-dense if  $Y \neq \emptyset$ . Let  $m \ge 1$ . We say that Y is m-dense if

 $(g_1 \cdot Y) \cap \ldots \cap (g_m \cdot Y) \neq \emptyset$ 

for all  $g_1, \ldots, g_m \in G$ .

EXAMPLE 2. — Let G be a topological group. If U is an open dense subset of G, then U is m-dense for all  $m \ge 0$ .

Proof. — This follows from

1. the set  $g \cdot U$  is an open dense set, for  $g \in G$ ;

2. the intersection of two open dense sets is an open dense set.  $\Box$ 

LEMMA 3. — Let Y be an m-dense subset of G. Then there exists  $(g_1, \ldots, g_m) \in Y^m$  such that  $g_i g_{i+1} \ldots g_{i+j} \in Y$ , for  $1 \leq i \leq m$  and  $0 \leq j \leq m - i$ .

Keywords: Cocycle – m-dense – Simplicial set – Lagrangian – Transversal – Sympletic group. Math. classification: 20J06 – 11E08.

*Proof.* — We prove the lemma by induction on m. The lemma is true if m = 0 or m = 1.

We suppose that m > 1. By the induction hypothesis there is  $(g_1, \ldots, g_{m-1})$  in  $Y^{m-1}$  such that the product  $g_i g_{i+1} \ldots g_{i+j} \in Y$ , for  $1 \leq i \leq m-1$  and  $0 \leq j \leq m-1-i$ . We choose  $\widetilde{g}_m \in Y \cap (g_1 \cdot Y) \cap \ldots \cap (g_1 g_2 \ldots g_{m-1} \cdot Y)$ . We let  $g_m = (g_1 g_2 \ldots g_{m-1})^{-1} \widetilde{g}_m$ . We have that  $\widetilde{g}_m \in (g_1 g_2 \ldots g_{i-1} \cdot Y) \cap (g_1 g_2 \ldots g_{m-1} \cdot Y)$ , for  $2 \leq i \leq m-1$ . Hence  $g_i g_{i+1} \ldots g_m \in Y$ , for  $1 \leq i \leq m$ . This proves the lemma.

Let  $m \ge 1$ . We assume that Y is an *m*-dense subset of G. Let  $1 \le n \le m$ . We let  $Y_{\text{gen}}^n = \{(g_1, \ldots, g_n) \in Y^n \mid g_i \ldots g_{i+j} \in Y \text{ for } 1 \le i \le n \text{ and } 0 \le j \le n-i\}.$ 

Let B be an abelian group with trivial G-action. We consider the complex (of groups)

$$0 \longrightarrow B \xrightarrow{0} C_Y^1 \xrightarrow{d^1} C_Y^2 \xrightarrow{d^2} \cdots \xrightarrow{d^{m-1}} C_Y^m$$

where  $C_Y^n = \operatorname{Map}(Y_{\text{gen}}^n, B)$  and  $d^{n-1}(f)(g_1, g_2, \dots, g_{n-1}) = f(g_2, \dots, g_{n-1}) - f(g_1g_2, \dots, g_{n-1}) + \dots$  $\dots + (-1)^{n-1}f(g_1, g_2, \dots, g_{n-2}).$ 

DEFINITION 4. — Let  $0 \leq n \leq m-1$ . An element of ker  $d^n$  is called *n*-cocycle for Y. We denote by  $H_Y^n(G, B)$  the group ker  $d^n / \operatorname{im} d^{n-1}$ .

THEOREM 5. — Let  $m \ge 1$ . We assume that Y is a 2m-dense subset of G. Let  $0 \le n \le m-1$ . Then the natural embedding  $Y_{\text{gen}}^n \to G^n$  induces an isomorphism between  $H^n(G, B)$  and  $H_Y^n(G, B)$ . Moreover, if c is an ncocycle for Y, then there is an n-cocycle  $\bar{c}$  such that its restriction to  $Y_{\text{gen}}^n$ is c.

This result will be proved in Section 3. A consequence of this theorem is the following corollary:

COROLLARY 6. — Let G be a topological group. Let U be an open dense subset of G. Then the natural embedding  $U_{\text{gen}}^n \to G^n$  induces an isomorphism between  $H^*(G, B)$  and  $H_U^*(G, B)$ . Moreover, if c is an ncocycle for U, then there is an n-cocycle  $\bar{c}$  such that its restriction to  $U_{\text{gen}}^n$ is c.

