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APPROXIMATION 0F HOLOMORPHIC FUNCTIONS
0F INFINITELY MANY VARIABLES II

by Làszlô LEMPERT

Introduction.

In [Ll] we formulated thé following approximation problem:

Let X be a complex Banach space, BÇR) C X thé bail of radius R > 0
about thé origin, and / a holomorphic function on B(R). Given r e (0,J?)
and e > 0, is there a function h, holomorphic on X , such that |/ — h\ < e
on B(r)7

We speculated that such approximation results would be important
for future developments in complex analysis of infinité dimensions, and in
[Ll] we could settle thé problem in thé affirmative for thé space X = ̂ (F),
F any set. Later in [P] Patyi gave an important extension of this to so
called l1 sums offinite dimensional Banach spaces. Subséquent work indeed
showed that whenever approximation as in thé problem is possible, it
follows almost automatically that thé sheaf cohomology groups Hq(fl^0)
vanish for Cl C X pseudoconvex and q ^ 1, see [L3], Theorem 0.3.

In this paper we shall solve thé approximation problem when X ==
^(r), 1 ̂  p < oo, or X has a countable unconditional basis ci, 62 , . . . € X
(for définitions see Section 1). It is known that in thé latter case thé
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424 LÂSZLÔ LEMPERT

topology of X can be induced by a norm || || that satisfies for x =
^ x{n)en ç X and ̂  <E C

(0.1) ||^^(n)e^|| ^ [|^a:(n)e^||, provided |̂ | ^ 1, n = l , 2 , . . .

Most classical Banach spaces admit unconditional bases, see e.g. [S],
L^O, 1) and C[0,1] being stubborn exceptions.

Let Y be a sequentially complète locally convex topological vector
space over C, whose topology is defined by a family ^ of seminorms.

THEOREM 0.1. — Suppose X = ^(F), 1 ̂  p < oo, with thé usual
nomi, or X bas a countable unconditional basis {en}, and (0.1) is satisfied.
Given f : B(R) -^ V holomorphic, r e (0, R), ̂  e ̂  and e > 0, there is a
holomorphic h : X —> V such that ^(/ — h) < e on B{r).

As stated above, this implies cohomology vanishing, cf. [L3], Theorem
0.1:

THEOREM 0.2. — Let X be a Banach space with countable un-
conditional basîs, V a Fréchet space, and V thé sheaf of germs of V val-
ued holomorphic functions on an open fl.cX.Iffl.is pseudoconvex then
J^,V)= 0,01.

In particular, sheaf cohomology groups vanish in separable Hilbert
spaces. In fact, Banach spaces more général than those in Theorem 0.1
will be treated in this paper, see Theorem 4.2 and Définition 3.5. However,
we cannot prove either of Theorems 0.1 or 0.2 for ail separable Banach
spaces. On thé other hand, no counterexamples are known in Banach spaces
either for thé approximation problem or for cohomology vanishing. For
cohomology vanishing and non-vanishing in général locally convex spaces,
see [Dl], [D2], [M], [MV], and thé introduction of [L3].

Thé proof of Theorem 0.1 borrows ideas from [Ll]. As there, one
starts by expanding thé function / in a monomial séries

(0.2) /(:z:i,^2,...)~^a^fc2...^1^2 • • • . a^... e V,

say, in thé space X = ̂ (N). Thé first stumbling block is that, uniess p = 1,
thé séries in (0.2) does not necessarily converge to /. However, there is a
class of functions for which thé monomial séries do converge. Fix an integer
?7i ^ p, let Cm C C dénote thé group of m'th roots of unity, and G thé
multiplicative group of séquences ^1,^2? • • • ê Cm' This group acts on P
by coordinatewise multiplication, and leaves thé bail B(R) invariant. It
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HOLOMORPHIC APPROXIMATION 425

turns out that thé estimâtes of [Ll] can be used to conclude that thé séries
in (0.2) converges to / whenever / is G invariant. For invariant functions
thé rest of thé arguments of [Ll] aiso works, and gives that by omitting
certain "negligible" terms from thé monomial séries of / thé remaining
séries represents an entire function h as required.

Thé question that we must still address is whether thé case of an
invariant function is of any relevance for général functions /. Indeed it is.
In Section 2 we shall prove that for any holomorphic / : B{R) —>• V there
is a holomorphic F : B{R) x X -^ V such that F(x,x) = f(x), x <E B(R),
and F(-,y) is G invariant for any y G X. Thus F ( x ^ y ) is invariant in
x and entire in y . It turns out that this property suffices to produce a
holomorphic H : X x X —^ V such that ^(F - H) < e on B{r) x B(r), by
a modification of thé approach of [Ll] alluded to above, see Theorem 4.1.
Obviousiy, h(x) = H ( x ^ x ) will then do.

While this synopsis dealt with thé space ^(N) oniy, thé same approach
works for more général spaces X as long as an appropriate substitute is
found for thé group G = (Cm)^ above. When X = ^(F), one takes G =
(^m)^ thé relevant property of this group will be given in Theorem 3.4.
For général spaces with countable unconditional bases a suitable G will be
constructed in Section 5.

Acknowledgement. 1 am gratefui to F. Bracci and C. Kiselman for
helpfui comments.

