Annales de l'institut Fourier

Allahtan Victor Gnedbaye
 A non-abelian tensor product of Leibniz algebra

Annales de l'institut Fourier, tome 49, no 4 (1999), p. 1149-1177
http://www.numdam.org/item?id=AIF_1999__49_4_1149_0
© Annales de l'institut Fourier, 1999, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A NON-ABELIAN TENSOR PRODUCT OF LEIBNIZ ALGEBRAS

by Allahtan V. GNEDBAYE

Introduction.

Let \mathfrak{g} be a Lie algebra and let M be a representation of \mathfrak{g}, seen as a right \mathfrak{g}-module. Given a \mathfrak{g}-equivariant map $\mu: M \rightarrow \mathfrak{g}$, one can endow the \mathbb{K}-module M with a bracket $\left(\left[m, m^{\prime}\right]:=m^{\mu\left(m^{\prime}\right)}\right)$ which is not skewsymmetric but satisfies the Leibniz rule of derivations:

$$
\left[m,\left[m^{\prime}, m^{\prime \prime}\right]\right]=\left[\left[m, m^{\prime}\right], m^{\prime \prime}\right]-\left[\left[m, m^{\prime \prime}\right], m^{\prime}\right]
$$

Such objects were baptized Leibniz algebras by Jean-Louis Loday and are studied as a non-commutative variation of Lie algebras (see [8]). One of the main examples of Lie algebras comes from the notion of derivations. For the Leibniz algebras, there is an analogue notion of biderivations (see [7]).

The aim of this article is to "integrate" the Leibniz algebra of biderivations by means of a non-abelian tensor product of Leibniz algebras as it is done for Lie algebras.

In the classical case, D. Guin (see [5]) has shown that, given crossed Lie \mathfrak{g}-algebras \mathfrak{M} and \mathfrak{N}, the set of derivations $\operatorname{Der}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ has a structure of pre-crossed Lie \mathfrak{g}-algebra. Moreover the functor $\operatorname{Der}_{\mathfrak{g}}(\mathfrak{N},-)$ is right adjoint to the functor $-\otimes_{\mathfrak{g}} \mathfrak{N}$ where $-\otimes_{\mathfrak{g}}$ - is the non-abelian tensor product of Lie algebras defined by G. J. Ellis (see [3]). D. Guin uses these objects

[^0]to construct a non-abelian (co)homology theory for Lie algebras, which enables him to compare the \mathbb{K}-modules $\mathrm{HC}_{1}(A)$ and $\mathrm{K}_{2}^{M \text { add }}(A)$ where A is an arbitrary associative algebra. We give a non-commutative version of his results, in the sense that Leibniz algebras play the role of Lie algebras, the additive Milnor K-theory $\mathrm{K}_{*}^{M \text { add }}(A)$ (resp. the cyclic homology $\mathrm{HC}_{*}(A)$) being replaced by the Milnor-type Hochschild homology $\mathrm{HH}_{*}^{M}(A)$ (resp. the classical Hochschild homology $\mathrm{HH}_{*}(A)$).

To this end, we introduce the notion of (pre)crossed Leibniz \mathfrak{g}-algebra as a simultaneous generalization of notions of representation and two-sided ideal of the Leibniz algebra \mathfrak{g}. Given crossed Leibniz \mathfrak{g}-algebras \mathfrak{M} and \mathfrak{N}, we equip the set $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ of biderivations with a structure of pre-crossed Leibniz \mathfrak{g}-algebra. On the other hand, we construct a nonabelian tensor product $\mathfrak{M} \star \mathfrak{N}$ of Leibniz algebras with mutual actions on one another. When \mathfrak{M} and \mathfrak{N} are crossed Leibniz \mathfrak{g}-algebras, this tensor product has also a structure of crossed Leibniz \mathfrak{g}-algebra. It turns out that the functor $-\star_{\mathfrak{g}} \mathfrak{N}$ is left adjoint to the functor $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N},-)$. Another characterization of this tensor product is the following. If the Leibniz algebra \mathfrak{g} is perfect (and free as a \mathbb{K}-module), then the Leibniz algebra $\mathfrak{g} \star \mathfrak{g}$ is the universal central extension of \mathfrak{g} (see [4]). We give also lowdegrees (co)homological interpretations of these objects, which yield an exact sequence of \mathbb{K}-modules

$$
\begin{aligned}
A /[A, A] & \otimes \mathrm{HH}_{1}(A) \oplus \mathrm{HH}_{1}(A) \otimes A /[A, A] \rightarrow \mathfrak{H} \mathfrak{L}_{\mathbf{1}}(\mathfrak{A}, \mathrm{L}(\mathfrak{A})) \\
& \rightarrow \mathfrak{H}_{\mathbf{1}}(\mathfrak{A},[\mathfrak{A}, \mathfrak{A}]) \rightarrow \rightarrow \mathrm{HH}_{\mathbf{1}}(\mathfrak{A}) \rightarrow \mathrm{HH}_{\mathbf{1}}^{\mathfrak{M}}(\mathfrak{A}) \rightarrow[\mathfrak{A}, \mathfrak{A}] /[\mathfrak{A},[\mathfrak{A}, \mathfrak{A}]] \rightarrow \mathbf{0}
\end{aligned}
$$

where $\mathrm{L}(A)$ is the \mathbb{K}-module $A \otimes A / \operatorname{im}\left(b_{3}\right)$ equipped with a suitable Leibniz bracket (see section 1.2).

Throughout this paper the symbol \mathbb{K} denotes a commutative ring with a unit element and \otimes stands $\otimes_{\mathbb{K}}$.

Contents
Introduction

1. Prerequisites on Leibniz algebras
2. Crossed Leibniz algebras
3. Biderivations of Leibniz algebras
4. Non-abelian tensor product of Leibniz algebras
5. Adjunction theorem
6. Cohomological characterizations
7. The Milnor-type Hochschild homology

Bibliography

1. Prerequisites on Leibniz algebras.

1.1. Leibniz algebras.

A Leibniz algebra is a \mathbb{K}-module \mathfrak{g} equipped with a bilinear map $[-,-]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$, called bracket and satisfying only the Leibniz identity

$$
[x,[y, z]]=[[x, y], z]-[[x, z], y]
$$

for any $x, y, z \in \mathfrak{g}$. In the presence of the condition $[x, x]=0$, the Leibniz identity is equivalent to the so-called Jacobi identity. Therefore Lie algebras are examples of Leibniz algebras.

A morphism of Leibniz algebras is a linear map $f: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ such that

$$
f([x, y])=[f(x), f(y)]
$$

for any $x, y \in \mathfrak{g}_{1}$. It is clear that Leibniz algebras and their morphisms form a category that we denote by (Leib).

A two-sided ideal of a Leibniz algebra \mathfrak{g} is a submodule \mathfrak{h} such that $[x, y] \in \mathfrak{h}$ and $[y, x] \in \mathfrak{h}$ for any $x \in \mathfrak{h}$ and any $y \in \mathfrak{g}$. For any two-sided ideal \mathfrak{h} in \mathfrak{g}, the quotient module $\mathfrak{g} / \mathfrak{h}$ inherits a structure of Leibniz algebra induced by the bracket of \mathfrak{g}. In particular, let $([x, x])$ be the two-sided ideal in \mathfrak{g} generated by all brackets $[x, x]$. The Leibniz algebra $\mathfrak{g} /([\mathfrak{x}, \mathfrak{x}])$ is in fact a Lie algebra, said canonically associated to \mathfrak{g} and is denoted by $\mathfrak{g}_{\text {Lie }}$.

Let \mathfrak{g} be a Leibniz algebra. Denote by $\mathfrak{g}^{\prime}:=[\mathfrak{g}, \mathfrak{g}]$ the submodule generated by all brackets $[x, y]$. The Leibniz algebra \mathfrak{g} is said to be perfect if $\mathfrak{g}^{\prime}=\mathfrak{g}$. It is clear that any submodule of \mathfrak{g} containing \mathfrak{g}^{\prime} is a two-sided ideal in \mathfrak{g}.

1.2. Examples.

Let M be a representation of a Lie algebra \mathfrak{g} (the action of \mathfrak{g} on M being denoted by m^{g} for $m \in M$ and $g \in \mathfrak{g}$). For any \mathfrak{g}-equivariant map $\mu: M \rightarrow \mathfrak{g}$, the bracket given by $\left[m, m^{\prime}\right]:=m^{\mu\left(m^{\prime}\right)}$ induces a structure of Leibniz (non-Lie) algebra on M. Observe that any Leibniz algebra \mathfrak{g} can be obtained in such a way by taking the canonical projection $\mathfrak{g} \rightarrow \mathfrak{g}_{\text {Lie }}$ (which is obviously $\mathfrak{g}_{\text {Lie }}$-equivariant).

Let A be an associative algebra and let $b_{3}: A^{\otimes 3} \rightarrow A^{\otimes 2}$ be the Hochschild boundary that is, the linear map defined by

$$
b_{3}(a \otimes b \otimes c):=a b \otimes c-a \otimes b c+c a \otimes b, a, b, c \in A
$$

Then the bracket given by

$$
[a \otimes b, c \otimes d]:=(a b-b a) \otimes(c d-d c), a, b, c, d \in A
$$

defines a structure of Leibniz algebra on the \mathbb{K}-module $\mathrm{L}(A):=A^{\otimes 2} / \operatorname{im}\left(b_{3}\right)$. Moreover, we have an exact sequence of \mathbb{K}-modules

$$
0 \rightarrow \mathrm{HH}_{1}(A) \rightarrow \mathrm{L}(A) \xrightarrow{b_{2}} A \rightarrow \mathrm{HH}_{0}(A)
$$

where $\mathrm{HH}_{*}(A)$ denotes the Hochschild homology groups and $b_{2}(x, y)=$ $[x, y]:=x y-y x$ for any $x, y \in A$.

1.3. Free Leibniz algebra.

Let V be a \mathbb{K}-module and let $\overline{\mathrm{T}}(V):=\bigoplus_{n \geq 1} V^{\otimes n}$ be the reduced tensor module. The bracket defined inductively by

$$
\begin{gathered}
{[x, v]=x \otimes v, \text { if } x \in \overline{\mathrm{~T}}(V) \text { and } v \in V} \\
{[x, y \otimes v]=[x, y] \otimes v-[x \otimes v, y], \text { if } x, y \in \overline{\mathrm{~T}}(V) \text { and } v \in V}
\end{gathered}
$$

satisfies the Leibniz identity. The Leibniz algebra so defined is the free Leibniz algebra over V and is denoted by $\mathcal{F}(V)$ (see [8]). Observe that one has

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}=\left[\cdots\left[\left[v_{1}, v_{2}\right], v_{3}\right] \cdots v_{n}\right], \forall v_{1}, \cdots, v_{n} \in V
$$

Moreover, the free Lie algebra over V is nothing but the Lie algebra $\mathcal{F}(V)_{\text {Lie }}$.

2. Crossed Leibniz algebras.

2.1. Leibniz action.

Let \mathfrak{g} and \mathfrak{M} be Leibniz algebras. A Leibniz action of \mathfrak{g} on \mathfrak{M} is a couple of bilinear maps

$$
\mathfrak{g} \times \mathfrak{M} \rightarrow \mathfrak{M},(\mathfrak{g}, \mathfrak{m}) \mapsto{ }^{\mathfrak{g}} \mathfrak{m} \quad \text { and } \quad \mathfrak{M} \times \mathfrak{g} \rightarrow \mathfrak{M},(\mathfrak{m}, \mathfrak{g}) \mapsto \mathfrak{m}^{\mathfrak{g}}
$$

satisfying the axioms
i) $m^{\left[g, g^{\prime}\right]}=\left(m^{g}\right)^{g^{\prime}}-\left(m^{g^{\prime}}\right)^{g}$,
ii) ${ }^{\left[g, g^{\prime}\right]} m=\left({ }^{g} m\right)^{g^{\prime}}-{ }^{g}\left(m^{g^{\prime}}\right)$,
iii) ${ }^{g}\left(g^{\prime} m\right)=-{ }^{g}\left(m^{g^{\prime}}\right)$,
iv) ${ }^{g}\left[m, m^{\prime}\right]=\left[{ }^{g} m, m^{\prime}\right]-\left[{ }^{g} m^{\prime}, m\right]$,
v) $\left[m, m^{\prime}\right]^{g}=\left[m^{g}, m^{\prime}\right]+\left[m, m^{g}\right]$,
vi) $\left[m,{ }^{g} m^{\prime}\right]=-\left[m, m^{\prime g}\right]$
for any $m, m^{\prime} \in \mathfrak{M}$ and $g, g^{\prime} \in \mathfrak{g}$. We say that \mathfrak{M} is a Leibniz \mathfrak{g}-algebra. Observe that the axiom i) applied to the triples ($m ; g, g^{\prime}$) and ($m ; g^{\prime}, g$) yields the relation

$$
m^{\left[g, g^{\prime}\right]}=-m^{\left[g^{\prime}, g\right]}
$$

2.2. Examples.

Any two-sided ideal of a Leibniz algebra \mathfrak{g} is a Leibniz \mathfrak{g}-algebra, the action being given by the initial bracket.

A \mathbb{K}-module M equipped with two operations of a Leibniz algebra \mathfrak{g} satisfying the axioms \mathfrak{i}), ii) and iii) is called a representation of \mathfrak{g} (see [8]). Therefore representations of a Leibniz algebra \mathfrak{g} are abelian Leibniz \mathfrak{g}-algebras.

2.3. Crossed Leibniz algebras.

Let \mathfrak{g} be a Leibniz algebra. A pre-crossed Leibniz \mathfrak{g}-algebra is a Leibniz \mathfrak{g}-algebra \mathfrak{M} equipped with a morphism of Leibniz algebras $\mu: \mathfrak{M} \rightarrow \mathfrak{g}$ such that

$$
\mu\left({ }^{g} m\right)=[g, \mu(m)] \quad \text { and } \quad \mu\left(m^{g}\right)=[\mu(m), g]
$$

for any $g \in \mathfrak{g}$ and $m \in \mathfrak{M}$. Moreover if the relations

$$
{ }^{\mu(m)} m^{\prime}=\left[m, m^{\prime}\right] \quad \text { and } \quad m^{\mu\left(m^{\prime}\right)}=\left[m, m^{\prime}\right], \forall m, m^{\prime} \in \mathfrak{M}
$$

hold, then (\mathfrak{M}, μ) is called a crossed Leibniz \mathfrak{g}-algebra.

