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LINEAR HAMILTONIAN CIRCLE ACTIONS
THAT GENERATE MINIMAL HILBERT BASES

by Agiist Sverrir EGILSSON

To my grandfather, Jon Palsson,
on his ninetieth birthday on April 4, 1999.

1. Introduction.

Consider the orbit space R^/S1, of a linear circle action with weights
n i , . . . , n f c . It nas a natural Poisson structure defined on the algebra of
invariant smooth functions. The algebra C^^R2^ is "generated" by a
finite number of invariant polynomials. The polynomial generators define
an embedding of the singular Poisson variety M^/S1 into a manifold M.
The Poisson structure on R^/S1 and the embedding into M induce a
collection of almost Poisson^ structures on M.

Here we address the question, asked by Cushman and Weinstein,
whether among the induced almost Poisson structures there exists a Poisson
structure. In [4] it is shown that this is not the case for the linear circle
action §1 x M6 —> R6 with weights 1,1, ±2. It is also proved that the same
applies to the reduced orbit space at zero in the indefinite Hamiltonian case.
Now we prove for a large class of actions and almost Poisson embeddings
that among the induced almost Poisson structures there are no Poisson
structures.

Keywords: Singular Poisson structures — Reduction — Hamiltonian actions.
Math. classification: 53D17 - 53D20 - 57S15.
^ Denned in Section 6.
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For any collection of relative prime weights ni , . . . ,n^ of the linear
circle action we can write

{dl•"dk)k~l\n^•"nk

(read divides) where d, is the greatest common divisor of all the weights
except the %-th one.

We look at the case when equality, modulo sign, holds. In particular
for k = 2 we always have d^ = ±n^n^ and if all the weights are ±1 then
equality holds as well. For these two cases it is known, see Examples 1 and
2, that one can extend the Poisson structure on R^/S1 to all of M. On
the other hand we prove here that if

( d ^ ' - d k ) ^ 1 =±n^-rik

and at least three of the numbers d i , . . . , dk are not one then the Poisson
structure on the orbit space cannot be extended to M nor can the structure
on the reduced orbit space be extended.

Consider the action with weights ni == 1, n^ = 2 and 713 = 2. The
action satisfies the first part of the condition above, i.e.,

(d-id^d^)2 = n\n^n^

since di = 2, d^ = 1 and ^3 = 1. But only one of the integers di, ^2
and ^3 is greater than one, namely di. It is shown in Example 3 that the
Poisson structure on the orbit space R6/^1 of the action can be extended
to a Poisson structure on M. The same is true for the derived indefinite
Hamiltonian case.

In Section 3 we show that the equation (d\" • d^'1 = ±ni • • • rik
is equivalent to the existence of a Hilbert basis with k2 elements which
is the minimal size possible for a Hilbert basis, assuming k is fixed. In
Section 6 we develop the methods needed to generalize results obtained
for positive weights to the indefinite case. Section 7 contains the proof
of our main theorem, stated in Section 5. In order to prove Theorem 1
we first consider polynomial almost Poisson structures and then extend
our results to smooth structures by approximating the smooth structures
with polynomial and formal almost Poisson structures. Finally Section 8
contains examples of induced Poisson structures on M.
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LINEAR HAMILTONIAN ACTIONS 287

2. Preliminaries.

The linear Hamiltonian circle action with weights HI, . . . , rik is defined
to be the U(l) action on R2^ given by

^ (^1^1,... .Xk,yk) = (^(^z/i),... ̂ ^{x^yk))

for a positive integer k and nonzero integers ni,.. . ,^. The set of real
valued invariant polynomials for the action is denoted by ̂ [x.y^^ and
it is a finitely generated R-algebra, see e.g. [16]. A set of generators for
the algebra is called a Hilbert basis for the action. Consider the space R2^
as Ck, U(Y) as S1, and introduce, following [10], the complex coordinates
Ui = Xi + iyi and Vz = xi - i^. Then the action above is written

Z ^ (Hi, . . . , Uk) = (^HI, . . . , Z^Uk).

The action is symplectic and the standard Poisson bracket on R2^
induces a Poisson algebra {Jc on C[^i^i,... ,Uk,Vkf1 given by the
complex bivectorfield

o V^ 9 9

Qc =-2l2^^—A^—'
^ QUn 9Vn

^e., {f,g}c = {f^g}^. = Qc{df A dg), for a detailed discussion see [3].
Through the invariant smooth functions on C^ the orbit space C^/S1

inherits a singular Poisson structure and by restrictions to the reduced
orbit space it also becomes a Poisson variety , see [1] for details.

The algebra C^i^i,... .Uk.Vk}^ of invariant polynomials in the
variables HI and v^ is isomorphic to the semigroup ring C[Sn] where
Sn = Sni,...,^ is the semigroup of all solutions (a,b) € N^ x N^ to the
equation

ai^i + • • • + dkrik = 61^1 + • • • + bkrik.

The isomorphism
C[Sn}^C[u^f

is determined by
^(^)^^i^i...^^

A set of generators for the semigroup Sn is mapped by the above isomor-
phism to a complex Hilbert basis for the action.

When all the weights n i , . . . , n f c are equal to one the semigroup
Sn has a simple symmetric structure. In that case the invariant complex
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polynomials under the action form the algebra C[i^]i^j^/.;. In particular
the circle action has a Hilbert basis with k2 elements. In other words this
Hilbert basis for the action is minimal in size among all Hilbert bases for
linear Hamiltonian circle actions with k nonzero weights. In this paper we
mainly consider linear Hamiltonian circle actions with k nonzero weights
having a Hilbert basis with k2 elements. Weights that satisfy this minimal
condition are for example n\ = l,n2 = 2 and 723 = 2 or n\ = 6,722 = 10
and 7^3 = 15. Also any action with two nonzero weights n\^n^ will work.
An example where we cannot find a Hilbert basis with k2 elements is
n\ = 1, ri2 = 1 and 723 = 2.

3. Observations.

Here we look at some of the properties of the weights that will be
useful later. Let n i , . . . , n j f c be nonzero relative prime^ integers. Define
d i , . . . , d f e by

di = gcd(ni,. . . ,n^-i, r^+i, . . . ,rik)

and the integers o- i , . . . , Ok € {—1,1} by Oi = sign(r^) for % = 1,.. . , k.

LEMMA 1. — An element r € Z^ is in the integer-hyperplane

n-L = {r e^ : r-ini + • • • + r^k = 0}

iff there exist integers ^i,...,^ such that a\i\ + • • • + o~ktk = 0 and
UiTi = (Jid\ • - • dkti for i = 1 , . . . , k.

Proof. — Assume that r e n±. It follows from the definition of
the integers c? i , . . . , c^-i, c^+i , . . . , dk that they all divide n^. Since n^ €
n\L-\-' • •+^-iZ+^+iZ+- • •+nfcZ = c^Z, we obtain that di divides n^.
The integers d\,..., dk are relative primes two-and-two since n\,..., n^ are
relative primes. We can therefore define the integers t^, by Oid\ • ' • dkti =
niTi, satisfying the above conditions. D

Another point we need to establish is how to find generators for the
semigroup Sn- To that end, we introduce ordering on the lattice N^ x N^
as follows:

(a, b) < (a', b') iff a, < a\ and bi ^ b\ for % = 1,. . . , k.

(2) gcd (m, . . . , n fc )= l .
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A set of generators for the semigroup Sn is obtained by taking all the
minimal elements in Sn \0 with respect to the above ordering. In particular
a set of minimal elements, and thus generators, for <Si,...,i consists of the
elements e, + e^ for ij = 1 , . . . , A ; where e i , . . . ,6^ ,61 , . . ' . .e^ denotes the
usual basis for Z^ x Z^. Similarly, for S^ it follows that we need at least
k2 generators.

