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THE ADDITIVE GROUP ACTIONS
ON Q-HOMOLOGY PLANES

by K. MASUDA* and M. MIYANISHI~

Ann. Inst. Fourier, Grenoble
53, 2 (2003), 429-464

Introduction.

A Q-homology plane is, by definition, a smooth algebraic surface
X defined over the complex field C such that ~(~;Q) == (0) for every
i &#x3E; 0 [12]. It is known that X is affine and rational [7]. If there is a

nontrivial action of the additive group scheme Ga on X, the orbits will
form the fibers of an A1-fibration p : X - A1 . Hence X has log Kodaira
dimension R(X) = -oo. Write R = F(X, Ox). Then there is a well-known
bijective correspondence between the set of Ga-actions on X and the set of
locally nilpotent derivations on R (cf. [10]). The correspondence is given by
assigning to a locally nilpotent derivation 6 on R an algebra homomorphism
p : R - R 0c C[t] giving rise to the coaction

* The first author was supported by Grant-in-Aid for Encouragement of Young Scien-
tists, Japan Society for the Promotion of Science.
t The second author was supported financially by the Bourse de Haut niveau du Minis-
t6re de la Recherche, France, while he stayed at the Universite de Grenoble to prepare
the manuscript in 2001.
Keywords: Q-homology plane - Additive group action - Makar-Limanov invariant.
Math. classification: 14L30 - 14R20 - 14J26.
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The set of invariant elements of R under the given Ga-action is obtained
as Ker 8 consisting of elements annihilated by 6. Then Ker 8 is isomorphic
to a polynomial ring in one variable and the base curve of the A1-fibration
which is isomorphic to A’ is obtained as the spectrum of Ker 6 (cf. [10]).

The Makar-Limanov invariant ML (X) for X is then introduced by
Kaliman and Makar-Limanov [8] as the set ns Ker 6, where 6 ranges over
all possible locally nilpotent derivations of R. Then it is shown that ML (X)
for a Q-homology plane X is the coordinate ring R, a polynomial ring in
one variable or C. We are particularly interested in such Q-homology
planes X that the Makar-Limanov invariant ML (X) is equal to C. We
shall consider two algebraically independent Ga-actions ~, a’ and define
the intertwining number t(a, a’) associated with these Ga-actions. It is

then shown that the intertwining number is actually a multiple of m2,
where m = We define a minimal pair of algebraically
independent Ga-actions as such with t(a, a’) = m2.

Recently, Bandman and Makar-Limanov [1] considered a problem
of characterizing in terms of the boundary divisors the smooth affine
rational surfaces with trivial Makar-Limanov invariants. They succeeded in

obtaining a characterization in the case where the surfaces are embedded
into A 3 as hypersurfaces. Furthermore, the hypersurfaces are defined by
the equations of the form xy = p(z) with respect to a suitable system of
coordinates y, ZI, where p(z) is a polynomial in z such that p(z) = 0
has distinct roots.

In the present article, we shall show that a Q-homology plane with
trivial Makar-Limanov invariant has a Bandman-Makar-Limanov hyper-
surface as the universal covering (Theorem 3.1). More precisely, if X

is a Q-homology plane with trivial Makar-Limanov invariant and with

m == I then X is a quotient of the hypersurface 1

under a suitable, free Z/mZ-action (Theorem 3.4). The possibilities of the
existence of non-minimal pairs of Ga-actions on Q-homology planes are also
observed (cf. Section 4). The final section 5 deals with etale endomorphisms
of Q-homology planes.
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1. Intertwining number.

Let X be a smooth affine surface defined over the ground field k,
which we assume mostly to be the complex field C. We assume always that
X is rational and r(X, Ox) * = l~*. The Makar-Limanov invariant ML (X)
is defined as the intersection

where 6 runs over all locally nilpotent derivations 6 on the coordinate ring
R = F(X, Ox), where 6 corresponds in a bijective way to an algebraic Ga-
action on X. Then it is known that Ker 6 = k [t] a polynomial ring in one
variable for any locally nilpotent derivation 8.

We begin with the following result.

LEMMA 1.1. - We have one of the following three cases:

(1) ML (X ) - R and there are no nontrivial Ga-actions on X. In
particular, ~(X ) &#x3E; 0 provided Pic (X) (2) Q == (0).

(2) ML (X) - k[t], and any two locally nilpotent derivations 8,8’ on R
are conjugate to each other in the sense that a6 - a’ 8’ for nonzero elements
a, a’ E ML (X). The surface X has a unique A1-fibration defined by the
inclusion ML (X) ~ R.

(3) ML (X) = k, and there are two non-conjugate locally nilpotent
derivations on R.

Proof. Our proof consists of several steps.

(I) Note that there exists an A’-fibration on X with the affine line
as the base curve if and only if there exists an algebraic Ga-action on X.
In fact, if there exists a nontrivial Ga-action a, let 8 be the corresponding
locally nilpotent derivation. Let Ro Ker 6. Then Ro is a normal rational
algebra of dimension one with Ro = 1~* . Hence Ro - k[t]. The Ga-action
g gives rise to an A1-fibration with the base curve Spec Ro. In particular,
R(X) = -oo. Conversely, if X has an A1-fibration p : X ---&#x3E; B % A1,
write B - Spec k[t] and X = Spec R. Then there exists an element

a E k[t] such that p-1 ( U) ^--J U x where U = Spec k[t, a-1 ~ . Hence
= 1~ ~t, a-1 ~ ~~~ , where we can take ~ to be an element of R. Consider

a derivation 8 == aN a~ with N &#x3E; 0. This is a locally nilpotent derivation
on k [t, G~][~]. Since R is finitely generated over k, it follows that 8(R) C R
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if N » 0. Then 6 defines a Ga-action cr and the associated A’-fibration

consisting of a-orbits is the given A1-fibration p. We note that any A’-
fibration p : X --&#x3E; &#x3E; B has the base curve B isomorphic to A’ provided
Pic (0). In fact, B is isomorphic to A’ or pI because X is rational.
If B % P’, then (0). A~. Hence, if ~(X ) - -oo,
then there is an A1-fibration on X with the affine line as the base curve.
Here we note that when we speak of an A1-fibration p : B it means

that general fibers are isomorphic to the affine lines, while singular fibers
may not be irreducible or reduced.

(II) Suppose that 6 and 6’ are locally nilpotent derivations on R. Then
Ker6 = k[t] and Ker8’ - k[u]. If t and u are algebraically independent
over k, we have k[t] n = k. In this case, we say that 6 and 8’ (or the
corresponding Ga-actions cr and a’) are algebraically independent over k.
Then ML (X) = k.

(III) Suppose that u is algebraic over k(t). Then there exists an
algebraic equation

where E A;[~], and we may assume that (1) is minimal. Since Ker 6 -

I~ ~t~ , we have

Since (1) is minimal, + ~ 0. This implies that
b (u) - 0. Hence k[u] C k[t], and t is then algebraic over k(u). By the
same reasoning as above, we infer that k[t] C k[u]. So, k[t] - k[u].
The A’-fibrations associated with o, and a’ coincide with the morphism
X - A’ defined by the inclusion k[t] - k[u] ~ R. By (I) above,
R ~a-1 ~ = k[t,a-1][~] = k[u, a-1 ~ ~~~ for a E and an element fl E l~ which
is algebraically independent over k(t). Then a18 gç and a2b’ - b2 §
for b2 C k[t]. By adjusting the coefficients, we have a’8’ for
some nonzero elements a, a’ E k[t]. Namely, 6 and 8’ are conjugate to each
other. These observations yield the assertions (2) and (3). 0

We consider the case where ML (X) = k. In this case, there are two
Ga-actions a, ~’ which are algebraically independent over k. We have the
following result.

LEMMA 1.2. Let a, a’ be algebraically independent Ga-actions as
above. Let p : X -~ B and p’ : X --~ B’ be the A I-fibrations associated
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with o- and a’, respectively. Let T and T’ be arbitrary fibers of p and p’,
respectively. Define the intersection number (T - T’) by

where i(T, T’; Q) is the local intersection multiplicity. Then (T - T’) is

independent of the choice of T and T’, and the intersection of T and T’
are transverse and normal at each point Q E T n T’ provided T and T’ are

general fibers of p and p’.