1. Basics.

In this paper V will aiways dénote a sequentially complète, locally
convex topological vector space over C, whose topology is given by a family
^ of seminorms. Suppose v, vj e V, for j belonging to some index set J .
We write ^Vj = v to mean that for any ^ ç ^ and e > 0 there is a
finite JQ 3 J such that ^(v — ̂ j^Vj) < e whenever Ji D Jo is finite. If V
happens to be a Fréchet space, ail but countably many terms of a convergent
séries ̂  Vj must be zéro. We say that a séries ̂  vj is normally convergent
if ^^(vj) < oo for ail ^ G ^ (even though "seminormally" would be
more appropriate). If oniy countably many vj differ from zéro then normal
convergence of ^ vj implies ̂  vj = v for some v ç. V. Suppose S is an
arbitrary set and f j : S — > V, j ç. J . We say that ̂  fj converges normally
on S if E^P^/j) < °° for a11 ^ ^ ^ and that ̂  fj = f : S -^ V
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426 LÀSZLÔ LEMPERT

unifbrmiy if for every ^ G ^ and e > 0 there is a finite Jo C J such
that sup^^(/ — Y^j fj) < e whenever J\ D Jo ïs finite. Pointwise and
normal convergence on S together imply uniform convergence on 5. If 5'
is a topological space, thé fj are continuous, and / = S /j converges
uniformiy on S then / is aiso continuous. Similarly, if S is an open subset
of a locally convex space, thé fj are holomorphic, and / = ̂  fj converges
uniformiy on S then / is holomorphic.

Our main concern in this paper will be function theory in thé Banach
space

^(r) = [x : r -. c | |M| = (^l^r)17" < oc},
with F an arbitrary set, 1 ^ p < oo; and in spaces with countable
unconditional basis. However, what we hâve to say hoids for more général
complex Banach spaces (X, || ||) as well. AU through thé paper we shall
assume that X has a not necessarily countable, unconditional basis—or
basis, for short—, Le., a collection [e^ : 7 G F} C X, F some set, with thé
property that any x e X can be uniquely represented as
(1.1) x = ̂  x^)e^ x^) e C, 7 C F.

7er
We shall aiso assume that whenever (1.1) hoids and ̂  G C then

(1.2) I I ̂ ^(7)^|| ^ I I ̂ .r(7)^||, provided |̂ | ^ 1, 7 e F;

it is implied that thé séries on thé left converges. If X has an unconditional
basis {e^} then (1.2) can aiways be achieved by replacing thé original
norm by an équivalent one, see e.g. [D2], Lemma 4.35 for thé case when
X is separable and [S], Theorem 17.5 in général. Thé spaces P(F) hâve
unconditional bases, and if e^ is taken to be thé characteristic function of
{7} C F then (1.2) is aiso satisfied.

Later on we shall need a characterization of compactness in X.

PROPOSITION 1.1. — A closed set K C X is compact ifand oniy if
it is bounded, and for any e > 0 there is a finite Fo C F such that

(1.3) ^ ^(7)^|| < e, for ail x e K.
r\ro

This is a slight generalization of [DS] IV. 5.5, and follows from [DS]
IV.5.4.

Now let 5'i dénote thé multiplicative semigroup ofthose a : F —> [0,1)
for which thé set {7 : 0(7) ^ 6} is finite for ail e > 0. This semigroup acts
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HOLOMORPHIC APPROXIMATION 427

on X by thé ruie (arc) (7) == a(^)x(^). Dénote thé image of a set L C X
under a by aL.

PROPOSITION 1.2. — For âny a e Si and R < oo thé set aB(R) is
relatively compact in B(R). Conversely, for any compact K C B{K) there
are a a 6 S\ and L C B(R) compact such that aL == K.

Proof. — Thé closure of aB(R) is contained in B(max/y0-(7)) C
B(J?), and is compact by Proposition 1.1, since (1.3) will hold with
Fo = {7 : 0(7) ^ e/R}. Conversely, if K C B(R) is compact, choose
0 ç (sup^(||a;||/^)1/2,1), and construct a séquence 0 = Fo C Fi C ... C F,
each Fn finite, such that

I ̂  ;r(7)eJ ^ 4-n(l - éO^2^, x ç K, n ̂  0.
r\Fn

This implies ^(7) = 0 if x C K, 7 ^ Unl\ = F*. Define
^_l2-^, for 7er^i \ r ,

V7/ 10, for 7 ^ r *0, for 7 ^ r *
and a closed set L = {y ç X : ay ç K^ ^(7) = 0 if 7 ^ F*}. Obviousiy
aL = K. Since for any y e L, 7V = 0,1,..., and x = ay

E ̂ )^|| ^ E I I E 2^-la:(7)e^|| ^ E2"^1 - ̂ neR < 2~NR-
r\FN n^N rr,+i\r^ n^N

L C B(R) is compact by Proposition 1.1.

In this paper we shall freely use basic facts of infinité dimensional
complex analysis; on such matters thé reader is advised to consult [D2],
[D3], [N]. We shall dénote by 0{M; M') thé set of holomorphic mappings
M->M'.

2. Extensions.

Our goal in this section is to relate arbitrary holomorphic functions
on a bail BÇR) in a Banach space (X, || ||) to those that are invariant under
a group. We shall assume that X bas a basis {e/y} as in Section 1, and (1.2)
holds.