2.4. Examples.

Any Leibniz algebra \mathfrak{g}, equipped with the identity map $\operatorname{id}_{\mathfrak{g}}$, is a crossed Leibniz \mathfrak{g}-algebra.

Any two-sided ideal \mathfrak{h} of a Leibniz algebra \mathfrak{g}, equipped with the inclusion $\operatorname{map} \mathfrak{h} \hookrightarrow \mathfrak{g}$, is a crossed Leibniz \mathfrak{g}-algebra.

Let $\alpha: \mathfrak{c} \rightarrow \mathfrak{g}$ be a central extension of Leibniz algebras (i.e., a surjective morphism whose kernel is contained in the centre of \mathfrak{c}, see [4]). Define operations of \mathfrak{g} on \mathfrak{c} by

$$
{ }^{g} c:=\left[\alpha^{-1}(g), c\right] \quad \text { and } \quad c^{g}:=\left[c, \alpha^{-1}(g)\right]
$$

where $\alpha^{-1}(g)$ is any pre-image of g in c. Then (\mathfrak{c}, α) is a crossed Leibniz \mathfrak{g}-algebra.

Proposition 2.1. - For any pre-crossed Leibniz \mathfrak{g}-algebra (\mathfrak{M}, μ), the image $\operatorname{im}(\mu)$ (resp. the kernel $\operatorname{ker}(\mu)$) is a two-sided ideal in \mathfrak{g} (resp. $\mathfrak{M})$. Moreover, if (\mathfrak{M}, μ) is crossed, then $\operatorname{ker}(\mu)$ is contained in the centre of \mathfrak{M}.

Proof. - Let m be an element of \mathfrak{M}. For any $g \in \mathfrak{g}$, we have

$$
[\mu(m), g]=\mu\left(m^{g}\right) \in \operatorname{im}(\mu) \quad \text { and } \quad[g, \mu(m)]=\mu\left({ }^{g} m\right) \in \operatorname{im}(\mu)
$$

Thus, $\operatorname{im}(\mu)$ is a two-sided ideal in \mathfrak{g}. Assume that $m \in \operatorname{ker}(\mu)$; then for any $m^{\prime} \in \mathfrak{M}$, we have

$$
\mu\left(\left[m, m^{\prime}\right]\right)=\left[\mu(m), \mu\left(m^{\prime}\right)\right]=0=\left[\mu\left(m^{\prime}\right), \mu(m)\right]=\mu\left(\left[m^{\prime}, m\right]\right)
$$

Therefore $\operatorname{ker}(\mu)$ is a two-sided ideal in \mathfrak{M}. Moreover if the Leibniz action of \mathfrak{g} on \mathfrak{M} is crossed, then we have

$$
\left[m, m^{\prime}\right]={ }^{\mu(m)} m^{\prime}=0=m^{\prime \mu(m)}=\left[m^{\prime}, m\right]
$$

for any $m \in \operatorname{ker}(\mu)$ and $m^{\prime} \in \mathfrak{M}$. Thus $\operatorname{ker}(\mu)$ is contained in the centre of \mathfrak{M}.

2.5. Morphism of pre-crossed Leibniz algebras.

Let \mathfrak{g} be a Leibniz algebra and let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz \mathfrak{g}-algebras. A morphism from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) is a Leibniz algebra morphism $f: \mathfrak{M} \rightarrow \mathfrak{N}$ such that

$$
f\left({ }^{g} m\right)={ }^{g}(f(m)), f\left(m^{g}\right)=(f(m))^{g} \text { and } \mu=\nu f
$$

for any $m \in \mathfrak{M}$ and $g \in \mathfrak{g}$. A morphism of crossed Leibniz \mathfrak{g}-algebras is the same as a morphism of pre-crossed Leibniz \mathfrak{g}-algebras. It is clear that pre-crossed (resp. crossed) Leibniz \mathfrak{g}-algebras and their morphisms form a category that we denote by (pc-Leib(g)) (resp. (c-Leib(g))).

Proposition 2.2. - Let $f:(\mathfrak{M}, \mu) \rightarrow(\mathfrak{N}, \nu)$ be a crossed Leibniz \mathfrak{g}-algebra morphism. Then ($\mathfrak{M}, \mathfrak{f}$) is a crossed Leibniz \mathfrak{N}-algebra via the Leibniz action of \mathfrak{N} on \mathfrak{M} given by

$$
{ }^{n} m:={ }^{\nu(n)} m \quad \text { and } \quad m^{n}:=m^{\nu(n)}, \forall m \in \mathfrak{M}, \mathfrak{n} \in \mathfrak{N} .
$$

Proof. - One easily checks that \mathfrak{M} is a Leibniz \mathfrak{N}-algebra. For any $m, m^{\prime} \in \mathfrak{M}$ and $n \in \mathfrak{N}$, we have

$$
\begin{aligned}
& f\left({ }^{n} m\right)=f\left({ }^{\nu(n)} m\right)={ }^{\nu(n)} f(m)=[n, f(m)] \\
& f\left(m^{n}\right)=f\left(m^{\nu(n)}\right)=f(m)^{\nu(n)}=[f(m), n]
\end{aligned}
$$

thus ($\mathfrak{M}, \mathfrak{f}$) is a pre-crossed Leibniz \mathfrak{N}-algebra. Moreover we have

$$
\begin{aligned}
f(m) m^{\prime} & =\nu(f(m)) \\
m^{\prime} & =\mu(m) m^{\prime}=\left[m, m^{\prime}\right], \\
m^{f\left(m^{\prime}\right)} & =m^{\nu\left(f\left(m^{\prime}\right)\right)}=m^{\mu\left(m^{\prime}\right)}=\left[m, m^{\prime}\right] ;
\end{aligned}
$$

thus $(\mathfrak{M}, \mathfrak{f})$ is a crossed Leibniz \mathfrak{N}-algebra.

2.6. Exact sequences.

We say that a sequence

$$
(\mathfrak{L}, \lambda) \xrightarrow{\alpha}(\mathfrak{M}, \mu) \xrightarrow{\beta}(\mathfrak{N}, \nu)
$$

is exact in the category (pc-Leib(g)) (resp. (c-Leib(g)) if the sequence

$$
\mathfrak{L} \xrightarrow{\alpha} \mathfrak{M} \xrightarrow{\beta} \mathfrak{N}
$$

is exact as sequence of Leibniz algebras.
Proposition 2.3. - If the sequence

$$
(\mathfrak{L}, \lambda) \xrightarrow{\alpha}(\mathfrak{M}, \mu) \xrightarrow{\beta}(\mathfrak{N}, \nu)
$$

is exact in the category (pc-Leib(g)) (resp. (c-Leib(g))), then the map λ is zero. Moreover if the Leibniz \mathfrak{g}-algebra (\mathfrak{L}, λ) is crossed, then the Leibniz algebra \mathfrak{L} is abelian.

Proof. - Indeed, since $\beta \alpha=0$, we have $\lambda=\nu \beta \alpha=0$. From whence $\operatorname{ker}(\lambda)=\mathfrak{L}$, and by Proposition 2.1, it is clear that the Leibniz algebra \mathfrak{L} is abelian.

3. Biderivations of Leibniz algebras.

In this section, we fix a Leibniz algebra \mathfrak{g}.

3.1. Derivations and anti-derivations.

Let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz \mathfrak{g}-algebras. A derivation from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) is a linear map $d: \mathfrak{M} \rightarrow \mathfrak{N}$ such that

$$
d\left(\left[m, m^{\prime}\right]\right)=d(m)^{\mu\left(m^{\prime}\right)}+{ }^{\mu(m)} d\left(m^{\prime}\right), \forall m, m^{\prime} \in \mathfrak{M}
$$

An anti-derivation from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) is a linear map $D: \mathfrak{M} \rightarrow \mathfrak{N}$ such that

$$
D\left(\left[m, m^{\prime}\right]\right)=D(m)^{\mu\left(m^{\prime}\right)}-D\left(m^{\prime}\right)^{\mu(m)}, \forall m, m^{\prime} \in \mathfrak{M}
$$

3.2. Examples.

Let (\mathfrak{N}, ν) be a crossed Leibniz \mathfrak{g}-algebra and let n be any element of \mathfrak{N}. By the axiom iii) (resp. i)) of 2.1, the linear map

$$
\mathfrak{g} \rightarrow \mathfrak{N}, \mathfrak{g} \mapsto \mathfrak{n} \quad\left(\text { resp } . \mathfrak{g} \rightarrow \mathfrak{N}, \mathfrak{g} \mapsto-\mathfrak{n}^{\mathfrak{g}}\right)
$$

is a derivation (resp. an anti-derivation) from ($\mathfrak{g}, \operatorname{id}_{\mathfrak{g}}$) to (\mathfrak{N}, ν).

3.3. Biderivations.

Let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz \mathfrak{g}-algebras. We denote by $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ the free \mathbb{K}-module generated by the triples (d, D, g), where d (resp. D) is a derivation (resp. an anti-derivation) from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) and g is an element of \mathfrak{g} such that

$$
\begin{gathered}
\nu(d(m))=\mu\left(m^{g}\right), \nu(D(m))=-\mu\left({ }^{g} m\right) \\
{ }^{h} d(m)={ }^{h} D(m), D\left(m^{h}\right)=-D\left({ }^{h} m\right)
\end{gathered}
$$

for any $h \in \mathfrak{g}$ and $m \in \mathfrak{M}$.

Proposition 3.1. - If the Leibniz \mathfrak{g}-algebra (\mathfrak{N}, ν) is crossed, then there is a Leibniz algebra structure on the \mathbb{K}-module $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ for the bracket defined by

$$
\left[(d, D, g),\left(d^{\prime}, D^{\prime}, g^{\prime}\right)\right]:=\left(\delta, \Delta,\left[g, g^{\prime}\right]\right)
$$

where

$$
\delta(m):=d^{\prime}\left(m^{g}\right)-d\left(m^{g^{\prime}}\right) \quad \text { and } \quad \Delta(m)=-D\left(m^{g^{\prime}}\right)-d^{\prime}\left({ }^{g} m\right), \forall m \in \mathfrak{M}
$$

Proof. - Let us show that the maps δ and Δ are respectively a derivation and an anti-derivation. Indeed, for any $m, m^{\prime} \in \mathfrak{M}$, we have

$$
\begin{aligned}
\delta\left(\left[m, m^{\prime}\right]\right)= & d^{\prime}\left(\left[m, m^{\prime}\right]^{g}\right)-d\left(\left[m, m^{\prime}\right]^{g^{\prime}}\right) \\
= & d^{\prime}\left(\left[m^{g}, m^{\prime}\right]\right)+d^{\prime}\left(\left[m, m^{\prime g}\right]\right)-d\left(\left[m^{g^{\prime}}, m^{\prime}\right]\right)-d\left(\left[m, m^{\prime g^{\prime}}\right]\right) \\
= & d^{\prime}\left(m^{g}\right)^{\mu\left(m^{\prime}\right)}+{ }^{\mu\left(m^{g}\right)} d^{\prime}\left(m^{\prime}\right)+d^{\prime}(m)^{\mu\left(m^{\prime g}\right)}+{ }^{\mu(m)} d^{\prime}\left(m^{\prime g}\right) \\
& -d\left(m^{g^{\prime}}\right)^{\mu\left(m^{\prime}\right)}-{ }^{\mu\left(m^{g^{\prime}}\right)} d\left(m^{\prime}\right)-d(m)^{\mu\left(m^{\prime g^{\prime}}\right)} \\
& -\mu(m) d\left(m^{\prime g^{\prime}}\right) \\
= & \left(d^{\prime}\left(m^{g}\right)-d\left(m^{g^{\prime}}\right)\right)^{\mu\left(m^{\prime}\right)}+{ }^{\mu(m)}\left(d^{\prime}\left(m^{\prime g}\right)-d\left(m^{\prime g^{\prime}}\right)\right) \\
& +{ }^{\nu(d(m))} d^{\prime}\left(m^{\prime}\right)+d^{\prime}(m)^{\nu\left(d\left(m^{\prime}\right)\right)}-\nu\left(d^{\prime}(m)\right) \\
& d\left(m^{\prime}\right) \\
& -d(m)^{\nu\left(d^{\prime}\left(m^{\prime}\right)\right)} \\
= & \delta(m)^{\mu\left(m^{\prime}\right)}+{ }^{\mu(m)} \delta\left(m^{\prime}\right)+\left[d(m), d^{\prime}\left(m^{\prime}\right)\right] \\
& +\left[d^{\prime}(m), d\left(m^{\prime}\right)\right]-\left[d^{\prime}(m), d\left(m^{\prime}\right)\right]-\left[d(m), d^{\prime}\left(m^{\prime}\right)\right] \\
= & \delta(m)^{\mu\left(m^{\prime}\right)}+{ }^{\mu(m)} \delta\left(m^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Delta\left(\left[m, m^{\prime}\right]\right)=-D\left(\left[m, m^{\prime}\right]^{g^{\prime}}\right)-d^{\prime}\left({ }^{(}\left[m, m^{\prime}\right]\right. \\
&=-D\left(\left[m^{g^{\prime}}, m^{\prime}\right]\right)-D\left(\left[m, m^{\prime g^{\prime}}\right]\right)-d^{\prime}\left(\left[{ }^{g} m, m^{\prime}\right]\right)+d^{\prime}\left(\left[m^{\prime}, m\right]\right) \\
&=-D\left(m^{g^{\prime}}\right)^{\mu\left(m^{\prime}\right)}+D\left(m^{\prime}\right)^{\mu\left(m^{g^{\prime}}\right)}-D(m)^{\mu\left(m^{\prime g^{\prime}}\right)}+D\left(m^{\prime g^{\prime}}\right)^{\mu(m)} \\
&-d^{\prime}\left(g_{m}\right)^{\mu\left(m^{\prime}\right)}-\mu\left({ }^{g} m\right) \\
& d^{\prime}\left(m^{\prime}\right)+d^{\prime}\left({ }^{g} m^{\prime}\right)^{\mu(m)}+{ }^{\mu\left({ }^{(} m^{\prime}\right)} d^{\prime}(m) \\
&=\left(-D\left(m^{g^{\prime}}\right)-d^{\prime}\left({ }^{g} m\right)\right)^{\mu\left(m^{\prime}\right)}-\left(-D\left(m^{\prime g^{\prime}}\right)-d^{\prime}\left({ }^{g} m^{\prime}\right)\right)^{\mu(m)} \\
&+D\left(m^{\prime}\right)^{\nu\left(d^{\prime}(m)\right)}-D(m)^{\nu\left(d^{\prime}\left(m^{\prime}\right)\right)}+\nu(D(m)) d^{\prime}\left(m^{\prime}\right) \\
&\left.-\nu\left(D\left(m^{\prime}\right)\right)\right) d^{\prime}(m) \\
&= \Delta(m)^{\mu\left(m^{\prime}\right)}-\Delta\left(m^{\prime}\right)^{\mu(m)}+\left[D\left(m^{\prime}\right), d^{\prime}(m)\right] \\
&-\left[D(m), d^{\prime}\left(m^{\prime}\right)\right]+\left[D(m), d^{\prime}\left(m^{\prime}\right)\right]-\left[D\left(m^{\prime}\right), d^{\prime}(m)\right] \\
&= \Delta(m)^{\mu\left(m^{\prime}\right)}-\Delta\left(m^{\prime}\right)^{\mu(m)} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \nu(\delta(m))=\nu\left(d^{\prime}\left(m^{g}\right)\right)-\nu\left(d\left(m^{g^{\prime}}\right)\right)=\mu\left(\left(m^{g}\right)^{g^{\prime}}\right)-\mu\left(\left(m^{g^{\prime}}\right)^{g}\right)=\mu\left(m^{\left[g, g^{\prime}\right]}\right), \\
& \nu(\Delta(m))=-\nu\left(D\left(m^{g^{\prime}}\right)\right)-\nu\left(d^{\prime}\left({ }^{g} m\right)\right)=\mu\left({ }^{g}\left(m^{g^{\prime}}\right)\right)-\mu\left(\left({ }^{g} m\right)^{g^{\prime}}\right)=-\mu\left({ }^{\left[g, g^{\prime}\right]} m\right), \\
& { }^{h} \delta(m)={ }^{h} d^{\prime}\left(m^{g}\right)-{ }^{h} d\left(m^{g^{\prime}}\right)={ }^{h} D^{\prime}\left(m^{g}\right)-{ }^{h} D\left(m^{g^{\prime}}\right) \\
& =-{ }^{h} D^{\prime}\left({ }^{g} m\right)-{ }^{h} D\left(m^{g^{\prime}}\right)=-{ }^{h} d^{\prime}\left({ }^{g} m\right)-{ }^{h} D\left(m^{g^{\prime}}\right) \\
& ={ }^{h} \Delta(m), \\
& \Delta\left({ }^{h} m\right)=-D\left(\left({ }^{h} m\right)^{g^{\prime}}\right)-d^{\prime}\left({ }^{g}\left({ }^{h} m\right)\right) \\
& =-D\left({ }^{\left[h, g^{\prime}\right.} m_{m}\right)-D\left({ }^{h}\left(m^{g^{\prime}}\right)\right)+d^{\prime}\left({ }^{g}\left(m^{h}\right)\right) \\
& =D\left(\left(m^{h}\right)^{g^{\prime}}\right)+d^{\prime}\left({ }^{g}\left(m^{h}\right)\right)=-\Delta\left(m^{h}\right) .
\end{aligned}
$$

