ANNALES

DE

L'INSTITUT FOURIER

Amedeo MAZZOLENI
Partially defined cocycles and the Maslov index for a local ring
Tome 54, n 4 (2004), p. 875-885.
http://aif.cedram.org/item?id=AIF_2004__54_4_875_0

Abstract

© Association des Annales de l'institut Fourier, 2004, tous droits réservés.

L'accès aux articles de la revue «Annales de l'institut Fourier» (http://aif.cedram.org/), implique l'accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

PARTIALLY DEFINED COCYCLES
 AND THE MASLOV INDEX FOR A LOCAL RING

by Amedeo MAZZOLENI

1. Cocycles in general position.

Definition 1. - Let G be a group. Let Y be a subset of G. We say that Y is 0 -dense if $Y \neq \emptyset$. Let $m \geqslant 1$. We say that Y is m-dense if

$$
\left(g_{1} \cdot Y\right) \cap \ldots \cap\left(g_{m} \cdot Y\right) \neq \emptyset
$$

for all $g_{1}, \ldots, g_{m} \in G$.

Example 2. - Let G be a topological group. If U is an open dense subset of G, then U is m-dense for all $m \geqslant 0$.

Proof. - This follows from

1. the set $g \cdot U$ is an open dense set, for $g \in G$;
2. the intersection of two open dense sets is an open dense set.

Lemma 3. - Let Y be an m-dense subset of G. Then there exists $\left(g_{1}, \ldots, g_{m}\right) \in Y^{m}$ such that $g_{i} g_{i+1} \ldots g_{\imath+\jmath} \in Y$, for $1 \leqslant i \leqslant m$ and $0 \leqslant j \leqslant m-i$.

[^0]Proof. - We prove the lemma by induction on m. The lemma is true if $m=0$ or $m=1$.

We suppose that $m>1$. By the induction hypothesis there is $\left(g_{1}, \ldots, g_{m-1}\right)$ in Y^{m-1} such that the product $g_{i} g_{i+1} \ldots g_{i+j} \in Y$, for $1 \leqslant i \leqslant m-1$ and $0 \leqslant j \leqslant m-1-i$. We choose $\widetilde{g}_{m} \in Y \cap\left(g_{1} \cdot Y\right) \cap$ $\ldots \cap\left(g_{1} g_{2} \ldots g_{m-1} \cdot Y\right)$. We let $g_{m}=\left(g_{1} g_{2} \ldots g_{m-1}\right)^{-1} \widetilde{g}_{m}$. We have that $\widetilde{g}_{m} \in\left(g_{1} g_{2} \ldots g_{\imath-1} \cdot Y\right) \cap\left(g_{1} g_{2} \ldots g_{m-1} \cdot Y\right)$, for $2 \leqslant i \leqslant m-1$. Hence $g_{i} g_{i+1} \ldots g_{m} \in Y$, for $1 \leqslant i \leqslant m$. This proves the lemma.

Let $m \geqslant 1$. We assume that Y is an m-dense subset of G. Let $1 \leqslant n \leqslant m$. We let $Y_{\text {gen }}^{n}=\left\{\left(g_{1}, \ldots, g_{n}\right) \in Y^{n} \mid g_{i} \ldots g_{i+j} \in Y\right.$ for $1 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n-i\}$.

Let B be an abelian group with trivial G-action. We consider the complex (of groups)

$$
0 \longrightarrow B \xrightarrow{0} C_{Y}^{1} \xrightarrow{d^{1}} C_{Y}^{2} \xrightarrow{d^{2}} \cdots \xrightarrow{d^{m-1}} C_{Y}^{m}
$$

where $C_{Y}^{n}=\operatorname{Map}\left(Y_{\text {gen }}^{n}, B\right)$ and

$$
\begin{aligned}
& d^{n-1}(f)\left(g_{1}, g_{2}, \ldots, g_{n-1}\right)=f\left(g_{2}, \ldots, g_{n-1}\right)-f\left(g_{1} g_{2}, \ldots, g_{n-1}\right)+\ldots \\
& \ldots+(-1)^{n-1} f\left(g_{1}, g_{2}, \ldots, g_{n-2}\right)
\end{aligned}
$$

Definition 4. - Let $0 \leqslant n \leqslant m-1$. An element of $\operatorname{ker} d^{n}$ is called n-cocycle for Y. We denote by $H_{Y}^{n}(G, B)$ the group $\operatorname{ker} d^{n} / \operatorname{im} d^{n-1}$.

Theorem 5. - Let $m \geqslant 1$. We assume that Y is a $2 m$-dense subset of G. Let $0 \leqslant n \leqslant m-1$. Then the natural embedding $Y_{\operatorname{gen}}^{n} \rightarrow G^{n}$ induces an isomorphism between $H^{n}(G, B)$ and $H_{Y}^{n}(G, B)$. Moreover, if c is an n cocycle for Y, then there is an n-cocycle \bar{c} such that its restriction to Y_{gen}^{n} is c.