ANNALES DE L'INSTITUT FOURIER

#### 2. The generalized Mayer-Vietoris sequence.

DEFINITION 7. — Let X be a CW-complex. We say that X is -1acyclic if  $X \neq \emptyset$ . Let  $k \ge 0$ . We say that X is k-acyclic if X is -1-acyclic and  $\widetilde{H}_n(X) = 0$ , for all  $0 \le n \le k$ . We say that X is acyclic if it is k-acyclic for all  $k \in \mathbb{N}$ .

Let X be a CW-complex which is the union of a family of non-empty subcomplexes  $X_{\alpha}$ , where  $\alpha$  ranges over some totally ordered index set I. Let K be the abstract simplicial complex whose vertex set is I and whose simplices are the non-empty finite subsets J of I such that the intersection  $\bigcap_{\alpha \in J} X_{\alpha}$  is non empty. We denote by  $K^{(p)}$  the set of the p-simplices of K. Then (cf. [1] 166–167).

**PROPOSITION 8.** — We have a spectral sequence E such that

$$E_{p,q}^{1} = \bigoplus_{J \in K^{(q)}} H_{p}\left(\bigcap_{\alpha \in J} X_{\alpha}\right) \Rightarrow H_{p+q}(X).$$

Let K be a simplicial set. Recall that  $\overline{K}$ , the geometric realization of K, is a CW-complex. Moreover  $H_*(K) = H_*(\overline{K})$ . We say that K is k-acyclic if  $\overline{K}$  is k-acyclic. The following corollary is a consequence of the Proposition 8.

COROLLARY 9. — Let K be a simplicial set which is the union of a family of non-empty simplicial subsets  $K_{\alpha}$ , where  $\alpha$  ranges over some index set I. Let  $k \ge -1$ . We suppose that  $K_{\alpha_1} \cap K_{\alpha_2} \cap \ldots \cap K_{\alpha_n}$  is k-n+1-acyclic for all  $1 \le n \le k+2$  and for all  $\{\alpha_1, \ldots, \alpha_n\} \subset I$ . Then K is k-acyclic.

#### 3. Proof of Theorem 5.

Let X be a subset of the group G. We first assume that  $1 \in Y$ . We let  $X_Y^0 = X$ . Let  $n \ge 1$ . We let  $X_Y^n = \{(g_0, \ldots, g_n) \in X^{n+1} \mid g_i^{-1}g_j \in Y \text{ for all } i < j\}$ . The two following assertions are straightforward.

- 1.  $\partial_i(g_0, \ldots, g_n) = (g_0, \ldots, g_{i-1}, g_{i+1}, \ldots, g_n) \in X_Y^{n-1}$ , for all  $(g_0, \ldots, g_n) \in X_Y^n$  and for  $0 \leq i \leq n$ .
- 2.  $s_i(g_0, \ldots, g_n) = (g_0, \ldots, g_{i-1}, g_i, g_i, g_{i+1}, \ldots, g_n) \in X_Y^{n+1}$ , for  $0 \le i \le n$ and for all  $(g_0, \ldots, g_n) \in X_Y^n$ .

TOME 54 (2004), FASCICULE 4

We consider the simplicial set  $K_Y(X)$  whose *n*-simplices are the  $(g_0, \ldots, g_n) \in X_Y^n$ , the face operators are the  $\partial_i$ 's and the degeneratory operators are the  $s_i$ 's. (\*)

LEMMA 10. — Let  $k \ge 0$ . Let  $X, Y \subset G$  such that  $1 \in Y$ . Assume that

$$X \cap (g_1 \cdot Y) \cap \ldots \cap (g_{2k} \cdot Y) \neq \emptyset$$

for all  $g_1, \ldots, g_{2k} \in X$ . Then  $K_Y(X)$  is (k-1)-acyclic.

*Proof.* — We prove the lemma by induction on k.

If k = 0 then  $X \neq \emptyset$ . Hence  $K_Y(X)$  is -1-acyclic and the lemma is true.

We assume that k > 0. Let  $g \in X$  and denote by  $K_g$  the simplicial subset of  $K_Y(X)$  whose the *n*-simplices are the  $(g_0, \ldots, g_n) \in X_Y^n$  such that  $g = g_0$  or  $(g, g_0, \ldots, g_n) \in X_Y^{n+1}$ . Clearly  $K_Y(X) = \bigcup_{g \in X} K_g$ . Let  $g_1, \ldots, g_m \in X$  such that  $g_i \neq g_j$  for  $i \neq j$ . We let  $K_{g_1,\ldots,g_m} =$  $K_{g_1} \cap \ldots \cap K_{g_m}$ . We will prove that  $K_{g_1,\ldots,g_m}$  is (k - m)-acyclic, for  $1 \leq m \leq k+1$  and for  $(g_1, \ldots, g_m) \in X^m$ .