Therefore the triple $\left(\delta, \Delta,\left[g, g^{\prime}\right]\right)$ is a biderivation from (\mathfrak{M}, μ) to (\mathfrak{N}, ν). Moreover, let $(d, D, g),\left(d^{\prime}, D^{\prime}, g^{\prime}\right)$ and $\left(d^{\prime \prime}, D^{\prime \prime}, g^{\prime \prime}\right)$ be biderivations from (\mathfrak{M}, μ) to (\mathfrak{N}, ν). We set

$$
\begin{aligned}
&\left(\delta, \Delta,\left[g^{\prime}, g^{\prime \prime}\right]\right):= {\left[\left(d^{\prime}, D^{\prime}, g^{\prime}\right),\left(d^{\prime \prime}, D^{\prime \prime}, g^{\prime \prime}\right)\right], } \\
&\left(\delta_{0}, \Delta_{0}, g_{0}\right):= \\
&\left((d, D, g),\left(\delta, \Delta,\left[g^{\prime}, g^{\prime \prime}\right]\right)\right], \\
&\left(\delta^{\prime}, \Delta^{\prime},\left[g, g^{\prime}\right]\right):= {\left[(d, D, g),\left(d^{\prime}, D^{\prime}, g^{\prime}\right)\right] } \\
&\left(\delta_{1}, \Delta_{1}, g_{1}\right):= \\
&\left(\delta^{\prime \prime}, \Delta^{\prime \prime},\left[\left(\delta^{\prime}, \Delta^{\prime},\left[g, g^{\prime \prime}\right]\right):\left(d^{\prime \prime}, D^{\prime \prime}, g^{\prime \prime}\right)\right],\right. {\left[(d, D, g),\left(d^{\prime \prime}, D^{\prime \prime}, g^{\prime \prime}\right)\right], } \\
&\left(\delta_{2}, \Delta_{2}, g_{2}\right):= \\
& {\left[\left(\delta^{\prime \prime}, \Delta^{\prime \prime},\left[g, g^{\prime \prime}\right]\right),\left(d^{\prime}, D^{\prime}, g^{\prime}\right)\right] . }
\end{aligned}
$$

It is clear that $g_{0}=g_{1}-g_{2}$. For any $m \in \mathfrak{M}$, we have

$$
\begin{aligned}
\left(\delta_{1}-\delta_{2}\right)(m)= & d^{\prime \prime}\left(m^{\left[g, g^{\prime}\right]}\right)-\delta^{\prime}\left(m^{g^{\prime \prime}}\right)-d^{\prime}\left(m^{\left[g, g^{\prime \prime}\right]}\right)+\delta^{\prime \prime}\left(m^{g^{\prime}}\right) \\
= & d^{\prime \prime}\left(\left(m^{g}\right)^{g^{\prime}}\right)-d^{\prime \prime}\left(\left(m^{g^{\prime}}\right)^{g}\right)-d^{\prime}\left(\left(m^{g^{\prime \prime}}\right)^{g}\right)+d\left(\left(m^{g^{\prime \prime}}\right)^{g^{\prime}}\right) \\
& -d^{\prime}\left(\left(m^{g}\right)^{g^{\prime \prime}}\right)+d^{\prime}\left(\left(m^{g^{\prime \prime}}\right)^{g}\right)+d^{\prime \prime}\left(\left(m^{g^{\prime}}\right)^{g}\right)-d\left(\left(m^{g^{\prime}}\right)^{g^{\prime \prime}}\right) \\
= & d^{\prime \prime}\left(\left(m^{g}\right)^{g^{\prime}}\right)-d^{\prime}\left(\left(m^{g}\right)^{g^{\prime \prime}}\right)-d\left(m^{\left[g^{\prime}, g^{\prime \prime}\right]}\right) \\
= & \delta\left(m^{g}\right)-d\left(m^{\left[g^{\prime}, g^{\prime \prime}\right]}\right)=\delta_{0}(m)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\Delta_{1}-\Delta_{2}\right)(m)= & -\Delta^{\prime}\left(m^{g^{\prime \prime}}\right)-d^{\prime \prime}\left({ }^{\left[g, g^{\prime}\right.} m\right)+\Delta^{\prime \prime}\left(m^{g^{\prime}}\right)+d^{\prime}\left({ }^{\left[g, g^{\prime \prime}\right.} m\right) \\
= & D\left(\left(m^{g^{\prime \prime}}\right)^{g^{\prime}}\right)+d^{\prime}\left({ }^{g}\left(m^{g^{\prime \prime}}\right)\right)-d^{\prime \prime}\left(\left({ }^{g} m\right)^{g^{\prime}}\right)+d^{\prime \prime}\left({ }^{g}\left(m^{g^{\prime}}\right)\right) \\
& -D\left(\left(m^{g^{\prime}}\right)^{g^{\prime \prime}}\right)-d^{\prime \prime}\left({ }^{g}\left(m^{g^{\prime}}\right)\right)+d^{\prime}\left(\left({ }^{g} m\right)^{g^{\prime \prime}}\right)-d^{\prime}\left({ }^{g}\left(m^{g^{\prime \prime}}\right)\right) \\
= & -D\left(m^{\left[g^{\prime}, g^{\prime \prime}\right]}\right)-d^{\prime \prime}\left(\left({ }^{g} m\right)^{g^{\prime}}\right)+d^{\prime}\left(\left({ }^{(g} m\right)^{g^{\prime \prime}}\right) \\
= & -D\left(m^{\left[g^{\prime}, g^{\prime \prime}\right]}\right)-\delta\left({ }^{g} m\right)=\Delta_{0}(m) .
\end{aligned}
$$

Therefore the \mathbb{K}-module $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ is a Leibniz algebra.

Let us equip the set $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ with a Leibniz action of \mathfrak{g}.
Proposition 3.2. - Let (\mathfrak{M}, μ) (resp. (\mathfrak{N}, ν)) be a pre-crossed (resp. crossed) Leibniz \mathfrak{g}-algebra. The set $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ is a pre-crossed Leibniz \mathfrak{g}-algebra for the operations defined by

$$
{ }^{h}(d, D, g):=\left({ }^{h} d,{ }^{h} D,[h, g]\right) \quad \text { and } \quad(d, D, g)^{h}:=\left(d^{h}, D^{h},[g, h]\right)
$$

where

$$
\begin{gathered}
\left({ }^{h} d\right)(m)=d\left(m^{h}\right)-d(m)^{h},\left({ }^{h} D\right)(m):={ }^{h} d(m)-d\left({ }^{h} m\right) \\
\left(d^{h}\right)(m):=d(m)^{h}-d\left(m^{h}\right),\left(D^{h}\right)(m):=D(m)^{h}-D\left(m^{h}\right)
\end{gathered}
$$

Proof. - Everything can be smoothly checked and we merely give an example of these verifications. By definition we have

$$
\begin{aligned}
{ }^{h}\left[(d, D, g),\left(d^{\prime}, D^{\prime}, g^{\prime}\right)\right] & =\left({ }^{h} \delta,{ }^{h} \Delta,\left[h,\left[g, g^{\prime}\right]\right]\right), \\
{\left[{ }^{h}(d, D, g),\left(d^{\prime}, D^{\prime}, g^{\prime}\right)\right] } & =\left(\delta_{1}, \Delta_{1},\left[[h, g], g^{\prime}\right]\right), \\
{\left[{ }^{h}\left(d^{\prime}, D^{\prime}, g^{\prime}\right),(d, D, g)\right] } & =\left(\delta_{2}, \Delta_{2},\left[\left[h, g^{\prime}\right], g\right]\right) .
\end{aligned}
$$

For any $m \in \mathfrak{M}$ we have

$$
\begin{aligned}
\left(\delta_{1}-\delta_{2}\right)(m)= & d^{\prime}\left(m^{[h, g]}\right)-\left({ }^{h} d\right)\left(m^{g^{\prime}}\right)-d\left(m^{\left[h, g^{\prime}\right]}\right)+\left({ }^{h} d^{\prime}\right)\left(m^{g}\right) \\
= & d^{\prime}\left(\left(m^{h}\right)^{g}\right)-d^{\prime}\left(\left(m^{g}\right)^{h}\right)-d\left(\left(m^{g^{\prime}}\right)^{h}\right)+d\left(m^{g^{\prime}}\right)^{h} \\
& -d\left(\left(m^{h}\right)^{g^{\prime}}\right)+d\left(\left(m^{g^{\prime}}\right)^{h}\right)+d^{\prime}\left(\left(m^{g}\right)^{h}\right)-d^{\prime}\left(m^{g}\right)^{h} \\
= & \left(d^{\prime}\left(\left(m^{h}\right)^{g}\right)-d\left(\left(m^{h}\right)^{g^{\prime}}\right)\right)-\left(d^{\prime}\left(m^{g}\right)-d\left(m^{g^{\prime}}\right)\right)^{h} \\
= & \delta\left(m^{h}\right)-\delta(m)^{h}=\left({ }^{h} \delta\right)(m)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\Delta_{1}-\Delta_{2}\right)(m)= & -\left({ }^{h} D\right)\left(m^{g^{\prime}}\right)-d^{\prime}\left({ }^{[h, g} m\right)+\left({ }^{h} D^{\prime}\right)\left(m^{g}\right)+d\left({ }^{\left[h, g^{\prime}\right.} m\right) \\
= & -{ }^{h} D\left(m^{g^{\prime}}\right)+d\left({ }^{h}\left(m^{g^{\prime}}\right)\right)-d^{\prime}\left(\left({ }^{h} m\right)^{g}\right)+d^{\prime}\left({ }^{h}\left(m^{g}\right)\right) \\
& +{ }^{h} D^{\prime}\left(m^{g}\right)-d^{\prime}\left({ }^{h}\left(m^{g}\right)\right)+d\left(\left({ }^{h} m\right)^{g^{\prime}}\right)-d\left({ }^{h}\left(m^{g^{\prime}}\right)\right) \\
= & { }^{h}\left(D^{\prime}\left(m^{g}\right)-D\left(m^{g^{\prime}}\right)\right)-\left(d^{\prime}\left(\left({ }^{h} m\right)^{g}\right)-d\left({\left.\left.\left({ }^{h} m\right)^{g^{\prime}}\right)\right)}_{=}{ }^{h} \delta(m)-\delta\left({ }^{h} m\right)=\left({ }^{h} \Delta\right)(m) .\right.\right.
\end{aligned}
$$

Thus we get

$$
{ }^{h}\left[(d, D, g),\left(d^{\prime}, D^{\prime}, g^{\prime}\right)\right]=\left[{ }^{h}(d, D, g),\left(d^{\prime}, D^{\prime}, g^{\prime}\right)\right]-\left[{ }^{h}\left(d^{\prime}, D^{\prime}, g^{\prime}\right),(d, D, g)\right]
$$

Now we can state the fundamental result which is a consequence of Propositions 3.1 and 3.2.