This result will be proved in Section 3. A consequence of this theorem is the following corollary:

Corollary 6. - Let G be a topological group. Let U be an open dense subset of G. Then the natural embedding $U_{\text {gen }}^{n} \rightarrow G^{n}$ induces an isomorphism between $H^{*}(G, B)$ and $H_{U}^{*}(G, B)$. Moreover, if c is an n cocycle for U, then there is an n-cocycle \bar{c} such that its restriction to U_{gen}^{n} is c.

2. The generalized Mayer-Vietoris sequence.

Definition 7. - Let X be a $C W$-complex. We say that X is -1 acyclic if $X \neq \emptyset$. Let $k \geqslant 0$. We say that X is k-acyclic if X is -1 -acyclic and $\widetilde{H}_{n}(X)=0$, for all $0 \leqslant n \leqslant k$. We say that X is acyclic if it is k-acyclic for all $k \in \mathbb{N}$.

Let X be a $C W$-complex which is the union of a family of non-empty subcomplexes X_{α}, where α ranges over some totally ordered index set I. Let K be the abstract simplicial complex whose vertex set is I and whose simplices are the non-empty finite subsets J of I such that the intersection $\cap_{\alpha \in J} X_{\alpha}$ is non empty. We denote by $K^{(p)}$ the set of the p-simplices of K. Then (cf. [1] 166-167).

Proposition 8. - We have a spectral sequence E such that

$$
E_{p, q}^{1}=\bigoplus_{J \in K^{(q)}} H_{p}\left(\bigcap_{\alpha \in J} X_{\alpha}\right) \Rightarrow H_{p+q}(X)
$$

Let K be a simplicial set. Recall that \bar{K}, the geometric realization of K, is a $C W$-complex. Moreover $H_{*}(K)=H_{*}(\bar{K})$. We say that K is k-acyclic if \bar{K} is k-acyclic. The following corollary is a consequence of the Proposition 8.

Corollary 9. - Let K be a simplicial set which is the union of a family of non-empty simplicial subsets K_{α}, where α ranges over some index set I. Let $k \geqslant-1$. We suppose that $K_{\alpha_{1}} \cap K_{\alpha_{2}} \cap \ldots \cap K_{\alpha_{n}}$ is $k-n+1$-acyclic for all $1 \leqslant n \leqslant k+2$ and for all $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset I$. Then K is k-acyclic.

3. Proof of Theorem 5.

Let X be a subset of the group G. We first assume that $1 \in Y$. We let $X_{Y}^{0}=X$. Let $n \geqslant 1$. We let $X_{Y}^{n}=\left\{\left(g_{0}, \ldots, g_{n}\right) \in X^{n+1} \mid g_{i}^{-1} g_{\jmath} \in Y\right.$ for all $i<j\}$. The two following assertions are straightforward.

1. $\partial_{\imath}\left(g_{0}, \ldots, g_{n}\right)=\left(g_{0}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n}\right) \in X_{Y}^{n-1}$, for all $\left(g_{0}, \ldots, g_{n}\right)$ $\in X_{Y}^{n}$ and for $0 \leqslant i \leqslant n$.
2. $s_{i}\left(g_{0}, \ldots, g_{n}\right)=\left(g_{0}, \ldots, g_{i-1}, g_{i}, g_{i}, g_{2+1}, \ldots, g_{n}\right) \in X_{Y}^{n+1}$, for $0 \leqslant i \leqslant n$ and for all $\left(g_{0}, \ldots, g_{n}\right) \in X_{Y}^{n}$.

We consider the simplicial set $K_{Y}(X)$ whose n-simplices are the $\left(g_{0}, \ldots, g_{n}\right) \in X_{Y}^{n}$, the face operators are the ∂_{i} 's and the degenerency operators are the s_{\imath} 's. $\left(^{*}\right)$

Lemma 10. - Let $k \geqslant 0$. Let $X, Y \subset G$ such that $1 \in Y$. Assume that

$$
X \cap\left(g_{1} \cdot Y\right) \cap \ldots \cap\left(g_{2 k} \cdot Y\right) \neq \emptyset
$$

for all $g_{1}, \ldots, g_{2 k} \in X$. Then $K_{Y}(X)$ is $(k-1)$-acyclic.

Proof. - We prove the lemma by induction on k.
If $k=0$ then $X \neq \emptyset$. Hence $K_{Y}(X)$ is -1 -acyclic and the lemma is true.

We assume that $k>0$. Let $g \in X$ and denote by K_{g} the simplicial subset of $K_{Y}(X)$ whose the n-simplices are the $\left(g_{0}, \ldots, g_{n}\right) \in X_{Y}^{n}$ such that $g=g_{0}$ or $\left(g, g_{0}, \ldots, g_{n}\right) \in X_{Y}^{n+1}$. Clearly $K_{Y}(X)=\bigcup_{g \in X} K_{g}$. Let $g_{1}, \ldots, g_{m} \in X$ such that $g_{\imath} \neq g_{\jmath}$ for $i \neq j$. We let $K_{g_{1}, \ldots, g_{m}}=$ $K_{g_{1}} \cap \ldots \cap K_{g_{m}}$. We will prove that $K_{g_{1}, \ldots, g_{m}}$ is $(k-m)$-acyclic, for $1 \leqslant m \leqslant k+1$ and for $\left(g_{1} \ldots, g_{m}\right) \in X^{m}$.