The morphism n1- —^ a1- between the integer-hyperplanes n1- and
o- = {t e Z : 0-1^1 + • • • + (Jktk = 0} which maps r to t satisfying
niVi = aid-t' • • dkti for i = 1,.... k is denoted by i.

LEMMA 2. — Assume that k > 1 and HI, . . . , n^ are nonzero relative
prime integers. Then the following is equivalent:

i) The morphism L : n1- —^ a1- is an isomorphism.

ii) HI = cr.di • • • d,-id,+i • • . dj, for i = 1, . . . , k.

in) The linear Hamiltonian circle action with weights HI, . . . , n^ has
a Hilbert basis of minimal size.

Proof. — First we prove that i) and ii) are equivalent. Assume that
L is an isomorphism. Let d = di • • • dj,. The inverse b~1 maps ( ^ i , . . . , 4) to
(n^-^fc) with TI = ti<7id/ni and since we can always find a t e a1-
with ii = 1 for any fixed %, we conclude that HI divides d. Now, let
qi = ni/d-t • • •d^- idz+i • • •dk and observe that it is an integer. We also
conclude that gcd(g,,d,) = 1 from the following calculations: gcd(g,,d,) =
gcd(^di •••d,_id,+i - - d k . d i ) = gcd(n,,d,) = gcd(ni,... ,r^) = 1. But
di/qi = d/ni is an integer by the above. Hence g, = ±1. On the other hand
if the k equations, n, = cr.di • • • d,-id,+i • " d k , hold then we can construct
the inverse of L directly.

Next we prove that iii) is equivalent to i) and ii). But first define a
bijection m : N^ x N^ -^ N^ x Z^ by m(a, b) = (mi , . . . , m^) x (a - b) where
77^ = min{a^,^}. Then the composition

<? 771^ N^ v 'n1- idxl ^ ̂  ,,-L m-l 0^ni,.. . ,nfe ——^ ^ X n ——> ^ X (T ——> ba^,...,ak

defines an injective map Sn —> Sa. The restrictions m : Sn —^ N^ x n^ and
m~1 : N^ x a1- -^ Sa used in the diagram are both bijective.

Now assume that i) and ii) hold. Also assume for simplicity that
o-i = • ' • = ok = 1. Using condition i) and the formula in ii) we calculate
that <-1^) = (di^i , . . . „ dktk). This allows us to calculate C[Sn] directly as

C[Sn] = C^i^i, . . . . UkVk, U^vf}^.
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In other words C[Sn} can be generated by k2 elements.

Now assume that iii) holds, i.e., that there exists a Hilbert basis with
k2 generators for C[5^]. Let m be the ideal in C[Sn] of elements that vanish
at the origin. The minimal elements in Sn \ 0 determine a C vector spaces
basis for m/m2. On the other hand since C[Sn} has a Hilbert basis with k2

elements, which we may assume that are in m, then those generate m/m2

also. From this we conclude that the semigroup Sn can be generated by
k2 minimal elements. Without loss of generality we will now assume that
all the weights are positive. The k2 minimal generators in §^ \ 0 must be
elements

rij rii____-L___g. j_ ____"___p.
gcd(n,,n^) ' gcd(n,,7^-) r

In order to show that either i) or ii) holds we proceed by induction
on the number of weights k. For k = 2 condition ii) holds for any choice of
relative prime weights n\ and 77,2 •

Now assume that k > 2 and that iii) implies i) and ii) for any choice
of k - 1 relative prime weights. Write n, = q^ • • • c^-i^+i • • • dk where
qi is a positive integer. By reordering the weights we can assume that
Qi < Q2 < • • • <: Qk- The equation,

^ Z + ' - . + n f c Z = diZ,

implies that there must be a minimal element (a, b) € Sn \ 0 with ai = di
and 61 = 0. Since we just listed, above, all the minimal elements we conclude
that there must be a j > 1 such that

a! ——~T(—————T-gcd(ni,^)

The right hand side of this equation is just <^di/gcd(gi, qj) and therefore qj
must divide 91, but we assumed that gi < 92 < qj so actually qi = q^, since
j > 1. Now let n' = (n^...,n^) with each n\ = n,/di. We canonically
consider Sn' a sub-semigroup of Sn and it follows immediately that the
weights n^...,n^ satisfy condition iii) of the lemma, since n i , . . . , n f c
satisfy condition iii). To verify this, notice that there are (k - I)2 minimal
elements listed above that are both in Sn and Sn' and these form a
semigroup basis for S n ' -

By induction we have that condition ii) is satisfied by the weights
n'^..., y^. So let ^ = gcd(n2,... , ̂ -1^+1,..., <). For i > 2, since
9i = 92^ we calculate that

d', = gcd(c?id,, q^di,.... qi-id^q^di,.... g^z).
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The right hand side is equal to gcd(ni,.. . , n^-i, n^-i- i , . . . , rik) or di since
rij and dj are relative primes and so are any two of the numbers d\,..., dk.
We have just shown that d\ = di for i > 2. On the other hand we need to
calculate d^ separately, i.e., d^ = gcd(n3,..., n'^) = d^ gcd(^3,..., ̂ ). By
the induction hypothesis the weights n^ , . . . ,n^ satisfy condition ii), i.e.,

^=44-'-<-i<+r"4.
for i = 2 we calculate that n^ = q-zd^... d^ so 92 = I? for % > 2 we calculate
r^ = qid-2 . . . d,-id,+i... dk = (qi/ gcd(g3,.... qk))d^... d^d^ ... d'^.
Therefore qi/ gcd(^3,..., qk) = 1 for i > 2 which implies that 93 = • • • = g^.
In other words we have shown that q\ = q^ = 1 and that qs = • • • = qk ==«' Q'
Now we demonstrate that q = 1. If q > 1 then,

die-t + (9 - 1)^2^2 4- ^363,

is a minimal element in 5n\0 but not among the list of k2 minimal elements
above. Therefore we must have that q = 1. By induction we have shown
that q\ = - • - = = qjc = 1 which is just condition ii) when all the weights are
positive. The other cases follow immediately. This completes the proof of
Lemma 2. D

4. The reduced orbit space.

Marsden and Weinstein in [7] define, for a Hamiltonian action of a Lie
group G on a symplectic manifold (M, u) with an equivariant momentum
map J, the reduced orbit space M^, for a value ^ in the dual of the
Lie algebra of G. The reduced orbit space M^ is defined as the quotient
space J~l(p,)/G^ where Gp, is the isotropy group of {JL with respect to the
coadjoint action of G. F'or weakly regular values p, of J, if G^ acts freely and
properly on the manifold J"1^), Mp, is a manifold and there is a unique
symplectic structure on M^ which lifts to i^uj where i^ is the inclusion map
^./-^-^M.

The orbit space M/G is assigned a smooth structure G°°(M/G) by
the G-invariant functions on M and M/G inherits a Poisson bracket from
M making M/G a Poisson variety. When p, € J(M) is not a weakly
regular value the reduced orbit space M^ has a smooth structure defined
by restricting functions in G°°(M/G) to J-l(/^). In [1] it is shown how the
space M^ inherits, by restriction, the structure of a Poisson variety from
M/G. For a compact Lie group G, Sjamaar and Lerman show in [15] that

TOME 50 (2000), FASCICULE 1
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the reduced orbit space MQ is a union of symplectic manifolds and moreover
a stratified symplectic space. Their results are then further extended in [2]
by Bates and Lerman.

For the linear Hamiltonian circle action with weights n\,..., n^ a
momentum map J is given by

1 k

J=^^{x2,-}-y2).