Proof. There exists a smooth compactification V of X such that
the A1-fibrations p and p’ extend to the pl-fibrations p : V ---&#x3E; B

and p’ : v -~ B’ . Since B and B’ are isomorphic to AI, it follows

that B and B’ are isomorphic to Consider the A1-fibration p. Let

f P. I - B - B and let Foo == p* ( P~ ) . Let Tl, T2 be fibers of p and let
T’ be an irreducible curve on X such that T’ ^--’ A’ and p T’ --&#x3E; B

is dominant. Let T’ be the closure of T’ on V. Then T’ meets the fiber

~oo in one point which is a one-place point. Except for this point, T’ does
not meet the boundary components V - X because T’ ^--’ A . This implies
that TI) = EQITIT’ Q) and (p-1 (p(T2)) ’ T’) -
¿QET2nTI i(T2, T’; Q), which we set (Ti - T’) and (T2 - T’), respectively.
Since (p-1(p(Tl)) ’ T’) - (p 1 (p(T2)) ’ T’), we have (Tl ’ T’) - (T2 ’ T’).
Hence (Ti - T’) is independent of the choice of Ti. Note that any fiber of p
is of the form ¿i miCi, where A . Take Ti to be a general fiber and
let T2 = ¿i miCi . Let Ti , T2 be fibers of p’, where Ti is a general fiber and
T2 = ~~ with A . Then we have

Let T and T’ be the general fibers of p and p’, respectively and let T
and T’ be the closures of T and T’. Consider the restriction p~.,~ : T’ -~ B
of p. Since T’ has only one place outside of X, which must dominate the
point of the fiber F 00 of p, the restriction PT’ : T’ - B is a finite morphism.
Then PT’ is unramified over an open set W of B. This means that the

intersection of T’ and a fiber p-1 (Q) with Q E W is transversal and consists
of the same number of points. 0
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We call the above intersection number (T.T’) the intertwining number
of cr and and denote it Choose a general point P E X
and let T (resp. T’) be the a-orbit (resp. a’-orbit) passing through P.
Define a morphism (D p : A2 ---* X - ~ (g ) ~’ (g’ ) P, where
(g, g’ ) E A2 ~ Ga x Ga. Then we have the following result.

LEMMA 1.3. The has degree a’).

Proof. For (g, g’) _ (o, 0), we have = P. With the above

notations, any point of T n T’ is written as a(gz ) (P) = /(~)(P), 1 ~ i ~ n,
where n = ~ T n T’ ~ = t(a, o,’). consists of the (g, g’ )
such that a(g)a’(g’)P = P, i.e., = a’(g’)P.

Let Q be a general point of X. consists of the

(g, g’) E A2 such that Q, i.e., a’(g’)P. Suppose
= Then we have

This implies corresponds bijectively to the set of intersection

points of the a-orbit a( Ga)( a’ (g’)P) and the a’-orbit a’ (Ga)P. So, 
consists of t(a, ~’) points. D

As an immediate consequence of Lemma 1.3, we have:

COROLLARY 1.4. - With the notations and assumptions, 7rl (X) is a
finite group of order less than or equal to t(a, ~’).

Let a, ~’ be algebraically independent Ga-actions on X and let 6, 6’
be the corresponding locally nilpotent derivations on R. We can interpret
the intertwining in terms of 8, 8’. Write k[t] and
Ker 6’ = for two elements t, t’ of R which are algebraically independent
over k. Then we have:

LEMMA 1.5. - With the notations as above, the following equalities
hold:

Proof. By [10], there exist a E Ker 6 and 03BE E R such that -

k[t, a-1][e]. Then t’ is written as
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where ci E k[t, and co ~ 0. We may assume, after replacing t’ by t’ + A
with A E k, that t’ = 0 defines a general a’-orbit T’. Similarly, we can take
p C k so that ci (p) is defined for 0  i - N, co (p) # 0 and the curve t = p
is a general a-orbit T. Then the intersection number (T ~ T’ ) is equal to the
number of roots of the equation

where each root is counted with multiplicity. Namely (T . T’) = N. On
the other hand, since 6 is equivalent to the derivation it follows that

N = min I 8n (t’) = 01 - 1. So, we have the assertion. D

2. Q-homology planes and the Makar-Limanov invariants.

In this section, X denotes a Q-homology plane, that is, a smooth

algebraic surface defined over the complex field such that (0)
for every i &#x3E; 0. In particular, X is affine and rational [7]. Furthermore,
7r, (X) ~ Hl (X;Z) ~ Pic (X). We consider the existence of Ga-actions on
X and the structure of X when X has enough Ga-actions.

We recall the following result [12, Th.1.2].

LEMMA 2.1. Let X be a Q-homology plane with an A1-fibration
p : X -~ B. Then every fiber is irreducible and is

isomorphic to Let mlAl, ... , mnAn exhaust all multiple fibers with
Then Hl (X; Z) ~ Z/miZ,

With the hypothesis of Lemma 2.1, X is isomorphic to the affine plane
A 2 if 0. Since we are interested in Q-homology planes which
are not isomorphic to A 2, we assume in the subsequent arguments that
H1(X;Z) = 0

If p has a unique multiple fiber mA, then the universal covering Y of
X is constructed as follows. Let P = p(A) and let C - B (^--’ A~) be a finite
covering of degree m totally ramifying over P and the point at infinity Poo.
Let Y be the normalization of X x B C and let 7r : Y - X be a composite
of the normalization morphism v : Y - X x B C and the first projection
X x B C -~ X. Then 7r is a Galois covering with Galois group and

~r* (A) = Li + - " + Furthermore, Y has an A~-fibration p : Y - C
which is a composite of v and the second projection X x B C - C, and

p* (Q) = Ll -I- ~ ~ ~ -f- where Q is a unique point of C lying over P. Since
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the other fibers of p are reduced and irreducible, an open set Y - Li
is isomorphic to ~2. Hence Y is simply connected. So, 7r : Y ---&#x3E; X is a

universal covering of X.

We need the following result.

LEMMA 2.2. - Let X = Spec R be an affine variety defined over k
and let f : Y - X be an étale finite morphism. Suppose that there exists
a on X. Then a lifts up uniquely to a on the

variety Y.

Proof - Let 6 be the locally nilpotent derivation associated with a.
Let Ro = Ker6. Then R[a"~] = for some element a E Ro, and
6 is conjugate to 81 8ç, i.e., ao6 = a, ~ for nonzero elements ao, al E Ro.
Let ,S’ = h (Y, Oy). Then the derivation 6 extends uniquely to a derivation
~ on ,S’ because Q9R S, which follows from the

hypothesis that ,S’ is finite and etale over R. On the other hand, 6 extends

uniquely to a derivation 8 on the function field Q(R) and to a derivation on
Q (S) which must coincide with the extension of 8 on Q ( S’) . Since f : Y - X
is etale and finite and since x AI, it follows that

f -1 (D(a)) "--’ Spec So x where f If-l(D(a)) is induced by an etale finite
morphism fo : Spec Spec RO[a-1] via the fiber product f = fo x AI.
Hence ,S’~a-1~ - So[g]. Then the derivation ’8 = ao tç is a derivation on

Q (,S’) which is zero on Q (,S’o ) . Since ’8 is clearly an extension of 6 on Q (,S’) ,
the uniqueness of the extension implies that 8 = 8. In particular, 8 is zero
on So. This implies that 8 is a locally nilpotent derivation on S, and 8
defines a Ga-action a on Y which extends a on X. D

The existence of two algebraically independent Ga-actions on a Q-
homology plane gives a strong restriction on the structure of X. Namely
we have:

LEMMA 2.3. - Let X be a Q-homology plane with algebraically
independent Ga-actions a, a’. Then each of the A l-fibrations p : X --4 B
and p’ : X --~ B’ associated respectively with a and a’ has a unique multiple
fiber of multiplicity m, Furthermore, t(a, a’) is a

multiple of m2.

Proof. Consider the A -fibration p : X - B. Let mlAl, ... , mnAn
exhaust all multiple fibers of p. Then there is a Galois covering C - B

which ramifies over the points Pl - p(A1 ), ... , Pn - p(An) and P~
with respective multiplicities ml, ... mn and moo, where B is the smooth
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compactification of B and IP,, I = B - B. By [3] and [5], such a covering
exists for a suitable choice of m(X) &#x3E; 1 provided n &#x3E; 1. The genus g of C is

computed by the Riemann-Hurwitz formula

where d is the degree of the morphism r. Hence g &#x3E; 1 if and only if

Since and 2, it follows that g = 0 only if

n - 1  (n ~ 1)/2, i.e., n  2. If n = 2, then g = 0 only if

If n - 1, then g = 0 always. The above observation implies that we
can mn , to make the genus g &#x3E; 0 unless one of the

following cases takes place:

Suppose we can take C to have genus g &#x3E; 1. Let Co = C - 7r ~(~30).
Let Y be the normalization of the fiber product X x B Co and let f : Y
- X be the composite of the normalization morphism and the projection
X x B Co - X. Then f is a finite etale morphism. Hence the A1-fibration

p lifts up to the A1-fibration p : Y - Co. Let T’ be a general orbit of the

Ga-action a’. Then 1-1 (T’) splits into a disjoint union of the affines lines
Tl’, ... , Td, where d = deg 7r. Since T’ is transversal to p, each of Ti , ... , Td
is transversal to the A1-fibration p. Then p : Tj 2013&#x3E; Co is dominant. Since
the genus of C is positive by the assumption, this is a contradiction.

In the case (2) above, we have x Z/2Z. By Lemma
2.1, the A1-fibration p’ then has also two multiple fibers of multiplicity two.
Let 2Al’ 2A2 be the multiple fibers of p and let 2A’, 2A’ be the multiple
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fibers of p’. Since t(a, a’) = (2~i,2~) = 4(Ai, A’), write t(a, a’) == 4d.
Consider the restriction p1 : A’ --4 B of p onto Since A1 has only
one place point lying over the point P., B - B, the Riemann-Hurwitz
formula applied to p’, which has degree 2d, yields

{contributions from ramifying points over BI

which is a contradiction, where we obtain the above inequality by counting
the ramifications at the intersection points of Ai with Al and A2. This
implies that the case (2) does not occur.