Let S1 = M/Z be thé circle group (with group opération written
additively) and T = T(T) = {t : F —> S1} thé typically infinité dimensional
torus, endowed with thé product topology. T acts continuousiy on X by

pt ( ̂  x(-f)e^ = ̂  e^^M ,̂ tëT, x € X.
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428 LÂSZLÔ LEMPERT

Each pt is an isometry because of (1.2), and so p leaves B(R) invariant.
Dénote by dt thé Haar measure on T normalized to hâve total mass 1. We
define a multiindex to be a mapping k : F —>- NU{0} such that ^(7) = 0 save
for finitely many 7 C F. In this paper k, K will aiways dénote multiindices.
If t e T, we shall write A; ̂  for Y, ̂ (7)^(7) ç S1.

7

Any / ç 0{B{R)\ V) can be expanded in a monomial séries

(2.1) f-^fk. fk = 1 e-^p^fdt^
k JT

with thé terms fk holomorphic on B{R). By considering thé restrictions of
/, fk to subspaces spanned by finitely many basis vectors e^ one establishes
that thé fk are indeed monomials of thé form

fk(x) = a^ = 0,̂ (7)^ ak C Y;

we use thé convention 0° = 1.

When dimX < oo, it follows from simple Cauchy-estimates that thé
séries in (2.1) converges to / normally on compact subsets K C B(R).
This implies convergence of (2.1) on a dense subset of B{R) for général X:
if XQ C X is thé linear span of thé basis vectors e-y, then / = ̂  fk on
B(R) H XQ. However, ̂  fk will rarely converge on ail of B(R).

There is one more player to be introduced in this section, a subgroup
G C T. Fix a function d : F -^ N, and let G consist of those t ç T for which
d(-y)t(7) = 0 e 6'1 for ail 7. Thus G == rir^1/^)]/^) C ^^(R/Z) = T '
Below we shall write dk for thé multiindex 7 i—^ ^(7)^(7), and /î < d to
mean ^(7) < d(^) for ail 7.

THEOREM 2.1. — Suppose ^/fe(^) = Sû/c^ is thé monomial
expansion of a function f e 0(B{R);V). I f x ç B(R) H Xo and y e XQ,
thé séries

(2.2) ^^adfc+^y
A; K<d

converges normally. Furthermore, thé function that (2.2) represents extends
from (B(R) n Xo) x XQ to a holomorphic function F : B(R) x X —> V that
satisfies

(2.3) F{x,x)=f(x), x e B ( R ) ,
(2.4) F(ptX, y) = F(x, y), t e G, (x, y) ç B(R) x X.

This will be proved through a séquence of propositions.
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HOLOMORPHIC APPROXIMATION 429

PROPOSITION 2.2. — Let ZQ be a dense subspace ofa Banach space
Z , ^ C Z open. A function h : ̂  H ZQ -> V extends to an H e (9(0; V) if
and oniy if (i) for any one dimensional affine subspace L C ZQ thé function
h\L is holomorphic, and (H) for each seminorm ̂  € ^ and K C 0 compact
^PKnZo ̂ W < °°-

Proof. — One direction being trivial, we shall oniy verify that (i) and
(ii) imply h extends holomorphically to 0. For fixed ^ G ^, any z 6 f2 has
a neighborhood uj C 0 on which ^(/i) is bounded. Indeed, otherwise there
would exist a séquence Zn ^ ^C\ZQ, Zn —^ z, such that sup^ ̂ (h(zn)} = oo,
contradicting (ii) with K == {2;, ̂ i, ̂  • • •}• From thé Cauchy représentation
formula applied to various one dimensional restrictions h\L one can read
off that z has a neighborhood a/ such that ^(/i(^i) — h(z^))/\\Zi — z^\\
is bounded for z\ 7^ z^ ç. uj' D ZQ. It follows that h(zn) is a Cauchy
séquence whenever ZQ 3 ^ —> z: let ^(^) dénote ils limit, which is
clearly independent of thé choice of Zn- It is immédiate that thé function
H : 0 —> V is continuous. AU we need to show now is that H\L is
holomorphic for an arbitrary one dimensional affine subspace L C Z. Given
such an L, construct a séquence of affine maps Un .' L —> ZQ that converge
to idjr^. Since H o Un = h ° Un are holomorphic, so is their locally uniform
limit H\L. Hence H is indeed holomorphic.

PROPOSITION 2.3. — Let W be an arbitrary Banach space, U C W
open, and let furthermore X be a Banach space with basis {e^}/yçr ^s
above. Suppose H is a V valued holomorphic function on some connected
neighborhood 0 of U x {0} C W C X such that for ail (w, y) e 0, 7 (E F
thé function rj i—> H(w,y-^- rje^) is thé restriction of a polynomial ofrj ç C.
Then H continues analytically to U x X.

Proof. — Suppose first 0 = U x B(e), e > 0. For any (w, y) e U x
B(e) and finite Fo C T thé function H{w^y-{-^ çp ^e/y) is thé restriction
of a polynomial in rj^, 7 e Fo, with coefficients depending holomorphically
on w, î/. This polynomial then provides an analytic continuation of H to
thé open set

D(TQ) = [(w,x) e U x X : ^ x^)e^ < e}.
7^ro

Since ^(roUri) D D(ro)UP(ri), it follows that H continues analytically
to Uro-D(Fo) = U x X.

