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OBSTRUCTIONS TO GENERIC EMBEDDINGS

by J. BRINKSCHULTE, C. DENSON HILL
&#x26; M. NACINOVICH

In Grauert’s paper [G] it is noted that finite dimensionality of co-
homology groups sometimes implies vanishing of these cohomology groups.
Later on Laufer formulated a zero or infinity law for the cohomology groups
of domains in Stein manifolds. In this paper we generalize Laufer’s The-
orem in [L] and its version for small domains of CR manifolds, proved
in [Br], by considering Whitney cohomology on locally closed subsets and
cohomology with supports for currents. With this approach we obtain a
global result for CR manifolds generically embedded in a Stein manifold.
Namely a necessary condition for global embedding into an open subset of
a Stein manifold is that the 8M-cohomology groups must be either zero or
infinite dimensional.

1. An abstract Laufer Theorem.

Let X be a Stein manifold of complex dimension N. Let F be a

locally closed subset of X. This means that F is a closed subset of an open
submanifold Y of X. We denote by the space of Whitney functions
on F. With 8(Y; F) denoting the subspace of the space £(Y) of (complex
valued) smooth functions on Y that vanish of infinite order at each point
of F, the space OF is defined by the exact sequence:

Keywords: a-operator - Tangential CR operator - Embedding of CR manifolds.
Math. classification: 32V05 - 32V30.
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Note that the space OF can be intrinsically defined in terms of jets and
turns out to be independent of the choice of the open neighborhood Y
of F in X. We also consider the space of Whitney functions with
compact support in F, which can be defined by the exact sequence:

where D(Y) is the standard notation for the space of f E E(Y) having
compact support in Y.

Likewise we shall consider the spaces DF (resp. S)) of distributions
in Y with support (resp. compact support) contained in F.

The Dolbeault complexes on Y define, by passing to sub-complexes
and quotients, a-complexes on Whitney forms with closed (or compact)
supports in F and on currents with closed (or compact) supports contained
in F. We denote by HT¿,q(2l1comp) H1!,q(V’) H1!,q(E’) thein F. We denote by a , I a F the

corresponding cohomology groups (see, for more details, [Nl], [N2], [NV]).
More generally, if ~ is a paracompactifying family of supports in Y (see
[B]), we can consider the cohomology groups for Whitney forms
on F with supports in -4~, which are quotients of smooth forms in Y with

supports in 4D, and (D )" ) for currents with supports in the intersection
of F and closed sets of (D.

Note that when F = Y is open, these are the usual Dolbeault

cohomology groups.

THEOREM 1.1. - Let F be a locally closed subset of a Stein
manifold X. Let Y be an open neighborhood of F in X, with F n Y = F,
and 4) a paracompactifying family of supports in Y. Then, for all 0 - p, q _
N, each of the cohomology groups 

Hp is either 0 or infinite dimensional.
g k-FJ 6 F C) F .

Denote by H one of the groups 1
and assume that H is finite dimensional.

....., 
- 

....., 
- 

....., 
-

Our goal is to show that H = {0}.
The multiplication of a Whitney form or of a current by a function

f E is a linear map, commuting with a, and preserving supports.
Thus, by passing to the quotient, we obtain on H the structure of an

O(X)-module.
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E = {0}} be the ideal in the ring C7(X) of
functions that annihilate H. We want to show that 1 E Z.

Fix an embedding X - C2N+I of X into an Euclidean space.
The coordinates zl, ... , z2N+1 on define functions zi , ... , 2N+l
in C~(X). Fix j E ~1, ... , 2N + 1}, and let [~i],..., be a basis of

H. Then the finite dimensionality of H implies that there exist nontrivial
polynomials such that m. Consider

P = ..... Then one has P ( z~ ) H = {0}. Thus for each

j - 1,..., 2N + 1 there is a polynomial (0) of minimal
degree such that = {0}. This shows on the one hand that Z ~ ~ 0 ~
and on the other hand that the set V of common zeros in X of the functions

in I is finite, being contained in the inverse image by the embedding
of the finite set = 0 for j = 1,...,27V+1}.

By the Nullstellensatz 1 E I if and only if V = 0. To show this, we prove
first the following:

LEMMA 1.2. - Let f E I and let A be a holomorphic vector field
on X. Then A( f) E I.

