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SL2-EQUIVARIANT POLYNOMIAL AUTOMORPHISMS
OF THE BINARY FORMS

by Alexandre KURTH

1. Introduction.

Let V be a finite dimensional vector space and G an algebraic group
acting linearly on V where everything is defined over the field of complex
numbers C. We ask the following question:

Problem. — What is Autc(^), the group of bijective polynomial
maps V —-> V that commute with the G-action?

The elements of Autc;(^) are called G-automorphisms. Let Rn :=
C[rc, y\n denote the simple SLa-module of the binary forms of degree n > 0.
The sequence {Rn}n>o 1s a complete system of representatives of all simple
rational SLa-modules. Instead of the complex numbers C we could take any
arbitrary algebraically closed field of characteristic 0.

We would like to determine Autsi^^n)- For 1 < n <, 4 we have a
complete result whose elementary proof is based on the form of the generic
stabilizer.

PROPOSITION (2.1). — For 1 < n < 4 every automorphism ip €
AutsLz (Rn) is a scalar multiple of the identity idj^.

Key words: Algebraic transformation groups — Equivariant automorphism — Binary forms
- Line bundle - Lifting automorphisms.
Math. classification: 14L30 - 14L27.
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In general, this is only possible if we make some extra assumption:
n

Let / = ̂  ajX^^3 e Rn and suppose CLQ -^ 0. Let ^ i , . . . , Zn be the roots
j=o

of / after setting y = 1. Then A(/) := a^~2 ]"[ (^ - ̂ -)2 is a polynomial
z<j

SLs-invariant function on Rn called the discriminant.

Now we can state the main result of this work:

THEOREM (6.1). — Every automorphism (p e Autsi^-Rn) with
<^*(A) e (A) is a scalar multiple of the identity id^.

Notice that y?* denotes the induced algebra automorphism on the
algebra of functions C[J?n]- This result generalizes the famous Lemma
of Schur stating that all linear SLs-automorphisms are multiples of the
identity. As a consequence we obtain:

COROLLARY. — If y e AutsL2(^n) h^s the property that the
restriction ofy?* to the ring of invariant polynomials C^n}^2 is a multiple
of id, then so is ^p.

One aspect of the problem above is the relation to a rationality
question of linearizing G-actions. First of all let us recall the linearization
problem: When does an algebraic action of a reductive group on the affine
space A71 become linear after a suitable (polynomial) change of coordinates?
We refer to [7] for a survey of this question and related ones. Now let us give
an account of a Galois criterion for rationality of the linearization problem.

Let A: be a field of characteristic 0 and K := k its algebraic closure.
Suppose we are given a G^-action on the affine space A^ (defined over k),
which is linearizable as affine G^-space A^. The question arises whether
the action is still linearizable over the smaller field k. It can be shown
([13], X; [12], III.l; [9]) that the set of isomorphism classes of G^-actions
on A^ that are G^-isomorphic to a Gj<-module VK (notice that these
isomorphisms are polynomial) is described by the non-abelian cohomology
H^Gal^/AQ.AutG^Vft:)) on the Galois group G^K/k) with values in
Aut^(V^).

If for example AutG^(Vftr) = K* idy^, then

R\G^(K/k^AutG^(VK))=0

which shows that the G^-action on A^ is also linearizable over the sub-
field k. If we assume that GK is reductive and the quotient A^//GK is
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trivial, then the Gj<-action on A^ as well as the G^-action on A^ are lin-
earizable ([9], 4.1.3). The linearization over K is a consequence of Luna's
Slice Theorem [11].