The geometric realization of K_{g} is a cone, hence K_{g} is acyclic. Let $2 \leqslant m \leqslant k+1$. Let $g_{1}, \ldots, g_{m} \in X$ such that $g_{2} \neq g_{\jmath}$, for $i \neq j$. We put $\bar{X}=X \cap\left(g_{1} \cdot Y\right) \cap \ldots \cap\left(g_{m} \cdot Y\right)$ and $\bar{X}_{Y}^{n}=\left\{\left(g_{0}, \ldots, g_{n}\right) \in \bar{X}^{n+1} \mid g_{\imath}^{-1} g_{\jmath} \in\right.$ Y for all $i<j\}$. Then $K_{g_{1}, \ldots, g_{m}}=K_{Y}(\bar{X})$, the simplicial set whose the n-simplices are the $\left(g_{0}, \ldots, g_{n}\right) \in \bar{X}_{Y}^{n}$. Let $h_{1}, \ldots, h_{2(k-m+1)} \in \bar{X}$. Then

$$
\bar{X} \cap\left(h_{1} \cdot Y\right) \cap \ldots \cap\left(h_{2(k-m+1)} \cdot Y\right) \neq \emptyset
$$

since $m+2(k-m+1) \leqslant 2 k$.
Hence, by induction hypothesis, $K_{g_{1}, \ldots, g_{m}}$ is $(k-m)$-acyclic. From Corollary 9 follows that $K_{Y}(X)$ is $(k-1)$-acyclic. This proves the lemma.

Now we assume that $1 \notin Y$. We let $X_{Y}^{0}=X$. Let $n \geqslant 1$. We let $X_{Y}^{n}=\left\{\left(g_{0}, \ldots, g_{n}\right) \in X^{n+1} \mid g_{i}^{-1} g_{\jmath} \in Y\right.$ for all $\left.i<j\right\}$. Note that

1. If $i \neq j$, then $g_{\imath} \neq g_{j}$, for all $\left(g_{0}, \ldots, g_{n}\right) \in X_{Y}^{n}$.
2. $\partial_{\imath}\left(g_{0}, \ldots, g_{n}\right)=\left(g_{0}, \ldots, g_{\imath-1}, g_{\imath+1}, \ldots, g_{n}\right) \in X_{Y}^{n-1}$, for all $\left(g_{0}, \ldots, g_{n}\right)$ $\in X_{Y}^{n}$ and for $0 \leqslant i \leqslant n$.
It follows from (1) and (2) that there is a simplicial set $\bar{K}_{Y}(X)$ whose the non degenerate n-simplices are the $\left(g_{0}, \ldots, g_{n}\right) \in X_{Y}^{n}$ and the face operators are the ∂_{i} 's defined above.

Note that $\bar{K}_{Y}(X)=K_{Y^{\prime}}(X)$, where $Y^{\prime}=Y \cup\{1\}\left(\right.$ see $\left.\left(^{*}\right)\right)$.
Lemma 11. - Let $k \geqslant 0$. Let $X, Y \subset G$ such that $1 \notin Y$. We assume that

$$
X \cap\left(g_{1} \cdot Y\right) \cap \ldots \cap\left(g_{2 k} \cdot Y\right) \neq \emptyset
$$

for all $g_{1}, \ldots, g_{2 k} \in G$. Then $\bar{K}_{Y}(X)$ is $(k-1)$-acyclic.

Proof. - We have that $\bar{K}_{Y}(X)=K_{Y^{\prime}}(X)$, where $Y^{\prime}=Y \cup\{1\}$. Clearly

$$
X \cap\left(g_{1} \cdot Y^{\prime}\right) \cap \ldots \cap\left(g_{2 k} \cdot Y^{\prime}\right) \neq \emptyset
$$

for all $g_{1}, \ldots, g_{2 k} \in G$. Hence this lemma is a consequence of Lemma 10.
We consider the complex $C=\left(C_{n}, \delta_{n}\right)_{n \geqslant-1}$, where

1. $C_{-1}=\mathbb{Z}$,
2. $C_{0}=\mathbb{Z} G$,
3. for $n \geqslant 1, C_{n}$ is the free abelian group generated by the elements of $G_{Y}^{n}=\left\{\left(g_{0}, \ldots, g_{n}\right) \in G^{n+1} \mid g_{i}^{-1} g_{j} \in Y\right.$ for all $\left.i<j\right\}$,
4. $\delta_{0}: C_{0} \rightarrow C_{-1}$ is the augmentation map,
5. for $n \geqslant 1, \delta_{n}: C_{n} \rightarrow C_{n-1}$ is defined by

$$
\delta_{n}\left(g_{0}, \ldots, g_{n}\right)=\sum_{\imath=0}^{n}(-1)^{i} \partial_{\imath}\left(g_{0}, \ldots, g_{n}\right) .
$$

Corollary 12. - Let $m \geqslant 1$. Let Y be a $2 m$-dense subset of G. Then $H_{n}(C)=0$ for all $n \leqslant m-1$.