Proof. We recall the formula for the Lie derivative La of an

exterior differential form cr

If f is a smooth function, then

Thus we obtain

Assume now that A is a holomorphic vector field, that f is a holomorphic
function on X and 0152 is a form (or a current) of bidegree (p, q) in Y. Since
the left hand side of (*) is then of bidegree (p, q), keeping on the right
hand side only the summands which are homogeneous of bidegree (p, q) we
obtain

Assume now that a is 9-closed. Then each term on the right hand side is
0-closed. By considering subspaces and quotients, we note that (**) is valid
and that the summands on the right hand side are 9-closed also when a is
a Whitney form on F or a current with support in F.
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Assume now that f E I and that cx is the representative of an element
of H. Then the last two summands are cohomologous to zero because f E 1.
Moreover, f. a == 8{3, again because f E 1. Thus we have

showing that also the first two summands are cohomologous to zero. This
proves our contention.

End of the proof of Theorem I. I. - We prove by contradiction that
V = 0. In fact, assume that x E V # 0. Then Z contains a nonzero f having
a zero of minimal order p &#x3E; 0 at x. This means that, for holomorphic
coordinates ~1, ... , (N centered at x, we have an expansion

h=u

of f as a convergent series of homogeneous polynomials f h of degree h,
with 0. Then there is a coordinate (j such that # 0. By Cartan’s
Theorem B, since the sheaf of germs of holomorphic vector fields is coherent,
there is a holomorphic vector field A on X such that Ax = 2013!- . By LemmagCj| 0

1.2 we have A( f) E Z. But this gives a contradiction 0 has

a zero of order p - 1 in ~.

This completes the proof of the theorem.

Next we consider the following situation: F is a locally closed subset
of a complex manifold X, and S a subset of F which is closed in F. If
Y is an open neighborhood of F in X with F n Y = F, then also
5’ n Y = S. The inclusion F naturally induces maps:

................................

We can also consider an open subset w of Y and, corresponding to the
, the maps in cohomology:

by K any of the images of the maps in cohomology considered above. Then
we obtain, just by repeating the argument of the proof of Theorem 1.1:

THEOREM 1.2. - With the notation above, if X is a Stein manifold
then K is either zero or infinite dimensional.
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2. Obstructions to generic embeddings of CR manifolds.

Let M be a smooth (abstract) CR manifold of type (n, k) and let 8M
be the tangential Cauchy-Riemann operator on M. Fix a paracompactifying
family T of supports in M and consider, for 
the 8M-cohomology groups for smooth differential forms with support in
~, denoted by ~fj~([f]~(M)), and the corresponding groups for currents
with supports in ~, denoted by

THEOREM 2.1. - If for some (p, q), with 0 - p - n + k, 0 - q - n,
and a paracompactifying family of supports W in M, any one of the groups

HaM ( (M) ), is finite dimensional and different from
am m

zero, then there does not exist a generic CR embedding of M into any
open subset Y of a Stein manifold X.

Proof. Assume that M can be generically embedded into an open
subset Y of a Stein manifold X. The complex dimension of X is n + k and

M, being a closed subset of Y, is locally closed in X.

The family (D of closed subsets S of Y such that ,S’ n is a

paracompactifying family in Y.

In this situation it is a well-known consequence of the formal Cauchy-
Kowalewski theorem (and its dual version) (see [AFN], [AHLM], [HN2],
[Nl], [NV]) that

and

Thus we obtain the conclusion using Theorem 1.1.

Remark. - If M has a non-generic CR embedding as a closed
submanifold of an open subset Y of a Stein manifold X, then the groups in
the right hand side of (~) and (0) are either zero or infinite dimensional.
But the isomorphism fails, and in fact the conclusion of Theorem 2.1 is

false, as it will be shown by some examples in the next section.
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3. Applications.

1. In particular let Q be any domain having a smooth boundary
M - 9Q in an N-dimensional Stein manifold X. Then for 0 ~ p ~ N
and 0  q - N - 1, and cannot be finite

dimensional without being zero. They are clearly infinite dimensional for
q = 0; and if nee X, we know they are also infinite dimensional for

by [HN1].
2. In [Br] it was shown that, if D is a sufficiently small open subset of a

generic CR submanifold M of some open set SZ in C , then is

either zero or infinite dimensional. This follows from Theorem 2.1, without

any assumption on D, as far as the embedding M --&#x3E; Q is generic.

Dropping the genericity assumption, the result is still valid for small
open D’s because an appropriate holomorphic projection into an affine
en+k will produce a local generic CR embedding.

3. In [Br] it was also pointed out that there exist compact strictly
pseudoconvex CR manifolds M of hypersurface type (n,1), with n &#x3E;

2, which are non-generically CR embedded into some CCN, with 0 
 oo . By Theorem 2, such an M has no generic CR

embedding into any Stein manifold. But by [HNI] we know that the top
cohomology groups are infinite dimensional for 0 - p  n + l,
due to the fact that M is embedded, even non-generically, into C . Hence
there can be no example of the type pointed out in [Br] with dimR M = 3.