The geometric realization of  $K_g$  is a cone, hence  $K_g$  is acyclic. Let  $2 \leq m \leq k+1$ . Let  $g_1, \ldots, g_m \in X$  such that  $g_i \neq g_j$ , for  $i \neq j$ . We put  $\overline{X} = X \cap (g_1 \cdot Y) \cap \ldots \cap (g_m \cdot Y)$  and  $\overline{X}_Y^n = \{(g_0, \ldots, g_n) \in \overline{X}^{n+1} \mid g_i^{-1}g_j \in Y$  for all  $i < j\}$ . Then  $K_{g_1,\ldots,g_m} = K_Y(\overline{X})$ , the simplicial set whose the *n*-simplices are the  $(g_0,\ldots,g_n) \in \overline{X}_Y^n$ . Let  $h_1,\ldots,h_{2(k-m+1)} \in \overline{X}$ . Then

 $\overline{X} \cap (h_1 \cdot Y) \cap \ldots \cap (h_{2(k-m+1)} \cdot Y) \neq \emptyset,$ 

since  $m + 2(k - m + 1) \leq 2k$ .

Hence, by induction hypothesis,  $K_{g_1,\ldots,g_m}$  is (k-m)-acyclic. From Corollary 9 follows that  $K_Y(X)$  is (k-1)-acyclic. This proves the lemma.

Now we assume that  $1 \notin Y$ . We let  $X_Y^0 = X$ . Let  $n \ge 1$ . We let  $X_Y^n = \{(g_0, \ldots, g_n) \in X^{n+1} \mid g_i^{-1}g_j \in Y \text{ for all } i < j\}$ . Note that

- 1. If  $i \neq j$ , then  $g_i \neq g_j$ , for all  $(g_0, \ldots, g_n) \in X_Y^n$ .
- 2.  $\partial_i(g_0,\ldots,g_n) = (g_0,\ldots,g_{i-1},g_{i+1},\ldots,g_n) \in X_Y^{n-1}$ , for all  $(g_0,\ldots,g_n) \in X_Y^n$  and for  $0 \leq i \leq n$ .

It follows from (1) and (2) that there is a simplicial set  $\overline{K}_Y(X)$  whose the non degenerate *n*-simplices are the  $(g_0, \ldots, g_n) \in X_Y^n$  and the face operators are the  $\partial_i$ 's defined above.

ANNALES DE L'INSTITUT FOURIER

Note that  $\overline{K}_Y(X) = K_{Y'}(X)$ , where  $Y' = Y \cup \{1\}$  (see (\*)).

LEMMA 11. — Let  $k \ge 0$ . Let  $X, Y \subset G$  such that  $1 \notin Y$ . We assume that

$$X \cap (g_1 \cdot Y) \cap \ldots \cap (g_{2k} \cdot Y) \neq \emptyset$$

for all  $g_1, \ldots, g_{2k} \in G$ . Then  $\overline{K}_Y(X)$  is (k-1)-acyclic.

*Proof.* — We have that  $\overline{K}_Y(X) = K_{Y'}(X)$ , where  $Y' = Y \cup \{1\}$ . Clearly

$$X \cap (g_1 \cdot Y') \cap \ldots \cap (g_{2k} \cdot Y') \neq \emptyset$$

for all  $g_1, \ldots, g_{2k} \in G$ . Hence this lemma is a consequence of Lemma 10.

We consider the complex  $C = (C_n, \delta_n)_{n \ge -1}$ , where

- 1.  $C_{-1} = \mathbb{Z}$ ,
- 2.  $C_0 = \mathbb{Z}G$ ,
- 3. for  $n \ge 1$ ,  $C_n$  is the free abelian group generated by the elements of  $G_Y^n = \{(g_0, \ldots, g_n) \in G^{n+1} \mid g_i^{-1}g_j \in Y \text{ for all } i < j\},\$
- 4.  $\delta_0: C_0 \to C_{-1}$  is the augmentation map,
- 5. for  $n \ge 1$ ,  $\delta_n : C_n \to C_{n-1}$  is defined by

$$\delta_n(g_0,\ldots,g_n) = \sum_{i=0}^n (-1)^i \partial_i(g_0,\ldots,g_n).$$

COROLLARY 12. — Let  $m \ge 1$ . Let Y be a 2m-dense subset of G. Then  $H_n(C) = 0$  for all  $n \le m - 1$ .