Theorem 3.3. - For any pre-crossed (resp. crossed) Leibniz \mathfrak{g} algebra $(\mathfrak{M}, \mu)($ resp. $(\mathfrak{N}, \nu))$, the Leibniz \mathfrak{g}-algebra $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ is precrossed for the morphism

$$
\rho: \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N}) \rightarrow \mathfrak{g},(\mathfrak{d}, \mathfrak{D}, \mathfrak{g}) \mapsto \mathfrak{g} .
$$

3.4. Remarks.

For any element g of \mathfrak{g}, the linear map $\operatorname{ad}_{g}: h \mapsto[h, g]$ (resp. $\left.\operatorname{Ad}_{g}: h \mapsto-[g, h]\right)$ is a derivation (resp. an anti-derivation) of the Leibniz algebra \mathfrak{g}. In the classical sense (i.e., without "crossing", see [7]) the couple $\left(\operatorname{ad}_{g}, \operatorname{Ad}_{g}\right)$ is called inner biderivation of \mathfrak{g}. Therefore the pre-crossed Leibniz \mathfrak{g}-algebra $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M}, \mathfrak{N})$ can be seen as the set of biderivations from (\mathfrak{M}, μ) to (\mathfrak{N}, ν) over inner biderivations of \mathfrak{g}.

On the other hand, given a pre-crossed Leibniz \mathfrak{g}-algebra (\mathfrak{M}, μ), one easily checks that the map $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{M},-)$ is a functor from the category of crossed Leibniz \mathfrak{g}-algebras to the category of pre-crossed Leibniz \mathfrak{g}-algebras.

4. Non-abelian tensor product of Leibniz algebras.

4.1. Leibniz pairings.

Let \mathfrak{M} and \mathfrak{N} be Leibniz algebras with mutual Leibniz actions on one another. A Leibniz pairing of \mathfrak{M} and \mathfrak{N} is a triple $\left(\mathfrak{P}, \mathfrak{h}_{1}, \mathfrak{h}_{2}\right)$ where \mathfrak{P} is a Leibniz algebra and $h_{1}: \mathfrak{M} \times \mathfrak{N} \rightarrow \mathfrak{P}$ (resp. $h_{2}: \mathfrak{N} \times \mathfrak{M} \rightarrow \mathfrak{P}$) is a bilinear map such that

$$
\begin{gathered}
h_{1}\left(m,\left[n, n^{\prime}\right]\right)=h_{1}\left(m^{n}, n^{\prime}\right)-h_{1}\left(m^{n^{\prime}}, n\right), \\
h_{2}\left(n,\left[m, m^{\prime}\right]\right)=h_{2}\left(n^{m}, m^{\prime}\right)-h_{2}\left(n^{m^{\prime}}, m\right), \\
h_{1}\left(\left[m, m^{\prime}\right], n\right)=h_{2}\left({ }^{m} n, m^{\prime}\right)-h_{1}\left(m, n^{m^{\prime}}\right), \\
h_{2}\left(\left[n, n^{\prime}\right], m\right)=h_{1}\left({ }^{n} m, n^{\prime}\right)-h_{2}\left(n, m^{n^{\prime}}\right), \\
h_{1}\left(m,{ }^{m^{\prime}} n\right)=-h_{1}\left(m, n^{m^{\prime}}\right), h_{2}\left(n,{ }^{n^{\prime}} m\right)=-h_{2}\left(n, m^{n^{\prime}}\right), \\
h_{1}\left(m^{n}, m^{\prime} n^{\prime}\right)=\left[h_{1}(m, n), h_{1}\left(m^{\prime}, n^{\prime}\right)\right]=h_{2}\left({ }^{m} n, m^{\prime n^{\prime}}\right), \\
h_{1}\left({ }^{n} m, n^{\prime m^{\prime}}\right)=\left[h_{2}(n, m), h_{2}\left(n^{\prime}, m^{\prime}\right)\right]=h_{2}\left(n^{m}, n^{\prime} m^{\prime}\right), \\
h_{1}\left(m^{n}, n^{\prime m^{\prime}}\right)=\left[h_{1}(m, n), h_{2}\left(n^{\prime}, m^{\prime}\right)\right]=h_{2}\left({ }^{m} n,,^{\prime} m^{\prime}\right), \\
h_{1}\left({ }^{n} m,{ }^{\prime} n^{\prime}\right)=\left[h_{2}(n, m), h_{1}\left(m^{\prime}, n^{\prime}\right)\right]=h_{2}\left(n^{m}, m^{\prime n^{\prime}}\right)
\end{gathered}
$$

for any $m, m^{\prime} \in \mathfrak{M}$ and $n, n^{\prime} \in \mathfrak{N}$.

4.2. Example.

Let \mathfrak{M} and \mathfrak{N} be two-sided ideals of a same Leibniz algebra \mathfrak{g}. Take $\mathfrak{P}:=\mathfrak{M} \cap \mathfrak{N}$ and define

$$
h_{1}(m, n):=[m, n] \quad \text { and } \quad h_{2}(n, m):=[n, m] .
$$

Then the triple $\left(\mathfrak{P}, \mathfrak{h}_{1}, \mathfrak{h}_{2}\right)$ is a Leibniz pairing of \mathfrak{M} and \mathfrak{N}.

4.3. Non-abelian tensor product.

A Leibniz pairing ($\mathfrak{P}, \mathfrak{h}_{1}, \mathfrak{h}_{2}$) of \mathfrak{M} and \mathfrak{N} is said to be universal if for any other Leibniz pairing $\left(\mathfrak{P}^{\prime}, \mathfrak{h}_{1}^{\prime}, \mathfrak{h}_{2}^{\prime}\right)$ of \mathfrak{M} and \mathfrak{N} there exists a unique Leibniz algebra morphism $\theta: \mathfrak{P} \rightarrow \mathfrak{P}^{\prime}$ such that

$$
\theta h_{1}=h_{1}^{\prime} \quad \text { and } \quad \theta h_{2}=h_{2}^{\prime}
$$

It is clear that a universal pairing, when it exists, is unique up to a unique isomorphism. Here is a construction of the universal pairing as a nonabelian tensor product.

Definition-Theorem 4.1. - Let \mathfrak{M} and \mathfrak{N} be Leibniz algebras with mutual Leibniz actions on one another. Let V be the free \mathbb{K}-module generated by the symbols $m * n$ and $n * m$ where $m \in \mathfrak{M}$ and $n \in \mathfrak{N}$. Let $\mathfrak{M} \star \mathfrak{N}$ be the Leibniz algebra quotient of the free Leibniz algebra generated by V by the two-sided ideal defined by the relations

$$
\begin{aligned}
& \text { i) } \lambda(m * n)=\lambda m * n=m * \lambda n, \lambda(n * m)=\lambda n * m=n * \lambda m, \\
& \text { ii) }\left(m+m^{\prime}\right) * n=m * n+m^{\prime} * n,\left(n+n^{\prime}\right) * m=n * m+n^{\prime} * m, \\
& m *\left(n+n^{\prime}\right)=m * n+m * n^{\prime}, n *\left(m+m^{\prime}\right)=n * m+n * m^{\prime}, \\
& \text { iii) } m *\left[n, n^{\prime}\right]=m^{n} * n^{\prime}-m^{n^{\prime}} * n, n *\left[m, m^{\prime}\right]=n^{m} * m^{\prime}-n^{m^{\prime}} * m, \\
& {\left[m, m^{\prime}\right] * n=m_{n} * m^{\prime}-m * n^{m^{\prime}},\left[n, n^{\prime}\right] * m=n^{n} m * n^{\prime}-n * m^{n^{\prime}},} \\
& \text { iv) } m * m^{\prime} n=-m * n^{m^{\prime}}, n * n^{\prime} m=-n * m^{n^{\prime}}, \\
& \text { v) } m^{n} * m^{\prime} n^{\prime}=\left[m * n, m^{\prime} * n^{\prime}\right]=m_{n} * m^{\prime n^{\prime}}, \\
& m^{n} * n^{\prime m^{\prime}}=\left[m * n, n^{\prime} * m^{\prime}\right]=m^{m^{\prime}} *^{n^{\prime} m^{\prime},} \\
& { }^{n} m * n^{\prime m^{\prime}}=\left[n * m, n^{\prime} * m^{\prime}\right]=n^{m} * n^{\prime} m^{\prime} \\
& n_{m} * m^{\prime} n^{\prime}=\left[n * m, m^{\prime} * n^{\prime}\right]=n^{m} * m^{\prime n^{\prime}} \\
& \text { for any } \lambda \in \mathbb{K}, m, m^{\prime} \in \mathfrak{M}, n, n^{\prime} \in \mathfrak{N} . \operatorname{Define~maps} \\
& \qquad h_{1}: \mathfrak{M} \times \mathfrak{N} \rightarrow \mathfrak{M} \star \mathfrak{N}, \mathfrak{h}_{1}(\mathfrak{m}, \mathfrak{n}):=\mathfrak{m} * \mathfrak{n}
\end{aligned}
$$

and

$$
h_{2}: \mathfrak{N} \times \mathfrak{M} \rightarrow \mathfrak{M} \star \mathfrak{N}, \mathfrak{h}_{2}(\mathfrak{n}, \mathfrak{m}):=\mathfrak{n} * \mathfrak{m}
$$

Then the triple $\left(\mathfrak{M} \star \mathfrak{N}, \mathfrak{h}_{1}, \mathfrak{h}_{2}\right)$ is the universal Leibniz pairing of \mathfrak{M} and \mathfrak{N} and called the non-abelian tensor product (or tensor product for short) of \mathfrak{M} and \mathfrak{N}.

Proof. - It is straightforward to see that the triple $\left(\mathfrak{M} \star \mathfrak{N}, \mathfrak{h}_{1}, \mathfrak{h}_{2}\right)$ so-defined is a Leibniz pairing of \mathfrak{M} and \mathfrak{N}. For the universality, notice that if $\left(\mathfrak{P}, \mathfrak{h}_{1}^{\prime}, \mathfrak{h}_{2}^{\prime}\right)$ is another Leibniz pairing of \mathfrak{M} and \mathfrak{N}, then the map θ is necessarily given on generators by

$$
\theta(m * n)=h_{1}^{\prime}(m, n) \quad \text { and } \quad \theta(n * m)=h_{2}^{\prime}(n, m)
$$

for any $m \in \mathfrak{M}$ and $n \in \mathfrak{N}$.
As an illustration of this construction, we give now a description of the non-abelian tensor product when the actions are trivial.

Proposition 4.2. - If the Leibniz algebras \mathfrak{M} and \mathfrak{N} act trivially on each other, then there is an isomorphism of abelian Leibniz algebras

$$
\mathfrak{M} \star \mathfrak{N} \cong \mathfrak{M}_{\mathfrak{a b}} \otimes \mathfrak{N}_{\mathfrak{a b}} \oplus \mathfrak{N}_{\mathfrak{a b}} \otimes \mathfrak{M}_{\mathfrak{a b}}
$$

where $\mathfrak{M}_{\mathfrak{a b}}:=\mathfrak{M} /[\mathfrak{M}, \mathfrak{M}]$ and $\mathfrak{N}_{\mathfrak{a b}}:=\mathfrak{N} /[\mathfrak{N}, \mathfrak{N}]$.

Proof. - Recall that the underlying \mathbb{K}-module of the free Leibniz algebra generated by V is

$$
\overline{\mathrm{T}}(V)=V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes n} \oplus \cdots
$$

Since the actions are trivial, the definition of the bracket on $\overline{\mathrm{T}}(V)$ and the relations v) enable us to see that $\mathfrak{M} \star \mathfrak{N}$ is an abelian Leibniz algebra and that the summands $V^{\otimes n}$ (for $n \geq 2$) are killed. Relations i) and ii) of 4.1 say that the \mathbb{K}-module $\mathfrak{M} \star \mathfrak{N}$ is the quotient of $\mathfrak{M} \otimes \mathfrak{N} \oplus \mathfrak{N} \otimes \mathfrak{M}$ by the relations iii). These later imply that $\mathfrak{M} \star \mathfrak{N}$ is the abelian Leibniz algebra $\mathfrak{M}_{\mathfrak{a b}} \otimes \mathfrak{N}_{\mathfrak{a b}} \oplus \mathfrak{N}_{\mathfrak{a b}} \otimes \mathfrak{M}_{\mathfrak{a b}}$.

4.4. Compatible Leibniz actions.

Let \mathfrak{M} and \mathfrak{N} be Leibniz algebras with mutual Leibniz actions on one another. We say that these actions are compatible if we have

$$
\begin{aligned}
& { }^{\left({ }^{m} n\right)} m^{\prime}=\left[m^{n}, m^{\prime}\right],{ }^{\left({ }^{n} m\right)} n^{\prime}=\left[n^{m}, n^{\prime}\right], \\
& { }^{\left(n^{m}\right)} m^{\prime}=\left[{ }^{n} m, m^{\prime}\right],{ }^{\left(m^{n}\right)} n^{\prime}=\left[{ }^{m} n, n^{\prime}\right], \\
& m^{\left(m^{\prime} n\right)}=\left[m, m^{\prime n}\right], n^{\left(n^{\prime} m\right)}=\left[n, n^{\prime m}\right], \\
& m^{\left(n^{m^{\prime}}\right)}=\left[m,{ }^{n} m^{\prime}\right], n^{\left(m^{n^{\prime}}\right)}=\left[n,{ }^{m} n^{\prime}\right]
\end{aligned}
$$

for any $m, m^{\prime} \in \mathfrak{M}$ and $n, n^{\prime} \in \mathfrak{N}$.

4.5. Examples.

If \mathfrak{M} and \mathfrak{N} are two-sided ideals of a same Leibniz algebra, then the actions (given by the initial bracket) are compatible.

Let (\mathfrak{M}, μ) and ($\mathfrak{N}, \nu)$ be pre-crossed Leibniz \mathfrak{g}-algebras. Then one can define a Leibniz action of \mathfrak{M} on \mathfrak{N} (resp. of \mathfrak{N} on \mathfrak{M}) by setting

$$
\begin{gathered}
m_{n}:==^{\mu(m)} n \quad \text { and } \quad n^{m}:=n^{\mu(m)} \\
\text { (resp. } \left.{ }^{n} m:={ }^{\nu(n)} m \quad \text { and } \quad m^{n}:=m^{\nu(n)}\right)
\end{gathered}
$$

If the Leibniz \mathfrak{g}-algebras (\mathfrak{M}, μ) and (\mathfrak{N}, ν) are crossed, then these Leibniz actions are compatible.