Proof. - This corollary is a consequence of Lemma 10 and Lemma 11.

Proof of Theorem 5. - Let $0 \leqslant n \leqslant m-1$. The complex C defined above is a complex of G-modules, where the G-action is defined by $g \cdot\left(g_{0}, \ldots, g_{k}\right)=\left(g g_{0}, \ldots, g g_{k}\right)$. Then C_{k} is free with basis $\left\{\left(1, g_{1}, \ldots, g_{1} \ldots g_{k}\right) \mid\left(g_{1}, \ldots, g_{k}\right) \in Y_{\text {gen }}^{k}\right\}$, for $k \leqslant 2 m$. This means that there is $\left(\bar{C}_{k}\right)_{k \geqslant 0}$ a free $\mathbb{Z} G$-resolution of \mathbb{Z} such that $\bar{C}_{n+1}=C_{n+1}$. Hence $H_{Y}^{n}(G, B)$ is isomorphic to $H^{n}(G, B)$. Clearly the isomorphism is induced by the natural embedding $Y_{\text {gen }}^{n} \rightarrow G^{n}$. This proves part one.

We now prove the second part of the theorem. We consider an n cocycle \bar{c} and an n-cocycle for $Y c$ such that the class of the restriction of
\bar{c} to $Y_{\text {gen }}^{n}$ in $H_{Y}^{n}(G, B)$ is the same of the class of c. There exists $f \in C_{Y}^{n-1}$ such that $\bar{c}=c+d^{n-1}(f)$. $\operatorname{But} \operatorname{Hom}\left(G^{n-1}, B\right)$ maps onto C_{Y}^{n-1}. This means that there exists \bar{f} in $\operatorname{Hom}\left(G^{n-1}, B\right)$ which maps to f. It then follows that the n-cocycle c^{\prime}, defined by $c^{\prime}\left(g_{1}, g_{2}\right)=c\left(g_{1}, g_{2}\right)-\bar{f}\left(g_{1}\right)-\bar{f}\left(g_{1}\right)+\bar{f}\left(g_{1} g_{2}\right)$, maps to c.

Corollary 13. - Let Y be a $2 m$-dense subset of G. Let $0 \leqslant n \leqslant$ $m-1$. We consider two n-cocycles c, c^{\prime}. We suppose that there exists $g \in G$ such that

$$
c\left(g_{1}, \ldots, g_{n}\right)=c^{\prime}\left(g g_{1} g^{-1}, \ldots, g g_{n} g^{-1}\right)
$$

for all $\left(g_{1}, \ldots, g_{n}\right) \in Y_{\text {gen }}^{n}$. Then c and c^{\prime} are cohomological equivalent.
Proof. - Let $n \leqslant m-1$. The set $g Y g^{-1}$ is a $2 m$-dense subset of G. The map $r_{g}: G \rightarrow G$ defined by $r_{g}(h)=g h g^{-1}$ induces two homomorphisms $i_{g}: H^{n}(G, B) \rightarrow H^{n}(G, B), i_{g}: H_{Y}^{n}(G, B) \rightarrow H_{g Y g^{-1}}^{n}(G, B)$ and the following commutative diagramm

where i_{Y} and $i_{g Y g^{-1}}$ denote the isomorphisms induced by the natural embeddings $Y_{\text {gen }}^{n} \rightarrow G^{n}$ and $\left(g Y g^{-1}\right)_{\text {gen }}^{n} \rightarrow G^{n}$. Note that $i_{g}: H^{n}(G, B) \rightarrow$ $H^{n}(G, B)$ is the identity map. This proves the corollary.

4. An application.

In the second part of this paper we give an application of Theorem 5 .
Let A be a local commutative ring such that $2 \in A^{*}$. Let \mathfrak{M} denote the maximal ideal of A and $K=A / \mathfrak{M}$. Let V be a free A-module of dimension $2 n$ with a non-degenerate alternating form φ. For a subset W of V, we set

$$
W^{\perp}=\{v \in V \mid \varphi(v, w)=0 \text { for all } w \in W\}
$$

A direct summand of V is called subspace and a Lagrangian for V is a subspace W of dimension n such that $W=W^{\perp}$. Let X denote the set of the Lagrangians in V. Let $L_{1}, L_{2} \in X$. We say that L_{1} is transversal to L_{2}, denoted $L_{1} \pitchfork L_{2}$, if $L_{1}+L_{2}=V$.