A général 0 as in thé proposition will contain a neighborhood of
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430 LÂSZLÔ LEMPERT

Ux{0} of thé form UjçjUjxBÇej), with Jsome index set and Uj C U open.
By virtue of what we hâve aiready proved H continues to (J [7j; x X = U x X,
q.e.d.

PROPOSITION 2.4. — In thé situation of Theorem 2.1 assume F is
finite. Then thé séries (2.2) converges normally for each (x, y) ç B(R) x X
and its sum is a holomorphic function.

Proof. — Notice that thé séries (2.2) multiplied by xd is thé Taylor
séries of thé function

(Vl0!) E E e-^^fÇ^x^y^
K<dtçG

which is holomorphic on B{R) x X. It follows that (2.2) indeed converges
to a holomorphic function, normally on compact subsets of B(R) x X.

Proof of Theorem 2.1. — Thé normal convergence of (2.2) follows
from Proposition 2.4; its sum h : (B(R) H Xo) x XQ —> V is holomorphic
when restricted to finite dimensional subspaces of XQ x XQ by thé same
proposition. Our next concern is to show that h extends holomorphically
to

^ = {{x, y) C X C X : \\x\\ + 3\\y\\ < ̂ };

this will involve estimating h on fl, H (XQ x Xo).

If (x,y) e Q and q ^ 1 is sufficiently close to 1, define z = Zx,y,q €
B(R) by z(-i) = q\x(-r)\ + 3\y^)\ and T^y = {7 : z(^) + 0}. When
(rr, y) ç Q H (Xo x Xo), in (2.2) oniy those multiindices k^ n will contribute
that are supported in T^y Hence, assuming now q > 1
(2.5)

. oo d(7)-l

h(x^)= II E E ^(^^^(^'(^^e2^^)-^71-'/^^^T7e^^yn=o v=Q

= 1 II A(d(7)^(7)^27r^t(7)^(7)e-27^^t(7))/(pt^)^,
^^.y

where for 6 e N, ^ T] e C we set C = q\^\ + ^\r]\ and, provided < -^ 0,
oo 6-1

A^, ̂ , î?) = -1 + 2 Re ̂  ̂  ̂ ç-sn-^
71=0 1^=0

Note that while multiplying out thé products in (2.5) gives more terms in
thé second line than in thé first, thé excessive terms intégrale to zéro; hence
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HOLOMORPHIC APPROXIMATION 431

thé two intégrais in (2.5) are indeed equal. Thé terms in A corresponding
to v = 0 plus thé constant term add up to

Re<!±A! = <2' - W _ c^+lgl6) ( , _ \^\
ç6_^ |^-^[2 |^-^|2 ^ -̂ h

while thé sum of thé remaining terms is

oR.^^v^r^ ,c^+i^)Hf^ 3w±mi^i
^-^U" l^-^l2 T^o --3 ic6-^!2 T

Hence

A(6^)>?^^(l ^ ^xi1\(0^,TÎ) ^ i^_^,2 \ - 7 ~ - ~ 7 7 ^ 0 '

so that (2.5) implies with any -0 e ̂

W^)Ksup^(/(p^)) /* ]"[ A(d(7)^(7)e-27r^^)^(7)e-27^^^)^.
<eT ^^er^

Since thé intégral above is 1, we obtain

(2-6) Wx, y)) ̂  sup W(ptZ^))
tçT

first for q > 1, and then, by continuity, aiso for q = 1. If K C ̂  is compact
then so is thé set L = {ptZ^y^ : t € F, (a;,i/) ç K} C B(R), whence (2.6)
implies

sup ^(h) ^ sup^(/) < oo.
xn(XoxXo) L

Therefore ^ extends to H e 0(^; V) by Proposition 2.2.

Now (2.2) makes it clear that (wherever defined) thé function T] ^
h(x, y-}-r}e^) is a polynomial of degree less than ^(7); thé same must hold for
H as well. Proposition 2.3 therefore implies that H continues analytically to
F ç 0(B(R) x X). By uniqueness of analytic continuation, F|xoxXo = h.
One reads off irom (2.2) that (2.3), (2.4) are satisfied when x ç B(R) DXo,
y ç XQ, whence (2.3), (2.4) follow for ail x,y because XQ is dense in X.

Remark 2.5. — With F of Theorem 2.1 thé function F{x, y + ̂ ) is
a polynomial in $ e C of degree less than ^(7), for every x, y , 7. It is easy
to check that this property along with (2.3) and (2.4) uniquely détermines
FçO(B(R) xX,V).
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432 LÀSZLÔ LEMPERT

3. Expansions.

Our approach to approximations will be through expansions; thé
terms in thé expansions below will be indexed by pairs (Jfc, n), with k : Y —>
N U {0} a multiindex and n e N U {0}. To measure thé size of thé terms
asymptotically it will be convenient to introduce thé following notation.

Recall that 5i dénotes thé multiplicative semigroup of those a : F —>
[0,1) for which thé set {7 6 F : 0(7) > e} is finite for ail e > 0. Suppose for
each n e N U {0} we are given a set ICn of multiindices, /C = Un/Cn x {n};
and for each (k, n) ç K, we are given a number c^n ^ 0.