5. Embeddings and relations.

The orbit space R^/S^ of the linear Hamiltonian circle action, has
a smooth structure, as discussed above, C^R^/S1), defined as the set of
invariant smooth functions on the phase space R2^,

C^(R2k/Sl)=COO(R2kfl.

A Hilbert embedding, F, corresponding to a Hilbert basis / i , . . . , /m for
the action is defined by

771 7n)2A; /<^1 . TTD^. ZT' / f f \b : K /^> —^ K ; f = (ji,.... j^n).

It follows from a theorem by Schwarz, [13], that

F* : C00^) -^ C^R^/S1),

where F* is the pullback of jF, i.e., F * ( g ) = g o F, is surjective and we
have, see [9], that F : R^/S1 —^ R91 is a proper embedding.

The kernel of the pullback map, 7^ = F*"1^), is called the ideal of
relations and accordingly elements in 7^ are called relations.

In Section 3 we used minimal elements among the nonzero elements
in Sn to determine a complex Hilbert basis for the action. The relationship
between complex and real Hilbert bases and in general the transition back
and forth between the real and the complex description is discussed in
details in [3].

Assume that the weights n i , . . . , n f c are positive and satisfy the
conditions in Lemma 2. A complex Hilbert basis is then given by the k2

elements 14^1,... ^UkVk and u^v-J for i ̂  j. A real Hilbert basis in this
case is given by the k2 elements x\ + y^..., x^ + y^ and Re(a^ + iyi)^ (xj —
iyjY3, Im(^ + iy^^Xj - iyj)^ for i < j.

ANNALES DE L'lNSTITUT FOURIER



LINEAR HAMILTONIAN ACTIONS 293

The corresponding Hilbert embedding is determined by
F : C^/S1 -. R^2; (^) ̂  (^... ̂ ,) ^ (n^)^,

Its pullback restricts to complex polynomials and defines an algebra mor-
phism, 7-n, onto the invariant complex polynomials, i.e.,

rn: c^2] ̂  c[Sn}.
In this context the usual basis for Z^2 is denoted by {e, : 1 ̂  ij < k}
and the above epimorphism Tn is derived from the map N^2 -> 6^ given by

en ̂  Ci + e, and e^- i-̂  c^ + djej ifi^j
which is also denoted by Tn.

There exists a unique functional^3) J : R^ —, R satisfying
J = J o F

and F maps the reduced orbit space J-^OVS1 into the hyperplane
VJ=J-l(0)cRk\

The smooth structure on the reduced orbit space J-^OVS1 is obtained,
see [I], by restricting the invariant functions to ^(O), and the algebra
C^J-^OVS1) satisfies,

G00^-1^)/^) = (rj oFrc°°(Vj)\j-^
where rj is the linear projection

77 : R^ -^ Vj
onto Vj along the vector

1 k

^ = ̂ ^riieu.

Eventually we will prove the following theorem.

THEOREM 1. — Let §1 x C^ -^ C^ be a linear Hamiltonian circle
action with relative prime weights ni,...,^. Assume that the action
generates a Hilbert basis of minimal size. Denote the greatest common
divisor of all the weights except n, by d,. Assume further that at least
three of the numbers di , . . . ,<4 are not one. Then the Poisson structure
on the singular orbit space Ck/S\ embedded into R^ by the Hilbert
embedding, cannot be extended to R^. Furthermore for the action with
indefinite Hamiltonian the Poisson structure on the reduced orbit space
cannot either be extended to the hyperplane Vj.

<3) Remember that J = ̂  jn,^^.
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6. Tools of the trade.

For a detailed discussion about the material contained in this section
see [3], in particular Chapter 7 therein.

Let HI, . . . , rik be relative prime weights. Before we consider the action
with weights ni, . . . ,?^ we consider the linear Hamiltonian circle action
with positive weights |ni|,... Jnfcl- Assume that \F\ : R2^ —> R^ is a
Hilbert embedding corresponding to a Hilbert basis derived from a set of
minimal generators for the semigroup S\n\ for the positive weights. Denote
as before the sign of ni by 01. Let |rd be the (complex) pullback of |F|.
The minimal generators for S\n\ are elements of the form e\ 4- e i , . . . , e^ +
~^ki S\i /i 5 • • • ? /TV? / N where /i, . . . , f^ are invariant monomials in S\n\- So,
in particular ^l = k + 27V. The conjugate operator used here (in /) just
interchanges ei and e^. This allows us to describe the pullback |rc| as the
morphism determined by

Li ̂  UzVi, Zj ̂  fj and Wj i-> fp

for a collection of coordinates Z / i , . . . , L^, Zi, W - \ _ ^ . . . , Z^^ WN on the am-
bient space. Denote the real ^-dimensional vector space with the above
coordinate functionals L, Z and W by Vc- The algebra of multivector fields
in the variables L, Z and W with formal (power series) coefficients is de-
noted by ^V*[[yc]]. Define

^{L^l^^a-l^-^

by the formula
, ,a TT .^gn-, I^K^) .^Sv, kc^)
a;(7)= 11 i 3 ' i 3

{j:a,=-l}

and use uj^ to define an isomorphism

<:C0^*[[Vc]]^C0^*[[yc]],
by the formulas

• Ls ̂  ̂ Ls^^ zt ̂  ^Zt)^ and wt ̂  ̂ w^t
a i a 9 i Q ^ a i a

9 ~QTs ^ ;/^ QLs ' 9Zt ^ ^,) Qz^ ^^ ^w,) Qw^'

The k + 27V independent functionals L, Z and W on Vc have "real"
counterparts. Assume that L i , . . . , L^, -Ri, J i , . . . , J?^v, IN are also A; + 27V
independent functionals on R^2^ and denote the k -h 27V dimensional real
vector space with those new coordinate functionals by V. We define the
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coordinate functionals L,R and I such that the pullback, |r|, of the real
Hilbert embedding \F\ is given by

|T|(L,) = x] + y^ \r\(R,) = Re(/,) and |r|(J,) = Im(/,).

Using the above define a C-algebra isomorphism

K:C®^*[[V]]-^C(g)A'*[[Vc]]
by the formulas

. L, ̂  L,, Rt ̂  \{Zt + Wt) and h ̂  ^(Zf - Wt)

• -ST. ̂  aib 1/k ̂  tik + 9W-. &nd ̂  " ̂  - ̂ )-
The inverse of ^ is determined by

• Ls ̂  Ls, Zt ̂  Rt + Lit and Wf ̂  Rt - tit

• ̂  - ̂  ̂  - ̂  - ̂ ) and ak - 5(9fe +^)-
Finally we define the real counterpart of ̂  by

^ = K,-1 0^ OK.

The Schouten-Nijenhuis, see [II], [12], bracket for multivector fields
on a smooth manifold M

[,] : ̂ *(M) x ^*(M) -^ ;r(M)
is the unique bilinear extension of the Lie derivative satisfying

• [ / , ^ ]=Oi f / , ^e^° (M) ,

• [X,/] = X(f) and [X,Y] = Lx(Y) iff € ^°(M) andX.y e ^^M),

• [X,Y/\Z]= [X, Y] A Z + (-l)^^+^y A [X, Z] and

• [X,Y] = (-1)^[Y;X] i f X e ^(M), Y € ^(M) and Z e ̂ (M).

The Schouten-Nijenhuis bracket can canonically be considered a
formal operator on ^[[^l] and '^"[[Vc]] as well. The reason we consider the
Schouten-Nijenhuis bracket here is because of its relationship with Poisson
brackets.