4.6. First crossed structure.

Let \mathfrak{M} and \mathfrak{N} be Leibniz algebras with mutual compatible actions on one another. Consider the operations of \mathfrak{M} on $\mathfrak{M} \star \mathfrak{N}$ given by

$$
\begin{aligned}
& m\left(m^{\prime} * n^{\prime}\right):=\left[m, m^{\prime}\right] * n^{\prime}-m_{n^{\prime}} * m^{\prime}, \quad m\left(n^{\prime} * m^{\prime}\right):=m^{\prime} * m^{\prime}-\left[m, m^{\prime}\right] * n^{\prime} \\
&(m * n)^{m^{\prime}}:=\left[m, m^{\prime}\right] * n+m * n^{m^{\prime}},(n * m)^{m^{\prime}}:=n^{m^{\prime}} * m+n *\left[m, m^{\prime}\right]
\end{aligned}
$$

and those of \mathfrak{N} on $\mathfrak{M} \star \mathfrak{N}$ given by

$$
\begin{aligned}
& n\left(m^{\prime} * n^{\prime}\right):={ }^{n} m^{\prime} * n^{\prime}-\left[n, n^{\prime}\right] * m^{\prime}, \quad n\left(n^{\prime} * m^{\prime}\right): \\
&(m * n)^{n^{\prime}}:=m^{n^{\prime}} * n+m *\left[n, n^{\prime}\right] * m^{\prime}-n^{\prime} m^{\prime} * n^{\prime} \\
&,
\end{aligned},(n * m)^{n^{\prime}}:=\left[n, n^{\prime}\right] * m+n * m^{n^{\prime}},
$$

for any $m, m^{\prime} \in \mathfrak{M}$ and $n, n^{\prime} \in \mathfrak{N}$. Then we have
Proposition 4.3. - With the above operations, the map

$$
\begin{gathered}
\mu: \mathfrak{M} \star \mathfrak{N} \rightarrow \mathfrak{M}, \mathfrak{m} * \mathfrak{n} \mapsto \mathfrak{m}^{\mathfrak{n}}, \mathfrak{n} * \mathfrak{m} \mapsto \mathfrak{n}_{\mathfrak{m}} \\
\left(\operatorname{resp} . \nu: \mathfrak{M} \star \mathfrak{N} \rightarrow \mathfrak{N}, \mathfrak{m} * \mathfrak{n} \mapsto{ }^{\mathbf{m}} \mathfrak{n}, \mathfrak{n} * \mathfrak{m} \mapsto \mathfrak{n}^{\mathfrak{m}}\right)
\end{gathered}
$$

induces on $\mathfrak{M} \star \mathfrak{N}$ a structure of crossed Leibniz \mathfrak{M}-algebra (resp. \mathfrak{N} algebra).

Proof. - Once again everything can be readily checked thanks to the compatibility conditions. For example we have

$$
\begin{aligned}
\mu(m * n)\left(m^{\prime} * n^{\prime}\right) & ={ }^{m^{n}}\left(m^{\prime} * n^{\prime}\right)=\left[m^{n}, m^{\prime}\right] * n^{\prime}-\left(m^{n}\right) n^{\prime} * m^{\prime} \\
& ={ }^{\left(m^{n}\right)} n^{\prime} * m^{\prime}-m^{n} * n^{\prime m^{\prime}}-{ }^{\left(m^{n}\right)} n^{\prime} * m^{\prime} \\
& =m^{n} * m^{\prime} n=\left[m * n, m^{\prime} * n^{\prime}\right]
\end{aligned}
$$

for any $m, m^{\prime} \in \mathfrak{M}$ and $n, n^{\prime} \in \mathfrak{N}$.

4.7. Second crossed structure.

Let (\mathfrak{M}, μ) and ($\mathfrak{N}, \nu)$ be pre-crossed Leibniz \mathfrak{g}-algebras, equipped with the mutual Leibniz actions given in Examples 4.5. One easily checks that the operations given by

$$
\begin{gathered}
{ }^{g}(m * n):={ }^{g} m * n-{ }^{g} n * m,{ }^{g}(n * m):={ }^{g} n * m-{ }^{g} m * n, \\
(m * n)^{g}:=m^{g} * n+m * n^{g},(n * m)^{g}:=n^{g} * m+n * m^{g},
\end{gathered}
$$

define a Leibniz action of \mathfrak{g} on $\mathfrak{M} \star \mathfrak{N}$.
Proposition 4.4. - Let (\mathfrak{M}, μ) and (\mathfrak{N}, ν) be pre-crossed Leibniz \mathfrak{g}-algebras. Then the map $\eta: \mathfrak{M} \star \mathfrak{N} \rightarrow \mathfrak{g}$ defined on generators by

$$
\eta(m * n):=[\mu(m), \nu(n)] \quad \text { and } \quad \eta(n * m):=[\nu(n), \mu(m)],
$$

confers to $\mathfrak{M} \star \mathfrak{N}$ a structure of pre-crossed Leibniz \mathfrak{g}-algebra. Moreover, if one of the Leibniz \mathfrak{g}-algebras \mathfrak{M} or \mathfrak{N} is crossed, then the Leibniz \mathfrak{g}-algebra $\mathfrak{M} \star \mathfrak{N}$ is crossed.

Proof. - It is immediate to check that the map η passes to the quotient and defines a Leibniz algebra morphism. Moreover we have

$$
\begin{aligned}
\eta\left({ }^{g}(m * n)\right) & =\left[\mu\left({ }^{g} m\right), \nu(n)\right]-\left[\nu\left({ }^{g} n\right), \mu(m)\right] \\
& =[[g, \mu(m)], \nu(n)]-[[g, \nu(n)], \mu(m)] \\
& =[g,[\mu(m), \nu(n)]]=[g, \eta(m * n)] \\
\eta\left({ }^{g}(n * m)\right) & \left.=-\eta{ }^{g}(m * n)\right)=-[g, \eta(m * n)] \\
& =-[g,[\mu(m), \nu(n)]]=[g,[\nu(n), \mu(m)]]=[g, \eta(n * m)] \\
\eta\left((m * n)^{g}\right) & =\left[\mu\left(m^{g}\right), \nu(n)\right]+\left[\mu(m), \nu\left(n^{g}\right)\right] \\
& =[[\mu(m), g], \nu(n)]+[\mu(m),[\nu(n), g]] \\
& =[[\mu(m), \nu(n)], g]=[\eta(m * n), g] \\
\eta\left((n * m)^{g}\right) & =\left[\nu\left(n^{g}\right), \mu(m)\right]+\left[\nu(n), \mu\left(m^{g}\right)\right] \\
& =[[\nu(n), g], \mu(m)]+[\nu(n),[\mu(m), g]] \\
& =[[\nu(n), \mu(m)], g]=[\eta(n * m), g]
\end{aligned}
$$

thus $(\mathfrak{M} \star \mathfrak{N}, \eta)$ is a pre-crossed Leibniz \mathfrak{g}-algebra. Assume that, for instance,
the Leibniz \mathfrak{g}-algebra \mathfrak{M} is crossed. Then we have

$$
\begin{aligned}
\eta(m * n)\left(m^{\prime} * n^{\prime}\right) & =[\mu(m), \nu(n)] \\
& \left.=m^{\prime} * n^{\prime}\right)=\mu\left(m^{\nu(n)}\right) m^{\prime} * n^{\prime}-\mu\left(m^{\nu(n)}\right)\left(m^{\prime} * n^{\prime}\right) \\
& =\left[m^{\nu(n)}, m^{\prime}\right] * n^{\prime}-{ }^{\mu\left(m^{\nu(n)}\right)} n^{\prime} * m^{\prime} \\
& ={ }^{\mu\left(m^{\nu(n)}\right)} n^{\prime} * m^{\prime}-m^{\nu(n)} * n^{\prime \mu\left(m^{\prime}\right)}-\mu\left(m^{\nu(n)}\right) n^{\prime} * m^{\prime} \\
& =m^{\nu(n)} *{ }^{\mu\left(m^{\prime}\right)} n^{\prime}=\left[m * n, m^{\prime} * n^{\prime}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
(m * n)^{\eta\left(m^{\prime} * n^{\prime}\right)} & =(m * n)^{\left[\mu\left(m^{\prime}\right), \nu\left(n^{\prime}\right)\right]}=(m * n)^{\mu\left(m^{\prime \nu\left(n^{\prime}\right)}\right)} \\
& =m^{\mu\left(m^{\prime \nu\left(n^{\prime}\right)}\right)} * n+m * n^{\mu\left(m^{\prime \nu\left(n^{\prime}\right)}\right)} \\
& =\left[m, m^{\prime \nu\left(n^{\prime}\right)}\right] * n+m * n^{\mu\left(m^{\prime \nu\left(n^{\prime}\right)}\right)} \\
& ={ }^{\mu(m)} n * m^{\prime \nu\left(n^{\prime}\right)}-m * n^{\mu\left(m^{\prime \nu\left(n^{\prime}\right)}\right)}+m * n^{\mu\left(m^{\prime \nu\left(n^{\prime}\right)}\right)} \\
& =\left[m * n, m^{\prime} * n^{\prime}\right] .
\end{aligned}
$$

By the same way, one easily gets

$$
\begin{aligned}
& \eta(m * n) \\
& \eta(n * m) \\
&\left.n^{\prime} * m^{\prime}\right)=\left[m * n, n^{\prime} * m^{\prime}\right],(m * n)^{\eta\left(n^{\prime} * m^{\prime}\right)}=\left[m * n, n^{\prime} * m^{\prime}\right] \\
& \eta(n * m)=\left[n * m, n^{\prime} * m^{\prime}\right],(n * m)^{\eta\left(n^{\prime} * m^{\prime}\right)}=\left[n * m, n^{\prime} * m^{\prime}\right] \\
&=\left[n * m, m^{\prime} * n^{\prime}\right],(n * m)^{\eta\left(m^{\prime} * n^{\prime}\right)}=\left[n * m, m^{\prime} * n^{\prime}\right]
\end{aligned}
$$

So we have proved that the Leibniz \mathfrak{g}-algebra $\mathfrak{M} \star \mathfrak{N}$ is crossed.

4.8. Remark.

It is clear that if $(\mathfrak{M}, \mu)($ resp. $(\mathfrak{N}, \nu))$ is a crossed Leibniz \mathfrak{g}-algebra, then the map $\mathfrak{M} \star-($ resp. $-\star \mathfrak{N})$ is a functor from the category of precrossed Leibniz \mathfrak{g}-algebras to the category of crossed Leibniz \mathfrak{g}-algebras.

Proposition 4.5. - Let (\mathfrak{N}, ν) be a crossed Leibniz \mathfrak{g}-algebra. The functor $F(-):=-\star \mathfrak{N}$ is a right exact functor from the category of precrossed Leibniz \mathfrak{g}-algebras to the category of crossed Leibniz \mathfrak{g}-algebras.

Proof. - Taking into account Proposition 2.3, let

$$
0 \rightarrow(\mathfrak{P}, \mathfrak{o}) \xrightarrow{\mathfrak{f}}(\mathfrak{Q}, \lambda) \xrightarrow{\mathfrak{g}}(\mathfrak{R}, \gamma) \rightarrow 0
$$

be an exact sequence of pre-crossed Leibniz \mathfrak{g}-algebras. Consider the sequence of Leibniz algebras

$$
F(\mathfrak{P}) \xrightarrow{\mathfrak{F}(\mathfrak{f})} \mathfrak{F}(\mathfrak{Q}) \xrightarrow{\mathfrak{F}(\mathfrak{g})} \mathfrak{F}(\mathfrak{R}) \rightarrow 0
$$

It is clear that the morphism $F(g)$ is surjective. Since the map $F(f)$ is a morphism of crossed Leibniz \mathfrak{g}-algebras, by Proposition 2.2, $(F(\mathfrak{P}), \mathfrak{F}(\mathfrak{f}))$ is a crossed Leibniz $F(\mathfrak{Q})$-algebra; and by Proposition 2.1, the image $\operatorname{im} F(f)$ is a two-sided ideal in $F(\mathfrak{Q})$. By composition we have $F(g) F(f)=F(g f)=0$, which yields a factorisation

$$
\overline{F(g)}: F(\mathfrak{Q}) / \operatorname{im} \mathfrak{F}(\mathfrak{f}) \rightarrow \mathfrak{F}(\mathfrak{R}) .
$$

In fact, the morphism $\overline{F(g)}$ is an isomorphism. To see it, let us consider the map

$$
\Gamma: F(\mathfrak{R}) \rightarrow \mathfrak{F}(\mathfrak{Q}) / \operatorname{im} \mathfrak{F}(\mathfrak{f})
$$

given on generators by
$\Gamma(r * n):=g^{-1}(r) * n \bmod \operatorname{im} F(f)$ and $\Gamma(n * r):=n * g^{-1}(r) \bmod \operatorname{im} F(f)$ where $g^{-1}(r)$ is any pre-image of r in \mathfrak{Q}. Indeed, if q and q^{\prime} are two preimages of r, then $q-q^{\prime}=f(p)$ for some p in \mathfrak{P}. Therefore we have

$$
\begin{aligned}
& q * m-q^{\prime} * n=\left(q-q^{\prime}\right) * n=f(p) * n=F(f)(p * n) \in \operatorname{im} F(f) \\
& n * q-n * q^{\prime}=n *\left(q-q^{\prime}\right)=n * f(p)=F(f)(n * p) \in \operatorname{im} F(f)
\end{aligned}
$$

thus the map Γ is well-defined. One easily checks that Γ is a morphism of Leibniz algebras and inverse to $\overline{F(g)}$.

5. Adjunction theorem.

In this section we show that, for any crossed Leibniz \mathfrak{g}-algebra (\mathfrak{N}, ν), the functor $-\star \mathfrak{N}$ is left adjoint to the functor $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N},-)$. For technical reasons, we assume that the relations
$i v)$

$$
m *^{\mu\left(m^{\prime}\right)} n=-m * n^{\mu\left(m^{\prime}\right)}, n *^{\nu\left(n^{\prime}\right)} m=-n * m^{\nu\left(n^{\prime}\right)}
$$

defining the tensor product $\mathfrak{M} \star \mathfrak{N}$ are extended to the relations
$i v)^{\prime}$

$$
m *{ }^{g} n=-m * n^{g}, n *{ }^{g} m=-n * m^{g}
$$

for any $m, m^{\prime} \in \mathfrak{M}, n, n^{\prime} \in \mathfrak{N}$ and $g \in \mathfrak{g}$. To avoid confusion, we denote this later tensor product by $\mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N}$. For instance, the Leibniz \mathfrak{g}-algebras $\mathfrak{M} \star \mathfrak{N}$ and $\mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N}$ coincide if the maps μ and ν are surjective.