Outline and organization. — For n > 1 let us consider the SLs-
equivariant morphism

,r,(cv ̂ , .((;;)„.„ (^))»n<^-».").
Let Tn-i denote the maximal torus in SLn consisting of diagonal matrices;
then we define the semidirect product N := Sn tx Tn-i C GLn(C) where Sn
denotes the symmetric group on n letters. Sn acts on Tn-i by permuting
the elements on the diagonal. The linear SL2 xAT-action on (C2)71 is defined
by:

(^,(7,diag(^l,...,tn)) • (^,...,^71) = (^l^cr(l)^--^n^o-(n))

where (^,a,diag(^i,. . . ,^n)) € SL2 x(Sn x Tn-i) and (v^... ,Vn) e (C2)71.
The morphism TT is the quotient by the reductive group N which decom-
poses as follows:

(C2)71 QT^ Y := (C2)"//^-! ̂  ̂

where Qc denotes the algebraic quotient by the reductive group G. Since
Tn-i C N is a normal subgroup, Sn is acting on the Tn-i-quotient Y.

In §3 we prove that (C2)71 does not allow any nonlinear SLs x TV-
automorphisms. In §4 (resp.§5) we show how to lift automorphisms over
the quotient Qs^ resp. Qr-^-i; and finally in §6 we put these facts together
to prove Theorem 6.1.

Remark 1.1. — It remains open whether Autsi^^n) = C* idj^. For
1 < n < 4 this is true (see 2.1). Even in general it is a problem to find
nonlinear equivariant automorphisms of simple modules. In a subsequent
article I will describe nonlinear automorphisms of a simple module (with
an open orbit) which is the first example of this kind.

Acknowledgement. This work arose from the author's Ph.D. thesis
[9]. I thank my supervisor Hanspeter Kraft for his support and Stefan
Helmke for his help.
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2. Equivariant automorphisms of Rn for 1 < n <, 4.

For 1 < n < 4 Theorem 6.1 even works without the assumption
involving the discriminant.

PROPOSITION 2.1.— F o r l < n < 4 every automorphism y e
AutsL2 (^n) is a scalar multiple of the identity idj^.

Proof. — For n = 4 the generic isotropy group is the binary dihe-
dral group H = <( '_ J , (_i1)) . By equivariance every ^ e Autsi^Ai)
restricts to an NorsLa (^-automorphism ^ on R^ = C2. The finite group
NorsLa (^) acts on R^ as a reflection group, so by equivariance Tp stabi-
lizes two lines. An automorphism of C" stabilizing hyperplanes in general
position (i.e., whose intersection is {0}) is linear. In fact, the induced au-
tomorphism on C^} maps each defining linear function of those hyper-
planes to a multiple ([9], 7.2.1). It follows that for every A € C the relation
A id O(R - (p o \ id = 0 holds on SL2 'R^", even on R^ by denseness, for H is
the generic stabilizer. This means y? induces an automorphism on the pro-
jective space PR^ which is linear ([2], II. Example 7.1.1). Schur's Lemma
yields AutsL^) = C* id^,.

The proofs for n = 1,2,3 are similar: For n = 3 the generic stabilizer
is H = {(c ^_,) | C3 = 1} ̂  Zs and R^ = Cx3 C Cy3. Since Cx3 and Cy3

are each fixed by a maximal unipotent subgroup, and thus stabilized by an
equivariant automorphism, we can now make the same conclusion as for
n = 4.

For n = 1 (resp. n = 2) the generic stabilizer H is {(1 \)} (resp. a
maximal torus). In both cases R^ is one-dimensional and so the restricted
automorphism on R^ is linear. Again, we follow the same arguments as for
7 1 = 4 . Q

RO is the trivial SLa-module; its automorphism group consists of
linear elements, but translations are also allowed.

3. Equivariant automorphisms of (C2)71.

By classical invariant theory we know that (cf. [15], Theorem 2.6.A):

0) cKcW^^q^j i iK^^n]
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(2) CKC2)71 © (C2)*]81- = C[[iJ}^£i | 1 < i < j < n, 1 < I < n}

where [z,j](^i, . . . ,^):=det(^,u,) and ^(^i,. . . ,^n,/):=/(^). As intro-
duced above let N:=Sn x Tn-i. Every automorphism (^G AutsL2 xAr((C2)7'1)
can be seen as an n-tuple ((pi,...,^) of SLa-covariants (of type C2)
(ps '' (C2)12 —> C2, s = l , . . . ,n . By determining the restitution of the
multilinear invariants of (2) it follows that

n

(3) ^(^l,...^n) =^Pr^r, 5= 1,. . . ,U

r=l

where prs ^ C^C2)71]81'2 (cf. [6], §6). In the following proposition we show
that all prs are constant polynomials.