DEFINITION 3.1. — J f O ^ A ^ o o , w e shall write \ > (ckn)ïc resp.
A ^ (cfcn)/c to mean sup^ç^ Ckn^ < oo for ail n, o- e 5i, and

limsup sup {ckn^)1^ < X resp. ^ A, for ail a e 5i.
n fce/Cn

If some /Cn = 0, thé corresponding sup is understood to be -oo.
Below we shall drop référence to /C and just write A > resp. À > Ckn if A:
consists of ail pairs {k, n) for which Ckn is defined. This notion is natural in
thé study of power séries. For example, when F consists of a single élément,
so that multiindices can be identified with nonnegative integers, one can
check that thé power séries Y,aknXkyn converges in thé bidisc |a;| < 1/À,
\y\ < 1 precisely when A > [a^l. It is aiso possible to describe convergence
in other Reinhardt domains in terms of a relation A > c^, where Ckn is
\akn\ times an appropriate weight. Theorem 3.7 below will generalize this
observation, cf. aiso Proposition 5.1.

Returning to an arbitrary F, thé following ruies should be remem-
bered. Hère and later #k stands for thé cardinality ofthe set {7 : ̂ (7) -^ 0}.
Thus 0 ^ #k < oo.

PROPOSITION 3.2. — Suppose A < oo.

(a) A > (ckn)îc hoids precisely when p, t> (ckn)ïc for ail p. > A.

(b) J f A > (ckn)ic then for every a e 5i there is a number C such that
Ckn^ < ÇA71.

(c) J f A > (cfcn)/c, ^ > {dkn)îc aûd Q, f3 are positive numbers then

(^ ^ ^ f< A^/A if A > 0
(ckndkn)îc 1 < 0, if A = 0.

Hère A^oo^ is understood to mean oo if A > 0.
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HOLOMORPHIC APPROXIMATION 433

(d) q^Q^q71 ifq,Q>0.

Proof. — (a), (b), and (c) are straightforward conséquences of Déf-
inition 3.1. It will suffice to verify (d) when Q ^ 1. Choose a ç. S\, let
Fo = {7 e F : 0(7) ^ 1/Q}, and define r e Si by

^^(7), for 7 C r o
Tw 1 Ça(7), for 7 ^ Fo.

Then Q^^ ^ ÇI^IT^ ^ Ql^l and so limsup^sup^Ç^V^)1/71 ^ g.

Now consider a Banach space X with basis {e-y : 7 € F} satisfying
(1.2); thé action p of thé torus T = {t : Y —> S1} as in Section 2; and
a second, this time arbitrary Banach space Y with norm [| ||y and balls
By(P) = {y e Y : \\y\\Y < P}, 0 < P < oo. Thé action p induces an action
p of F x S1 on X x Y:

Pt^ y) = (Pt^ e27^), tçT, sçS\ x ç X ^ y ç Y .
Any / ç 0(B(R) x By(P); V) can be expanded in a séries

(3.1) /-f^Ân, A n = /> e-^^p^fdtds.
n^Ok JTXS1

Upon inspecting restrictions of /, fkn to subspaces spanned by finitely
many e^ 6 X and a single y € Y, one finds that fkn(x^ y) = aknÇy)^^ with
ûfcn € 0(y; Y) homogeneous of degree n; and aiso that thé séries ̂  ̂  /^^
converges to / on (B(R) OXo) x By(P), Xo denoting thé linear span of thé
basis vectors e/y. (3.1) will be called thé homonomial expansion of /, fkn
thé homonomial components. In général, a séries ̂  hkn(x^ y) == ̂  bknÇy)^
with ôfcn € 0(^5 ̂ ) homogeneous of degree n will be called a homonomial
séries. Our goal in this section is to estimate thé terms of homonomial
expansions. We start with a crude estimate:

THEOREM 3.3. — I f O < R ^ 6 < oo, thé homonomial components
fkn off e 0(B(R) x By(<$); V) satisfy

(3.2) oo > sup Wfcn), ^ ç ^ , P < oo.
BÇR)XBY(P)

Proof. — Recall from Section 1 that thé semigroup S'i acts on
X. Fix a € 5i. Thé set (TB(R) C B(R) being relatively compact by
Proposition 1.2, for any ^ e ̂  there is an e ç. (0,^) such that

sup ^(f) == A < oo.
aB(fi)xBy(e)
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This implies thé homonomial components m (3.1) satisfy

A ^ SUp Wkn) = ̂  SUp ^(An).
<7B(jR)xBy(e) B{R}xBv{€)

Hence ^sup^)xBy(P) Wfcn) ^ A(P/e)n by homogeneity, and (3.2)
indeed holds.

Thé estimate in Theorem 3.3 is not sharp. To describe thé size of
homonomial components more accurately we fix a subgroup G C F, and
consider oniy G invariant functions. Expansions of such functions can be
understood by comparing them with a certain séries A that generalizes
thé géométrie séries from finite dimensional analysis. In thé context of thé
space X = ^(F) and trivial G this function was first introduced in [Ll],
[L2]. Let

(3.3) Mk == sup \xk\ and
B(l)

(3.4) ^G(q.x) = ̂ M^I/M,, q € C, x e B(l),
k

where ^ indicates summation over those monomials ^ that are G
invariant. In plain English, k should satisfy k • t = 0 e 5'1 if t e G.
Approximation in thé spaces X = ^(F), with thé canonical basis, dépends
on thé following

THEOREM 3.4. — IfX = IP(T), m ^ p i s an integer, and G = {t e
T : mt = 0} then

(a) (3.4) converges uniformiy on compact subsets o f C x B ( l ) , and
AG; is continuons.