4. Suppose M is a compact CR manifold of any type (n, k), 1,
which has a non-generic CR embedding in some Stein manifold X. Then
for 0 ~ p ~ n + k the bottom and the top cohomology groups 
and are infinite dimensional, according to Hence

finite dimensionality of some bottom or top group obstructs even non-

generic embeddings. In this situation the existence of any nonzero but finite
dimensional intermediate cohomology group 0 - p - n + k,
0  q  n, would obstruct any attempt to make the non-generic embedding
generic. In particular this means that, for such an M, no matter how we
embed the Stein manifold X into some C , the M becomes so positioned
in (CN as not to have any one-to-one holomorphic projection into any affine
Cn+k contained in the C .

5. Consider a compact smooth orientable CR manifold M of hyper-
surface type (n, 1), n &#x3E; 1, which has a non-generic CR embedding in some
C . Then by [HL] there is a holomorphic chain C whose boundary is M in
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the sense of currents. Let V denote the support of C and set F = M U V.
Then F is a closed set in Y = Hence by Theorem 1, we have that
for 0  p  N and 0  q  N, the cohomology groups and

are either zero or infinite dimensional.

Suppose N = n + 2 (so M has real codimension 3), n &#x3E; 1, M is

strictly pseudoconvex, and V has only isolated hypersurface singularities.
Then HaM ( ~~~ (M) ) is nonzero and finite dimensional, for p + q - n and
0  q  n, see [Y]. Thus there are many examples like the one pointed out
by Brinkschulte in [Br]. Moreover this phenomenon starts to occur as soon
as the embedding is in just one complex dimension too high to be generic,
so that the embedding would be generic, if the embedding dimension were
to be reduced by one.

BIBLIOGRAPHY

[AFN] A. ANDREOTTI, G. FREDRICKS, M. NACINOVICH, On the absence of Poincaré
lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Sup. Pisa, 8
(1981), 365-404.

[AH] A. ANDREOTTI, C.D. HILL, Complex characteristic coordinates and tangential
Cauchy-Riemann equations, Ann. Sc. Norm. Sup. Pisa, 26 (1972), 299-324.

[AHLM] A. ANDREOTTI, C.D. HILL, S. LOJASIEWICZ, B. MACKICHAN, Complexes of
differential operators. The Mayer-Vietoris sequence, Invent. Math., 35 (1976),
43-86.

[B] G.E. BREDON, Sheaf theory, GTM, Springer-Verlag, 170 (1997).

[Br] J. BRINKSCHULTE, Laufer’s vanishing theorem for embedded CR manifolds, Math.
Z., 239 (2002), 863-86.

[G] H. GRAUERT, On Levi’s problem and the imbedding of real-analytic manifolds,
Ann. of Math., 68 (1958), 460-472.

[HL] R. HARVEY, L.B. LAWSON, On the boundaries of complex analytic varieties I, Ann.
of Math., 102 (1975), 223-290.

[HN1] C.D. HILL, M. NACINOVICH, A necessary condition for global Stein immersion of
compact CR manifolds, Riv. Mat. Univ. Parma, 5 (1992), 175-182.

[HN2] C.D. HILL, M. NACINOVICH, Duality and distribution cohomology of CR mani-
folds, Ann. Sc. Norm. Sup. Pisa, 22 (1995), 315-339.

[L] H.B. LAUFER, On the infinite dimensionality of the Dolbeault cohomology groups,
Proc. Amer. Math. Soc., 52 (1975), 293-296.

[N1] M. NACINOVICH, On boundary Hilbert differential complexes, Ann. Polon. Math.,
46 (1985), 213-235.

[N2] M. NACINOVICH, Poincaré lemma for tangential Cauchy-Riemann complexes,
Math. Ann., 268 (1984), 449-471.

[NV] M. NACINOVICH, G. VALLI, Tangential Cauchy-Riemann complexes on distribu-
tions, Ann. Mat. Pura Appl., 146 (1987), 123-160.



1792

[Y] S.-T. YAU, Kohn-Rossi cohomology and its application to the complex Plateau
problem I, Ann. of Math., 113 (1981), 67-110.

Manuscrit requ le 26 juin 2001,
accepté le 11 juillet 2002.

Judith BRINKSCHULTE,
Chalmers University of Technology
&#x26; G6teborg University
Department of Mathematics
Goteborg (Sweden).
judith~math.chalmers.se
C. DENSON HILL,
Suny at Stony Brook
Department of Mathematics
Stony Brook NY 11794 (USA).
dhill@math.sunysb.edu
Mauro NACINOVICH,
Universita di Roma "Tor Vergata"
Dipartimento di Matematica
Via della Ricerca Scientifica
00133 Roma (Italy).
nacinovi@math. uniroma2. it