PROPOSITION 3.1. — Every SLs x N-automorphism of (C2)71 is a
scalar multiple of the identity.

Proof. — We keep the notations from above. Taking the SLa-
quotient of (C2)71, an automorphism (p 6 AutsL2 xN^C2^) induces an N-
automorphism ^ € Autjv^C2)"^ SI^). For k < n the quotient (C^// SL^
is the affine cone over the Grassmannian Gk,n- The ring of algebraic
functions of R := (C^y/SLs is described by equation (1). We claim that
every (f) € AutTv(jR) is a multiple of C* idj?.

The relations among the generating invariants [z,j] involving [1,2] are
given by the Pliicker relations:

(4) [l,2][zj] - MM + MM = 0 for all 3 < i < j < ^ n.

Consider the subgroup H := {diag(^~1,1,..., 1) € 7n_i | t C C*} C N
acting on R. By using the Plucker relations we have:

C[R}11 = C[[l,2], [l,z][2,j], [ i j ] | 3 < i < j < n}

= C[[l, 2], [1^}[2J] + [l,j][2,z], [ i j ] | 3 < i < j ^ n}.

All elements of the latter system of generators are invariant under the
transposition r = (12) except [1,2] which is mapped to —[1,2]. By the
Tf-equi variance we have ^^[R}11) C C[R}11 for every </> e AutTv(-R);
moreover, (/>*([1,2]) = [l^]/ using the r-equivariance where I C C[R}11.
Since [1,2] is irreducible and by the 5^-equivariance the claim 0 € C* idj?
follows; in particular Tp e C* idj?.

Let us define the n x n-matrix P := (pzj) with pij e C[(C2)n]SL2 from
equation (3). Set m := (^). We have just shown that the m x m-matrix A2?
consisting of all 2 x 2-minors of P is a scalar multiple of the identity matrix
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Em. Since the kernel of the canonical homomorphism GL(V) —> GI^A2^
is {±id} (dimY > 2), it follows that P e C*E^, i.e., (p is a scalar multiple
ofid(c2)n.

In case n = 2 let ^ := (diag^-^id.diag^t-1)) e SL2 xA^
for t C C*. By considering Urn ^(^(^1,^2)), we get that y? stabilizes a
hyperplane. Thus (p e C* id because (C2)2 is a simple SI.2 x TV-module. D

4. Lifting automorphisms to finite coverings.

Let us consider the factorization from the introduction
^: (C2)71 QT^ Y = (c^y/r^i ̂  ̂ .

TT is the quotient morphism by the group N = Sn x Tn-i C GLn. Let
D := {f e fin | A(/) = 0} the zero locus of the discriminant A G C[Rn}.
The aim of this section is to prove the following result:

PROPOSITION 4.1.— Every C* -action on Rn which stabilizes D can
be lifted to a unique C*-action on Y commuting with the Sn -action and
satisfying

Qs^ty) = t^-Qs^y) for all (t,y) e C* x K
If the given action on Rn commutes with SL^, then so does the lifted one.

The proof requires some preparation. Let 71-1 denote the homotopy
functor which associates to an analytic variety X (endowed with the C-
topology) the fundamental group 7Ti(X). For a continuous map f : X —^ Z
between analytic varieties X , Z the induced group homomorphism on the
fundamental groups is denoted by /y : 7Ti(X) —^ 7Ti(Z).

LEMMA 4.2. — Let H be a finite group of order m acting freely
on an irreducible, smooth, affine variety X. Let Q : X —> X/H denote
its algebraic quotient. Every algebraic C*-action on X/H can be uniquely
lifted to a C*-action on X satisfying Q ( t ' x) = t^ ' Q(x) for all (t,x) e
C* x X. Moreover, the lifted action commutes with the H-action.