*Proof.* — This corollary is a consequence of Lemma 10 and Lemma 11.  $\hfill \Box$ 

Proof of Theorem 5. — Let  $0 \leq n \leq m-1$ . The complex C defined above is a complex of G-modules, where the G-action is defined by  $g \cdot (g_0, \ldots, g_k) = (gg_0, \ldots, gg_k)$ . Then  $C_k$  is free with basis  $\{(1, g_1, \ldots, g_1, \ldots, g_k) \mid (g_1, \ldots, g_k) \in Y_{\text{gen}}^k\}$ , for  $k \leq 2m$ . This means that there is  $(\overline{C}_k)_{k\geq 0}$  a free  $\mathbb{Z}G$ -resolution of  $\mathbb{Z}$  such that  $\overline{C}_{n+1} = C_{n+1}$ . Hence  $H_Y^n(G, B)$  is isomorphic to  $H^n(G, B)$ . Clearly the isomorphism is induced by the natural embedding  $Y_{\text{gen}}^n \to G^n$ . This proves part one.

We now prove the second part of the theorem. We consider an *n*-cocycle  $\bar{c}$  and an *n*-cocycle for Y c such that the class of the restriction of

 $\bar{c}$  to  $Y_{\text{gen}}^n$  in  $H_Y^n(G, B)$  is the same of the class of c. There exists  $f \in C_Y^{n-1}$  such that  $\bar{c} = c + d^{n-1}(f)$ . But  $\text{Hom}(G^{n-1}, B)$  maps onto  $C_Y^{n-1}$ . This means that there exists  $\bar{f}$  in  $\text{Hom}(G^{n-1}, B)$  which maps to f. It then follows that the *n*-cocycle c', defined by  $c'(g_1, g_2) = c(g_1, g_2) - \bar{f}(g_1) - \bar{f}(g_1) + \bar{f}(g_1g_2)$ , maps to c.

COROLLARY 13. — Let Y be a 2m-dense subset of G. Let  $0 \le n \le m-1$ . We consider two n-cocycles c, c'. We suppose that there exists  $g \in G$  such that

$$c(g_1,\ldots,g_n) = c'(gg_1g^{-1},\ldots,gg_ng^{-1}),$$

for all  $(g_1, \ldots, g_n) \in Y_{gen}^n$ . Then c and c' are cohomological equivalent.

*Proof.* — Let  $n \leq m-1$ . The set  $gYg^{-1}$  is a 2*m*-dense subset of *G*. The map  $r_g: G \to G$  defined by  $r_g(h) = ghg^{-1}$  induces two homomorphisms  $i_g: H^n(G, B) \to H^n(G, B), i_g: H^n_Y(G, B) \to H^n_{gYg^{-1}}(G, B)$  and the following commutative diagramm

$$\begin{array}{cccc} H^n(G,B) & \xrightarrow{\imath_Y} & H^n_Y(G,B) \\ \imath_g \downarrow & & \downarrow \imath_g \\ H^n(G,B) & \xrightarrow{i_{gYg^{-1}}} & H^n_{gYg^{-1}}(G,B), \end{array}$$

where  $i_Y$  and  $i_{gYg^{-1}}$  denote the isomorphisms induced by the natural embeddings  $Y_{\text{gen}}^n \to G^n$  and  $(gYg^{-1})_{\text{gen}}^n \to G^n$ . Note that  $i_g : H^n(G, B) \to H^n(G, B)$  is the identity map. This proves the corollary.  $\Box$ 

#### 4. An application.

In the second part of this paper we give an application of Theorem 5.

Let A be a local commutative ring such that  $2 \in A^*$ . Let  $\mathfrak{M}$  denote the maximal ideal of A and  $K = A/\mathfrak{M}$ . Let V be a free A-module of dimension 2n with a non-degenerate alternating form  $\varphi$ . For a subset W of V, we set

$$W^{\perp} = \{ v \in V \mid \varphi(v, w) = 0 \text{ for all } w \in W \}.$$

A direct summand of V is called subspace and a Lagrangian for V is a subspace W of dimension n such that  $W = W^{\perp}$ . Let X denote the set of the Lagrangians in V. Let  $L_1, L_2 \in X$ . We say that  $L_1$  is transversal to  $L_2$ , denoted  $L_1 \pitchfork L_2$ , if  $L_1 + L_2 = V$ .