In the case (1), let mAl (resp. be a unique multiple fiber of

p (resp. p’), where m = ml . Then - 

Hence t(a, a’) is a multiple of m2. D

Let X be a Q-homology plane with two algebraically independent
Ga-actions a,a’. Suppose that IHl(X;Z)1 = m &#x3E; 1. Embed X into a

smooth projective surface V in such a way that the following conditions
are satisfied:

(1) There exists a P1-fibration p : V - B which restricts to the A 1-
fibration p : X - B associated with a, where B is isomorphic to P1.

(2) The boundary divisor D := Y - X is a divisor with simple normal
crossings.

(3) The divisor D is written as D = ~- ,S’ + G, where is a smooth

fiber of p lying over the point P 00 == B - B, ,S’ is a cross-section of p and G
together with the closure Ao of a unique multiple fiber mAo of p supports
a fiber of p lying over the point Po := p(Ao).

(4) The connected component G contains no ( -1 ) components.

We consider the linear pencil 11’ on V generated by the closures of
a~’-orbits. Then we have the following result.

LEMMA 2.4. - We may furthermore assume that the following con-
ditions are satisfied:

(5) 1~’ has a unique base point Q on which is different from the

point Qo = 
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Proof. Let T’ be the closure of a general a’-orbit T’. If 0,
then the A l-fibrations p, p’ associated respectively with a, a’ coincide with
each other, which is impossible. Thence it follows that ’t’ nFoo =1= 0. Suppose
that ~1’ has no base points. Since T’ has a single one-place point on 
this implies that is a cross-section of 11’. This implies that o-’) = 1,
which is impossible because t(a, a’) is a multiple of m2 by Lemma 2.3 and
m &#x3E; 1 by the hypothesis. So, A’ has a unique one-place base point Q on 
Suppose that Q = Qo. Then blow up the point Qo to obtain an exceptional
( -1 ) curve E and the proper transform E’ of Foo with (E’2 ) _ -1. Then
contract E’ to obtain a smooth projective surface V’. We call this process of

obtaining V’ from V the elementary transformation with center Qo. By this
process we have a new compactification X V’ which satisfies the same
conditions ( 1 ) N (4) as above. By applying the elementary transformations
with center Qo several times, the proper transform of l~’ will have no base
points on the proper transform of S. We may assume that this situation is

already realized on the surface V at the beginning.

Then the components of ,5’ + G are contained in one and the same

member Mo of A’. Since these components are untouched until the base

points of 11’ are eliminated, it follows that (S’2 )  -1. Suppose that (S2)
 -2. Let /-I be the multiplicity of T’ at the point Q. Let ~(~, o-’) - m2d.
Suppose p = m2d. Blow up the point Q. Let E be the exceptional curve
and let F~ be the proper transform of Foe. Then E is a component of the
member Mo of the proper transform of A’ corresponding to Mo. Otherwise,
E is a cross-section and = 1, which is impossible. By contracting
F~ , we obtain a new compactification of X with the same property but
with (5~) increased by 1. Hence we may assume that m2 d &#x3E; p. Then

(S2) _ -1. For otherwise, the member Mo of A’ containing S + G will have
no ( -1 ) components when the base points of 11’ are eliminated and the last
( -1 ) curve arising from the elimination process gives rise to a cross-section.
This is impossible. D

Lemma 2.4 has the following consequence (cf. [11]).

THEOREM 2.5. - With the notations as in Lemma 2.4, the dual graph
of G is a linear chain. In particular, if C is a projective plane curve defined

by an equation XoXi -1 == X~ with m &#x3E; 2, then the surface X :== IP2 - C
has a unique Ga-action up to equivalence which is associated with the pencil
generated by C and where .~o is the line Xl = 0.

Proof. Let cp : V -~ V be the shortest sequence of blowing-ups to
eliminate the base points of the pencil l1’ and let 11’ be the proper transform
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of A’ by ~p. Let Mo be the member of A’ containing S ~- G, where we denote
the proper transforms of S, G by the same symbols. Then ,S’ is a unique (-1)
curve in Mo because m2d &#x3E; p with the notations in the proof of Lemma 2.4.
One can obtain a smooth member by a sequence of blowing-downs which
starts with the contraction of S. If the dual graph of G contains a branch
point, then there appears in the course of the above sequence of blowing-
downs a ( -1 ) component meeting three or more components, one of which
might be replaced by the cross-section. Hence the dual graph of G must be
a linear chain. The second assertion is a straightforward consequence if one
notices that a smooth compactification V of X satisfying the conditions

(1) ~ (6) as listed above is obtained by blowing up the point (l, 0, 0) and
its infinitely near points and that the dual graph of D is then as given in

[11, Figure 1, p. 456], where r = m &#x3E; 2 and n = 1. Hence the dual graph
of the component G is not linear. D

Another consequence of Lemma 2.4 (and also Theorem 2.5) is the

following result.

THEOREM 2.6. - Let X be a Q-homology plane with HI (X; Z) -
Z/2Z. Suppose that X has two algebraically independent Ga-actions. Then
X is isomorphic to p2 - C, where C is a smooth conic.

Proof. With the notations in Lemma 2.4, we consider the fiber Fo
which restricts on X a unique multiple fiber 2A. The fiber Fo is supported
by A + G and A is a unique (-1) component. By Theorem 2.5, the dual
graph of G is a linear chain. Then it is readily verified that G consists
of three irreducible components Gl -i- G2 + G3 which are all (-2) curves.
Furthermore, A meets the component G2, and we may assume that G,
meets the cross-section ,S’ of the P1-fibration p : V ---&#x3E; B. Now contract

,S’ + Gl + G2 + G3. Then we obtain a projective plane P~ and the proper
transforms of A become respectively a smooth conic C and a line
tangent to the conic. Hence X is isomorphic to p2 - C. D

We assume that the conditions (1) ~ (6) are satisfied when we

consider a projective embedding X - V. A pair (a, of two algebraically
independent Ga-actions on a Q-homology plane X is minimal if t(a, a’) ==
m2, where m The following result, which is essentially
contained in [2, 1.10, 1.11], guarantees the existence of a minimal pair
of Ga-actions in the case m = 2.

LEMMA 2.7. - Let C be a smooth conic on I~2 and let X = p2 - C.
Then the following assertions hold:
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( 1 ) X is a Q-homology plane with m = 2.

(2) Let Q be a point on C and let f Q be the tangent line of C at Q. Let
11~ be the linear pencil spanned by C and 2f Q. Then the pencil AQ defines
an A1-fibration pQ : X ---&#x3E; AI, and hence the conjugate class of Ga-actions
aQ on X.

(3) If Q, Q’ are distinct points on C, then aQ, aQ’ are algebraically
independent. Furthermore, ¿(aQ, ~~~ ) - 4. Hence (aQ, aQ’) is a minimal

pair.

If X is isomorphic to p2 - C as above, the universal covering Y of X
is the complement of the diagonal A in I~1 x PB which is a hypersurface
xy - z2 - 1 in t~3. The lift ~~ of ~~ onto Y is associated with a pencil
A- spanned by A and ~2013 + MQ where Q is a point of A lying over the
point Q of C and where are respectively the fiber and section

passing through the point Q. We have the following result.

LEMMA 2.8. - With the above notations, express Q e A as 1 (1, a),
(1, a) I with a E k. Then the locally nilpotent derivation associated with
aQ is conjugate to 6a defined by

Furthermore, Ker 8a = k [u] with u - y - 2az + a2x.

Proof. It is straightforward to show that 6a is locally nilpotent and
u E Ker 6a. By substituting y by u + 2az - a2x in the equation xy = z2 -1,
we have xu = (z - ax) 2 - 1. Hence it follows that Ker 6a - k [u]. In order
to see that 6a is associated with the pencil set Xo - 

xoyl, X2 = xlyo and X3 = where (xo, xl) (resp. (yo, yl)) is a system
of homogeneous coordinates on I~1 (resp. a copy of P ) . Let U = X2,
where the diagonal A of I~1 x I~l is defined by U = 0. Note that I~1 x I~l is

defined by XoX3 = X1X2 = X2(X2 + U) as a quadric hypersurface in I~3.
Set x == 2XOIU, y 2X3/U and z = 2X2/U + 1. Then Y x Pl -,A
is a hypersurface in p3 - 0} ~ A 3 defined by z2 - 1. Note
that £’Q + M- is defined by (x 1 - = 0, which is written as

Q Q

y - 2az + a2x = 0 on Y. Hence the A’-fibration induced by the pencil AQ
is given by the inclusion k[u] --&#x3E; F(Y, Oy). 0

In order to show the existence of a minimal pair of Ga-actions on
a Q-homology plane, we shall consider a hypersurface xy - p(z) in A 3
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which is treated in [1] as a smooth affine hypersurface in A 3 with trivial
Makar-Limanov invariant.

LEMMA 2.9. - Let Y be a hypersurface xy = p(z) in A3, where p(z)
is a polynomial of degree m &#x3E; 1 in z with distinct linear factors and let

R = r(Y, Oy). Then the following assertions hold.

_ 
(1) Define a derivation 8 (resp. 8’) on R by 8(x) = 0, 8(y) = p’(z) and

b(z) - x (resp. b’ (y) = 0,~(~) = p’(z) and b’ (z) - y). Then 8 and 6’ are
locally nilpotent derivations. Hence they defines Ga-actions a and a’ on Y
which are algebraically independent.