Proof. — Let Q : C* x X/H —^ X/H denote the given action. Define
p : C* —> C*, z i-> z171 and consider the diagram

C* x X X
[pxQ JQ

C* x X/H -̂  X / H .
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The quotient Q is an unramified covering (with respect to the C-topology),
so by a standard argument in covering/homotopy theory (cf. [14], 2.4.
Theorem 5) there is a topological lift of g if and only if

^ o (P x Q)^i(C* x X)) C Oa(7ri(X)).

Let [7] = [71,72] e Ti-i (C* x X) ^ 71-1 (C*) x 71-1 (X) denote the class of a
closed path 7 in C* x X. We claim that ^ o (p x Q)t([7] € 0(i(7ri(X)). In
fact, let e denote the neutral element of the corresponding fundamental
group,then

(5) (P x Q)(M = (hiF,^]) = (hi],er • M([72]).

Moreover, since the order of H is m, it follows from the short exact sequence

7ri(C* x X / H )

I"
1——^(x) ̂  TT^X/H) ^H——1

that ^(hiL^ c kera == Ot^iW)- Thus ^P^ing ^ to (5) ^lves the

claim.

There is a unique lift g if we require ^(1, XQ) = XQ. Hence ^(1, .r) = ^
for all a* e X which is the equivalent condition to g being a (topological)
action. Moreover, ^ commutes with H. In fact, the conjugate action
(t, x) ̂  h g(t, h'^x) is also a lift of g and therefore equal to g.

To show that g is an algebraic morphism, assume we are given a
variety Z and a morphism (p : Z —^ X/JI which admits a topological lift
(p : Z —^ X. The graph r~ is algebraic since it is a connected component
of the fiber product Z X^/H X = {{z,x) G Z x X \ (p(z) = q{x)}. X
is affine and smooth so it follows that the projection pz : I~ —> Z is an
isomorphism ([5], II.3.4 Lemma); thus (p = px °P~z1 is algebraic. D

LEMMA 4.3. — Let Q : X —^ Y be a finite surjective morphism
where X is an irreducible variety. Let (j) : Z ' —> X be a morphism where
Z ' C Z is an open subset of a normal variety Z. IfQocf) has an extension
to Z then so does <f).

Proof. — (j) induces a homomorphism on the field of functions 0* :
C(X) -> C(Z) = C(Z'). 0(X) is a finite module over Q*(0(V)) ([5],

m
AI.4.3). By applying ̂  to an integral equation p171 + ̂  Q:'{aj)pm~j = 0

j=i
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for p € 0(X), we easily obtain 0*(p) € O(^) since Z is normal. This
induces an extension Z —> X. D

We are now ready to prove the main result of this section.

Proof of Proposition 4.1. — Let us define Rn := Rn \ D and
Y ' :== Q~^(B!^ c Y. The induced morphism Q^ : Y ' -^ Rn is an
unramified Galois covering with Galois group Sn. By Lemma 4.2 the C*-
action on Rn uniquely lifts to a C*-action on Y / satisfying the required
relation and commuting with Sn- The extension to an action C* x Y —> Y
is a consequence of Lemma 4.3; for Y = (C2)n//Tn-l is normal ([5], 11.3.3,
Satz 1) and Qsn ls a fimte surjective morphism (cf. [5], 11.3.6, Satz 1). The
last statement follows from the uniqueness of the lift. D

Remark 4.4. — (1) It is possible to lift a single SLa-automorphism
of Rn stabilizing the discriminant divisor D to an SLa xSn -automorphism
of Y (see [9], 8.3). The proof is based on the structure of 71-1 (7^/C*) which
is the n-th braid group over the sphere P^ containing the subgroup of
pure braids as characteristic subgroup [1].

The idea of lifting an SLz-automorphism of Rn by using the structure
of the braid group was inspired by the work [10] ofLin. This was the starting
point of our considerations.

(2) With similar arguments one can prove the following generalization
of Proposition 2.1. We will not need this result for our further arguments,
though.