We let Sp(V) the symplectic group of  $(V, \varphi)$ , that is

$$\operatorname{Sp}(V) = \{ \alpha \in \operatorname{GL}(V) | \varphi(\alpha(x), \alpha(y)) = \varphi(x, y) \text{ for all } x, y \in V \}.$$

ANNALES DE L'INSTITUT FOURIER

880

Let W be a submodule of V. We let  $\overline{W} = W \otimes_A K$  and  $\overline{\varphi} : \overline{V} \times \overline{V} \to K$ denote the non-degenerate alternating form induced by  $\varphi$ . Finally  $\overline{X}$ denotes the set of the Lagrangians in  $\overline{V}$ . We have

LEMMA 14. — Let  $\{v_1, \ldots, v_{2n}\}$  be a basis of V. Then there exists a basis  $\{u_1, \ldots, u_{2n}\}$  of V such that  $\varphi(v_i, u_j) = \delta_{ij}$ .

Proof. — The space V' denotes the dual of V. Then  $d_{\varphi}: V \to V'$ defined by  $d_{\varphi}(x) = \varphi(-, x)$  is an isomorphism because  $\varphi$  is non-degenerate. We consider the dual basis  $\{z_1, \ldots, z_{2n} \in V'\}$  of  $\{v_1, \ldots, v_{2n}\}$  and we let  $u_i = d_{\varphi}^{-1}(z_i)$ . Then  $\delta_{ij} = z_i(v_j) = d_{\varphi}d_{\varphi}^{-1}(z_i)(v_j) = \varphi(v_j, u_i)$ .

COROLLARY 15. — Let  $v_1, \ldots, v_n \in V$  such that  $\overline{v}_1, \ldots, \overline{v}_n$  are linear independents in  $\overline{V}$ . Then there exists  $\{u_1, \ldots, u_n\}$  a subset of Vsuch that  $\varphi(v_i, u_j) = \delta_{ij}$ . Moreover, if  $L_2$  is a Lagrangian of V transversal to  $L_1 \in X$  and  $\{v_1, \ldots, v_n\}$  is a basis of  $L_1$ , then there exists a basis  $\{w_1, \ldots, w_n\}$  of  $L_2$  such that  $\varphi(v_i, w_j) = \delta_{ij}$ .

*Proof.* — We prove only the second part of the corollary. We consider  $\{v_1, \ldots, v_n\}$  a basis of  $L_1$  and  $\{v_{n+1}, \ldots, v_{2n}\}$  a basis of  $L_2$ . There is a basis  $\{w_1, \ldots, w_{2n}\}$  of V such that  $\varphi(v_i, w_j) = \delta_{ij}$ . This means that  $w_1, \ldots, w_n \in L_2^{\perp}$ . But  $L_2 = L_2^{\perp}$ , hence  $\{w_1, \ldots, w_n\}$  is a basis of  $L_2$ .  $\Box$ 

COROLLARY 16. — X maps onto  $\overline{X}$ .

Proof. — Let  $\{\overline{v}_1, \ldots, \overline{v}_n \in \overline{V}\}$  be a basis of  $\overline{L}$ , a Lagrangian for  $\overline{V}$ . We consider  $\{v_1, \ldots, v_n\}$  a lift of  $\{\overline{v}_1, \ldots, \overline{v}_n\}$  in V and  $m = \max\{k \mid \varphi(v_i, v_j) = 0 \text{ for all } 1 \leq i, j \leq k\}$ . We prove the corollary by induction on n - m.

If n - m = 0, then the corollary is true.

Let  $n - m \ge 1$ . We choose  $u_1, \ldots, u_n \in V$  such that  $\varphi(v_i, u_j) = \delta_{ij}$ . We put  $\tilde{v}_i = v_i$ , if  $i \ne m + 1$  and  $\tilde{v}_{m+1} = v_{m+1} - \sum_{i=1}^m \varphi(v_i, v_{m+1})u_i$ . Clearly  $\{\tilde{v}_1, \ldots, \tilde{v}_n\}$  is a lift of  $\{\overline{v}_1, \ldots, \overline{v}_n\}$  because  $\varphi(v_i, v_{m+1}) \in \mathfrak{M}$  for all  $1 \le i \le m$ . Moreover  $\varphi(\tilde{v}_i, \tilde{v}_j) = 0$  for all  $1 \le i, j \le m + 1$ . This proves the corollary.

COROLLARY 17. — Sp(V) acts transitevely on X.