(2) The intertwining number ~’) is equal to m.

(3) Write p(z) = ai), and let Li (resp. Mi) be the curve on
Y defined by x = z - ai = 0 (resp. y = z - ai = 0). Then the Li and the
Mj are isomorphic to and (L~ - Mi ) = 1 and (L~ - 

(4) The Picard group Pic (Y) is a free group of rank m - 1 generated
by the classes ~L 1 ~ , ... , [Lm] (or [Mll,..., ~M~.,-z~ ) with the relations

and

for 1  i  m

Proof. The first and the third assertions are verified in a straight-
forward fashion. To prove the second assertion, note that Ker 6 = k [x] and
Ker 6’ = 1~~~~. Then apply Lemma 1.5 to show that t (ii, a~’) = m. In order to
verify the fourth assertion, consider the A1-fibrations p and p’ on Y defined
by 6 and 6’, respectively. 0

Let Y(m) be a hypersurface = 1 in A3 for m &#x3E; 1. Since

Y(m) - Ui~l Li is an open set of Y(m) isomorphic to t~2, it follows that

Y(m) is simply connected. Let ( be a primitive m-th root of the unity. We
have the following result.

THEOREM 2.10. - Consider an action of a cyclic group Z/mZ on
Y(m) defined by x H (x,y- and z ’2013&#x3E; (j z for 0  j  m with

gcd ( j, m) - 1. We denote by the hypersurface Y(m) with this
action Tj of Then the following assertions hold:

(1) The Z/mZ-action Tj is free. Let be the quotient of Y(m, j )
under this action of Then X(m, j) is a smootll affine surface with

as its universal covering.
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(2) Let 6j == xj-18 and b~ _ ~~-lb’. Then 6i and 8; are locally nilpotent
derivations on R such that 6j and 8j are algebraically
independent and commute with the Z/mZ-action Tj, i.e., Tj . 6j = b
and 8; == 8; . Hence 6j and 6§ induce locally nilpotent derivations
6j and 6.1 on R(m, j ) such that 6. and 6j’ are algebraically independent,
where R(m, j) is the invariant subring of R under the action Tj of Z/mZ
and hence the coordinate ring of X (m, j ) .

(3) is a Q-homology plane with two algebraically independent
Ga-actions aj and ail associated respectively with 8j and 6j. Furthermore,
m = |H1(X)m,j_ ; Z)|

(4) We have = m2 . Hence the pair (a 3, aj’) is minimal.

(5) If j ~ j’, there are no isomorphisms 0 : such

that i

ProoL - The first and second assertions are verified in a straight-
forward fashion. We prove the assertion (3). It is clear that Z/mZ acts
transitively via Tj on the [Lm] ) of Picy(m). Since [Li] +
~ ~ ~ -f- ~L~.,-z~ ~ 0 and is the invariant subspace of Pic Y(m )0Q
under the Z/mZ-action, it follows that (0). On the other
hand, since X (m, j) is a rational surface with logarithmic Kodaira dimen-
sion -oo and = k*, we know that X (m, j ) is a Q-homology
plane (cf. [12]). Since has two algebraically independent Ga-actions
cj and cr- any A1-fibration p : X (m, j) - B, for example, the A1-fibration
pj : - B associated with aj, has at most one multiple fiber (cf.
Proof of Lemma 2.3). The construction of the universal covering of X (m, j )
described after Lemma 2.1 and Lemma 2.3 implies that there is a unique
multiple fiber of multiplicity m. Hence m = Z) ] .

In order to prove the assertion (4), let 7r : Y (m, j ) ---&#x3E; be the

quotient morphism. Let T (resp. T’ ) be a general orbit of the Ga-action
~~ (resp. uj’). Then 7r* (T) = Tl + ... + and 7r* (T’) = Ti + ... + T:n,
where the Ti (resp. the T’) are the general orbits of the Ga-action bj
(resp. on associated with 6j (resp. 8j). It is then clear that

a) = m. Since t(uj, = (T - T’ ) and since

we know that = m2 . Hence (o-j, aj) is a minimal pair.
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Finally, we prove the assertion (5). Consider the derivation 6j as

a vector field on X(m,j). Then 6j is non-vanishing along the fibers of

: X (m, j ) - B except for the fiber over the point Po of B which is
defined by ~ = 0, where = x"2 and B = Spec 1~ ~~~ . In fact, if = mA,
we claim that 6i vanishes along A to the order j + 1. To show this claim,
take an integer 0  i  m so that ij =- 1 (mod m). Then x/zi is a

rational function on X (m, j ) because it is invariant under the Z/mZ-action
Furthermore, it is regular near the fiber mA because z # 0 on 7r* (mA).

Since g = (zm)i(x/z’)’, the curve A is locally defined by x/zi = 0. Then
we compute as follows:

where i j = am + 1. Thus the claim is proved. On the other hand, if 6
and 1 are locally nilpotent derivations giving rise to the same A1-fibration

pj on X (m, j ), then with a, b E Ker 6 = Ker1 (cf. Lemma 1.1 ) .
Suppose that there is an isomorphism 8 : X (m, j) ----&#x3E; X (m, j’) such that
8(x"2) - xm, i.e., p~~ ~ 8 = pj. Then 6j and 6j, are considered to give the
same A1-fibrations pj : X(m,j) ---&#x3E; B = Spec k By the above remark,
we have ab~ - b6j, with a, b E = Ker 6j = Ker 8jl, where ~ = xm . Since
6j and 6j, are non-vanishing along the fibers of pj except for mA, we have
a = c~~ and b = dç-n with c, d E k* and f, n &#x3E; 0. Since 6j (resp. 6j) vanishes
along A to the order j + 1 (resp. j’ + 1), it follows that mf +j + 1 = 
Since 0  j, j’  m, we have = n and j = j’. This is a contradiction. D

3. Q-homology planes whose Makar-Limanov invariants
are trivial.

In this section, we shall prove that the Q-homology planes with
minimal pairs of Ga-actions are exhausted up to isomorphisms by the
surfaces X (m, j ) observed in the previous section, where 0  j  m and
gcd( j, m) = 1. We shall begin with a remark made by a doctoral student
Adrien Dubouloz of the Université de Grenoble, which gives a relation
between the Q-homology planes with trivial Makar-Limanov invariants and
the hypersurfaces x~ = p(z) in [1]. We here note that, in a setting similar to
Theorem 3.1, an explicit local construction of obtaining a surface X with
C+ -action as the quotient of a surface Y with (C+-action and Z/mZ-action
has been initiated in [4, Example 1.6].
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THEOREM 3.1. - Let X be a Q-homology plane with trivial Makar-
Limanov invariant and let p : X - B be an A’-fibration with a unique
multiple fiber mA of multiplicity m &#x3E; 1. Let B’ - B be a cyclic Galois
covering of order m ramifying totally over the point Po = p(A) and let Y
be the normalization of the fiber product X x B B’. Then Y is isomorphic
to a hypersurface xy = p(z), where p(z) is a polynomial of degree m in z
with distinct linear factors. The given Q-homology plane X is regained as
the quotient of Y with respect to a 

Proof. We shall give a rough sketch of the proof, leaving the details
to a paper by A. Dubouloz. We use the projective embedding X V
considered before and in Lemma 2.4. In particular, the fiber Fo of p : V - B
over the point Po is supported by G+A, where the dual graph of G is a linear
chain and A is the closure of A in V. Let GI be the irreducible component
of G such that (G1 ~ A) = 1. Let a : B’ - B be a cyclic Galois covering of
order m ramifying totally over the points Po and Poo = Let W’ be

the normalization of V in the function field of Y and let T’ : W’ - V be
the normalization morphism. Then the branch locus of T’ contains and

is contained in the sum F 00 + G. Hence W’ has a P1-fibration q’ : W’ -&#x3E; B’.
The singularity of W’ are at most cyclic quotient singularities which arise
from the intersection points of the branch locus and lie on the fiber (Po),
where Po is the point of B’ lying over Po. Let v : W ---* W’ be the minimal
resolution of the singular points of W’ and let T = T’ . v : W - V. Then
there is an induced P1-fibration q : W ----&#x3E; B’, which satisfies a - q = p - T.
Remind that the component A splits into a disjoint union of m affine lines
L 1, ... , ,Lm. This implies that the component G1 is not contained in the

branch locus of T’ and hence T. Let Hl be the irreducible component of

q-’(Po’) lying over G 1. Then T I H 1 : cyclic covering of order
m, and there are m irreducible components of such

that (H1 ~ Li) - 1 and L, n Y = Li for 1 ~ i ~ m. Since Ti,..., are

reduced in q-1 ( Po ) , the multiplicity of Hl in is accordingly equal
to 1. So, we can contract all the components of except for Hl and

L 1, ... , Lm . Let W be the surface thus obtained from W. Then W has a
P1-fibration q : W - B’ and Y is embedded into W as an open set, and
the boundary divisor D := W - Y consists of the cross-section ,S’ of q, the
fiber Too lying above the point at infinity P’00, and the component H1 of the
fiber Fo = Hi + L::l Li, where P£ is a unique point of B’ lying above P,,,
S is the inverse image of S and Hl , Ti,..., Lm are respectively the proper
transforms of Hi , Li , ... , Lm. Then it is straightforward to see that the
canonical divisor KY , that is to say, the restriction of KW onto Y, is trivial.
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On the other hand, since all the Ga-actions on X lifts up to Y by Lemma
2.2, Y is a smooth affine surface with trivial Makar-Limanov invariant.