Theorem 5.1. - Let (\mathfrak{M}, μ) be a pre-crossed Leibniz \mathfrak{g}-algebra and let (\mathfrak{N}, ν) and (\mathfrak{P}, λ) be crossed Leibniz \mathfrak{g}-algebras. There is an isomorphism of \mathbb{K}-modules

$$
\operatorname{Hom}_{(\mathbf{p c}-\operatorname{Leib}(\mathfrak{g}))}\left(\mathfrak{M}, \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N}, \mathfrak{P})\right) \cong \operatorname{Hom}_{(\mathbf{c}-\operatorname{Leib}(\mathfrak{g}))}\left(\mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N}, \mathfrak{P}\right)
$$

Proof. - Let $\phi \in \operatorname{Hom}_{(\mathbf{p c - L e i b}(\mathfrak{g}))}\left(\mathfrak{M}, \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N}, \mathfrak{P})\right)$ and put $\left(d_{m}, D_{m}, g_{m}\right):=\phi(m)$ for $m \in \mathfrak{M}$. Notice that we have $g_{m}=\mu(m)$ thanks to the relation $\rho \phi=\mu$, where $\rho: \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N}, \mathfrak{P}) \rightarrow \mathfrak{g}$ is the crossing morphism. We associate to ϕ the map $\Phi: \mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N} \rightarrow \mathfrak{P}$ defined on generators by

$$
\Phi(m * n):=-D_{m}(n) \quad \text { and } \quad \Phi(n * m):=d_{m}(n), \forall m \in \mathfrak{M}, \mathfrak{n} \in \mathfrak{N}
$$

Lemma 5.2. - The map Φ is a morphism of crossed Leibniz \mathfrak{g} algebras.

Conversely, given an element $\sigma \in \operatorname{Hom}_{(\mathbf{c - L e i b}(\mathfrak{g}))}\left(\mathfrak{M} \star_{\mathfrak{g}} \mathfrak{N}, \mathfrak{P}\right)$, we associate the map $\Sigma: \mathfrak{M} \rightarrow \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{N}, \mathfrak{P})$ defined by

$$
\Sigma(m):=\left(\delta_{m}, \Delta_{m}, \mu(m)\right), \forall m \in \mathfrak{M}
$$

where

$$
\delta_{m}(n):=\sigma(n * m) \quad \text { and } \quad \Delta_{m}(n):=-\sigma(m * n), \forall n \in \mathfrak{N} .
$$

Lemma 5.3. - The map Σ is a morphism of pre-crossed Leibniz \mathfrak{g}-algebras.

It is clear that the maps $\phi \mapsto \Phi$ and $\sigma \mapsto \Sigma$ are inverse to each other, which proves the adjunction theorem.

Proof of Lemma 5.2. - There is a lot of things to check in order to show that the map Φ is well-defined. Let us give some examples of these verifications. For any $m, m^{\prime} \in \mathfrak{M}, n, n^{\prime} \in \mathfrak{N}$ and $h \in \mathfrak{g}$, we have

$$
\begin{aligned}
\Phi\left({ }^{n} m * n^{\prime}-n * m^{n^{\prime}}\right) & =-D_{\nu(n) m}\left(n^{\prime}\right)-d_{m^{\nu\left(n^{\prime}\right)}}(n) \\
& =-\left({ }^{\nu(n)} D_{m}\right)\left(n^{\prime}\right)-\left(\left(d_{m}\right)^{\nu\left(n^{\prime}\right)}\right)(n) \\
& =-{ }^{\nu(n)} D_{m}\left(n^{\prime}\right)+d_{m}\left(\left(^{\nu(n)} n^{\prime}\right)-d_{m}(n)^{\nu\left(n^{\prime}\right)}+d_{m}\left(n^{\nu\left(n^{\prime}\right)}\right)\right. \\
& =-^{\nu(n)} d_{m}\left(n^{\prime}\right)+d_{m}\left(\left[n, n^{\prime}\right]\right)-d_{m}(n)^{\nu\left(n^{\prime}\right)}+d_{m}\left(\left[n, n^{\prime}\right]\right) \\
& =d_{m}\left(\left[n, n^{\prime}\right]\right)=\Phi\left(\left[n, n^{\prime}\right] * m\right) .
\end{aligned}
$$

We also compute

$$
\begin{gathered}
\Phi\left(m *{ }^{h} n\right)=-D_{m}\left({ }^{h} n\right)=D_{m}\left(n^{h}\right)=-\Phi\left(m * n^{h}\right) \\
\Phi\left(n *{ }^{h} m\right)=d_{h_{m}}(n)=\left({ }^{h} d_{m}\right)(n)=-\left(\left(d_{m}\right)^{h}\right)(n)=-d_{m^{h}}(n)=-\Phi\left(n * m^{h}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
\Phi\left(m^{n} * m^{\prime} n^{\prime}\right) & =-D_{m^{\nu(n)}}\left({ }^{\mu\left(m^{\prime}\right)} n^{\prime}\right)=-\left(\left(D_{m}\right)^{\nu(n)}\right)\left({ }^{\mu\left(m^{\prime}\right)} n^{\prime}\right) \\
& =-D_{m}\left({ }^{\mu\left(m^{\prime}\right)} n^{\prime}\right)^{\nu(n)}+D_{m}\left(\left(^{\mu\left(m^{\prime}\right)} n^{\prime}\right)^{\nu(n)}\right) \\
& =-D_{m}\left({ }^{\mu\left(m^{\prime}\right)} n^{\prime}\right)^{\nu(n)}+D_{m}\left(\left[^{\mu\left(m^{\prime}\right)} n^{\prime}, n\right]\right) \\
& =-D_{m}(n)^{\nu\left({ }^{\left(m^{\prime}\right)} n^{\prime}\right)}=D_{m}(n)^{\lambda\left(D_{m^{\prime}}\left(n^{\prime}\right)\right)} \\
& =\left[D_{m}(n), D_{m^{\prime}}\left(n^{\prime}\right)\right]=\left[\Phi(m * n), \Phi\left(m^{\prime} * n^{\prime}\right)\right] \\
& =\Phi\left(\left[m * n, m^{\prime} * n^{\prime}\right]\right) .
\end{aligned}
$$

Now let $m \in \mathfrak{M}, n \in \mathfrak{N}$ and $g \in \mathfrak{g}$. One has successively

$$
\begin{gathered}
\Phi\left({ }^{g}(m * n)\right)=\Phi\left({ }^{g} m * n\right)-\Phi\left({ }^{g} n * m\right)=-D_{g_{m}}(n)-d_{m}\left({ }^{g} n\right) \\
=\left({ }^{g} D_{m}\right)(n)-d_{m}\left({ }^{g} n\right)=-{ }^{g} D_{m}(n)={ }^{g} \Phi(m * n), \\
\Phi\left({ }^{g}(n * m)\right)=-\Phi\left({ }^{g}(m * n)\right)=-{ }^{g} \Phi(m * n)={ }^{g} D_{m}(n)={ }^{g} d_{m}(n)={ }^{g} \Phi(n * m), \\
\Phi\left((m * n)^{g}\right)=\Phi\left(m^{g} * n\right)+\Phi\left(m * n^{g}\right)=-D_{m^{g}}(n)-D_{m}\left(n^{g}\right) \\
=-\left(\left(D_{m}\right)^{g}\right)(n)-D_{m}\left(n^{g}\right)=-D_{m}(n)^{g}=\Phi(m * n)^{g}, \\
\Phi\left((n * m)^{g}\right)=\Phi\left(n^{g} * m\right)+\Phi\left(n * m^{g}\right)=d_{m}\left(n^{g}\right)+d_{m}(n) \\
=d_{m}\left(n^{g}\right)+\left(\left(d_{m}\right)^{g}\right)(n)=d_{m}(n)^{g}=\Phi(n * m)^{g} ; \\
\lambda \Phi(m * n)=-\lambda\left(D_{m}(n)\right)=\nu\left({ }^{\mu(m)} n\right)=[\mu(m), \nu(n)]=\eta(m * n), \\
\lambda \Phi(n * m)=\lambda\left(d_{m}(n)\right)=\nu\left(n^{\mu(m)}\right)=[\nu(n), \mu(m)]=\eta(n * m) .
\end{gathered}
$$

Therefore the map Φ is a morphism of crossed Leibniz \mathfrak{g}-algebras.
Proof of Lemma 5.3. - Let us first show that $\Sigma(m)$ is a well-defined biderivation. For any $n, n^{\prime} \in \mathfrak{N}$, we have

$$
\begin{aligned}
& \delta_{m}(n)^{\nu\left(n^{\prime}\right)}+{ }^{\nu(n)} \delta_{m}\left(n^{\prime}\right) \\
= & \sigma(n * m)^{\nu\left(n^{\prime}\right)}+{ }^{\nu(n)} \sigma\left(n^{\prime} * m\right)=\sigma\left((n * m)^{\nu\left(n^{\prime}\right)}\right)+\sigma\left(\left(^{\nu(n)}\left(n^{\prime} * m\right)\right)\right. \\
= & \sigma\left(n^{\nu\left(n^{\prime}\right)} * m\right)+\sigma\left(n * m^{\nu\left(n^{\prime}\right)}\right)+\sigma\left(\left(^{\nu(n)} n^{\prime} * m\right)-\sigma\left({ }^{\nu\left(n^{\prime}\right)} m * n^{\prime}\right)\right. \\
= & 2 \sigma\left(\left[n, n^{\prime}\right] * m\right)-\sigma\left(\left(^{\nu(n)} m * n^{\prime}-n * m^{\nu\left(n^{\prime}\right)}\right)\right. \\
= & 2 \sigma\left(\left[n, n^{\prime}\right] * m\right)-\sigma\left(\left[n, n^{\prime}\right] * m\right)=\sigma\left(\left[n, n^{\prime}\right] * m\right)=\delta_{m}\left(\left[n, n^{\prime}\right]\right),
\end{aligned}
$$

thus δ_{m} is a derivation. Moreover, we have

$$
\begin{aligned}
& \Delta_{m}(n)^{\nu\left(n^{\prime}\right)}-\Delta_{m}\left(n^{\prime}\right)^{\nu(n)} \\
= & -\sigma(m * n)^{\nu\left(n^{\prime}\right)}+\sigma\left(m * n^{\prime}\right)^{\nu(n)}=\sigma\left(\left(m * n^{\prime}\right)^{\nu(n)}\right)-\sigma\left((m * n)^{\nu\left(n^{\prime}\right)}\right) \\
= & \sigma\left(m^{\nu(n)} * n^{\prime}\right)+\sigma\left(m * n^{\prime \nu(n)}\right)-\sigma\left(m^{\nu\left(n^{\prime}\right)} * n\right)-\sigma\left(m * n^{\nu\left(n^{\prime}\right)}\right) \\
= & \sigma\left(m^{\nu(n)} * n^{\prime}-m^{\nu\left(n^{\prime}\right)} * n\right)-\sigma\left(m * *^{\nu(n)} n^{\prime}\right)-\sigma\left(m * n^{\nu\left(n^{\prime}\right)}\right) \\
= & \sigma\left(m *\left[n, n^{\prime}\right]\right)-\sigma\left(m *\left[n, n^{\prime}\right]\right)-\sigma\left(m *\left[n, n^{\prime}\right]\right) \\
= & -\sigma\left(m *\left[n, n^{\prime}\right]\right)=\Delta_{m}\left(\left[n, n^{\prime}\right]\right)
\end{aligned}
$$

thus Δ_{m} is an anti-derivation. We have also

$$
\begin{gathered}
\lambda\left(\delta_{m}(n)\right)=\lambda(\sigma(n * m))=\eta(n * m)=[\nu(n), \mu(m)]=\nu\left(n^{\mu(m)}\right), \\
\lambda\left(\Delta_{m}(n)\right)=-\lambda(\sigma(m * n))=-\eta(m * n)=-[\mu(m), \nu(n)]=-\nu\left({ }^{\mu(m)} n\right), \\
{ }^{h} \delta_{m}(n)={ }^{h} \sigma(n * m)=\sigma\left({ }^{h}(n * m)\right)=-\sigma\left({ }^{h}(m * n)\right)=-{ }^{h} \sigma(m * n)=-{ }^{h} \Delta_{m}(n), \\
\Delta_{m}\left({ }^{h} n\right)=-\sigma\left(m *{ }^{h} n\right)=\sigma\left(m * n^{h}\right)=-\Delta_{m}\left(n^{h}\right) .
\end{gathered}
$$

Therefore $\Sigma(m)=\left(\delta_{m}, \Delta_{m}, \mu(m)\right)$ is a biderivation from (\mathfrak{N}, ν) to (\mathfrak{P}, λ).
For any $h \in \mathfrak{g}, m \in \mathfrak{M}$ and $n \in \mathfrak{N}$, we have

$$
\begin{aligned}
\left({ }^{h}\left(\delta_{m}\right)\right)(n) & =\delta_{m}\left(n^{h}\right)-\delta_{m}(n)^{h}=\sigma\left(n^{h} * m\right)-\sigma(n * m)^{h} \\
& =-\sigma\left(n * m^{h}\right)=\sigma\left(n *{ }^{h} m\right)=\delta_{h_{m}}(n), \\
\left({ }^{h}\left(\Delta_{m}\right)\right)(n) & ={ }^{h} \Delta_{m}(n)-\delta_{m}\left({ }^{h} n\right)={ }^{h} \sigma(m * n)-\sigma\left({ }^{h} n * m\right) \\
& =\sigma\left({ }^{h} m * n\right)=\Delta_{h_{m}}(n) ;
\end{aligned}
$$

and obviously $[h, \mu(m)]=\mu\left({ }^{h} m\right)$, thus we have $\Sigma\left({ }^{h} m\right)={ }^{h} \Sigma(m)$. On the other side, we have

$$
\begin{aligned}
\left(\left(\delta_{m}\right)^{h}\right)(n) & =\delta_{m}(n)^{h}-\delta_{m}\left(n^{h}\right)=\sigma(n * m)^{h}-\sigma\left(n^{h} * m\right) \\
& =\sigma\left(n * m^{h}\right)=\delta_{m^{h}}(n)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(\Delta_{m}\right)^{h}\right)(n) & =\Delta_{m}(n)^{h}-\delta_{m}\left(n^{h}\right)=-\sigma(m * n)^{h}+\sigma\left(m * n^{h}\right) \\
& =-\sigma\left(m^{h} * n\right)=\Delta_{m^{h}}(n)
\end{aligned}
$$

Since $[\mu(m), h]=\mu\left(m^{h}\right)$, we get $\Sigma\left(m^{h}\right)=\Sigma(m)^{h}$. By definition of the map Σ, we have $\rho \Sigma(m)=\mu(m)$. Therefore the map Σ is a morphism of pre-crossed Leibniz \mathfrak{g}-algebras.

