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PARTIAL INDICES OF ANALYTIC DISCS ATTACHED
TO LAGRANGIAN SUBMANIFOLDS OF C^

by Josip GLOBEVNIK^)

1. Introduction and the main results.

A subspace L of (CN is called maximally real if dimL = N and
if L n iL = {0}. Denote the set of all maximally real subspaces of C^
by T{N). The set T(N) is an open subset of the Grassmannian of all N-
dimensional (real) subspaces of (C^. A (local) submanifold M of (C^ is
called maximally real if dimM = N and if T^M € T(N) for each x € M.

Let A be the open unit disc in (D. A continuous map /:A —> ( E N ,
holomorphic on A is called an analytic disc; we say that / is attached
to a maximally real submanifold M of ̂  if /(&A) C M. If this is the case
then it is known that / € (^-"(A) if M is of class C^ [Ch].

We denote by GL(N^ (C) the group of all invertible N x N matrices
with complex entries. If P, Q C GL(N^ C) then the real (linear) span of
the columns of P equals the real span of the columns of Q if and only if
PP~1 = QQ~1 where ~ denotes complex conjugation.

Let T be a smooth loop of maximally real subspaces of ([<N, i.e. a
smooth map from 6A to T(N). By the preceding discussion there is a unique
map B:&A -. GL(N,(E) such that for each < e 6A, B(C) == A(C)A(C)-1

where A(C) is a matrix whose columns form a basis of T(C). The map B is
smooth. The results of Plemelj and Vekua [PI], [Vel], [PS] imply that

(1.1) B(C)==F(C)A(CW)-1 (CC&A)

(*) This work was supported in part by the Ministry of Science and Technology of the
Republic of Slovenia.
Key words'. Analytic disc - Maximally real submanifold - Lagragian submanifold.
Math. classification: 32F25.
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where F: A —> GL(N, (C) is smooth and holomorphic on A and

/C^ o . . . . . . o
o c^2 o • • • o

A(C)=

\ o . . . . . . o c^.
where ^ I , - " ,^N are integers [Gil], [0]. These integers are, modulo a
permutation, the same for all factorizations of B of the form (1.1). They
are called partial indices of the loop C, ^—> T((). They are independent
of the coordinate system on (C^. Their sum K = /^i + • • • + I^N equals the
Maslov index of the loop ^ I—)- T(Q. Further, (1.1) implies that the loop
C ^—> T(C) has partial indices /^i, • • • , KN if and only if there is a smooth
map F: A —> GL(N, (D), holomorphic on A, such that for each C € 6A, T(C)
is the real span of the columns of the matrix

^1/2 o • • • • • • 0
0 C^72 0 • • • 0

^(0

\ o • • • •••o c^72.

Let / be an analytic disc attached to a maximally real submanifold M
of (D^. Partial indices of the loop ^ i—^ Tf^M play a role in perturbation
problems [Gil], [O], [G12], [Cl], [C2], [C3], [04]. For instance, let ^i, • • • , /^v,
the partial indices of the loop C '-̂  ^/(C)^5 satisfy ^ ^ —1 for all
j, l ^ j ^ N . Generalizing the results from [F], [Gil] Y.-G. Oh [0] proved
that in this case the family of all nearby analytic discs attached to M
is a manifold of dimension /c + N which varies smoothly with M in a
neighbourhood of the original M. Further, if one partial index equals 2 while
all other partial indices are negative then the only nearby analytic discs
attached to M are the ones of the form / o uj where uj is an automorphism
of A. If, in addition, at least one of the partial indices is less than —1 then
there are a neighbourhood W of / and arbitrarily small perturbations M
of M such that in W there are no analytic discs attached to M [0].

In the present paper we study the question which -/V-tuples of integers
arise as partial indices related to analytic discs attached to maximally
real submanifolds of (EN. This question, although not stated explicitely, is
contained in [0]. The author is grateful to Jean-Claude Sikorav for drawing
his attention to this question.

Call a TV-tuple (^ i , ' - ' , / ^v) of integers realizable if there is a
nonconstant analytic disc / attached to a maximally real submanifold M
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of (C^ such that /^i, • • • , KN are the partial indices of the loop C t—^ ^"/(C)-^'
It is known that if (M, • • • , KN) is realizable then KJ ^ 2 for at least one j
[Gil], [0].

Denote by <|> the Hermitian inner product on (E^ and by -L the
orthogonal complement with respect to Re <|>, the real inner product on
ffi^. A subspace L of (C^ is called Lagrangian if L1- = iL. A Lagrangian
subspace of (C^ is necessarily maximally real. A submanifold M of ©N

is called Lagrangian if dimM = A/" and if T^M is Lagrangian for each
x C M.