We let $\operatorname{Sp}(V)$ the symplectic group of (V, φ), that is

$$
\operatorname{Sp}(V)=\{\alpha \in \operatorname{GL}(V) \mid \varphi(\alpha(x), \alpha(y))=\varphi(x, y) \text { for all } x, y \in V\}
$$

Let W be a submodule of V. We let $\bar{W}=W \otimes_{A} K$ and $\bar{\varphi}: \bar{V} \times \bar{V} \rightarrow K$ denote the non-degenerate alternating form induced by φ. Finally \bar{X} denotes the set of the Lagrangians in \bar{V}. We have

Lemma 14. - Let $\left\{v_{1}, \ldots, v_{2 n}\right\}$ be a basis of V. Then there exists a basis $\left\{u_{1}, \ldots, u_{2 n}\right\}$ of V such that $\varphi\left(v_{i}, u_{j}\right)=\delta_{i j}$.

Proof. - The space V^{\prime} denotes the dual of V. Then $d_{\varphi}: V \rightarrow V^{\prime}$ defined by $d_{\varphi}(x)=\varphi(-, x)$ is an isomorphism because φ is non-degenerate. We consider the dual basis $\left\{z_{1}, \ldots, z_{2 n} \in V^{\prime}\right\}$ of $\left\{v_{1}, \ldots, v_{2 n}\right\}$ and we let $u_{i}=d_{\varphi}^{-1}\left(z_{i}\right)$. Then $\delta_{i j}=z_{i}\left(v_{j}\right)=d_{\varphi} d_{\varphi}^{-1}\left(z_{i}\right)\left(v_{j}\right)=\varphi\left(v_{j}, u_{i}\right)$.

Corollary 15. - Let $v_{1}, \ldots, v_{n} \in V$ such that $\bar{v}_{1}, \ldots, \bar{v}_{n}$ are linear independents in \bar{V}. Then there exists $\left\{u_{1}, \ldots, u_{n}\right\}$ a subset of V such that $\varphi\left(v_{i}, u_{\jmath}\right)=\delta_{i j}$. Moreover, if L_{2} is a Lagrangian of V transversal to $L_{1} \in X$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of L_{1}, then there exists a basis $\left\{w_{1}, \ldots, w_{n}\right\}$ of L_{2} such that $\varphi\left(v_{i}, w_{j}\right)=\delta_{i j}$.

Proof. - We prove only the second part of the corollary. We consider $\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of L_{1} and $\left\{v_{n+1}, \ldots, v_{2 n}\right\}$ a basis of L_{2}. There is a basis $\left\{w_{1}, \ldots, w_{2 n}\right\}$ of V such that $\varphi\left(v_{i}, w_{j}\right)=\delta_{\imath j}$. This means that $w_{1}, \ldots, w_{n} \in L_{2}^{\perp}$. But $L_{2}=L_{2}^{\perp}$, hence $\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis of L_{2}.

Corollary 16. $\quad X$ maps onto \bar{X}.

Proof. - Let $\left\{\bar{v}_{1}, \ldots, \bar{v}_{n} \in \bar{V}\right\}$ be a basis of \bar{L}, a Lagrangian for \bar{V}. We consider $\left\{v_{1}, \ldots, v_{n}\right\}$ a lift of $\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\}$ in V and $m=\max \left\{k \mid \varphi\left(v_{i}, v_{j}\right)=0\right.$ for all $\left.1 \leqslant i, j \leqslant k\right\}$. We prove the corollary by induction on $n-m$.

If $n-m=0$, then the corollary is true.
Let $n-m \geqslant 1$. We choose $u_{1}, \ldots, u_{n} \in V$ such that $\varphi\left(v_{i}, u_{j}\right)=\delta_{i j}$. We put $\widetilde{v}_{i}=v_{i}$, if $i \neq m+1$ and $\widetilde{v}_{m+1}=v_{m+1}-\sum_{i=1}^{m} \varphi\left(v_{i}, v_{m+1}\right) u_{i}$. Clearly $\left\{\widetilde{v}_{1}, \ldots, \widetilde{v}_{n}\right\}$ is a lift of $\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\}$ because $\varphi\left(v_{i}, v_{m+1}\right) \in \mathfrak{M}$ for all $1 \leqslant i \leqslant m$. Moreover $\varphi\left(\widetilde{v}_{i}, \widetilde{v}_{j}\right)=0$ for all $1 \leqslant i, j \leqslant m+1$. This proves the corollary.

Corollary 17. - $\operatorname{Sp}(V)$ acts transitevely on X.