(b) For every r < 1 there is a q > 0 such that Ac(ç, •) is bounded on
B(r).

Proof. — We start by computing Mk. Dénote ̂  ^(7) by |Â;|, and
a^suming k ^ 0 let ^ = A:1/^!-1/^ a point in thé closed unit bail. Then
Mk ^ z^ = kk/p\k\~^/P. In fact, thé inequality between thé arithmetic
and géométrie means implies that Mk = kk/p\k\~\k^p', this holds aiso when
k = 0. Thus in thé spécial case p = m = 1 thé séries (3.4) agrées with thé
séries studied in [Ll], [L2], and this case of thé theorem is thé content of
[Ll], Théorème 2.1 and [L2], Lemma 4.1. Let us write A1 for thé function
AG corresponding to that case, and B^l) for thé unit bail in ^(F): thus
A1^) =^\q^k\xk\\k\\k\k-k is continuous on C x ^(l).
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For général p, m consider thé continuous map g : B(l) -> B1^!)
given by g(x)^) = \x(-r)\P, x ç B(l), 7 e F. With x e B(l) and
y = g ( x ) ç B l ( l )

AG(^) = ̂ M^I^n^F'^'^^ = ̂ {iQl^l^llfcl^Â;-^}7^
fc fc

where Ç = ç^/771; and thé latter séries is termwise dominated by thé séries

A1^)^)-1 ̂  IQI^VllÀ;!'^-^

Thus thé theorem follows from thé spécial case of A1.

Approximations not oniy in ^(F) but in other spaces aiso dépend on
thé existence of a subgroup G C T that satisfies (a), (b) of Theorem 3.4.
It turns out that (b) implies (a), which leads to thé following

DEFINITION 3.5. — We shâli sây that a subgroup G CT bridies thé
space X if for every r < 1 there is à q > 0 such that Ac(ç, •) is bounded
on B(r).

PROPOSITION 3.6. — If G bridies X then (3.4) converges uniformiy
on compact subsets ofC x B(l^), and AG? is continuons.

Proof. — Fix r ç (0,1) and choose qo > 0 so that AG^O,') is
bounded on B(r). For a finite Fo C F and Q ^ qo consider thé open
set

Q(ro,Q)={(g^)eCxX:M<Ç,| |^^(7)e^+(Q/go)^^(7)eJ<r}.
ro r\ro

Notice that Uro,Q^(Fo,Q) = C x B(r). If (q,x) e ^(Fo,Ç), define

y = Vx = ^^(7)e^ + (Q/qo) ̂  x(n)e^ ç B(r).
ro r\ro

Then (|ç|/ço)^|^| ^ (Q/ço)^01!^!, whence

AG(Ç^) ^ (Q/qo^^G^y)

shows AG is bounded on ^(F(),Ç). Proposition 3.6 now follows from [L2],
Propositions 2.1 and 4.2.

Returning to a général X, assume / ç 0(B(R) x B(P); V) is invariant
under a subgroup G C T:

(3.5) fÇptX, y) = f(x, y), tçG, x ç B(R), y e 5y(P).
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In this case thé homonomial components fkn are aiso G invariant, whence
(3.1) becomes a G invariant expansion

00 ___ 00

(3.6) f(x, y) - ̂  ̂  G/^, y) = ̂  ̂  ̂ (y)^.
n=0 fe n=0 k

Assuming G bridies X , a précise description of thé séries thus gotten is
available. Thé theorem below generalizes thé Cauchy-Hadamard formula,
to which it reduces when X = (0), Y = C.

THEOREM 3.7. — Suppose G C T bridies X.

(a) Thé homonomial components fkn of a G invariant f e 0(B(R) x
By(P);V) satisfy

(3.7) 1 > sup ^(fkn), '0 e ^, K C By(P) compact,
B(R)xK

and thé séries

(s-8) EE^»
n=0 fc

converges to f, uniformiy on compact subsets of B(R) x By(P).

(b) Conversely, if a^n € 0{Y\ V) are homogeneous of degree n, and
fkn(x,y) = dknWx1' satisfy (3.7) then (3.8) converges to some G invariant
h ç 0(B(R) x By(P);V), uniformiy on compacts. Thé homonomial
expansion ofh is (3.8).

Spécial cases of this theorem were proved in [R], [Ll], [L2]. In our
argument below we shall estimate homonomial terms fkn using

(3.9) Wkn^y)) ̂  {z^R-^ sup ^(An(^))/M^ ^ e ̂ ;
BW

this follows easily from (3.3).

Proof. — We shall assume R == P = 1, since thé substitution
(x, y) ̂  {Rx, Py) will reduce thé général case to this one.