Hence, by [1, Lemma 4], Y is isomorphic to a hypersurface xy = p(z) with
deg p(z) = m. 0

Let Y be as above a hypersurface xy = p(z) in A3, where we may
write p(z) = ]"[~~(~ 2013 ai) with ai =1= aj whenever i 7~ j. We shall consider
a smooth compactification of the hypersurface Y and how to construct it.

Example 3.2. - Let Wo be a rational surface isomorphic to I~1 x P~.
We denote by .~ and M the respective fibers of two projections from Wo
to By fixing one projection, we call a fiber and M a section. Fix
two fibers and m + 1 sections where m ~ 2. Let

: to n Mi for I x i  m and foo nMoo. Consider a linear system
+ (Q, + ’’ - + Q, + TnQ,,), which consists of curves linearly

equivalent to £ + mM and passing through the points Ql,..., simply
and the point Qoo m times. Since dim = 2m + 1, it follows that A
is a linear pencil and that the curves + M1 + ... + Mm and to + 
are members of A. Let T : W - Wo be a composite of blowing-ups with
centers Qi , ... , Q Q and m - 1 infinitely near points . ., Q (’’2-1 )
of Qoo? where Q~ lies on the proper transform of and Q~ is infinitely
near to Q,, 1) for 1 ~ i  m with Q (~) - Qoo. Let L, := 7-l(Qi) for
1 ~ i ~ m, let Mi denote the proper transform T’(Mi) by the abuse of
the notations, and let 7-1 ( Q 00) = El + E2 + ... + E~. Then, with the
proper transforms l’0 = T(fo), f’ 00 = and M’00 = the curves

El , ... , constitute a linear chain of rational curves whose dual graph is
given as follows:

Note that if m = 2 the contraction of E2, M~ and f’ brings W to
a surface isomorphic to ]pI x ]pI with the proper transform of El as the

diagonal. Set Z = W - (.~o + M~ + El + ... + Em + .~~ ) . Then Z has
two A’-fibrations, one of which is given by the pencil If I on Wo and has
a reducible fiber L 1 -f- ~ ~ + L, and another one of which is given by the
pencil A on Wo and contains a reducible fiber Ml + ... + Mm, where we
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denote the intersections of Ll n Z,..., L, n Z and Ml n Z,..., n Z by
the same letters Li,..., and M1, ... , by the abuse of the notations.

The following result shows that the hypersurface Y in Theorem 3.1
is constructed in a way as described in the above example.

LEMMA 3.3. - Let Y be a hypersurface xy = p(z) as above. Assume
that m ~ 2 and p(o) ~ 0. The hypersurface Y is then isomorphic to Z as
constructed as above with suitably chosen points Q 1, ... , and Qoo’

Proof. Let px : Y - t~l and py : Y - By ## Al be
respectively the A l-fibrations parametrized by x and y. So, the generic fiber
of px (resp. py) is defined by y = x-lp(z) (resp. x = y-1 p(z)). Furthermore,
let Ll -f- ~ ~ ~ + Lm (resp. Ml + " - + Mm) be a unique reducible reduced fiber
of px (resp. py). We may assume that Li + Mi is defined by z - cxi = 0 for
1 ~ i ~ m, where p(z) = n~i(~ ~ ai ) with ai =1= aj whenever z 7~ ~.

Consider a smooth compactification W’ of Y such that px extends to
a P1-fibration 7rx : W’ --B P1 . We may assume that py extends to a
P~-fibration 7ry : P~. We denote the closures of the L. and the

Mi on W’ by the same letters. The boundary D’ := W’ - Y consists of
ro - (Li + - - y- and Foe, where ro and Foo are fibers of 7rx and
Moo is a section of 7rx. Note that Ml , ... , are mutually disjoint cross-
sections of 7rx. Similarly, L1, ... , Lm are mutually disjoint cross-sections of

7ry. Note that the fibers of 7ry except for with (Poo) == By - By
do not intersect the components of ho - (Ll + - - - + Lm). Hence we may
contract all smoothly contractible components of r - (L1 ~ ~ ~ ~ ~ Lm) .

We claim that we can take W’ in such a way that ro - (L1 ~ ~ - ~ + Lm)
is an irreducible component Lo satisfying (Lo - = 1, (L 02) = -m and
(Li 2 ) - -1 for 1 ~ t ~ m. In fact, 1 let Y be the projective closure of Y
in JP&#x3E;3, where A 3 is naturally embedded into p3 as the complement of a
hyperplane. Then Y is defined by an equation

where x - = Y/ U, z = Z/ U and P(Z, U) is a homogeneous
polynomial in Z, U of degree m with p(z) = Consider a fiber Aa
of the A’-fibration px for x = cx E k*. The curve Aa has a parametric
representation
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Let x’ - X/Y, z’ = Z/Y and u’ - U/Y. Then, in an open set D+(Y) of P ,
the hypersurface Y is defined by x’u’m 2 = P(z’, u’), which has singularity
along the curve z’ = u’ - 0 if m ~ 3. The curve Ao has a parametric
representation

where T = t-1. Let x" = x’ I z’ and u" = u’ /z’ . Then the proper transform
of Y is defined in Spec l~ ~z’, x", u"] by the equation

which is a smooth surface. The proper transform AQ of the closure of the
curve Aa has a parametric representation

Hence Aa is a smooth curve with tangent direction x" = au". The fiber
Ao of px for x 0 corresponds to a reducible curve Ao which consists
of the curve Lo = ~x" - 01 and the irreducible components 
of P(1, u") - 0. Hence the blowing-up of the point (x" = 0,~ = 0)
produces a P1-fibration 7rx which extends the A’-fibration px and for which
Lo + Ll + ... + is a fiber. Thus we have shown our claim.

By a similar observation, we may assume that the fiber of 7ry con-
taining Ml + ... + Mm has as an extra component a unique irreducible
reduced component Mo with (Mo - Mi) = 1 for 1 ~ i ~ m. Note that

Mo is a component of the fiber r 00 of 7rx. Let q : W’ --* W be the con-
tractions of and the components of except for Mo such
that 7rx . q-1 : W - Bx is a relatively minimal P1-fibration. Then W is
isomorphic to I~1 x P’ because the respective images 
of M1, - - - , Mm, Moo on W are mutually disjoint cross-sections. The lin-
ear pencil A consisting of the images of the fibers of ry is of the form

If + (Ql +... + Qm + as described in the above example. D

We note that the hypothesis 0 is easily realized by replacing
z by z - c with some c E k. The following result will determine the form
of p(z) when the hypersurface Y is obtained as the universal covering of a
Q-homology plane with trivial Makar-Limanov invariant.

THEOREM 3.4. - Let X be a Q-homology plane with trivial Makar-
Limanov invariant. Suppose that m ~ 2 for m == Then the
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universal covering of X is isomorphic to the hypersurface z"2 - 1 in

A3, and X is isomorphic to X (m, j ) constructed in Theorem 2.9 for some
0  j  m with gcd( j, m) = 1.

The proof of Theorem 3.4 consists of the following two lemmas.

LEMMA 3.5. - With the notations and assumptions of Theorem 3.4,
suppose that X has a pair (0-,0-’) of Ga-actions such that c(~, ~’) - m2
with m -&#x3E; 2. Then the assertion of Theorem 3.4 holds true.

Proof. We use the smooth compactification V of X as constructed
before and in Lemma 2.4. As explained after Lemma 2.1, the universal

covering Y of X is obtained as the normalization of X x B B’, where B’ is
a cyclic covering of degree m totally ramifying over the point Po := p(A)
and the point at infinity P 00’ We employ the notations of the proof of
Theorem 3.1. Then the Galois group Z/mZ acts regularly on W’ as well as
on W, where W’ is the normalization of V in the function field of Y and
W is the minimal resolution of W’. The P1-fibration q : W ---&#x3E; B’ is 
equivariant, and the divisors q-1 (Po), and 7-l(S), which lie on the
boundary W - Y, are Z/mZ-stable, where Po and P~ are the points of B’ 

f

lying over the points Po and respectively. Furthermore, the contraction,
say p, of all the components of except for Hl and L 1, ... , L, is
Z/mZ-equi variant, and stabilizes Hl and permutes transitively the

L,,,1. Thus Z/mZ acts regularly on the surface W obtained by
the contraction u and the W - B’ is Z/mZ-equivariant.
Furthermore, stabilizes and HI, and permutes transitively
~L1, ._.. where is the fiber q-"-- 1 (P,,,,), ,5’ is the image of 7-l(S)
and Hl , L 1, ... , are the images of Hl , L 1, ... , L. on W.

The surface W has a P1-fibration q W - B_’ for which S’ is a
cross-section, Foo is a smooth fiber and q-1 ( Po ) - H + Li + ’ - - + Lm.
Note that there are at least two fixed points Ri , R2 on Foo, where we
can take S n Foo. By the elementary transformation with center at
Rl or R2, which is Z/mZ-equivariant, we can decrease or increase the
self-intersection number (S2) by 1. So, applying the Z/mZ-equivariant
elementary transformations several times if necessary, we may assume that
(,S’2 ) == -1. Then we can contract S, L1, ... , L, without losing the regular
Z/mZ-action to obtain the projective plane P2 so that the respective images
£o, of Foo are lines.