6. Cohomological characterizations.

6.1. Non-abelian Leibniz cohomology.

Let \mathfrak{g} be a Leibniz algebra viewed as the crossed Leibniz \mathfrak{g}-algebra $\left(\mathfrak{g}, \mathrm{id}_{\mathfrak{g}}\right)$, and let (\mathfrak{M}, μ) be a crossed Leibniz \mathfrak{g}-algebra. Given an element $m \in \mathfrak{M}$, we denote by d_{m} (resp. D_{m}) the derivation (resp. anti-derivation) $g \mapsto g_{m}$ (resp. $g \mapsto-m^{g}$) from $\left(\mathfrak{g}, \mathrm{id}_{\mathfrak{g}}\right)$ to (\mathfrak{M}, μ), and by $\overline{\mu(m)}:=$ $\mu(m) \bmod Z(\mathfrak{g})$, where $Z(\mathfrak{g})$ is the centre of \mathfrak{g}. One easily checks that the triple $\left(d_{m}, D_{m}, \overline{\mu(m)}\right)$ is a well-defined element of $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M})$.

Definition-Proposition 6.1. - Let \mathfrak{J} be the \mathbb{K}-module freely generated by the biderivations $\left(d_{m}, D_{m}, \overline{\mu(m)}\right), m \in \mathfrak{M}$. Then \mathfrak{J} is a twosided ideal of $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M})$. The Leibniz algebra $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M}) / \mathfrak{J}$ is denoted by $\mathfrak{H} \mathfrak{L}^{1}(\mathfrak{g}, \mathfrak{M})$.

Proof. - For any $m \in \mathfrak{M}$ and $(d, D, g) \in \operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M})$, we have

$$
\left[(d, D, g),\left(d_{m}, D_{m}, \overline{\mu(m)}\right)\right]=\left(\delta_{m}, \Delta_{m},[g, \overline{\mu(m)}]\right)
$$

with

$$
\begin{aligned}
\delta_{m}(x) & =d_{m}([x, g])-d\left([x, \overline{\mu(m)})=\left[x, g_{m}-d([x, \mu(m)])\right.\right. \\
& ={ }^{\mu(d(x))} m-d(x)^{\mu(m)}-{ }^{x} d(\mu(m)) \\
& =[d(x), m]-[d(x), m]-{ }^{x} D(\mu(m)) \\
& =d_{m_{1}}(x)
\end{aligned}
$$

where $m_{1}:=-D(\mu(m))$,

$$
\begin{aligned}
\Delta_{m}(x) & \left.=-D([x, \overline{\mu(m)}])-d_{m}([g, x])=-D([x, \mu(m)])-{ }^{[g, x}\right]_{m} \\
& =-D(x)^{\mu(m)}-D(\mu(m))^{x}+\mu(D(x)) \\
& =-[D(x), m]+D(\mu(m))^{x}+[D(x), m] \\
& =D_{m_{1}}(x) \\
& \mu\left(m_{1}\right)=-\mu(D(\mu(m)))=[g, \mu(m)]=[g, \overline{\mu(m)}]
\end{aligned}
$$

thus we have $\left[(d, D, g),\left(d_{m}, D_{m}, \overline{\mu(m)}\right)\right] \in \mathfrak{J}$. On the other side, we have

$$
\left.\left[\left(d_{m}, D_{m}, \overline{\mu(m)}\right),(d, D, g)\right]=\left(\delta_{m}^{\prime}, \Delta_{m}^{\prime}, \overline{\mu(m)}, g\right]\right)
$$

with

$$
\begin{aligned}
\delta_{m}^{\prime}(x) & =d([x, \overline{\mu(m)}])-d_{m}([x, g])=d([x, \mu(m)])-{ }^{[x, g]_{m}} \\
& =d(x)^{\mu(m)}+{ }^{x} d(\mu(m))-\mu(d(x)) \\
& =[d(x), m]+{ }^{x} d(\mu(m))-[d(x), m] \\
& =d_{m_{2}}(x)
\end{aligned}
$$

where $m_{2}:=d(\mu(m))$,

$$
\begin{aligned}
\Delta_{m}^{\prime}(x) & =-D_{m}([x, g])-d([\overline{\mu(m)}, x])=m^{[x, g]}-d([\mu(m), x]) \\
& =m^{\mu(d(x))}-d(\mu(m))^{x}-\mu(m) d(x) \\
& =[m, d(x)]-d(\mu(m))^{x}-[m, d(x)] \\
& =D_{m_{2}}(x) \\
& \mu\left(m_{2}\right)=\mu(d(\mu(m)))=[\mu(m), g]=[\overline{\mu(m)}, g]
\end{aligned}
$$

thus we have $\left[\left(d_{m}, D_{m}, \overline{\mu(m)}\right),(d, D, g)\right] \in \mathfrak{J}$. Therefore the set \mathfrak{J} is a twosided ideal of $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{M})$.

Similarly, given a crossed Leibniz \mathfrak{g}-algebra (\mathfrak{M}, μ), one defines

$$
\mathfrak{H} \mathfrak{L}^{\mathfrak{o}}(\mathfrak{g}, \mathfrak{M}):=\left\{\mathfrak{m} \in \mathfrak{M}: \mathfrak{g}_{\mathfrak{m}}=\mathfrak{m}^{\mathfrak{g}}=\mathfrak{o}, \forall \mathfrak{g} \in \mathfrak{g}\right\}
$$

that is, the set of invariant elements of \mathfrak{M}. From the relations

$$
\left[m, m^{\prime}\right]=m^{\mu\left(m^{\prime}\right)}=0={ }^{\mu\left(m^{\prime}\right)} m=\left[m^{\prime}, m\right], m \in \mathfrak{H} \mathfrak{L}^{\circ}(\mathfrak{g}, \mathfrak{M}), \mathfrak{m}^{\prime} \in \mathfrak{M}
$$

it is clear that $\mathfrak{H} \mathfrak{L}^{\circ}(\mathfrak{g}, \mathfrak{M})$ is contained in the centre of the Leibniz algebra \mathfrak{M}.

Proposition 6.2. - For any exact sequence of crossed Leibniz \mathfrak{g} algebras

$$
0 \rightarrow(\mathfrak{A}, \boldsymbol{o}) \xrightarrow{\alpha}(\mathfrak{B}, \lambda) \xrightarrow{\boldsymbol{\beta}}(\mathfrak{C}, \mu) \rightarrow \mathbf{o},
$$

there exists an exact sequence of \mathbb{K}-modules
$0 \rightarrow \mathfrak{H} \mathfrak{L}^{\circ}(\mathfrak{g}, \mathfrak{A}) \rightarrow \mathfrak{H} \mathfrak{L}^{\circ}(\mathfrak{g}, \mathfrak{B}) \rightarrow \mathfrak{H} \mathfrak{L}^{\circ}(\mathfrak{g}, \mathfrak{C}) \xrightarrow{\partial} \mathfrak{H} \mathfrak{L}^{1}(\mathfrak{g}, \mathfrak{A})$

$$
\rightarrow \mathfrak{H} \mathfrak{L}^{1}(\mathfrak{g}, \mathfrak{B}) \xrightarrow{\beta^{1}} \mathfrak{H} \mathfrak{L}^{1}(\mathfrak{g}, \mathfrak{C})
$$

where β^{1} is a Leibniz algebra morphism.

Proof. - Everything goes smoothly except the definition of the connecting homomorphism ∂. Given an element $c \in \mathfrak{H} \mathfrak{L}^{\circ}(\mathfrak{g}, \mathfrak{C})$, let $b \in \mathfrak{B}$ be any pre-image of c in \mathfrak{B}. For any $x \in \mathfrak{g}$, we have

$$
\beta\left({ }^{x} b\right)={ }^{x} c=0=c^{x}=\beta\left(b^{x}\right)
$$

Thus the element ${ }^{x} b$ (resp. b^{x}) is in $\operatorname{ker}(\beta)=\operatorname{im}(\alpha)$. Since the morphism α is injective, the map $d^{c}: x \mapsto \alpha^{-1}\left({ }^{x} b\right)$ (resp. $D^{c}: x \mapsto \alpha^{-1}\left(b^{x}\right)$) is a derivation (resp. an anti-derivation) from ($\mathfrak{g}, \mathrm{id}_{\mathfrak{g}}$) to ($\mathfrak{A}, \mathfrak{o}$). One easily checks that the triple $\left(d^{c}, D^{c}, 0\right)$ is a well-defined element of $\operatorname{Bider}_{\mathfrak{g}}(\mathfrak{g}, \mathfrak{A})$ whose class in $\mathfrak{H} \mathfrak{L}^{1}(\mathfrak{g}, \mathfrak{A})$ does not depend on the choice of the pre-image b. We put

$$
\partial(c):=\operatorname{class}\left(d^{c}, D^{c}, 0\right)
$$

6.2. Non-abelian Leibniz homology.

Let \mathfrak{g} be a Leibniz algebra viewed as the crossed Leibniz \mathfrak{g}-algebra $\left(\mathfrak{g}, \mathrm{id}_{\mathfrak{g}}\right)$, and let (\mathfrak{N}, ν) be a crossed Leibniz \mathfrak{g}-algebra.

Definition-Proposition 6.3. - The map $\Psi_{\mathfrak{N}}: \mathfrak{N} \star \mathfrak{g} \rightarrow \mathfrak{N}$ given on generators by

$$
\Psi_{\mathfrak{N}}(n * g):=n^{g} \quad \text { and } \quad \Psi_{\mathfrak{N}}(g * n):={ }^{g} n, g \in \mathfrak{g}, \mathfrak{n} \in \mathfrak{N}
$$

is a morphism of crossed Leibniz \mathfrak{g}-algebras. We define the low-degrees non-abelian homology of \mathfrak{g} with coefficients in \mathfrak{N} to be

$$
\mathfrak{H} \mathfrak{L}_{0}(\mathfrak{g}, \mathfrak{N}):=\operatorname{coker}_{\mathfrak{N}} \quad \text { and } \quad \mathfrak{H} \mathfrak{L}_{\mathfrak{l}}(\mathfrak{g}, \mathfrak{N}):=\operatorname{ker}_{\mathfrak{N}} .
$$

Proof. - To see that the map $\Psi_{\mathfrak{N}}$ is a Leibniz algebra morphism is equivalent to the fact that the Leibniz action of \mathfrak{N} on \mathfrak{g} is well-defined. The definition of the crossing homomorphism $\eta_{\mathfrak{N}}: \mathfrak{N} \star \mathfrak{g} \rightarrow \mathfrak{g}$ implies that $\Psi_{\mathfrak{N}}$ is a morphism of crossed Leibniz \mathfrak{g}-algebras.

Proposition 6.4. - For any exact sequence of crossed Leibniz \mathfrak{g} algebras

$$
0 \rightarrow(\mathfrak{A}, \boldsymbol{o}) \xrightarrow{\alpha}(\mathfrak{B}, \lambda) \xrightarrow{\boldsymbol{\beta}}(\mathfrak{C}, \mu) \rightarrow \mathbf{o}
$$

there exists an exact sequence of \mathbb{K}-modules

$$
\begin{aligned}
\mathfrak{H} \mathfrak{L}_{1}(\mathfrak{g}, \mathfrak{A}) \rightarrow \mathfrak{H} \mathfrak{L}_{\mathbf{1}}(\mathfrak{g}, \mathfrak{B}) \rightarrow \mathfrak{H} \mathfrak{L}_{\mathbf{1}}(\mathfrak{g}, \mathfrak{C}) \xrightarrow{\partial} \mathfrak{H} \mathfrak{L}_{\mathbf{0}}(\mathfrak{g}, \mathfrak{A}) \rightarrow & \mathfrak{H} \mathfrak{L}_{\mathbf{o}}(\mathfrak{g}, \mathfrak{B}) \\
& \rightarrow \mathfrak{H} \mathfrak{L}_{\mathrm{o}}(\mathfrak{g}, \mathfrak{C}) \rightarrow \mathbf{o} .
\end{aligned}
$$

Proof. - We know that the functor $-\star \mathrm{g}$ is right exact (Proposition 4.5). Therefore Proposition 6.4 is nothing but the "snake-lemma" applied to diagram

which is obviously commutative.

6.3. Universal central extension.

Let \mathfrak{g} be a Leibniz algebra and let $\Psi:=\Psi_{\mathfrak{g}}$ be the morphism defining the homolgy $\mathfrak{H} \mathfrak{L}_{*}(\mathfrak{g}, \mathfrak{g})$. From the relations v) of Definition-Theorem 4.1, it is clear that $\Psi: \mathfrak{g} \star \mathfrak{g} \rightarrow[\mathfrak{g}, \mathfrak{g}]$ is a central extension of Leibniz algebras (see [4]).