Proof. - Let $L_{0}, L_{1} \in X$. There are $\bar{L}_{2}, \bar{L}_{3} \in \bar{X}$ such that $\bar{L}_{0} \pitchfork \bar{L}_{2}$
and $\bar{L}_{1} \pitchfork \bar{L}_{3}$. Let $L_{0}, L_{1}, L_{2}, L_{3}$ be lifts of $\bar{L}_{0}, \bar{L}_{1}, \bar{L}_{2}, \bar{L}_{3}$ in X. Clearly $L_{0} \pitchfork L_{2}$ and $L_{1} \pitchfork L_{3}$. We choose $\left\{v_{1}, \ldots, v_{2 n}\right\}$ and $\left\{u_{1}, \ldots, u_{2 n}\right\}$ two basis of V such that $\left\{v_{1}, \ldots, v_{n}\right\} \subset L_{0},\left\{v_{n+1}, \ldots, v_{2 n}\right\} \subset L_{1},\left\{u_{1}, \ldots, u_{n}\right\} \subset L_{2}$, $\left\{u_{n+1}, \ldots, u_{2 n}\right\} \subset L_{3}$ and $\varphi\left(v_{i}, v_{n+j}\right)=\varphi\left(u_{i}, u_{n+j}\right)=\delta_{i j}$ for all $1 \leqslant i, j \leqslant$ n. Now we consider $\alpha \in \mathrm{GL}(V)$ such that $\alpha\left(v_{i}\right)=u_{i}$, for $1 \leqslant i \leqslant 2 n$. Clearly $\alpha \cdot L_{0}=L_{1}$ and $\varphi(\alpha(x), \alpha(y))=\varphi(x, y)$ for all $x, y \in V$. Hence $\alpha \in \operatorname{Sp}(V)$.

Now we consider $\left(L_{1}, L_{2}, L_{3}\right) \in X^{3}$ such that $L_{2} \pitchfork L_{j}$ for $i \neq j$. We define $\psi: L_{1} \oplus L_{2} \oplus L_{3} \rightarrow V$ by $\psi\left(v_{1}, v_{2}, v_{3}\right)=v_{1}+v_{2}+v_{3}$. Then ψ is surjective and $\mathcal{K}_{123}=\operatorname{ker} \psi$ is free of dimension n. We define the quadratic form $q: \mathcal{K}_{123} \rightarrow A$ by $q\left(v_{1}, v_{2}, v_{3}\right)=\varphi\left(v_{1}, v_{2}\right)$. Then q is a nondegenerate quadratic form and the Maslov index of (L_{1}, L_{2}, L_{3}), denoted by $m\left(L_{1}, L_{2}, L_{3}\right)$, is the class of q in $W(A)$.

In comparison with [3], we do not define the Maslov index for all $\left(L_{1}, L_{2}, L_{3}\right)$ in X^{3}, but, using theorem 5 , we obtain (Theorem 24) an extension

$$
0 \longrightarrow I^{2}(A) \longrightarrow \widetilde{\operatorname{sp}(V)} \longrightarrow \operatorname{Sp}(V) \longrightarrow 1
$$

as in Theorem 2.2 of [3].
Proposition 18. - Let $\left(L_{0}, L_{1}, L_{2}, L_{3}\right) \in X^{4}$ such that $L_{\imath} \pitchfork L_{\jmath}$ for $i \neq j$. Then $m\left(L_{1}, L_{2}, L_{3}\right)-m\left(L_{0}, L_{2}, L_{3}\right)+m\left(L_{0}, L_{1}, L_{3}\right)-m\left(L_{0}, L_{1}, L_{2}\right)=0$.

Proof. - The proof is exactly the same as in the proof of Proposition 1.2 of [3].

Lemma 19. - Let A be a local ring such that $|A / \mathfrak{M}| \geqslant m$. Then, given m Lagrangians $L_{0}, L_{1}, \ldots, L_{m}$, there exists a Lagrangian L such that $L \pitchfork L_{i}$, for $0 \leqslant i \leqslant m$.

Proof. - It follows from Corollary 16 that we just need to prove this lemma when $A=K$ a field.

Assume the dimension of V is 2 . Then K has more than m 1dimensional subspaces and the lemma is true. We prove the lemma by induction on $\operatorname{dim} V$.

We show that there exists $v \in V, v \notin \cup_{i=0}^{m} L_{i}$. This is proved if $|K|=\infty$. Suppose $|K|=q$. Then a space of dimension l has cardinality q^{l}. This means that $\left|\cup_{i=0}^{m} L_{i}\right| \leqslant(m+1) q^{m}<q^{2 m}=|V|$.

Let $V_{1}=v^{\perp}$ and $\bar{V}_{1}=V_{1} /\langle v\rangle$. Let \bar{L}_{i} be the image of $L_{i} \cap V_{1}$ in \bar{V}_{1}. Then $\left\{\bar{L}_{i} \mid 0 \leqslant i \leqslant m\right\}$ are Lagrangians in \bar{V}_{1}. By induction on the dimension of V, there is a Lagrangian \bar{L} in \bar{V}_{1} such that $\bar{L} \pitchfork \bar{L}_{i}$, for $0 \leqslant i \leqslant m$. We consider L the subspace of V_{1} of dimension n such that $L /\langle v\rangle=\bar{L}$. Then L is a Lagrangian in V and $L \pitchfork L_{i}, 0 \leqslant i \leqslant m$.