On the other hand, since (a, a’) is a minimal pair, the A1-fibration p’
on X associated with a’ has a unique multiple fiber mA’, and the inverse
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image of A’ on Y splits into a disjoint sum Ml + ... + Mm of the affine
lines such that (Li . Mi ) = 1 and (Li - M~ ) = 0 if i ~ j . For m, let

Mj be the closure of M. on W, and denote by 1j the image of Mj on IfD2.
Let (Qo ) _ £o Then 1j meets .~o - (Qo ) in one point Qj transversally
and meet in one-place point Q, where the point Q is common for the
curves 11, ... , 1m because otherwise 11, ... ,1m would be mutually disjoint
from each other, which is impossible for the curves on P2. The A1-fibration
p’ on Y is produced from a linear pencil A on P~ for which 11 + ... + 1m
is a member. We consider the two cases Qo and Q = Qo separately.

Case Q 7~ Qo. It is then easy to see that 11,... , -ym are lines and that

the pencil A is spanned by 11 + - - - + 1m and £o + (m - 1 )foo. Choose a
system of homogeneous coordinates (xo, Xl, X2) so that the points Qo and
Q are written respectively as (0,0,1) and (o,1, 0) and the line £o is defined
by xl - 0. Furthermore, since Z/mZ acts transitively on the set of the
points we can adjust the coordinate x, so that the curve
11 + ... + 1m is defined by x2 - xo . Then a general member of A is written
as x2 - xo , where A is an inhomogeneous parameter of the
pencil A. Set x - xllxo and z = x2 /xo . Then we have a linear pencil
{xy = zm- 1}, where y is a parameter. If y moves over the elements of k,
we know that the curves xy = 1 exhaust all the points of Y without

overlappings. Hence Y itself is realized as a hypersurface xy = zm - 1
in A3 . The Z/mZ-action on IfD2 is given by (XO,Xl,X2) H 
where 0  j  m. Since = zm - 1 is Z/mZ-invariant, the action on the
coordinate y is given by y H (-’y.

Case Q = Qo. We work on the surface W instead of p2, where W is the
Hirzebruch surface E1 of degree 1 and S is the minimal section. Only for
this case, we denote ,S’ and a general fiber of q by M and £ according to the
customary usage of the notations. We denote the images of the Mj on W by
Cj. Since Cj meets the fiber .~o at the point Qj transversally, Cj is linearly
equivalent to nf + M for some n &#x3E; 1. Hence C~ is smooth. If n = 1 then

Cj n M = 0 and we are reduced to the former case Q # Qo. So, n -&#x3E; 2. Since
Cj has only one place on the boundary W - Y and since Cj n 0,
Cj passes through the point Q := Foe n M and touches the section M
with order n - 1. Let PI : W be the composite of n - 1 blowing-
ups with centers at the infinitely near points of Q which lie on the proper
transforms of M and let E1_, ... , be the irreducible exceptional curves
of pi . Then the curves p’, (F 00)’ El, ... , En- 1, P’(M) arranged in this order
form a linear chain, and = - l, (Ei 2 ) = -2 for 1 ~ i x n - 2 and
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== -1. Since (C~ 2 ) = 2n - 1, the proper transforms meet in

one point of which is different from and 

Let p2 : W2 I Wl be the composite of n blowing-ups by which the proper
transforms p2 (pi (C~ ) ) get separated from each other and let Fl , ... , Fn be
the irreducible exceptional curves. Then Fl + F2 ~ ~ ~ ~ + Fn is a linear

chain sprouting from the proper transform with (Fi2) - -2
for 1  i  n - 1 and (F_n2) _ -l. Note that (p2(E~_1)2) - -2. We
can then contract this

order. Let p3 : W2 - W3 be the contraction of these curves. By the abuse
of the notations, denote the images of p2 (p1 (M) ), Fn, on W3 by
Moo, Mj respectively. Since = = 0, it follows that W3 is

isomorphic to I~1 x P . In fact, we regain the same picture as in Example
3.2 with the curves Ml , ... , Mn. Since we did not change anything on the
open set Y, we may start with the situation treated in Example 3.2.

The proper transform A’ of the pencil A on I~2 becomes a linear

pencil If,, + ... + where Qi = go n MJ and
Qoo == goo n Moo. Eliminate the base points of the pencil l1’ by blowing
up the point Qoo and its infinitely near points Q~~~, ... , 00 which lies
on the proper transform of The exceptional curves with the proper
transforms of goo, Moo, go form a linear chain as exhibited in
Example 3.2. The proper transforms of M1, ... , Mm intersect Now

contract and M~ in this order. The resulting surface
is I~2 , and the proper transforms of El, f’ 0 and the Mj ( 1  j  m) fit to

the previous case where Q # Qo. So, we have settled this case as well. D

LEMMA 3.6. - Let X be a Q-homology plane with trivial Makar-

Limanov invariant. Then there exists a minimal pair (a, a’) of Ga-actions
on X.

Proof. If A 2then the assertion holds obviously. So, we assume
that m = Z) 2. We fix a Ga-action a and consider the associated
A’-fibration p : X - B. We employ the arguments in the proof of Lemma
3.5 up to the point where the surface Wand the P~-fibration ~ : W - B’
are constructed. With the same notations there, we may assume, after

performing Z/mZ-equivariant elementary transformations with center at
Rl or R2, that (S2) = 0. Then I S I is a linear pencil and defines a pl-
fibration W - P1 . Then, by the count of rank Pic (W), it follows

that 03A6|S| has exactly m degenerate fibers Li + Mi (1  i  m), where Mi’’ 
~ ~~

is a (-1 ) curve with (L- - Mi ) = 1. Since the Galois group Z/mZ stabilizes
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S’ and permutes the curves Lm~, it follows that it permutes the
as well.

Now contract Li,..., L, to obtain a surface W, which is the Hirze-
bruch surface 03A30 ~ P1 x Denote the images of S’, H, Mi, Foo by
Moo, Mi, £00’ respectively. Let Moo n and QZ - .~o n Mi.
Then £o + mMoo and ~oo + Ml + - " + Mm are Z/mZ-stable divisors. Hence
the linear pencil A = It + mml - (Q, +... + Q. + is closed under

the Z/mZ-action (cf. Example 3.2). Then A induces a Z/mZ-stable A’-
fibration p : Y. Bi, where Y = W - (H + S‘ + and Bi ^--’ A1 . So,
p induces a Ga-action 8~~ on Y, which descends down to a Ga-action Of
on X. It is then clear by the construction that (a, a’) is a minimal pair of
Ga-actions. D

4. Intertwining at infinity of the curves belonging
to the two pencils.

Let X be a Q-homology plane with two algebraically independent
Ga-actions (a, a’). We consider a projective embedding X - V considered
before and in Lemma 2.4 and observe how the curves belonging to the
pencils A and A’ intertwine each other at infinity, where A (resp. A’) is

the pencil associated to cr (resp. a’). We shall employ the notations and
assumptions in Lemma 2.4 and Theorem 2.5.

By Theorem 2.5, the dual graph of G is a linear chain. The linear
pencil A’ has a base point Q on ~oo which is different from the point 
Let T’ be a general member of A’. As in the proof of Lemma 2.4, we may
assume that p  m2d, where m2d = and p = mult QT’. The
pencil contains a member mA’, where mA’ with A’ := A’ n X is a unique
multiple fiber of the A1-fibration p’ : X - B’ which is induced by A’. Let

--

- Let cp : V - V be the shortest sequence of blowing-ups
which eliminates the base points of A’ and let 11’ be the proper transform of
A’ by cp. Let E be the last (-1 ) curve appearing in the process ~o and write

r + E + A, where r (resp. A) is the connected component of
which meets the proper transform Foo (resp. A’) of Foo (resp.

A’). Theorem 2.5 applied to the a’-action implies that the dual graph of A
is a linear chain.

LEMMA 4.1. - The following assertions hold true:

(1) p.
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(2) Suppose that &#x3E; p. Then the dual graph of r is either an

emptyset or a linear chain. Furthermore, mp’ - p = 1.

(3) Suppose that p. Then the dual graph off has a branch point.

Proof - ( 1 ) This is clear because the multiplicity mult QT’ = J-l is

the minimum of the multiplicities which the members of 11’ take at the
point Q.

(2) Let cpl be the first blowing-up in the process cp and let El be the
exceptional curve. Then we have

Hence in the proper transform 11i of 11’ by cpl, the (-1) curve El belongs to
the member containing If the dual graph cp-1 (Q) = r -f- E + 0 has
a branching point, the member Mo of ~’ containing ,S’ -f- G has to coincide

with the member containing ~o’(11 ,), which is a contradiction. So, the dual
graph of r is a linear chain. Under the assumption &#x3E; ti, the proper
transform of El by is the end component of A. Since A + ~p’(A’) is
contractible to a smooth fiber of a P1-fibration, it follows that mJ-l’ - J-l == 1.