THEOREM 1.1. — A N-tuple (/^i, • • • , /^v) of integers is realizable if
and only if KJ ^ 2 for at least one j. If this is the case then there is an
analytic disc f attached to a Lagrangian submanifold M ofd^ such that
/^i, • • • , KN are the partial indices of the loop C ̂  Tf^M.

A partial result in this direction was proved by Oh who showed that if
one of integers ^i, • • • , /^N equals 2 then there is an analytic disc / attached
to a Lagrangian submanifold M of ̂  such that M, • • • , KN are the partial
indices of the loop C '—^ ^/(C)-^ P]'

Following Oh we call a smooth loop T: &A —> T(N) realizable if
there is an analytic disc attached to a maximally real submanifold M of
(C^ such that T(C) = Tf^M for each C € &A. Theorem 1.1, in particular,
tells that in terms of partial indices there is no difference between realizable
Lagrangian loops and realizable general loops, which answers a question
of Oh [0]. Another question, asked by Oh is whether a smooth loop
T: 6A —> T{N) must be realizable provided that at least one of its partial
indices is at least 2. By an example at the end of the paper we show that
this is not the case.

2. The case when /|&A is an embedding.

Suppose that K J , 1 ̂  j ^ N, are integers and that /^i ^ 2. Assume
for a moment that we want to find an analytic disc /i in (C2 attached to a
maximally real submanifold Mi of (C2 such that the loop ^ >—> Tf^M^ has
partial indices /^i, ^2, that is, there are smooth functions A, B, (7, D, on A,
holomorphic on A, satisfying

(2.1) A(C)D(C)-B(C)C(C)^0 ( C e A )
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such that for each ^ e &A, r^)Mi is the real span of the columns of the
matrix

(22) ^A(c) B(c^ ^1/2 ° '»(2-2' ^(C) D(C)H 0 ^)-

Since /i(&A) C Mi it follows that the tangent vector to the curve
C ̂  /i(0 (C € 6A) at /i(C) is contained in T^)MI, that is,

(2.3) ^/{ (O^(C)^i (CC&A).

Suppose now that we can find a smooth map /i:A —> (C2, holomorphic
on A, such that /|&A is an embedding, and smooth functions A,J3,C,jD
on A, holomorphic on A, satisfying (2.1), and such that for each C e &A,
^C/{(0 ^ contained in the real span of the columns of the matrix (2.2); we
denote this span by Ti(C). For each < e &A, ff«) = {ti^f[^):t € K}1- is
a real hyperplane in (C2 and thus H(() HTi(^) = L(C) is a one dimensional
subspace of (C2. For e > 0 let ^(C,^) = {w € L(C) : |w[ < ^}. Then for
some sufficiently small e > 0

^1= U[^)+A(C^)]
CefcA

is a maximally real submanifold of (C2 such that /i is attached to Mi and
such that Tf^M = Ti(C) (C C 6A).

We perform a similar construction in (C^ = (C2 x (C^"2 with the
analytic disc / = (/i,0) in place of /i. For each < € 6A let T^C,) C (D^-2

be the real span of the columns of the matrix

/^3/2 o . . . . . . 0 \

0 C^4/2 0 • • • 0

\ 0 • • • ... 0 ^/2/

For each < e &A let J(C,£) = {w e L(C) © T2(C): |w| < e}. Then for some
sufficiently small e > 0

^= U[AO+^)]
C€&A

is a maximally real submanifold of (C^ and / is attached to M. Further,
for each C C &A, Ty(^M equals Ti(C) e T^), that is, T^)M is the real
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span of the columns of the matrix

/A«) B(C) 0 ... 0 \ /, _ _
fc(C) P(C) o ... o ^ /, , ,. Q

n n 1 ... n s0 0 1 • • • 0

\ 0 0 • • • 0 1 /
0 • • • • • • 0 <^/2^

and consequently /^i, • • • , KN are partial indices of the loop C i-̂  Tf^M.
This loop is a loop of Lagrangian subspaces of (C^ provided that ^ i—^ Ti(C)
is a loop of Lagrangian subspaces of (D2 . If this is the case then by a
proposition of Oh [0] Prop. 6.6, one can modify M to get a Lagrangian
submanifold M of (C N such that / is attached to M and such that
Tf^M = Tf^M (C e 6A).