*Proof.* — Let  $L_0, L_1 \in X$ . There are  $\overline{L}_2, \overline{L}_3 \in \overline{X}$  such that  $\overline{L}_0 \pitchfork \overline{L}_2$ 

TOME 54 (2004), FASCICULE 4

and  $\overline{L}_1 \pitchfork \overline{L}_3$ . Let  $L_0, L_1, L_2, L_3$  be lifts of  $\overline{L}_0, \overline{L}_1, \overline{L}_2, \overline{L}_3$  in X. Clearly  $L_0 \pitchfork L_2$  and  $L_1 \pitchfork L_3$ . We choose  $\{v_1, \ldots, v_{2n}\}$  and  $\{u_1, \ldots, u_{2n}\}$  two basis of V such that  $\{v_1, \ldots, v_n\} \subset L_0, \{v_{n+1}, \ldots, v_{2n}\} \subset L_1, \{u_1, \ldots, u_n\} \subset L_2, \{u_{n+1}, \ldots, u_{2n}\} \subset L_3$  and  $\varphi(v_i, v_{n+j}) = \varphi(u_i, u_{n+j}) = \delta_{ij}$  for all  $1 \leq i, j \leq n$ . Now we consider  $\alpha \in \operatorname{GL}(V)$  such that  $\alpha(v_i) = u_i$ , for  $1 \leq i \leq 2n$ . Clearly  $\alpha \cdot L_0 = L_1$  and  $\varphi(\alpha(x), \alpha(y)) = \varphi(x, y)$  for all  $x, y \in V$ . Hence  $\alpha \in \operatorname{Sp}(V)$ .

Now we consider  $(L_1, L_2, L_3) \in X^3$  such that  $L_i \pitchfork L_j$  for  $i \neq j$ . We define  $\psi : L_1 \oplus L_2 \oplus L_3 \to V$  by  $\psi(v_1, v_2, v_3) = v_1 + v_2 + v_3$ . Then  $\psi$  is surjective and  $\mathcal{K}_{123} = \ker \psi$  is free of dimension n. We define the quadratic form  $q : \mathcal{K}_{123} \to A$  by  $q(v_1, v_2, v_3) = \varphi(v_1, v_2)$ . Then q is a nondegenerate quadratic form and the Maslov index of  $(L_1, L_2, L_3)$ , denoted by  $m(L_1, L_2, L_3)$ , is the class of q in W(A).

In comparison with [3], we do not define the Maslov index for all  $(L_1, L_2, L_3)$  in  $X^3$ , but, using theorem 5, we obtain (Theorem 24) an extension

$$0 \longrightarrow I^{2}(A) \longrightarrow \widetilde{\operatorname{Sp}(V)} \longrightarrow \operatorname{Sp}(V) \longrightarrow 1$$

as in Theorem 2.2 of [3].

PROPOSITION 18. — Let  $(L_0, L_1, L_2, L_3) \in X^4$  such that  $L_i \pitchfork L_j$  for  $i \neq j$ . Then  $m(L_1, L_2, L_3) - m(L_0, L_2, L_3) + m(L_0, L_1, L_3) - m(L_0, L_1, L_2) = 0$ .

*Proof.* — The proof is exactly the same as in the proof of Proposition 1.2 of [3].  $\Box$ 

LEMMA 19. — Let A be a local ring such that  $|A/\mathfrak{M}| \ge m$ . Then, given m Lagrangians  $L_0, L_1, \ldots, L_m$ , there exists a Lagrangian L such that  $L \pitchfork L_i$ , for  $0 \le i \le m$ .

*Proof.* — It follows from Corollary 16 that we just need to prove this lemma when A = K a field.

Assume the dimension of V is 2. Then K has more than m 1dimensional subspaces and the lemma is true. We prove the lemma by induction on dim V.

We show that there exists  $v \in V$ ,  $v \notin \bigcup_{i=0}^{m} L_i$ . This is proved if  $|K| = \infty$ . Suppose |K| = q. Then a space of dimension l has cardinality  $q^l$ . This means that  $|\bigcup_{i=0}^{m} L_i| \leq (m+1)q^m < q^{2m} = |V|$ .