Let X be an irreducible normal variety and Q : X —^ Y a finite
surjective morphism. Assume that a connected algebraic group G acts on
Y and stabilizes the ramification locus ofQ. Then there is a finite covering
p : G —> G and a G-action on X lifting the G-action on Y.

5. Lifting automorphisms to principal torus bundles.

The main tool for lifting C*-actions from Y = (C^/Tn-i to (C2)71

is based on lifting them to principal torus bundles.

DEFINITION 5.1. — Let G be an algebraic group. A principal G-
bundle over a variety X is a morphism TTp : P —> X where P is a (right)
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G-variety such that the fibers are the G-orbits and where irp is locally
trivial in the etale topology.

Let F be a variety whose automorphism group G := Aut(F) is
algebraic. There is a known equivalence of categories (cf. [8], IV. 1.3)

{principal G-bundles over X} ^—>- {fiber bundles over X with fiber F}

which is given by the functor P ̂  P *G? F :== (P x F ) / G . The G-action on
the product P x F is defined by g ( p , z ) = (pg^.gz).

Now we can formulate the main result of this section in a slightly
more general setting than needed:

PROPOSITION 5.2. — Let T be a torus and P —> X be a principal
T-bundle over the normal variety X. Assume that a connected algebraic
group G with Pic(G) = 0 acts on X. Then the G-action on X can be lifted
to a G-action on P commuting with T.

Recall that the set of isomorphism classes of line bundles on X is
denoted by Pic(X). It has a group structure given by the tensor product.
We want to mention the application we are mostly interested in:

Remark 5.3. — The proposition is applicable to G ̂  C* (Pic(C*) =
0, [2], 11.6) as well as for a unipotent group G, for as a variety G is
isomorphic to Ck for a suitable k € N, therefore Pic(G) = 0.

For the proof of the proposition we need the notion of a G-
linearization of a line bundle L —> X which is a lifting of the G-action
from X to L being linear on the fibers ([3], 2.1, Lemma). L is also called a
G-line bundle.

Let Q : G x X —> X be a G-action. Let p : L —> X be a line bundle
(we sometimes write L if no confusion occurs) and consider the diagram:

G x L L
id xp \p

4, ^

G x X -^ X.

It is an elementary fact that L admits a G-linearization if and only if
^L ^ G x L = p^L ([3], 2.3 Lemma) where px : G x X -^ X is the
projection on X.

The following lemma gives sufficient conditions for a line bundle being
G-linearizable.
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LEMMA 5.4. — Let X be a normal G-variety where G is a connected
algebraic group with Pic(G) = 0. Then every line bundle p : L —^ X is G-
linearizable. Moreover, the G-action on Pic(X) (induced by the G-action
on X) is trivial.

Proof. — The first statement follows from the exact sequence (see
[4], 2.2, Lemma)

0 -> Hiig(G, 0(X)*) -^ PicG(X) -^ Pic(X) -^ Pic(G) = 0
where H^ig(G,0(X)*) is the group of algebraic cocycles and P!CG(X) the
set of isomorphism classes of G-line bundles on X. Using the notation
introduced above we now have g*L:=g*L\[g^^ ^ p^L\ig\^^ ^ L by
restricting to {g} x X for any g C G. Therefore the class of L in Pic(X) is
fixed by G. D

Remark 5.5. — If G is an arbitrary connected algebraic group, one
can show that there is an n C N such that L071 is G-linearizable line bundle
on X ([3], 2.4).

Assuming G is not connected, the statement is still valid if g^L ̂  L
s

for a decomposition G = |j gjG0 (G° denotes the connected component
j'=i

o f i d e G ) .

Now we finish the preparations and prove Proposition 5.2.