(b) To prove uniform convergence on compacts it suffices to treat
compact sets of form L x K, L C B(1),K C By(l). Let a ç 5i
and Li C 5(1) compact such that a£i == £, cf. Proposition 1.2. Fix
q C (maxK ||î/[[y, 1) and ^ e ^. Then K / q C By(l), and

l>q>qn sup ^{fkn)= sup ^(/^),
B ( l ) x K / q B(l)xK
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by Proposition 3.2(c), (d), (3.7), and homogeneity. Hence by (a), (b) ofthe
same proposition there are C and A < 1 such that

^ SUp Wkn)<CXn.
B(l)xK

With an arbitrary x ç L, y € K, and z 6 L\ such that x = az we hâve
therefore

WfcnM) = ̂ (A,^)) ^ GA^I/A^,

G
by (3.9). Since by Proposition 3.6 thé séries ^^\n\zk\/Mk uniformiy

n k
converges for z ç Z/i, (3.8) is aiso uniformiy convergent on -L x K. Ils sum
/i is easily seen to be holomorphic (cf. Propositions 2.1, 2.2 of [L2] that deal
with thé case V = C), and G invariant. Upon computing thé intégrais in
(3.1) with f = h one obtains that (3.8) is indeed thé homonomial expansion
oîh.

(a) To verify (3.7) it can be assumed K is invariant under thé S'1

action y ^ e^^y. With a ç 61 fixed, A = sup ^(/) < °° since

aB{l)xK
aB(l) x K is relatively compact in B(l) x By(l) by Proposition 1.2. (3.1)
implies

A ^ SUp Wkn) = ̂  SUp ^(/fcn),
(rB(l)xK B(l)xK

whence (3.7) follows. Furthermore, by part (b) (3.8) converges to a holo-
morphic function /i, uniformiy on compact subsets of £?(!) x By(l). As
h and / agrée on thé dense set (B{1) H Xo) x By(l), they must agrée
everywhere.

COROLLARY 3.8. — A G invariant homonomial séries (3.8) is thé
homonomial expansion of a function f ç 0(B(R) x Y; V) if and oniy if

(3.10) 0> sup ^(îkn)
B{R)xK

for ail ^ e ̂  and K C Y compact.

Proof. — If (3.10) hoids then (3.7) hoids as well for ail P < oo,
whence Theorem 3.7(b) implies that (3.8) is indeed thé homonomial
expansion ofsome / € 0(B(R) x Y; V). Conversely, if (3.8) is thé expansion
of such an / then Theorem 3.7(a) implies (3.7) hoids for ail P < oo. Fix
q > 0 and replace K by K / q in (3.7) to obtain

1 > SUp ^(fkn) = Ç"71 SUp ^{fkn)
B ( R ) x K / q BÇR)xK
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by virtue of homogeneity. Hence q > sup^^Wfcn) for ail q > 0 and
(3.10) follows, cf. Proposition 3.2 (c,d,a).

4. Approximations.

Again, let X be a Banach space with basis satisfying (1.2); p thé
action of thé torus T, as in Section 2; and (Y, || ||y) another Banach space.

THEOREM 4.1. — If a subgroup G C T bridies X, and f e
0{B{R) x Y; V) is G invariant, then for any y? e v&, r < R, II < oo, and
e > 0 there is an h e 0(X x Y; V) such that (p(f - h) < e on B(r) x J5y(II).

Proof. — Let
00

(4.1) f{x^ y) = ̂  ̂  G/^,2/), x e B(JÎ), î/ e Y
71=0 fc

be thé homonomial expansion of /. With ^ , . . . ,e as in thé theorem,
0 e (1,-R/r) fixed, and Q > 1, ci > 0 to be determined later, for each
n = 0,1,... define

(4.2)
/C, = {k : sup <p(fkn) ̂  2-7^Ç-^^lfclel},

B(Jî)xBy(n)

ÎC==\JïCn x{n}, /i= ^ /^.
n (fc,n)e/c

To show that /i is holomorphic on X x Y, by Corollary 3.8 we need
to check

(4.3) 0 > ( sup ^(/^),) ,
VB(P)xJ< /^

for ail P < oo, '0 ç ^, and K C Y compact. In fact, by homogeneity, it
will suffice to show (4.3) for K C By(n). If need be, -0 can be replaced by
^ + (p to arrange that ^ ^ (p. In addition to thèse, we shall aiso assume, as
we may, P > R. (4.3) will be derived from thé following three estimâtes:

(4.4) 0> max ^(An),
ij\ri) X zv

(4.5) 2>(Q-^0W/ sup W,,)) =(c,^,
v B(JÎ)xBy(n) /^

(4.6) oo = 1. oo > Q^ sup Wkn) = dkn.
B(R)xByW
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that follow respectively from Corollary 3.8, from (4.2), and from Theo-
rem 3.3 and Proposition 3.2(c), (d). Choose a > 0 and f3 = a -h 1 so that
Qa/2 ̂  pj^ ̂ ^ (45) ̂  ç^ ^p^y

oc = 2-W > (C^<)K: = (Q^(P/R)2^ sup ^(A,))
v B(R)xBYW / ) c

and so
0=Ol/W2>(yQ#k{P/R)\k\ sup W,J)

v B(R)xK / îc

by (4.4) and Proposition 3.2(c). This latter implies (4.3); therefore h is
indeed entire.

Using (3.9) and (4.2) to estimate (p(f — h) we obtain for (a:, y) ç.
B(r) x By(n)

^(/(^ y) - h(x, y)) ̂  Y^ ^p(fkn(x, y))
Çk,n)<^JC

^ ci ̂  2-71 ̂  GQ-*k\xk\e^R-^/Mk = 26iAc?(l/Ç, ̂ /Jî).
n k

Fix Ç so large that Ac(l/Ç, •) is bounded on B{Or/R). Then

^(/ - h) ^ 26i sup Ac(l/Ç, •) < e
B{Qr/R)

on B{r) x By(II) as required, provided ci > 0 is small enough.