(3) With the above notation, El belongs to the member Mo . Let
1j; : 11 ---* V be the oscillating sequence of blowing-ups with the data (md, p’)
(cf. [12]) and let E’ be the last (-1 ) curve. Since the proper transforms
of El and by cp are contained in the member Mo, all the exceptional
curves of 0 are also contained in Mo . In order to eliminate the base points
of A’, we have therefore to blow up a point on E’. Hence the dual graph of
r has a branch point which represent the proper transform of E’. D

LEMMA 4.2. - The following assertions hold:

(1) Suppose ~c’ - 1 and m,u’ &#x3E; p. Then the pair (a, a’) is minimal.

(2) Suppose p’ x d and nip’ &#x3E; p. Then p’ = 1.

Proof. ( 1 ) By Lemma 4.1 and the hypothesis p’ = 1, we have

J-l - m - l. Then the curve A’ touches with multiplicity md. Let
~ : : V’ ---* V be a sequence of md blowing-ups with centers Q and its
infinitely near points lying on the proper transforms of F~ . Let E1, ... , 
be the irreducible exceptional curves. Then 1j;’ (F 00) + + - - - + El is a
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linear chain and ~’ (A’ ) meets End transversally. Let Mo (resp. M{) be the
member of 0’(A’) containing 1jJ’ (F 00) (resp. ~’ (A’ ) ) . Then we have

a divisor supported by ~

The general member passes the point Q’ : = n with

Let V -~ V be the sequence of blowing-ups as above which eliminates
the base points of A’. Then the member Ml of containing 
is a degenerate fiber of a P1-fibration which contains only one (-1) curve
yJ’ (A’) . Since the coefficient of cp’ (A’ ) in Ml is m, it is the largest coefficient
among those for the components of Mi . This implies that md ~ m. Hence
d = 1. So, the pair (a, a’) is a minimal pair.

(2) Suppose on the contrary that ~c’ &#x3E; 2. Write

Then

Since d, we have m. In the case cl &#x3E; m, we abuse the notations

to denote by 9 : V’ ---* V a sequence of cl blowing-ups with center Q and
its infinitely near points lying on Foo. It produces the member Mi of 
such that

which leads to a contradiction as in the proof of the previous assertion.
Consider the case cl = m. Suppose &#x3E; 0. Then we have

where Q’ = n Then, after the base points of A’ are removed

by V - V, does not meet any one of the proper transforms

of El , ... , E,,. This implies that a component of the member Ml has
coefficient greater than rn, where Ml is a member of the proper transform

containing ~(~4 ). This is a contradiction. So, we must have = 0.
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Then cl = m and p’ = d. Since p’ &#x3E; 2, 0(14) meets Em in a single point
with multiplicity p’, and this point is untouched in the further process of
eliminating the base points of A’. This is a contradiction. D

We continue the analysis of the case &#x3E; p and keep the same
notations as above. In particular, we abuse the notations Mo and Mi to
denote respectively the members of A’ such that Supp Mo - F~_-~- ,S’ + G

and Mi = mA’, while T’ denotes a general member of A’. Let V -~ V be
the shortest sequence of blowing-ups with centers at the base point Q of A’
and its infinitely near points such that the proper transform l1’ of A’ has no
base points. We denote by Mo and Mi the members of 11’ corresponding
to Mo and Mi respectively. Let = r + E + A as before, where
r n and A n Sp’ (A ) ~ 0. We assume that rnp’ &#x3E; p. Then r is

a linear chain and rnp’ - p = 1 by Lemma 4.1.

By the Euclidean algorithm with respect to md and ~c’, we introduce
the integers for 1  s as follows:

where we set ,ui = p’. Let 1/J : V - V be an oscillating sequence of blowing-
ups with respect to the data (md, p’) (cf. [12]). Then we have the following
exceptional dual graph of ~-1 (Q). See also [10] for similar dual graphes
and relevant explanations.
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Case s is even

LEMMA 4.3. - The following assertions hold true:

(1) 0’(q’) meets the component E(s, cs) in one point transversally and
does not meet any other components of ~-1 (Q) . In particular, = 1.

(2) The components located on the lower side of E(s, cs), i.e., E(1,1), ... ,
E(~, 1),... E(s, cs -1) if s if s is even,
are contained in the member Ml of 0’(A’) corresponding to Ml’ of A’.

(3) ~’(T’) passes through the point E(s, cs) f1 E(s - 1, if s is odd

and the point E(s, cs) n E(s, cs - 1) if s is even.

(4) The components located on the upper side of E(s, cs) are contained
in the member Mo of 7p’(A), where Mo corresponds to Mo of A’.

Proof. Let Mo and Mi be respectively the members of the proper
transform of A’ such that Mo (resp. M{) contains (resp.
~~(~4 )). Since every member of is connected, contains a con-

nected linear chain ~’(A’) -f- E(s, cs) + - - - -I- E(l, 1), which contains the
lower half of the whole chain. We note that 0’(q’) meets E(s, cs) in one
point with multiplicity which is different from the points of E(s, cs)
where E (s, cs ) meets the other components E (i, j )’s.

The member Mo contains some connected part of the linear chain
E(2,1) ~- ~ ~ ~ + E(s - 1, if s is odd (resp. E(2, 1) +... + E(s, cs - 1)
if s is even). We claim that Mo contains all of this linear chain and hence
the point E(s - 1, f1 E(s, cs) (resp. E(s, cs - 1) n E(s, cs)) is the base
point of 0’(A’) if s is odd (resp. if s is even). Suppose on the contrary that
the rightmost component E of Mo is not E(s -1, (resp. E(s, cs - 1))
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if s is odd (resp. if s is even). Then, from the mid-stage of 9 onward
when E was the last ( -1 ) curve, the general member T’ (or precisely, its
proper transform) keeps meeting the component E. Namely, the process
’P is branched at this stage and should constitute of the blowing-ups with
centers at the intersection point of E and T’ and its infinitely near points.
This implies that the component ’P’CA’) in the corresponding member Mi of
Sp’(~1’) has a singular point or meets two other components in a point. This
is a contradiction. Hence our claim is ascertained. Furthermore, the point
Q1 = E(s - 1, n E(s, cs) if s is odd (resp. Q, = E(s, cs - 1) n E(s, cs)
if s is even) is a base point of the pencil 1/;’ ( A’) .

Now the process W is a sequence of blowing-ups with centers Q1 and
its infinitely near points. Let W1 = W-1 W : V --&#x3E; V be the necessary process
of eliminating the base points of 1/;’(A’). Since n E(s, cs), it

follows that = 1 because the proper transforms of ~’ (A’ ) and E ( s, cs ) in
Mi meet each other transversally. All other assertions of Lemma 4.3 follow
from these observations. D

Now let = r 1 + El -I- Ai, where El is the last (-1) curve
and T 1 (resp. Ai) is contained in Mo (resp. M{). Then

is contracted to a smooth and the dual graph of A, (hence h1 )
is therefore uniquely determined. In fact, the dual graph of A, coincides
with the dual graph Foo + E(2, 1) + ... + E(s - 1, cs-1) if s is odd (resp.

We shall determine the multiplicity of 0’(E(s, cs)) as a component of
a degenerate P1-fiber supported by cs)+ .+E(l, 1)).
For this purpose, identify A, with Foe + E(2,1) +... + E(s -1, (resp.
Foo + E (2, 1) +... + E ( s, cs - 1)) if s is odd (resp. if s is even), and let

be the multiplicity of E(i, j ) for 1 ~ i and ci, where

~c(1,1) - 1 and the multiplicity of F~ is 1. Then we have the following
relations:
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Thence we have

while ... , cs~. Note that = 1 implies gcd(md, p’) = 1. Then
it follows that J-l(s,cs) == md. Meanwhile, the multiplicity of (and
hence the one of is m. So, we conclude that d = 1 and that
the pair (a, a’) is minimal. Hence we proved the following result.

THEOREM 4.4. - Suppose that &#x3E; J-l. Then the pair (7, a’) is

minimal.

Continuing the previous arguments, we shall explain the elimination
process cp : V - V of the base points of the pencil A’ in the case

p. Let Yl 2013~ V be the oscillating sequence of blowing-ups
with center Q and data With the observations before Lemma 4.3

taken into account, the proper transform ~o’(A) has a base point Q, on
the last exceptional curve El := E(s, cs), which does not lie on any other
components of (Q). Note that the following assertions hold:

(1) Every component of belongs to the member Mo(1) of p[ (~1’)
which corresponds to the member Mo of A’.

(2) Write = r 1 + El + At, where f1 and Ai are the connected
components of El such that rl n ~pi (F~ ) ~ ~ and A, n 
= 0. Then + ,S’ + F 00) + r 1 contracts to a smooth point.

(3) The general member W’(T ) of ~(A~) satisfies

Let Yl --~ VI be a sequence of blowing-ups such that 1/;-l(Ql) has the
dual graph
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where the proper transform 11i := has a base point Q’ lying
only on the last (-1) curve Ei and not on the other components, and where

We note that m(’Pl1Pl)’(A) is the member of A~ and hence passes through
the point Q’ with

Here

Suppose J-l(2) = M/_,/ (2) . The next process is similar to the sequence
pi above. We let p2 : V2 - Vl’ be the oscillating sequence of blowing-ups
with center Q~ and data (~Cs , ~’ ~ 2~ ) . Let E2 be the last ( -1 ) curve of p2.
Then the pencil has a base point Q2 on E2 not lying on any
other components Write 

= 
r2 and A2 are the connected components of (’Øl’P2)-1(Ql) - E2 such that
r2 fl (91W21’(lil) # 0.

a smooth point.