A skew-symmetric bivectorfield II 6 ̂ (M) defines a skew-symmetric
bilinear bracket

[Jn : (—(M) x C^M) - ̂ (M) by L/^Jn = W A dg)

satisfying Leibniz identity^, and vice versa. A skew-symmetric bilinear
bracket on C°°(M) satisfying Leibniz identity is referred to as an almost

(4) [f9,h!=f[g,h^[f,h}g.

TOME 50 (2000), FASCICULE 1
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Poisson bracket or structure. If additionally the bracket satisfies Jacobi
identity ̂ 5) then it is a Poisson bracket. We often refer to the bivectorfield
as an almost Poisson structure instead of the bracket. The reader is referred
to [14] for a treatment of (almost) Poisson structures.

Using the Schouten-Nijenhuis bracket [,] there is the following char-
acterization of Poisson brackets, see [5], [11]. For II e ̂ (M) the condition

[H ,H]=O
is equivalent to { , } = ^ J n being a Poisson bracket. Accordingly we call
a bivectorfield II Poisson if [II, II] = 0. The standard Poisson structure on
R2^ is determined by the bivectorfield

9 9 9 9
Q = ̂ — A —— + • • • + -^— A ——.dx^ c^i 9xk oyk

Let II be a bivectorfield on V. A smooth map G : R2^ —^ V is an
almost Poisson morphism with respect to the almost Poisson bracket |_ ,Jn
on V and the Poisson bracket { , } = |_ , J^ on R2^ i.e., {/ o G,h o G} =
LA^Jn 0 G for smooth functions f,h on V, if and only if g and 11 are
G-related. In other words the formula,

a, o Q = n o G,
is equivalent to G being compatible with the brackets \_,\g and [Jn-

A Hilbert embedding F for the action with weights n i , . . . , n^ is given
by

F = \F\ o ̂  where ^a : R2^ ^2k

is defined by the formula

/^i^i\ / x^,a^\
X2,V2 X2^2V2

\Xk,Vk/ \Xk^kVk/

Notice, that the Hilbert embedding F also corresponds to a Hilbert
basis derived from a minimal set of generators for the semigroup Sn and
that given such a Hilbert embedding F we can define the above |F| by
\F\=Fo^a-l.

(5) LL/^UJ+LL^UJ+1^/^-0.
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LEMMA 3. — Let S1 x R2^ -^ R2^ be a linear Hamiltonian circle
action with relative prime weights.

i) A bivectorfield II € ^[[V]] is Poisson if and only if 7/̂ (11) is a
Poisson bivectorfield.

ii) Let n e ^[[V]] be a bivectorfield and F : R^ -^ V be a Hilbert
embedding, F = \F\o^a, derived from a set of minimal generators for the
semigroup Sn' Then Q and n are \F\ -related if and only ifg and ^(n) are
F-related.

iii) A polynomial R is an \F\ relation if and only if ̂ {R) is an F
relation.

Proof (sketch). — The isomorphism ^a restricts to a map C 0
^[V] -^ C 0 ^*[V] between the multivector fields with polynomial
coefficients. According to Lemma 4 in [3] this restriction is a Schouten-
Nijenhuis morphism. It follows immediately that the same is true for the
multivector fields with formal coefficients. For a bivectorfield II in ^[[V^]]
we conclude that [II, II] = 0 iff [^(II),^!!)] = 0 which confirms the
first part of the lemma. The second part of the lemma also follows from a
similar statement, Lemma 3 in [3], about multivector fields with polynomial
coefficients and from the existence of bivector fields with polynomial
coefficients which are F (or \F\) related to Q. Finally the third part is
just Lemma 5 in [3]. D

7. Poisson algebras.

As explained earlier, the algebra (C[Sn], { , }c) is a Poisson algebra
with the Poisson structure, { , }c, derived from the usual Poisson structure
on R2^. When n = (o-i , . . . ,0-^) with each a, = ±1 or when k <, 2 then
there exists a natural Poisson structure on the algebra CjN^2] such that the
above^ morphism Tn : CfN^2] —^ C[Sn] is a Poisson morphism. For the
first case n = (o-i , . . . ,0^) the Poisson structure on Cp^ ] can be chosen
to be linear. If we consider the field of rational invariant functions C{Sn)
instead of C[Sn} and consider a morphism r : C^N^) —^ C(Sn) defined
similarly, r^X^) = ji, from a minimal Hilbert basis /i , . . . , /?n then one
can always choose a Poisson structure on C^N^) such that r is a Poisson
morphism for any weights n\,..., rik.

(6) See Section 5.
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Given a Hilbert basis / i , . . . , /<n we can define an almost Poisson
bracket |_, J on CIN^] compatible with the Poisson structure on C[Sn] under
the morphism r as follows: Start by defining^7) [X^.X^} e C[^} such
that rd^SX^-J) = {fi,fj}c for 1 ̂  i < j < 9Z Then extend [J to all
the polynomials in Cp^] by requiring [J to be bilinear, skew-symmetric
and satisfy Leibniz identity.

Assume that the weights HI, . . . , rik satisfy the conditions of Lemma 2.
Let Tn : Cp^2] —> C[Sn] be the pullback of a Hilbert embedding derived
from a set of minimal generators for the semigroup Sn as before.

For each element t 6 Sn define a C-linear function

/^qN^-^qN^r^^x5^ ^ c.x8.
S Tn(s)==t

In other words ft(r) contains only the monomial terms ofr that are above t.

It is straightforward to describe the Poisson structure on C[6n]. For
elements a, b € Sn, the Poisson bracket {Xa,Xb}c is given by the simple
formula,

k

[X^X^ = -2^(aA -aW^-^^,
i

where we have written a = a\e\ + d\e\ + • • • + a^fe + 'dk'^k ^ ̂ 2k and are
using a similar expression for b.

LEMMA 4. — Assume, like above, that the linear Hamiltonian circle
action with weights n\,..., rik for k > 2 generates a Hilbert basis of minimal
size and that at least three of the constants d\,..., dk are not equal to one.
Let [J be any choice of an almost Poisson structure on CjN^ ] compatible
with the Poisson structure on C[Sn} under Tn. Then [J does not satisfy
Jacobi identity.

Proof. — By Lemma 3 we can assume that all the weights are
positive, without loss of generality. By re-ordering the weights we can also
assume that di, d^ and ds are all greater than one. Consider the polynomial

z = LLx612,^621],^631] + LLX^.X^J.X^J + LLx631,^612^21],
we will show that for,

t == (di - 2)(ei +e i )+ ^2(^2 +62) + d^ + d\~e\,

(7) r is surjective.
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the image of Z under /( is independent of the choice of the almost Poisson
bracket and is given by

ftZ = -4d^i - l)^1-2^11^2622^631 - X621^632).

Jacobi identity is thus not satisfied by [_, J .

Start by establishing the notation. Let A = X612, B = X621, C =
X631, D = X632 and Li = X611, L^ = X622. The bracket |_,J satisfies the
following equations:

[A,B\ = -2.Lf1-1^2-1 (d^2 - djLi) + RA,B^
LB, C\ = RB^C. [C, A\ = 2^Lfl-lD + Rc^
[D,B\ =2id^2-lC+RD,B. [L^C\ =-2^iC+^,c,
[L^C\ =RL^C. [Li^B\ = -2^i5+^,B,

where we have written RA,B , RB,C, RC,A, RD,B, RL^.C, RL^^C and RL^B
for a choice of relations, i.e., elements in T^n = ker(r^). It is possible to
write the bracket [,J in this way for these values since for two different
brackets [,Ji and [Js we always have that [f,g\i and [f,g^2 differ by a
relation, i.e., Tn[[f,g\i - LA^b) = {rn{f),rn(g)}c - {Tn(/),Tn(p)}c = 0.
Before calculating ftZ we need to understand better properties of elements
in the ideal of relations T^n = ker(Tyi). Now we list some of these properties
and their consequences for the problem at hand.