Let  $V_1 = v^{\perp}$  and  $\overline{V}_1 = V_1/\langle v \rangle$ . Let  $\overline{L}_i$  be the image of  $L_i \cap V_1$  in  $\overline{V}_1$ . Then  $\{\overline{L}_i \mid 0 \leq i \leq m\}$  are Lagrangians in  $\overline{V}_1$ . By induction on the dimension of V, there is a Lagrangian  $\overline{L}$  in  $\overline{V}_1$  such that  $\overline{L} \pitchfork \overline{L}_i$ , for  $0 \leq i \leq m$ . We consider L the subspace of  $V_1$  of dimension n such that  $L/\langle v \rangle = \overline{L}$ . Then L is a Lagrangian in V and  $L \pitchfork L_i$ ,  $0 \leq i \leq m$ .  $\Box$ 

COROLLARY 20. — Let A be a local ring such that  $|A/\mathfrak{M}| \ge m$ . We fix  $L_0 \in X$  and we consider  $Y_{L_0} = \{g \in \operatorname{Sp}(V) \mid g \cdot L_0 \pitchfork L_0\}$ . Then  $Y_{L_0}$  is *m*-dense.

Proof. — We first remark that, if  $L_1 \pitchfork L_2$ , then  $g \cdot L_1 \pitchfork g \cdot L_2$ , for  $g \in \operatorname{Sp}(V)$  and  $L_1, L_2 \in X$ . Let  $g_1, \ldots, g_m \in \operatorname{Sp}(V)$ . By the previous lemma there is an  $L \in X$  transversal to  $g_i \cdot L_0$ , for  $1 \leq i \leq m$ . We choose  $g \in Sp(V)$  such that  $g \cdot L_0 = L$ . Then  $g \cdot L_0 \pitchfork g_i \cdot L_0$ ,  $1 \leq i \leq m$ . This means that  $g_i^{-1}g \in Y_{L_0}$ . But  $g = g_i g_i^{-1}g$ , hence  $g \in (g_1 \cdot Y_{L_0}) \cap \ldots \cap (g_m \cdot Y_{L_0})$ .

Now we fix  $L_0 \in X$  and define  $c: (Y_{L_0})^2_{\text{gen}} \to W(A)$  as follows:  $c(g_1, g_2) = m(L_0, g_1 \cdot L_0, g_1g_2 \cdot L_0).$ 

PROPOSITION 21. — Let A be a local ring such that  $|A/\mathfrak{M}| \ge 6$ . Then c is a 2-cocycle for  $Y_{L_0}$  which defines a central extension

$$(\star) \qquad \qquad 0 \longrightarrow W(A) \longrightarrow \operatorname{Sp}(V) \longrightarrow \operatorname{Sp}(V) \longrightarrow 1$$

This extension is independent of the choice of  $L_0$ .

Note that  $A/\mathfrak{M}$  is a field. Hence  $|A/\mathfrak{M}| \ge 6$  implies that  $|A/\mathfrak{M}| \ge 7$ .

Proof. — Let  $L_1, L_2, L_3 \in X$  such that  $L_i \pitchfork L_j$ , for  $i \neq j$ . We remark that  $m(L_1, L_2, L_3) = m(g \cdot L_1, g \cdot L_2, g \cdot L_3)$ , for  $g \in G$ . It then follows that c is a 2-cocycle for  $Y_{L_0}$ . Hence, using Theorem 5 and Corollary 20, we see that c induces ( $\star$ ).

We are now left with proving that  $(\star)$  is independent of the choice of  $L_0$ .

Let  $L_1 \in X$ . We consider c', the 2-cocycle for  $Y_{L_1}$  defined by  $c'(q_1, q_2) = m(L_1, q_1 \cdot L_1, q_1 q_2 \cdot L_1).$ 

We choose  $g \in G$  such that  $g \cdot L_0 = L_1$ . Let  $(g_1, g_2) \in (Y_{L_1})_{gen}^2$ . We have that

$$\begin{aligned} c'(g_1,g_2) &= m(L_1,g_1 \cdot L_1,g_1g_2 \cdot L_1) = m(g \cdot L_0,gg^{-1}g_1g \cdot L_0,gg^{-1}g_1g_2g \cdot L_0) \\ &= m(L_0,g^{-1}g_1g \cdot L_0,g^{-1}g_1g_2g \cdot L_0) = c(g^{-1}g_1g,g^{-1}g_2g). \end{aligned}$$

TOME 54 (2004), FASCICULE 4

Hence the proposition follows from Corollary 13.

In the last part of this paper we will prove that c can be reduced to

$$\overline{c}: (Y_{L_0})^2_{\text{gen}} \to I^2(A)$$

We consider the map  $t: Y_{L_0} \to W(A)$ , defined by  $t(g) = \langle \mathrm{id}_n \rangle$ , where  $\mathrm{id}_n$  denotes the bilinear space  $(A^n, \iota_n)$  defined by

$$\iota_n((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = x_1y_1 + \ldots + x_ny_n.$$

Let  $(g_1, g_2) \in (Y_{L_0})^2_{\text{gen}}$ . We put  $c'(g_1, g_2) = c(g_1, g_2) - t(g_1) - t(g_2) + t(g_1g_2)$ .