After a possible sequence of blowing-ups ’l/J2 : V2’ -* V2 like ’l/Jl whose
dual graph is a ( - 2 ) sequence

the proper transform A~ := (~p2~2)~(Ai) has a base point Q~ lying only on
the last (-1) curve E2 and not lying on the other components. Furthermore,

We note that is the member of A~ and passes through
the point Q2 with

where 7~/~ ~~.
After this process repeated several times, we reach to the t-th stage

where &#x3E; J-l(t). As in Lemma 4.1, it then follows that mJ-l,(t) - J-l(t) = 1.
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As in the proof of Lemma 4.3 and the subsequent arguments, the oscillating
sequence of blowing-ups with center and data (i(Et_1, T’ ; Qt_1), 
eliminates the base points of the pencil 11t_l, where T’ is the proper

transform of T’ . Hence Vt = V. Let Et be the last ( -1 ) curve of and

write = rt + Et + At as above, where rt is connected to
the proper transform of F 00’ Then we have:

(5) All the components lying on the left side of Et, i.e., the connected
component containing rt and the proper transform of G + ,S’ + F 00 contract
to a smooth 

(6) At together with the proper transform of A’ contracts to a smooth
P1-fiber. In fact, the component of At where A’ meets is the proper
transform of the ( -1 ) curve which appears as the last exceptional curve
of the oscillating sequence of blowing-ups with center and data

(i(Et_1, A’; Qt_1), c’t)), where A’ is the proper transform of A’ on 
(7) The same argument as the one leading to Theorem 4.4 shows that

(i(Et_1~ A’~ ~t-i)~ ~~~t)) = rr~.
We do not know if such a pencil A’ exists as satisfying all the

above conditions. But the following example shows that the dual graph
of exceptional curves V - V together with the proper transform of
G + ,S’ + Foo is realizable.

Example 4.5.2013 Let m = 7,d = 76,// = 31,/~ = ?7z//,~ = 5,/~ =
7, t = 1, = 27, - 4. The dual graph is given as follows:
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5. Etale endomorphisms of Q-homology planes.

In [6], the generalized Jacobian conjecture for Q-homology planes is
considered. It is shown that any 6tale endomorphism of a Q-homology plane
X is an automorphism if one of the following conditions is satisfied:

(1) = 2 or 1.

(2) k(X) = -oo and X has an A1-fibration p : X - B with at least
two multiple fibers.

In this section, we rectify some of the arguments in [6]. We recall the
following two lemmas (cf. [6, Lemma 6.1] and [6, 11, Lemma 3.1]).

LEMMA 5.1. Let p : X 2013~ B be an AI-fibration on a Q-homology
plane. Suppose that p has at least two singular fibers. Let g : Al ---* X be
a non-constant morphism. Then the image of g is a fiber of p.

LEMMA 5.2. - For i = 1, 2, let pi : Xi -~ Bi be A l-fibrations on

Q-homology planes. Let 0 X2 and B2 be dominant

morphisms such that P2 - 0 (3 . pl . Let mr be an irreducible fiber of P2
lying over a point p E B2 with m &#x3E; 1 and r reduced, and let q E Bl
be a point such that O(q) = p. Suppose p* (q) = where 0 is reduced

and irreducible and f is its multiplicity. Suppose furthermore that 0 is an
6tale morphism. If the ramification index at q is e then .~e = m. In

particular, if m = 1 then f = e = 1.

Applying these lemmas, we shall show the following result.

LEMMA 5.3. - Let X be a (Q-homology plane with an A1-fibration
p : X - B. Let mlAl, ... , mnAn exhaust all multiple fibers of p. Let

~ : X -~ X be an 6tale endomorphism. Then the following assertions hold:

(1) If n &#x3E; 2, then there exists an endomorphism B of B such that

p . ~ == ~ - p.

(2) The above endomorphism {3 is an automorphism provided n &#x3E; 3 or

n = 2 and {7~1,7~2} ~ {2,2}.

Proof. The first assertion is an immediate consequence of Lemma

5.1. So, we consider the second assertion. We employ the arguments in [9,
Lemmas 3.1 and 3.3]. Note that 13 : B - B is a finite morphism because
B is the affine line. By Lemma 5.2, the Pn I is mapped to itself
by (3, where pi - p(Ai ) . Suppose, furthermore, that the points ql , ... , qs,
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none of which belongs are mapped Pn 1. Then,
by Lemma 5.2, the ramification index of {3 at qj, say ej, is larger than 1.
In fact, if pi then ej = mi.

Since (3 induces an 6tale finite morphism

the comparison of the Euler numbers gives rise to an equality

where d - deg 0. On the other hand, by summing up the ramification
indices, we have an inequality

So, by combining (1) and (2) together, we have an inequality

Suppose d &#x3E; 1. Then n - 2. Hence, if n &#x3E; 3 then d = 1 and (3 is an

automorphism. Suppose that d &#x3E; 1 and n = 2. Then the equality occurs in

(3), and hence the equality occurs in (2). Namely, the ramification index
ej at qj is two for all j, and s = d - 1. Since d &#x3E; 1 implies s &#x3E; 0, we

may assume that q, is mapped to pl. Then m, = 2. Suppose d &#x3E; 3. Then
2s = 2(d - 1) &#x3E; d. Hence one of the qj is mapped to p2, ... , pn, say p2.
Hence m2 = 2. In this case, after a suitable change of indices, one of the
following two cases is possible:

(1) ~ = sl + s2 = d -1, and ql, ... , (or p2) (resp. q , p2

(or pi)) are mapped to PI (resp. p2 ) .

(2) S = ~1+52,~= 2s, = 2s2 -~- 2, and ql, ... , qsl (resp. qs, pl,

p2 ) are mapped to PI (resp. p2 ) .

Finally, suppose that d = n = 2 and s = 1. Then we may assume that
PI and 0(pi) = O(P2) - P2. Then m2 = 2 as well by Lemma 4.2.

So, if {2, 2}, then d = 1 and {3 is an automorphism. D

As a consequence of Lemma 5.3, we can prove the following result,
which rectifies Theorem 6.1 in [6].

THEOREM 5.4. - Let X be a Q-homology plane with an A1-fibration

p : X - B. Let mnAn exhaust all multiple fibers of p. Suppose
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that either n &#x3E; 3 or n = 2 and IMI,’M21 :,-’: f2,21. Then any 6tale
endomorphism 0: X -~ X is an automorphism.

Proof. By Lemma 5.3, there exists an automorphism {3 of B such
that p - (~ = /~ - p. Since {3 is an automorphism, Lemma 5.2 implies that
{3 induces a permutation of the finite By replacing {3 by
its suitable iteration /~, we may assume that {3 induces the identity on

~ pl , - .. , Since n &#x3E; 2 and {3 ( or rather an induced automorphism of
the smooth compactification B of B) fixes the point at infinity poo- Hence
~3 is then the identity automorphism.

Let K = k(B) be the function field of B and let XK be the generic
fiber of p. Then XK is isomorphic to the affine line over K, and 0 induces
an 6tale endomorphism ø K of XK. Since ø K is then finite, ø K is an

automorphism. Hence 0 is birational. Then Zariski’s Main Theorem implies
that 0 is an open immersion. Note that Pic(X)Q = 0 and C*.

Suppose that X ~ ~(X ). Then X - §(X) has pure codimension one. Since
Pic (X)(Q = 0, there exists a regular function h on X such that the zero
locus (h)o of h is supported by X - ~(X ). Then 0* (h) is a non-constant

invertible function on X, which contradicts the property T (C7X ) * - C*. So,
§ is an automorphism. 0

In the case ~2, 2~, d = n = 2 and s = 1, there exists the
following counter-example to the generalized Jacobian conjecture.

Example 5.5. - Let !pI x P~. Let Mo be a cross-section and
let fo, fl, foo be distinct three fibers with respect to the second projection
7r2 : P’ x I~1 ~ P . Let V 2013~ Yo be q sequence of blowing-ups with
centers at .~o n Mo, f 1 n Mo and their infinitely near points such that

= f’ ~- El -~ 2E2 -~ 2E3 and f’ ~- F, -~ 2F2 ~- 2F3, where
.~o = .~i2) = (Ei2) = (Fi2) - -2 for t = 1, 2 and (E32) - (F 3 2) -1.
Let

Hence X has an A1-fibration p : : X ---&#x3E; &#x3E; B with two multiple fibers

2E3n X, of multiplicity 2. Then X has a degree two, non-finite
6tale endomorphism.

In fact, let a : 2~ 2013~ B be a degree two covering ramifying over
the point at infinity and po, where po - p(E3 n X ) . Let X be the
normalization of X x B B’, let T : X - X be the composite of the
normalization morphism and the first projection X x B B’ - X and let



464

p : X - B’ be the A’-fibration induced naturally by p. Then 
is a disjoint sum G1 + G2 of two affine lines and T : X - X is a

finite 6tale morphism, where qo is a point of B’ lying over po. Then
X - Gi ~ ~ 2013 (~2 ~ X, and T 

1 
and T IX-c2 induce a non-finite

6tale endomorphism of X.
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