Proof of Proposition 5.2. — Let us fix a decomposition T = (C*)^
d

where d = dimT. The functor P \—f P^C^ =: Q) Lj defines an equivalence
j=i

between principal r-bundles and direct sums of line bundles where Cd is the
standard representation of T. Under this equivalence lifting the G-action
from X to P commuting with T corresponds to G-linearizations of the line
bundles Lj. Their existence was constructed in Lemma 5.4. D

The equivariance of the lifting with another action is the subject of
the following lemma:

LEMMA 5.6. — Let T be a torus and TT? : P —^ X a principal
T-bundle. Let us be given algebraic groups G, H acting on P and both
commuting with T. Assume that G is connected and every invertible
function on X is constant. If the induced actions ofG and H on X commute
then so do their actions on P.
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Proof. — For h € H consider the conjugate action

^ : G x P —— P, (g,p) ̂  hgh-\p).

By assumption all ̂  induce the same action on X, i.e., it exists a morphism
f l , : H x G x X — ^ T such that ^h{g,p) = ̂ {h,g,7Tp(p))g(p). ^ does not
depend on X since all invertible functions on X are constant. Clearly, for
every g e G the map h \—> n(/i, g) is a group homomorphism H —> T. Since
the set of group homomorphisms H —> T is discrete and G is connected it
follows fl,(h^g) = ̂ (/i, 1) = 1 for all h e H which implies the claim. D

6. Proof of the main theorem.

We now come to the proof of Theorem 6.1. We keep the notations
from the previous sections. First of all we recall the statement:

THEOREM 6.1. — Every automorphism (p e Autsi^^n) with
</?* (A) e (A) is a scalar multiple of the identity idp^.

Proof. — For n = 1,2,3,4 we have already shown that AutsLa (^n) =
C*id^ (see 2.1).

Let (p € AutsL2(^n) stabilizing the discriminant divisor D and
consider the C*-action on Rn obtained from the scalar multiplication by
conjugating with (p:

Q '. C* X Rn —— Rn, (5, /) ̂  sf := (^-l(/)).

We want to lift g over the TV-quotient TT : (C2)71 —» Rn where N is the
semidirect product Sn ix Tn-i C GL^(C). Recall that TT has a factorization

^ : (C2)- QT^ Y = (C^I/Tn-l Qs^ Rn

where QT^-I, Qsr, is tne quotient by the torus Tn-i, by the symmetric
group 5'n, respectively (see section 1). By Proposition 4.1 Q lifts to a
(unique) C*-action ^ on Y commuting with SL2 xSn and such that
Qs^(sy) = s^-Qs^y) for all (s,y) C C* x Y. ̂  stabilizes Qr,-i(0) which
is the only SL2-fixed point. We define Vi := { ( ^ i , . . . , Vn) € (C2)71 | v^ = 0}
for i = 1,... ,n. Then

n

^:=Q^(Qr^(0))=U^
i=l
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is the nilcone of the T^-i-module (C2)'1. Clearly, (Tn-i)v = {id} for every
v e P := (C2)71 \^. The T^-i-quotient

OT.-Jp:P—^y\{Or^(0)}

is a principal T^-i-bundle. In fact, the quotient by the diagonal (C*)71-
action on P = (C2 \ {O})71 is the principal (C^-bundle P -^ P1. Then
the associated bundle P -> P/Tn-i for the subgroup Tyi-i C (C*)71 is a
principal T^-i-bundle.

By Proposition 5.2 there is an action ^ : C* x P —^ P which lifts
^ and commutes with Tn-i. Even more, ^ commutes with SLa x6^ using
Lemma 5.6.

Since codim.A/' = 2, it holds 0((C2)71) = 0(V') ([5], AI.6.1, Lemma
1), and therefore ^ can be extended to a C*-action on (C2)71 commuting
with SL2 xN. By Proposition 3.1 this action is given by scalar multiplica-
tion. It follows that the same holds for the C*-actions on Y and Rn implying
(</?oC* idj^ o^-1)71' = C* id^. We obtain that <^oC* id^ oy?-1 == C* idj^.
By taking differentials we see that (/? o A idj^ = A idj^ oy? for every A C C*.
Therefore y? induces an automorphism on PRn which has to be linear (cf.
[2], II, Example 7.1.1). D
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