A relation contains no linear part. This follows from the observa-
tion that the k2 minimal generators for C[Sn] are linearly independent
irreducible elements in C[6n]. Using this we can simplify ft\\_A,B\,C\,
ft \_[B, C\, AJ and ft [\C, A\, B\ as follows:

i) MLA,BJ,GJ =-MUdl-l)Ld,l-2LpC+ft[RA^B.C\^

ii) ft\\_B^C\^A\=ft[RB^.A\ and

iii) ft\\C,A\^B\ =4^(dl-l)Lf l-2BD+/,^c,A^J.

If W is a non-constant monomial term in a relation R then W is
divisible by XY where X and Y are two different monomials from the
collection V == {X^1 6 1 1 , . . . , X^^, X^ : i ̂  j}. We will prove this below,
but first use it to show that

WQ\=0
for any relation R and Q e {A, B, C}.

Assume, for a moment, that ft[R^Q\ 7^ 0 then there exists a non-
constant monomial term W in R such that /< [W, Q\ ̂  0. Write W = FGX
where F and G are two different monomials from V.
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By direct calculations, using Leibniz identity, we obtain that

[FGX, Q\ = FG [X, Q\ + FX LG, Q\ + GX [F, QJ.

Observe that any monomial which contains the product of three elements
in T> is in the kernel of ft. Therefore adding a relation to [X, QJ, [G^ QJ
or \_F^ Q\ will not change the outcome for ft \FGX^ Q\.

Part I: Here we verify that

ftFG[X^Q\=0.

Assume this is not the case, i.e., ftFG[_X^Q\ 7^ 0. Since |_,J extends the
almost Poisson structure on IR2^ we have that

Tn[X,Q\ = {x,q}c where x = Tn{X) and q = 7n(Q).

By considering that Tn(FG) must divide t one concludes that the only
choice for Tn{FG) is d^{e^ +62) + ̂ 363 + diei. On the other hand the poly-
nomial {x, q}c is an invariant say, {x, q} = c\m\ + • • • + Cprrip for different
invariant monomials m i , . . . , nip and each Cz nonzero. If we lift each of these
monomials to monomials Mi, . . . , Mp respectively, i.e., Tn(Mi) = mi, then
we obtain an expression for \_X^ Q\ as

[X, Q\ = ciMi 4- • • • + CpMp + R

where R is a relation. We have already remarked above that ignoring R will
not effect ftFG\X^Q\. But from the definition of the Poisson structure
on C[5yi] it is immediate that each of the terms mi , . . . ,771^ contains at
least one of the monomials di^i, d^^^ d^e^^ d\e\^ ^363 or d\e\ since
q = Tn(Q) € [d\e\ -\- d^e^.d^e^ + ^161,^363 + diei}. Combining this and
the expression for Tn(FG) above, one concludes that the equation

Tn(FGMi) = t

never holds, hence ftFG[X,Q\ = 0.

Part II: Now we verify that

fiFX[_G^Qi=0.

Let q == Tn(Q) = d^ei + djej and g = Tn(G) = di'ei' + d j / ' e j ' . Direct
calculations reveal that

\G,Q\ = 2i6^d2iXe^i{d^-l}H^ - 2^d]Xe^^-^H^R,

for a relation R and monomials H^ and H^ in P. Since

g 6 {diei + ^262, ^2^2 + d^, ^363 + diei}
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the choices for i and j are i = 1,2,3 and j = 1,2. Both of the pullbacks
r^X6^-1)) = (di - l)(ei +ei) and r^X^^-i)) = (^ _ l)^ +^3)
do not divide t since di and ^3 are greater than 1. We can therefore
ignore any product ofX611^1-1) and X622^2-1) in [G, QJ when calculating
ftFX\G^Q\. The other possible monomials, ignoring relations, in the
expression for \G,Q\ above, are of the form ±2id^Xe22{d2~l} H where H is
in P. In order for the expression ft(±FX2id^Xe2^d2~^H) to be nonzero
we must have

t=r , (FX^)+(d2- l ) (e2+e2)

but if c?2 > 1 then this equation has no solution for F and H in P. We
have now shown that ftFX\G,Q\ (and ftGX\_F,Q\) is zero. Notice that
here is the only place in the proof that we actually used that d^ > 1 and
that c?3 > 1.

The calculations above confirm the formula given for ffZ at the
beginning of the proof. Still, we have yet to prove that if W is a non-
constant monomial term in a relation R then W is divisible by XV
where X and Y are two different monomials from the collection T> =
{Xdlell,...,Xdkekk,Xe^ : i ̂  j}. The only (monic) monomials that are
not divisible by such a product are of the form X6117711 • . .X^^X771^
where mi , . . . , rrik and m are integers with 0 <_ m\ < d i , . . . , 0 < m/c < elk-
Assume ̂  for a moment, that W is of this form and let

z =Tn(W) =mi(ei +ei) + • • • +mk{ek +e/c) + m(d^e, +^-^-).

It is immediate that W is the only monomial in Cp^ ] that pullbacks to z
under r^. In particular such a term, W, cannot be a part of relation R since
it would not cancel when R is pulled back to C[Sn} by Tn. This completes
the proof of Lemma 4. D

We need to extract more from the above proof. The comments below
will be useful in the proof of Corollary 2.

Comment I: Above we used that the relations do not contain any linear
part to obtain simple expressions for

/,LLA^J,C7J, ft[[B^C\^A\ and /.LL^AJ.BJ.

A closer look reveals that this only depends on specific linear parts, i.e.,
scalar products of B and (7. To summarize we can alter the almost Poisson
bracket |̂ , J by adding polynomials of the form J P to the relations, above,
and still obtain similar expressions

i) /.LLABJ.GJ ̂ ^^^i-^/i^'^^+^L^B+JPA^^J,
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ii) ft[[B^C^A\ =ft[RB^c^JPB^c.A\ and

iii) ft\\C,A\,B\ =4dUdl-l)ft(L^-2BD)+ft[Rc^+JPc^B\.

The above formulas hold for any t such that

tmin S L <^ tmax

where tmm = ^2(^2 4- e^) + ^363 + c^ei and

^max = (^i - 2)(ei 4- ei) 4- (c?2 + l)(e2 4- 62) + d^es + ^iei.

Furthermore if (di — 2)(ei 4-ei) does not divide t, i.e., (di — 2)(ei 4-ei) ^ t
then the above formulas i) - iii) also hold. Here J is the linear polynomial

^=|^n,X6".

Comment II: The arguments leading to and contained in Part I and Part II
of the proof, used to verify that

/ ,LQ,J?J=0,

actually hold for all t < ̂ max * where

^max* =(^i -2 ) (e i+e i )+2(d2- l ) (e2+e2)+d3e3+c? ie i .

The following is a stronger version of Lemma 4, it contains what we
actually proved.

COROLLARY 1. — Under the assumptions of Lemma 4, define the
Jacobiator 3 by

3(A,B,C) = LLA,BJ,CJ + LL^CJ.AJ + LL^AJ.BJ

for A, B, C € CpR^2] and Jet t € Sn be the element

t = (di - 2)(ei +ei) 4-^2(62 +^2) +^3^3 +^iei,

then
/<o3^0.