Corollary 20. - Let A be a local ring such that $|A / \mathfrak{M}| \geqslant m$. We fix $L_{0} \in X$ and we consider $Y_{L_{0}}=\left\{g \in \operatorname{Sp}(V) \mid g \cdot L_{0} \pitchfork L_{0}\right\}$. Then $Y_{L_{0}}$ is m-dense.

Proof. - We first remark that, if $L_{1} \pitchfork L_{2}$, then $g \cdot L_{1} \pitchfork g \cdot L_{2}$, for $g \in \operatorname{Sp}(V)$ and $L_{1}, L_{2} \in X$. Let $g_{1}, \ldots, g_{m} \in \operatorname{Sp}(V)$. By the previous lemma there is an $L \in X$ transversal to $g_{i} \cdot L_{0}$, for $1 \leqslant i \leqslant m$. We choose $g \in S p(V)$ such that $g \cdot L_{0}=L$. Then $g \cdot L_{0} \pitchfork g_{i} \cdot L_{0}, 1 \leqslant i \leqslant m$. This means that $g_{i}^{-1} g \in Y_{L_{0}}$. But $g=g_{i} g_{i}^{-1} g$, hence $g \in\left(g_{1} \cdot Y_{L_{0}}\right) \cap \ldots \cap\left(g_{m} \cdot Y_{L_{0}}\right)$.

Now we fix $L_{0} \in X$ and define $c:\left(Y_{L_{0}}\right)_{\text {gen }}^{2} \rightarrow W(A)$ as follows:

$$
c\left(g_{1}, g_{2}\right)=m\left(L_{0}, g_{1} \cdot L_{0}, g_{1} g_{2} \cdot L_{0}\right)
$$

Proposition 21. - Let A be a local ring such that $|A / \mathfrak{M}| \geqslant 6$. Then c is a 2-cocycle for $Y_{L_{0}}$ which defines a central extension

$$
0 \longrightarrow W(A) \longrightarrow \widetilde{\operatorname{Sp(V}}) \longrightarrow \operatorname{Sp}(V) \longrightarrow 1
$$

This extension is independent of the choice of L_{0}.
Note that A / \mathfrak{M} is a field. Hence $|A / \mathfrak{M}| \geqslant 6$ implies that $|A / \mathfrak{M}| \geqslant 7$.
Proof. - Let $L_{1}, L_{2}, L_{3} \in X$ such that $L_{i} \pitchfork L_{j}$, for $i \neq j$. We remark that $m\left(L_{1}, L_{2}, L_{3}\right)=m\left(g \cdot L_{1}, g \cdot L_{2}, g \cdot L_{3}\right)$, for $g \in G$. It then follows that c is a 2-cocycle for $Y_{L_{0}}$. Hence, using Theorem 5 and Corollary 20, we see that c induces (\star).

We are now left with proving that (\star) is independent of the choice of L_{0}.

Let $L_{1} \in X$. We consider c^{\prime}, the 2-cocycle for $Y_{L_{1}}$ defined by

$$
c^{\prime}\left(g_{1}, g_{2}\right)=m\left(L_{1}, g_{1} \cdot L_{1}, g_{1} g_{2} \cdot L_{1}\right)
$$

We choose $g \in G$ such that $g \cdot L_{0}=L_{1}$. Let $\left(g_{1}, g_{2}\right) \in\left(Y_{L_{1}}\right)_{g e n}^{2}$. We have that

$$
\begin{aligned}
c^{\prime}\left(g_{1}, g_{2}\right) & =m\left(L_{1}, g_{1} \cdot L_{1}, g_{1} g_{2} \cdot L_{1}\right)=m\left(g \cdot L_{0}, g g^{-1} g_{1} g \cdot L_{0}, g g^{-1} g_{1} g_{2} g \cdot L_{0}\right) \\
& =m\left(L_{0}, g^{-1} g_{1} g \cdot L_{0}, g^{-1} g_{1} g_{2} g \cdot L_{0}\right)=c\left(g^{-1} g_{1} g, g^{-1} g_{2} g\right)
\end{aligned}
$$

Hence the proposition follows from Corollary 13.
In the last part of this paper we will prove that c can be reduced to

$$
\bar{c}:\left(Y_{L_{0}}\right)_{\mathrm{gen}}^{2} \rightarrow I^{2}(A)
$$

We consider the map $t: Y_{L_{0}} \rightarrow W(A)$, defined by $t(g)=\left\langle\mathrm{id}_{n}\right\rangle$, where id_{n} denotes the bilinear space $\left(A^{n}, \iota_{n}\right)$ defined by

$$
\iota_{n}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=x_{1} y_{1}+\ldots+x_{n} y_{n}
$$