Theorem 6.5. -- If the Leibniz algebra \mathfrak{g} is perfect and free as a \mathbb{K}-module, then the morphism $\Psi: \mathfrak{g} \star \mathfrak{g} \rightarrow[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$ is the universal central extension of \mathfrak{g}. Moreover, we have an isomorphism of \mathbb{K}-modules

$$
\mathfrak{H} \mathfrak{L}_{1}(\mathfrak{g}, \mathfrak{g}) \cong \mathrm{HL}_{2}(\mathfrak{g})
$$

Proof. - It is enough to prove the universality of the central exten$\operatorname{sion} \Psi: \mathfrak{g} \star \mathfrak{g} \rightarrow[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$. Let $\alpha: \mathfrak{C} \rightarrow \mathfrak{g}$ be a central extension of \mathfrak{g}. Since $\operatorname{ker}(\alpha)$ is central in \mathfrak{C}, the quantity $\left[\alpha^{-1}(x), \alpha^{-1}(y)\right]$ does not depend on the choice of the pre-images $\alpha^{-1}(x)$ and $\alpha^{-1}(y)$ where $x, y \in \mathfrak{g}$. One easily checks that the map $\phi: \mathfrak{g} \star \mathfrak{g} \rightarrow \mathfrak{C}$ given on generators by

$$
\phi(x * y):=\left[\alpha^{-1}(x), \alpha^{-1}(y)\right]
$$

is a well-defined Leibniz algebra morphism such that $\alpha \phi=\Psi$. The uniqueness of the map ϕ follows from Lemma 2.4 of [4] since the perfectness of \mathfrak{g} implies that of $\mathfrak{g} \star \mathfrak{g}$:

$$
x * y=\left(\sum_{i}\left[x_{i}, x_{i}^{\prime}\right]\right) *\left(\sum_{j}\left[y_{j}, y_{j}^{\prime}\right]\right)=\sum_{i, j}\left[x_{i} * x_{i}^{\prime}, y_{j} * y_{j}^{\prime}\right] .
$$

By definition we have $\mathfrak{H} \mathfrak{L}_{1}(\mathfrak{g}, \mathfrak{g})=\operatorname{ker}()$. After [4] the kernel of the universal central extension of a Leibniz algebra \mathfrak{g} is canonically isomorphic to $\mathrm{HL}_{2}(\mathfrak{g})$. Therefore we have

$$
\mathfrak{H} \mathfrak{L}_{1}(\mathfrak{g}, \mathfrak{g}) \cong \mathrm{HL}_{\mathbf{2}}(\mathfrak{g})
$$

7. The Milnor-type Hochschild homology.

Let A be an associative algebra viewed as a Leibniz (in fact Lie) algebra for the bracket given by $[a, b]:=a b-b a, a, b \in A$. Recall that the \mathbb{K}-module $\mathrm{L}(A):=A^{\otimes 2} / \operatorname{im}\left(b_{3}\right)$ is a Leibniz (non-Lie) algebra for the bracket defined by

$$
\left[x \otimes y, x^{\prime} \otimes y^{\prime}\right]:=(x y-y x) \otimes\left(x^{\prime} y^{\prime}-y^{\prime} x^{\prime}\right), \forall x, y, x^{\prime}, y^{\prime} \in A .
$$

Proposition 7.1. - The operations given by

$$
\begin{aligned}
& A \times \mathrm{L}(A) \rightarrow \mathrm{L}(A),{ }^{a}(x \otimes y):=[a, x] \otimes y-[a, y] \otimes x \\
& \mathrm{~L}(A) \times A \rightarrow \mathrm{~L}(A),(x \otimes y)^{a}:=[x, a] \otimes y+x \otimes[y, a]
\end{aligned}
$$

confer to $\mathrm{L}(A)$ a structure of Leibniz A-algebra. Moreover the map

$$
\mu_{A}: \mathrm{L}(A) \rightarrow A, x \otimes y \mapsto[x, y]=x y-y x
$$

equips $\mathrm{L}(A)$ with a structure of crossed Leibniz A-algebra.

Proof. - The operations are well-defined since we have

$$
\begin{aligned}
& { }^{a}\left(b_{3}(x \otimes y \otimes z)\right)=b_{3}(a x \otimes y \otimes z-a \otimes z \otimes x y-z a \otimes x \otimes y \\
& \quad+a \otimes y z \otimes x+a \otimes z x \otimes y-a \otimes y \otimes z x)
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(b_{3}(x \otimes y \otimes z)\right)^{a}=b_{3}(-a x \otimes y \otimes z+x y \otimes a \otimes z+x \otimes y \otimes z a \\
&-x \otimes a \otimes y z-z x \otimes a \otimes y-z x \otimes y \otimes a)
\end{aligned}
$$

One easily checks that the couple $\left(\mathrm{L}(A), \mu_{A}\right)$ is a pre-crossed Leibniz A-algebra. Moreover we have

$$
\begin{gathered}
\mu_{A}(x \otimes y)\left(x^{\prime} \otimes y^{\prime}\right)-\left[x \otimes y, x^{\prime} \otimes y^{\prime}\right]=b_{3}\left([x, y] \otimes x^{\prime} \otimes y^{\prime}-[x, y] \otimes y^{\prime} \otimes x^{\prime}\right) \\
(x \otimes y)^{\mu_{A}(x \otimes y)}-\left[x \otimes y, x^{\prime} \otimes y^{\prime}\right]=b_{3}\left(x \otimes\left[x^{\prime}, y^{\prime}\right] \otimes y-x \otimes y \otimes\left[x^{\prime}, y^{\prime}\right]\right)
\end{gathered}
$$

Thus the Leibniz A-algebra $\left(\mathrm{L}(A), \mu_{A}\right)$ is crossed.
It is clear that the inclusion map $[A, A] \hookrightarrow A$ induces a structure of crossed Leibniz A-algebra on the two-sided ideal $[A, A]$, and that the map $\mu_{A}: \mathrm{L}(A) \rightarrow[A, A]$ is a morphism of crossed Leibniz A-algebras. Moreover we have an exact sequence of \mathbb{K}-modules

$$
0 \rightarrow \mathrm{HH}_{1}(A) \rightarrow \mathrm{L}(A) \xrightarrow{\mu_{A}}[A, A] \rightarrow 0
$$

Lemma 7.2. - The Leibniz algebra A acts trivially on $\mathrm{HH}_{1}(A)$.

Proof. - One easily checks that

$$
{ }^{a}(x \otimes y)=a \otimes[x, y]+b_{3}(a \otimes x \otimes y-a \otimes y \otimes x) \equiv a \otimes[x, y] \text { in } \mathrm{L}(A)
$$

and
$(x \otimes y)^{a}=[x, y] \otimes a+b_{3}(x \otimes a \otimes y-x \otimes y \otimes a) \equiv[x, y] \otimes a$ in $\mathrm{L}(A)$.
Therefore, if $\omega=\sum \lambda_{i}\left(x_{i} \otimes y_{i}\right) \in \mathrm{HH}_{1}(A)$, that is $\sum \lambda_{i}\left[x_{i}, y_{i}\right]=0$, then we have

$$
a_{\omega}=\sum \lambda_{i}{ }^{a}\left(x_{i} \otimes y_{i}\right) \equiv \sum \lambda_{i}\left(a \otimes\left[x_{i}, y_{i}\right]\right) \equiv a \otimes \sum \lambda_{i}\left[x_{i}, y_{i}\right]=0
$$

and

$$
\omega^{a}=\sum \lambda_{i}\left(x_{i} \otimes y_{i}\right)^{a} \equiv \sum \lambda_{i}\left(\left[x_{i}, y_{i}\right] \otimes a\right) \equiv\left(\sum \lambda_{i}\left[x_{i}, y_{i}\right]\right) \otimes a=0
$$

for any $a \in A$.
As an immediate consequence, we get the following

Corollary 7.3. - The sequence

$$
0 \rightarrow \mathrm{HH}_{1}(A) \rightarrow \mathrm{L}(A) \xrightarrow{\mu_{A}}[A, A] \rightarrow 0
$$

is an exact sequence of crossed Leibniz A-algebras.
We deduce from Proposition 6.4 an exact sequence of \mathbb{K}-modules

$$
\begin{aligned}
\mathfrak{H} \mathfrak{L}_{\mathbf{1}}\left(\mathfrak{A}, \mathrm{HH}_{\mathbf{1}}(\mathfrak{A})\right) & \rightarrow \mathfrak{H} \mathfrak{L}_{\mathbf{1}}(\mathfrak{A}, \mathrm{L}(\mathfrak{A}))
\end{aligned} \rightarrow \mathfrak{H} \mathfrak{L}_{\mathbf{1}}(\mathfrak{A},[\mathfrak{A}, \mathfrak{A}]) \rightarrow \quad .
$$

Since A and $\mathrm{HH}_{1}(A)$ act trivially on each other, we have

$$
\mathfrak{H} \mathfrak{L}_{\mathbf{o}}\left(\mathfrak{A}, \mathrm{HH}_{\mathbf{1}}(\mathfrak{A})\right)=\mathrm{HH}_{\mathbf{1}}(\mathfrak{A})
$$

and
$\mathfrak{H} \mathfrak{L}_{\mathbf{1}}\left(\mathfrak{A}, \mathrm{HH}_{\mathbf{1}}(\mathfrak{A})\right)=\mathfrak{A} \star \mathrm{HH}_{\mathbf{1}}(\mathfrak{A}) \cong \mathfrak{A} /[\mathfrak{A}, \mathfrak{A}] \otimes \mathrm{HH}_{\mathbf{1}}(\mathfrak{A}) \oplus \mathrm{HH}_{\mathbf{1}}(\mathfrak{A}) \otimes \mathfrak{A} /[\mathfrak{A}, \mathfrak{A}]$.
On the other hand, it is clear that

$$
\mathfrak{H} \mathfrak{L}_{1}(\mathfrak{A},[\mathfrak{A}, \mathfrak{A}]) \cong[\mathfrak{A}, \mathfrak{A}] /[\mathfrak{A},[\mathfrak{A}, \mathfrak{A}]] .
$$

Therefore we can state
Theorem 7.4. - For any associative algebra A with unit, there exists an exact sequence of \mathbb{K}-modules

$$
\left.\begin{array}{rl}
A /[A, A] \otimes \mathrm{HH}_{1}(A) \oplus \mathrm{HH}_{1}(A) \otimes A /[A, A] \rightarrow \mathfrak{H}_{\mathfrak{1}}(\mathfrak{A}, \mathrm{L}(\mathfrak{A})) & \rightarrow \mathfrak{H} \mathfrak{L}_{1}(\mathfrak{A},[\mathfrak{A}, \mathfrak{A}]) \\
& \rightarrow \mathrm{HH}_{1}(A) \rightarrow \mathrm{HH}_{1}^{M}(A) \rightarrow[A, A] /[A,[A, A]]
\end{array}\right)
$$

where $\mathrm{HH}_{1}^{M}(A)$ denotes the Milnor-type Hochschild homology of A.
Proof. - Recall that $\mathrm{HH}_{1}^{M}(A)$ is defined to be the quotient of $A \otimes A$ by the relations

$$
a \otimes[b, c]=0,[a, b] \otimes c=0, b_{3}(a \otimes b \otimes c)=0
$$

for any $a, b, c \in A$ (see $[6,10.6 .19])$. By definition $\mathrm{L}(A)=A \otimes A / \mathrm{im}\left(b_{3}\right)$ and from the proof of Lemma 7.2, we get

$$
\Psi_{L(A)}(a *(x \otimes y))={ }^{a}(x \otimes y) \equiv a \otimes[x, y]
$$

and

$$
\Psi_{L(A)}((x \otimes y) * a)=(x \otimes y)^{a} \equiv[x, y] \otimes a
$$

Therefore it is clear that $\mathfrak{H} \mathfrak{L}_{\mathbf{o}}(\mathfrak{A}, \mathrm{L}(\mathfrak{A}))=\operatorname{coker}\left(\mathfrak{L}_{(\mathfrak{A})}\right)$ is isomorphic to $\mathrm{HH}_{1}^{M}(A)$.

Remark. - The \mathbb{K}-modules $\mathrm{HH}_{1}(A)$ and $\mathrm{HH}_{1}^{M}(A)$ coincide when the associative algebra A is superperfect as a Leibniz algebra that is, $A=[A, A]$ and $\operatorname{HL}_{2}(A)=0$. Also, if the associative algebra A is commutative, then we have

$$
\mathrm{HH}_{1}(A) \cong \mathrm{HH}_{1}^{M}(A) \cong \Omega_{A \mid \mathbb{K}}^{1}
$$

Let us also mention that the Milnor-type Hochschild homology appears in the description of the obstruction to the stability

$$
\mathrm{HL}_{n}\left(g l_{n-1}(A)\right) \rightarrow \mathrm{HL}_{n}\left(g l_{n}(A)\right) \rightarrow \mathrm{HH}_{n-1}^{M}(A) \rightarrow 0
$$

where $g l_{n}(A)$ is the Lie algebra of matrices with entries in the associative algebra A (see [2], [6, 10.6.20]).

Acknowledgements. It is a pleasure to warmly thank E. Graham, D. Guin, A. Kuku, M. Livernet, J.-L. Loday and M. Wambst for pertinent comments and suggestions improving this text. Also, I am grateful to UNESCO and the Abdus Salam ICTP (Trieste, Italy) for support and hospitality. Particular thoughts to Mara Chiandotto for her medical advices.

BIBLIOGRAPHY

[1] J.-M. Casas \& M. Ladra, Perfect crossed modules in Lie algebras, Comm. Alg., 23(5) (1995), 1625-1644.
[2] Ch. Cuvier, Algèbres de Leibnitz : définitions, propriétés, Ann. Ecole Norm. Sup., (4) 27 (1994), 1-45.
[3] G.J. Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. J., 33 (1991), 101-120.
[4] A.V. Gnedbaye, Third homology groups of universal central extensions of a Lie algebra, Afrika Matematika (to appear), Série 3, 10 (1998).
[5] D. GUIN, Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive, Ann. Inst. Fourier, Grenoble, 45-1 (1995), 93-118.
[6] J.-L. Loday, Cyclic homology, Grund. math. Wiss., Springer-Verlag, 301, 1992.
[7] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math., 39 (1993), 269-293.
[8] J.-L. Loday \& T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Annal., 296 (1993), 139-158.

Manuscrit reçu le 6 novembre 1998, accepté le 18 février 1999.

Allahtan V. GNEDBAYE,
Faculté des Sciences Exactes et Appliquées
Département de Mathématiques et d'Informatique B.P. 1027

N'Djaména (Tchad).

[^0]: Keywords: Biderivation - Crossed module - Leibniz algebra - Milnor-type Hochschild homology - Non-abelian Leibniz (co)homology - Non-abelian tensor product. Math. classification: 16E40-17A30 - 17B40-17B99 - 18D99 - 18G50.