LEMMA 5. — Let F be a HUbert embedding

F : C^/S1 -^ R^

corresponding to a Hilbert basis of 71 minimal generators in Sn' Assume
that there exists a Poisson structure { , } on R^ such that F is a Poisson
embedding. Let T be a finite collection of elements in Sn' Then there

ANNALES DE L'lNSTITUT FOURIER



LINEAR HAMILTONIAN ACTIONS 303

exists an almost Poisson bracket [_, J on C[^}, compatible with the Poisson
structure on C[5n], under the pullback ofF, and such that

.AOLA.BJ.CJ + LL^J.AJ + LL^AJ,£?J) = 0

for all A, B, C C C^] and t € I.

Proof (sketch). — Let
^ _ 0 9

7r= E pi^.^-^.
l<z<7<^ aa;l °̂

be the Poisson bivectorfield corresponding to the Poisson structure on R91,
i.e., {x^Xj} = Pij. By choosing the almost Poisson bracket on R^ such
that the polynomials \Xi,Xj\ and the Taylor series of P^ agree up to a
large degree we can guarantee that the identity

LLA.^J.CJ + LL^J.AJ + LL^AJ.BJ
vanishes also up to any desired degree and thereby that the above equations
hold, see [3], e.g. Lemma 12, for details. D

We will need the following to analyze the Poisson structure on the
reduced orbit space in the the indefinite Hamiltonian case.

LEMMA 6. — Let §1 x C^ —^ C^ be a linear Hamiltonian circle action
with nonzero relative prime weights HI, . . . , n^. Assume that the action has
an indefinite Hamiltonian, i.e., not all the weights have the same sign. Let
J be the momentum map

1 k

J=^^(x^y^)^

and F : C^/S1 -^ R91 a Hilbert embedding corresponding to a Hilbert basis
of^ minimal generators in Sn. Let f € C^R2^1 be an invariant smooth
function such that

/|j-i(o) = 0.

Then the Taylor series off at zero, denoted by T(f), can be written

T ( f ) = J ' Q

where Q is an invariant formal power series Q € R[[x^ y]]^.

Proof. — Let / € C00^2^1 be an invariant smooth function that
vanishes on J'^O). In order to prove the lemma we assume, without loss of
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generality, that there are precisely m negative weights, among them being
Ufc, and that m <; A;/2, if not, we can always reorder the weights or replace
J with —J and Q with —Q.

Consider J as a polynomial in Xk and use the Malgrange-Mather
division theorem, see [6], [8], to write

f(x,y) = J(x,y)q(x,y) +Xkri(x,y) -^-r^x.y)

with q, r\ and 7*2 smooth functions, and where x simply denotes that Xk is
missing, i.e., x == ( r r i , . . . , x^-i)- For values (A, y ) with J((^, 0), y) > 0 there
are two nonzero solutions t and —t to the equation J ( { x ^ t ) , y ) = 0, from
this and since we are assuming that /|j-i(o) = 0 it follows immediately
that

r^(x,y) =r<2(x,y) =0 if J(x,y)>Q.

Now introduce a linear change of coordinates L(s^t) = (a", y) (use that
m <^ k / 2 ) such that J o L(s, t) > 0 in the positive 22A;-tant Si >, 0, ii > 0
for i = 1,..., k. The Taylor series at 0 of / o L(s, t), and therefore also of
f{x^y)^ is determined by taking limits in the positive 22A;-tant from which
it follows that T(/) = J • T(q). Applying an averaging operator M for the
circle action,

M(h)=1 f'h^^x^y^de^
^ Jo

to each term of the Taylor series T{q) results in an invariant formal series
Q = M(T(q)) satisfying

T(f) = J • Q,

as desired. D

By taking a closer look at the proof of Lemma 4 and also by using
the above lemma we obtain the following.

COROLLARY 2. — Let S1 x C^ —> C^ be a linear Hamiltonian circle
action with nonzero relative prime weights n i , . . . ,rik and such that the
action generates a Hilbert basis of minimal size. Assume that the action
has an indefinite Hamiltonian, k > 2 and that among d\,..., dk there are
at least 3 elements that are not one. Let

-, k
J=^^ni(x^y\^^

and assume F : C^/S1 —^ R^ is a Hilbert embedding corresponding to
the Hilbert basis ofk2 minimal generators in Sn, let J be the functional
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induced by J o F == J . Then the Poisson structure on the reduced orbit
space J'^C^/S1 cannot be extended to the hyperplane Vj = J^'^O).

Proof. — Assume that {, }vj is a Poisson bracket on Vj extending
the Poisson structure on the reduced orbit space

uo=J-\0)/S\

We will show that this leads to a contradiction.

Extend the Poisson bracket to all of V = M^ by requiring J to be a
Casimir^ function, i.e., let ^ i , . . . ,z^2_i be a linear coordinate system
for Vj and extend the bracket to all of V by requiring {^7,z^}y == 0
and {vi^Vj}v = {^i^Vj}vj' Let Z = J~l(p). The bracket {,}vj extends
the structure on UQ, by definition, so we have that {vi,Vj}vj ° F and
{vi o i71, Vj o F} agree on Z. Since J = J o F is Casimir in the Poisson
algebra COO(R'2k)s the identity extends to all the coordinate functions
z ? i , . . . , Vfc2_i , J on V and eventually to all of (7°°(V), i.e.,

{ S ^ T } v o F \ z = { S o F ^ T o F } \ z .
for all smooth functions S^T on V.

Fix a choice of an almost Poisson bracket with polynomial coefficients,
|_ , J , on V extending the Poisson structure on IR2^. We can choose [_,J such
that J is Casimir. The brackets |_,_[y and [_J are related through the
equation

[S^T\oF\z={S^T}yoF\z^

for smooth functions 5', T on V. Given smooth functions S and T on V, it
now follows from Lemma 6 that the Taylor series of {5, T}y — |_5', T\ is of
the form

RST + JQsT

where RST is a formal relation on V and QST is a power series on V.

Now consider the Poisson bivectorfield TT determined by {,}y, i.e.,
7r{df A dg) = [f^g}v ^T smooth functions / and g on V. Let II be the
formal bivectorfield obtained by replacing the coefficients of TT by its Taylor
series, at zero, in the coordinates L, Z, W, i.e.,

n^TOe^ra.
According to the above the coefficients of II are of the form \_S^ T\ + RST +
JQsT for formal relations RST and power series QST'

^ f is Casimir if {f,g} = 0 for all smooth functions g .
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Now consider the formal bivectorfield |n| where

n=^(|n|)
and ̂  is denned as in Lemma 3 with ai = sign(n^). By Lemma 3 the
formal bivectorfield |II| is Poisson. Repeat the above process for the almost
Poisson bracket, [_, J on V. Let C by the bivectorfield determined by [_J, i.e.,
LJ = LJc- Define I C I by < = ^(|C|). Then by Lemma 3, |C| determines an
almost Poisson structure compatible with the Poisson structure on C[6|yJ.

For simplicity assume that di, ^2 and ^3 are greater than one. Going
back to the notation in the proof of Lemma 4, let A = X612, B = A^21,
C = X631, D = X632 and Li = X611, L^ = X622 where the complex
coordinate functionals X^3 are chosen with respect to the action with
positive weights |ni| , . . . , [n^l, i.e., such that

X^ o \F\ = u^vf for z ^ j and X^ o \F\ = u^.

By the definition of ^a we have that for coordinate functions X and Y

^^-——r^^M-UJ•yU/-Y-

From which it follows that

{X,V}|n| ̂ ^^-'({^nn).
Now we calculate

{A,5}|n| = [A,BJ|^| +^'B^~\RAB)+^B^~\W\QAB)

and after observing by direct calculations that

î î rV) !̂:!"^"
and since that by Lemma 3

^r^ABMF^o
we can write

{A, B}|n| = LA, B\ ,^| + R^ + \J\QAB

where Q'^Q is a power series and R^g is a formal relation with respect to
the action with positive weights |ni| , . . . , |rifc|.