Recall that in Section 2 we associated with a function d : F —> N thé
group

(4.7) G^^/^)]/^^
r

THEOREM 4.2. — If for some d : F —^ N éhe group f4.7^ bridies
X, then for any f € 0(B(R)', V), y? e ^, r < .R, and e > 0 éhere is an
h e 0(X; V) such that (p{f - h) < e on B(r).

Proof. — By Theorem 2.1 there is an F e 0(B(R) x X\V), G
invariant in thé first variable, such that F{x^x) = f(x) for x € BÇR),
and by Theorem 4.1 there is an H ç 0(X x X; V) such that (p(F - H) < e
on B(r) x B(r). Hence h(x) = H ( x ^ x ) will do.
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5. Consummation.

Our goal hère is to construct for any Banach space X with a countable
unconditional basis a group that bridies X. To do so we shall hâve to
compare thé functions AG corresponding to différent Banach spaces; when
necessary, we shall write AG,X to indicate thé underlying space.

PROPOSITION 5.1. — Suppose that X is a finite dimensional Ba-
nach space with basis {e/y : 7 € F}, and (1.2) is satisfied. Then AG;(Ç, •) is
bounded on B(r) for any r < 1, q € C, and subgroup G CT.

Proof. — We may assume \q\ ^ 1. By homogeneity l^^l ^ M^r^l if
x ç B(r), so that

A^aO^I ̂ 1 = 1^1(1-r)-^!.
k

Now suppose X has a countable unconditional basis {e^ : 7 e N},
and (0.1) holds. If Fi C N and d : Fi -^ N, set

G(d) = [t : N -^ 51 | ̂ (7)^(7) = 0 for ail 7 e Fi} C T.

Observe that a monomial .r^ is G'(d) invariant precisely when ^(7) divides
/c(7) for ail 7 € Fi and ^(7) == 0 for 7 ^ Fi. Clearly if Fi C F2 and
d' : Fa —> N is a continuation of d then G(cî') C G(cQ, and AÇ(^/) ^ A^d).

PROPOSITION 5.2. — For any 6 : {1 , . . . ,7V - 1} —> N, r 6 (0,1),
and g € C

(a) AG(6)(Çî •) ^ bounded on B(r);

(b) g-iven e > 0 one can defîne a continuation 61 : { ! , . . . , N} -—^ N of
6 so that

(5.1) ^G^)(q^) ̂  AG(<Ç)(Ç^) +e, a: e B(r).

Proof. — Let TT : X —)• X dénote thé projection

7r(^^(7)^) = ^^(7)^.
7(=N 7<Ar

If a;^ is a G(6) invariant monomial then ^(7) = 0 for 7 ̂  A^. Hence

AG(<5),x(ç^) ^ AG'(<$),X(^^) ^ A{o},7rx(^7T^),
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and (a) follows from Proposition 5.1. Next, for any m ç N define a
continuation 6m '' {1, • . . , N } —^ N of 6 by 6m(N) = m. Since any G(6m)
invariant monomial is of form xk = x^xÇN)3771, with x^ G(ô) invariant and
J € N U { O } ,
(5.2) A^)(^)-A^)(^K E ^IçWl/M,.

fe(7V)^m

Thé right hand side hère is dominated by tail sums of thé séries
(5.3) ^ Îçl̂ l/M, = A^)(ç^) = A^)(g,^),

A;

which converges when x € -S(l) again by Proposition 5.1. Since finite
dimensional power séries converge locally uniformiy within their domain
of convergence, we can choose m so large that

^ ^I^Vl/M^e, yCTrBÇr).
k{N}^m

Set 6 ' = 6m\ then (5.2), (5.3) imply (5.1).

THEOREM 5.3. — If X is a, Banach space with countable uncondi-
tional basis {e^ : 7 6 N} and (0.1) is satisfied then there is a function
d : N -^ N such that G(d) bridies X.

Proof. — Fix an increasing séquence 0 < r^v —> 1, and using
Proposition 5.2(b) inductively construct d : N —> N so that (IN =
d |{ l , . . . , 7V} satisfy
(5.4) A(,(^)(I^) ^ A^(^)(I^) + 2-^, .r e B(r^).

We daim that G(d) bridies X. Indeed, let r < 1 and fix N so that
r ^ r^v. Suppose x ç: B(r) has oniy finitely many nonzero coordinates, say
x^) = 0 if 7 > M > N. Then
(5.5)

M-l

A^)(l,a0= A^(^)(I^) ^ A^(^)(l,a:)+ ̂  2-^ 1+sup AC?(^)(I, •)
N ^^

by (5.4). Thé partial sums ofAc'^) being continuous functions, (5.5) implies
SUp AG'(d)(l, •) ^ 1 + SUp AG'(^)(I, •),
B(r) B(r)

and this latter is finite according to Proposition 5.2(a), q.e.d.

Theorem 0.1 now follows from Theorem 4.2, because Theorems 3.4
resp. 5.3 provide thé group G of form (4.7) that bridies X.
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