LEMMA 22. — c' is a 2-cocycle for  $Y_{L_0}$  and  $c'((Y_{L_0})^2_{gen}) \subset I(A)$ .

Let  $L, L_0 \in X$  such that  $L \pitchfork L_0$ . We choose  $B = \{v_1, \ldots, v_n\}$  a basis of L and  $B_0 = \{u_1, \ldots, u_n\}$  a basis of  $L_0$ .  $M((L, B), (L_0, B_0))$  denotes the matrix  $(r_{ij}) = -\varphi(v_i, u_j)$ . The matrix  $M((L, B), (L_0, B_0))$  is in  $GL_n(A)$ because  $L \pitchfork L_0$ .

PROPOSITION 23. — Let  $(L_1, L_2, L_3) \in X^3$  such that  $L_i \pitchfork L_j$  for  $i \neq j$ . We choose  $B_1 = \{v_1, \ldots, v_n\}$  a basis of  $L_1, B_2 = \{u_1, \ldots, u_n\}$  a basis of  $L_2$  and  $B_3 = \{w_1, \ldots, w_n\}$  a basis of  $L_3$ . Then

 $\partial(m(L_1, L_2, L_3)) = (-1)^{n(n-1)/2} \cdot \overline{\det}(M_{23}) \cdot \overline{\det}(M_{13})^{-1} \cdot \overline{\det}(M_{12}),$ 

where  $M_{ij}$  denotes the matrix  $M((L_i, B_i), (L_j, B_j))$ , the map  $\partial : W(A) \to A^*/(A^*)^2$  denotes the signed determinant and  $\overline{det}$  denotes the homomorphism between  $\operatorname{GL}_n(A)$  and  $A^*/(A^*)^2$  induced by the determinant.

*Proof.* — The proof is exactly the same as the first part of the proof of Proposition 2.1 of [3].  $\hfill \Box$ 

We fix  $L_0 \in X$ . Let  $B_0 = \{v_i \mid 1 \leq i \leq n\}$  be a basis of  $L_0$ . Then  $g \cdot B_0 = \{g \cdot v_i \mid 1 \leq i \leq n\}$  is a basis of  $g \cdot L_0$ , for  $g \in \operatorname{Sp}(V)$ . We consider the map  $t_{L_0} : Y_{L_0} \to I(A)$ , defined by

$$t_{L_0}(g) = \left\langle \det \left( M((L_0, B_0), (g \cdot L_0, g \cdot B_0)) \right), (-1)^{n(n-1)/2} \right\rangle.$$

Let  $(g_1, g_2) \in (Y_{L_0})^2_{\text{gen}}$ . We let  $\overline{c}(g_1, g_2) = c'(g_1, g_2) - t_{L_0}(g_1) - t_{L_0}(g_2) + t_{L_0}(g_1g_2)$ .

THEOREM 24. — Let A be a local ring such that  $|A/\mathfrak{M}| \ge 7$ . Then  $\overline{c}$  is a 2-cocycle for  $Y_{L_0}$  which induces a central extension

$$0 \longrightarrow I^{2}(A) \longrightarrow \operatorname{Sp}(V) \longrightarrow \operatorname{Sp}(V) \longrightarrow 1.$$

ANNALES DE L'INSTITUT FOURIER

Acknowledgments. — I would like to thank Dr. Gael Collinet for the helpful discussions and for having send me his thesis [2]. In his paper I have in particular found many useful informations about the study of the acyclicity of semi-simplicial sets.

#### BIBLIOGRAPHY

- [1] K.S. BROWN, Cohomology of Groups, Springer-Verlag, New York a.o., 1982.
- [2] G. COLLINET, Quelques propriétés homologiques du groupe  $O_n(\mathbb{Z}[\frac{1}{2}])$ , Thèse de l'université Paris XIII, Paris, 2002.
- [3] R. PARIMALA, R. PREETI, R. SRIDHARAN, Maslov index and a central extension of the symplectic group, K-Theory, 19 (2000), 29–45.

Manuscrit reçu le 13 novembre 2003, accepté le 13 janvier 2004.

Amedeo MAZZOLENI, D-MATH ETH 8092 Zürich (Suisse). amazzole@educanet.ch