Next we define a bivectorfield S on V with polynomial coefficients. It
is an approximation to the Poisson bivector |II| as follows. We require that
S satisfies the Jacobi identity up to a high degree, so, for example,

ftZ=0
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where
z=LLABjs,cj5+LLB,Gj5,Aj5+LL^Ajs^j5

and

t ^ tmax = (di - 2)(ei + ei) 4- (^2 + l)(e2 + 62) + ̂ 3 + did.

We also require that \J\ is Casimir up to a high degree with respect to 5,
so, for example,

/tL^mj==o.
This is achieved by defining S from |II| using equations of the form

[^B^=[^B^+R^+WAB
where the polynomials R'^g and Q'^a are obtained by approximating
^AB }1? to a ^S^ d^^ wltn a polynomial relation R^p and Q'^a wlt^
a polynomial approximation Q^' Similar equations can be assume for
[B,C\^ L^AJs, [D^B\^ LLi.GJs, [L^C^ and [L^B^ as well. By
Comment I after Lemma 3 we now obtain that

i) /^LA^J^GJs^^dK^i-l^^-^G^/^^^^IO^^q

ii) ft[[B^C^A^=ft[RfBc+\J\QfBC^\E and

iii) /4L^AJs^Js=3^(dl-l)/,(Lfl-2BI))+/,L-R/CA+1^10£A^J=•
for

t = (di - 2)(ei + ei) + ^2(^2 + ̂ ) + ^363 + diei

or if ^ is not divisible by (d\ — 2)(ei + ei).

The integers di , . . . ,dk are relative primes two-and-two. Since none
of di, c?2 or c?3 is equal to 1 we can assume without loss of generality that

1 < di < d,3 < d-2.

Now use Comment II after Lemma 3 to establish that

m-Rjs-o,
for Q = A, B, C, an |F| relation R and all

t ^ tmax* = (di - 2)(ei +ei) + 2(c?2 - l)(e2 +62) + d3C3 + did.

In particular, for

ti = (di - 2)(ei + ei) + d^ + ^2) + d3e3 + d^

we can now write zero as

/^Z=-4^(di -l^^-^^^X^^X631 - X621 X632) 4- ft,\J\Q
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where Q is the polynomial

Q = [Q'AB.Ch + [Q'BC,Ah + [Q'CA,B\S.

Write
Q=^q,X8.

S

Since f^Z == 0 we conclude, by comparing terms, that

^^=-4d?(di-l)^0,

where
5i = (di -3)en +621 +632.

If di = 2 this is not possible, since then di — 3 = —1, and we have a
contradiction. Assume therefore that di > 2. Now let

t2 = (^i - 3)(ei + ei) + (cb + l)(e2 + 62) + (^3 + d^

then by Comment I since (di — 2)(ei + ei) does not divide t^ and by
Comment II we have that

ft.Z = W\Q.

The left hand side of the above equation is zero so by comparing terms we
conclude that

^q^^+^q^+^O
L 2t

where
S2 = (^1 - 4)en + 622 + 621 + 632.

Therefore since q^ 7^ 0 we must have

q.2 7^ 0.

In general, let

Si = (di - 2 - Z)en + (Z - 1)622 + ^21 + 632,

^ = (^i - 1 - ̂ )(ei + ei) + (c?2 + i - 1)((°2 + €2) + d3C3 + diei.

We can conclude that
W\Q=o

using Comment I and Comment II after the proof of Lemma 3 for

i = l , . . . ,d i - 1.
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Calculating ft,\J\Q, for i > 1, results in equations

^ ^-i+e22 , KL ^+en _ .^ Hsz-i^ -r ———q^A — U,

and nonzero terms q s i , . . . , q^_i • On the other hand

X^i-1

is not a polynomial, it is a rational function, since

Sdi-l = -en + (di - 2)622 + <°21 + <°32,

therefore
^1-1 -o

which is a contradiction. This completes the proof of Corollary 2. D

Theorem 1 now follows from Lemma 4 (or rather Corollary 1),
Lemma 5 and Corollary 2.

8. Induced Poisson structures.

Here we consider 4 relevant examples of classes of induced Poisson
structures.

8.1. Linear circle actions.

Example 1. — Linear Poisson structures.

Define grading on each of the spaces of n-vector fields with polynomial
coefficients

^[y] = ̂ [vf + ̂ [y]1 + ̂ [v]2 +...
where ^[V]5 is the space of n-vector fields with homogeneous coefficients
of degree s, to be exact this means that X is in ^[V]8 if X(dg^ A . . . Ad^n)
is homogeneous of degree s for all g\,..., g-n C V*.

As before let F : R2^/^1 -^ R^ be the Hilbert embedding associated
to a minimal homogeneous Hilbert basis /i,.. . , /^ and let H C A^IR^] be
an almost Poisson bivector, i.e.,

L / ,<7 jn=H(d /A^)
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extending the Poisson structure on R^/S1. In other words g and II are
F-related, F^ o Q = n o F.

Write n = n° + n1 + n2 + n3 + . . . with each IIs in ^[V]5. The
homogeneous invariants /i , . . . , .An are all of degrees greater than one and
consequently {F^ o ^)o = 0. Now it follows that 11° = 0 and therefore the
"total" Jacobiator is given by

[n.nl^ni.nil+e^

where [II1, II1] is homogeneous of degree one and e^ contains only terms of
degrees greater than one. The Schouten-Nijenhuis bracket behaves nicely
with respect to i^-related multivector fields and it follows that

[n,n]oF=F,o[^4
Since Q is Poisson, i.e., [^, g] = 0 we conclude that [II, II] o F = 0. As
the generating set { / i , . . . , .An} is minimal, i.e., fn ^ R[/i,.... /^,. . . . /<n],
and each fn is homogeneous it follows that [II1, II1] o F = 0. Finally since
fi - > ' • • ? .An ar^ linearly independent we have that

[Il\Ill}=0.

We summarize the calculations in this example as follows, assumptions as
above:

COROLLARY 3. — Let 11 € A^pR^] be an almost Poisson structure
on R^ extending the Poisson structure on the orbit space IR^/S1 of a linear
Hamiltonian circle action. Then the linear part of II is a Poisson bivector.

Example 2. — Linear circle actions §i x C2 —> C2.

Consider a linear Hamiltonian circle action with positive (for simplic-
ity) relative prime weights n\ and n^. In this case d\ = n^ and d^ = n\
and the weights satisfy the conditions of Lemma 2, i.e., 77-1^2 = d\d^. A
complex Hilbert basis for the action has four invariants u\v\^ u^v^^ u^v^2

and v^1 u^2. The corresponding Hilbert embedding is given by

R^/S1 -^R^',{x,y)^(u^,U2V'2,u^v^) (€ R2 x C).

An almost Poisson structure [,J extending the Poisson structure on the
orbit space is, as before, described in terms of the induced almost Lie
algebra (C^611,^622^612,^621], LJ)' one can choose the almost Lie
algebra bracket such that

[Xe^^X^k\=-2iCijkXe^
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where Cijk is a (real) constant uniquely determined by the pullback to C[5yj,
i.e., {^(X^^Ty^X6^)]^ = -^iCijkT^X0^). As always, for positive
weights, Tn^X^3) = u^Vy3 ifi^j and Ty^X6") = n^vi. The constants c^k
satisfy c^k = —Czkj and c^j = 0. The only ambiguity left in the definition
of the almost Lie algebra is to specify [_X612 .X621]. We can assume that

LX^.x621] eClx^.x622].
These conditions are sufficient to show that the Jacobiator 3,

3(A,B,(7) = LLA,BJ,CJ + [\.B^C\^A\ + LL^AJ.BJ

is zero since the only way to find three different coordinate functions
A, B, C among X611, X622, X612, X621 is to include X611 or X622. We
summarize, as follows:

COROLLARY 4. — There always exists a Poisson structure on R4

extending the Poisson structure on the singular Poisson variety C^'/S1.