Let $\left(g_{1}, g_{2}\right) \in\left(Y_{L_{0}}\right)_{\text {gen }}^{2}$. We put $c^{\prime}\left(g_{1}, g_{2}\right)=c\left(g_{1}, g_{2}\right)-t\left(g_{1}\right)-t\left(g_{2}\right)+t\left(g_{1} g_{2}\right)$.
Lemma 22. - c^{\prime} is a 2-cocycle for $Y_{L_{0}}$ and $c^{\prime}\left(\left(Y_{L_{0}}\right)_{\text {gen }}^{2}\right) \subset I(A)$.
Let $L, L_{0} \in X$ such that $L \pitchfork L_{0}$. We choose $B=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of L and $B_{0}=\left\{u_{1}, \ldots, u_{n}\right\}$ a basis of $L_{0} . M\left((L, B),\left(L_{0}, B_{0}\right)\right)$ denotes the matrix $\left(r_{i j}\right)=-\varphi\left(v_{i}, u_{j}\right)$. The matrix $M\left((L, B),\left(L_{0}, B_{0}\right)\right)$ is in $G L_{n}(A)$ because $L \pitchfork L_{0}$.

Proposition 23. - Let $\left(L_{1}, L_{2}, L_{3}\right) \in X^{3}$ such that $L_{\imath} \pitchfork L_{\jmath}$ for $i \neq j$. We choose $B_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of $L_{1}, B_{2}=\left\{u_{1}, \ldots, u_{n}\right\}$ a basis of L_{2} and $B_{3}=\left\{w_{1}, \ldots, w_{n}\right\}$ a basis of L_{3}. Then

$$
\partial\left(m\left(L_{1}, L_{2}, L_{3}\right)\right)=(-1)^{n(n-1) / 2} \cdot \overline{\operatorname{det}}\left(M_{23}\right) \cdot \overline{\operatorname{det}}\left(M_{13}\right)^{-1} \cdot \overline{\operatorname{det}}\left(M_{12}\right)
$$

where $M_{\imath \jmath}$ denotes the matrix $M\left(\left(L_{\imath}, B_{\imath}\right),\left(L_{\jmath}, B_{\jmath}\right)\right)$, the map $\partial: W(A) \rightarrow$ $A^{*} /\left(A^{*}\right)^{2}$ denotes the signed determinant and $\overline{\operatorname{det}}$ denotes the homomorphism between $\mathrm{GL}_{n}(A)$ and $A^{*} /\left(A^{*}\right)^{2}$ induced by the determinant.

Proof. - The proof is exactly the same as the first part of the proof of Proposition 2.1 of [3].

We fix $L_{0} \in X$. Let $B_{0}=\left\{v_{i} \mid 1 \leqslant i \leqslant n\right\}$ be a basis of L_{0}. Then $g \cdot B_{0}=\left\{g \cdot v_{i} \mid 1 \leqslant i \leqslant n\right\}$ is a basis of $g \cdot L_{0}$, for $g \in \operatorname{Sp}(V)$. We consider the map $t_{L_{0}}: Y_{L_{0}} \rightarrow I(A)$, defined by

$$
t_{L_{0}}(g)=\left\langle\operatorname{det}\left(M\left(\left(L_{0}, B_{0}\right),\left(g \cdot L_{0}, g \cdot B_{0}\right)\right)\right),(-1)^{n(n-1) / 2}\right\rangle
$$

Let $\left(g_{1}, g_{2}\right) \in\left(Y_{L_{0}}\right)_{\text {gen }}^{2}$. We let $\bar{c}\left(g_{1}, g_{2}\right)=c^{\prime}\left(g_{1}, g_{2}\right)-t_{L_{0}}\left(g_{1}\right)-t_{L_{0}}\left(g_{2}\right)+$ $t_{L_{0}}\left(g_{1} g_{2}\right)$.

Theorem 24. - Let A be a local ring such that $|A / \mathfrak{M}| \geqslant 7$. Then \bar{c} is a 2-cocycle for $Y_{L_{0}}$ which induces a central extension

$$
0 \longrightarrow I^{2}(A) \longrightarrow \widetilde{\mathrm{Sp(V})} \longrightarrow \mathrm{Sp}(V) \longrightarrow 1
$$

Acknowledgments. - I would like to thank Dr. Gael Collinet for the helpful discussions and for having send me his thesis [2]. In his paper I have in particular found many useful informations about the study of the acyclicity of semi-simplicial sets.

BIBLIOGRAPHY

[1] K.S. Brown, Cohomology of Groups, Springer-Verlag, New York a.o., 1982.
[2] G. Collinet, Quelques propriétés homologiques du groupe $O_{n}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$, Thèse de l'université Paris XIII, Paris, 2002.
[3] R. Parimala, R. Preeti, R. Sridharan, Maslov index and a central extension of the symplectic group, K-Theory, 19 (2000), 29-45.

Manuscrit reçu le 13 novembre 2003, accepté le 13 janvier 2004.

Amedeo MAZZOLENI, D-MATH ETH 8092 Zürich (Suisse). amazzole@educanet.ch

[^0]: Keywords: Cocycle - m-dense - Simplicial set - Lagrangian - Transversal - Sympletic group.
 Math. classification: 20J06-11E08.