Example 3. — The action

§1 x C3 —^ C3;^ x (^1,^2^3) ̂  (2^1, ̂ 2,2^3).

Here the linear Hamiltonian circle action has weights n\ = 1, n^ = 2
and 723 = 2. It follows that di = 2, c?2 = 1 and c?3 = 1 and the equation

(dic^s)2 = ^i^2^3
holds, so the action satisfies the conditions in Lemma 2. A (complex)
Hilbert basis is given by the nine elements

^1^1, U2V2, U3V3, -^2, U^3, U^, v{u^ ^3, Z^^.

The pullback Tn of the Hilbert embedding

R^VS1 -. R9

is determined by r^X^) = UzVi and if i ̂  j we have r^^X^) = u^v3 as
before where X611, X622, X633 and X^.X621, X^.X631, X^.X632 are
the (complex) coordinate functionals on R9 = R3 x C3. An almost Poisson
structure [,J on R9 compatible with the Poisson structure on R6/^1 is
determined uniquely by terms of the form [X^.X^^J containing non-
linear parts, since the linear part of each term is uniquely determined by
the compatibility condition. Let {, } be the almost Poisson structure on R9

determined by the following list of non-linear terms:

• {X^.X^^-^X^X632, {Xel3,Xe21}=-8^XellXe23,
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• {X612,^621} = -8^ellXe22+2^X2ell - IG^X622.^33 -X623^632),

• {X613,^631} = ̂ /Jf^X^H^X2611 -IG^X622^633-^623^632).

This almost Poisson structure { , } actually satisfies Jacobi identity.
In order to verify the identity one has to calculate (straightforward) the
84 relevant identities. One can use Corollary 3 to simplify the process and
also an argument similar to the one used to verify the Jacobi identity in
Example 2. The Poisson structure on R9, { , } above, is obtained by lifting
the Poisson structure on R^/S1 via the pullback r^. The choice of relations
in {X612,^621} and {X613,^631}, i.e., the "-IG^X622^633 -X623^632)"
term is inspired by Part II in the proof of Lemma 5.

Let II be the Poisson bivectorfield corresponding to the Poisson
bracket {,}. Now we look at the indefinite Hamiltonian case, i.e.,

J = ̂ i0^ + ̂ ) + ̂ l + yl) + a^xi + 2/j),

obtained by changing the signs of some of the weights. It follows from
Lemma 3 that ^(II) is Poisson and defines a structure compatible with
the structure on the orbit space of the action with weights ai, 2<72,203.
What is left to verify is that (̂11) actually is a real bivectorfield. By
direct calculations for R = X^X^3 - X^X032 we find that

^ a ^ a \_ W 0 0
^ ̂ QX^ A 9X^ ) ~ ̂ e^e,, 9X^ A 9X^'

The factor ^012 ̂ eai is just ±1 for symmetry reasons. Similarly we obtain
that

^(R^A oi^)= ±R^A ̂
from which we can conclude that ^(II) is real. We summarize these
calculations as follows:

COROLLARY 5. — The Poisson structure on the singular orbit space
C3/^1 C M9 of the linear Hamiltonian circle action with weights =L1, ±2, ±2
can be extended to all ofR9.

8.2. Linear discrete circle actions.

Let n\,.... rik be nonzero relative prime weights and as before let

di = gcd(di,.... d,-i, d,+i, . . . , dk).
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Identify the discrete circle Z^ with the subgroup of §1 generated by e27^/^
and R2^ with C^.

CLAIM 1. — Let Zd,...d, act on R^ by z(u^... ,Uk) = (z^u^....
z^Uk). The ̂ ...dk-^variant polynomials in variables ̂ i, v i , . . . , Uk, Vk are
generated by the set {u^,..., UkVk, u^, v^ , . . . , u^ ,v^}.

Proof. — The polynomials in {u^,..., UkVk, u^ ,v^,..., u^, ̂ fc }
are invariant under the action of Zdi...c^ since the action preserves length
and d^/di • • • dk is always an integer for % = 1, . . . , k. An invariant (monic)
monomial is of the form u°^ . "u^v^ .. .v^ with (ni(ai-6i)-h • •+n/c(ai-
&i))/di • • • dk being an integer. Multiplying this equation through with n,
and by noticing that n^(a^ - &j)/di • • • dk is in Z if z 7^ j one obtains
that 77^ (a^ - ̂ )/di • • • dk is also an integer. On the other hand di and n,
are relative primes so dz must divide (a^ - &,). From this it follows that
the set {^1^1, . . . , UkVk, nf1, v^ 1 , . . . , n^, v^} generates all the invariants
in variables u\, ̂ i , . . . , Uk, V k ' D

The real invariant polynomials are generated by polynomials obtained
from the generators in variables u and v by taking real and imaginary
parts. The number of polynomials needed does not change when going
from complex to real invariants. This defines an injection of R^/Z^.-.dk
into R^ x R2^ given by

F(u^,...,Uk) = (u^,...,UkVk,u^\...,u^)
where as before we have identified M2^ with Ck through ui = Xz + iyi and
Vi = xi — iyi. The Poisson structure on R2^ projects to a Poisson structure
on R^/Z^...^ where the smooth structure on R^/Z^...^ is given by the
^dr'-dfc -invariant functions on R^/Z^...^.

THEOREM 2. — Let Zd^-.dk act on R2^ by z * (^i, . . . ,^) =
(z^ni, . . . , z^Uk). Then there is a natural induced Poisson structure on
R^ x R2^ such that F is an injective Poisson map of R^/Z^...^ into
R^ x R2^

Proof. — Using the real coordinates l ^ , . . . , ̂  on R^ and the complex
coordinates ^1,^1,...,^^;,^ on R2^ define an almost Poisson structure [, J
on C^^ x R2^ as follows. Let \u^Uj\ = 0, L^,^J = 0, [k,lj\ = 0 and

\_k, Ui\ = 2idiUi, [k, Vi\ = -2idiVi, \Ui, Vi\ = ̂ c '̂"1

furthermore for i / j let \li,Uj\ = 0, [k,Vj\ = 0 and [ui,Vj\ = 0. Notice,
we are choosing the coordinates such that the function F is determined

TOME 50 (2000), FASCICULE 1



314 AGUST SVERRIR EGILSSON

by k o F = UiVi.Ui o F = u^ and vi o F = vf\ It is straightforward to
verify that F is an almost Poisson map between the Poisson structure on
R2^ and the almost Poisson structure on R^ x R2^. In order to verify that
[,J satisfies the Jacobi identity, it is enough to show that for f,g,h C
{ ^ i , . . . ,^^i^i ? • • • ̂ ki^k} the Jacobiator

W.g.h) = LL/^J^J + Lb^JJJ + LL^/J^J
vanishes. It follows from the definition of [_, J that 3(/, g , h) is in the C-linear
span of the polynomials in

V = {u^v^ u^-\ ̂ -2, ̂ -l)l<^.

On the other hand, the pullback of F maps the set of polynomials in the col-
lection (?, above, injectively to normalized monomials in HI, ̂ i , . . . , n^, v^.
Since F is an almost Poisson map we have that 3(/, Qi h) o F = 0 which is
only possible, by the above, if3(/, g , h) = 0. In other words |_, J is a Poisson
bracket, n
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