We shall see later that there are realizable TV-tuples (^i,'",^)
such that whenever / is an analytic disc attached to a maximally real
submanifold M of (D^ such that the partial indices of the loop C i—^ Tf^M
are ^i, • • • , /tjy, the derivative /' has at least one zero on &A and thus the
map /I&A cannot be an embedding. Now a different procedure must be
used to get the manifold M. Also, in these cases the proposition of Oh
does not apply and we shall use an elementary construction which can also
replace the proposition of Oh in the case when /|&A is an embedding.

3. Constructing analytic discs with tangents
in Lagrangian subspaces.

We have seen in the preceding section that, on the way to proving
Theorem 1.1, given /^i, ^2, M ^ 2, one would like to find smooth functions
A,B,C,D on A, holomorphic on A, satisfying (2.1), and an analytic disc
/ in (D2 such that

(3.1) WC)er(C) ( C C & A )
where, for each ^, T(^) is the real linear span of the columns of the matrix

/A(C) B(C)\ /C"172 0 \
^ \C{^ D(C))\ 0 ^ t 2 ) -

In our constructions we shall first construct /, A and C such that

(3.3) ((^)))^0 ( C € A )
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and such that for each ^ € &A, %C/'(C) ls a rea! multiple of

/A(C)C^/2\
^(C)^2/2;'

We will then construct B and D such that (2.1) is satisfied.

The space T(^) is Lagrangian if some basis n, w (and hence every
basis) of r«) satisfies Im < u\w >= 0. Thus the loop < ̂  T(C) is a loop
of Lagrangian subspaces if and only if

(3.4) [A^B^+^OD^)]^1-"2^ C 1R (CebA).

LEMMA 3.1. — Let K\ and K^ be two integers, /^i ^ ^2, and 7et A, C be
two smooth functions on A, holomorphic on A, such that A((^) 7^ 0 (<^ € A).
Given a smooth function D on A, holomorphic on A and such that D(Q -^ 0
« € A) there are a constant rj > 0 and a smooth function B on A,
holomorphic on A such that

<c%^»«-'
and such that for each ^ G &A the columns of the matrix

/A(C) B(C)\ /C^/2 0 \
w ^C(C) D(C)JA o c^J
span a Lagrangian subspace of(C2.

Remark. — Thus, if / = (/i, /2) then p = (/i, 77/2) is an analytic disc
such that for each C € &A, zCp'(C) is a real multiple of the first column of
the matrix (3.6).

Proof of Lemma 3.1. — Let A = (/ti - ̂ )/2. The columns of (3.6)
span a Lagrangian subspace if and only if [A(C)2?(C) 4- rjC^D^)}^ e
R (C € bA). We have to find B and rj. Replacing D by iD and finding iB
rather than B we may assume that

(3.7) Re[A(OC-^(C) + 77C(OC-^(C)] = 0 (C € &A).

Since A«) 7^ 0 (C € A) it follows that the function h(Q = A(C)~1 is smooth
on A, holomorphic on A and v((^) = A^'^A^)"1 is a real function on
&A such that

(3.8) ^(C)A(C) = fa(C) (CC&A)
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which, by (3.7) implies that

(3.9) Re[h(C)C-^(0] = -^(ORe^G^C-^^)].

Choose D, D(C) 7^ 0 (C € A). We first find a function ^, smooth on A,
holomorphic on A, such that

(3.10) Re[C-^(C)] = -^(?[0(00-^(0] (C € bA).

Assume first that A is a (nonnegative) integer. Since for every real smooth
function 7 on &A there is a smooth function g on A, holomorphic on A
and such that Re^(C) = 7(C) (C € &A) there is an 0 satisfying (3.10). If A
is not an integer then 2A is a positive odd integer and by (3.10) ^ has to
satisfy

(3.11) ReIC-^O2)] = -^C^ReIWyC-^C2)] (C € 6A).

Denote the function on the right in (3.11) by ^. Then ^ is a smooth odd
function on &A. It is easy to see that there is a smooth odd function p on
A, holomorphic on A and such that Rep«) = -0(0) (C ^ ^A)- Now P is

necessarily of the form C(7(C2) where q is smooth on A and holomorphic
on A. Then ^(C) = C^172^) is the desired function. If rj > 0 then
B(C) = 7^(C)/ft(C) (C € A) satisfies (3.9) and thus (3.7). Since A and D
have no zero on A it follows that one can choose 77 > 0 so small that (3.5)
is also satisfied. This completes the proof.

4. The case when K\ ^2, ^ ̂  2.

PROPOSITION 4.1. — Let K\ ^ 2, ^2 ^ 2. There is a smooth map
f:~S—> (C2, holomorphic on A, such that /|6A is an embedding and such
that for each C G 6A, ^/'(C) is contained in the real span of the columns
of the matrix

/<-M/2 0 \
(4.1) (\ ^),

a Lagrangian subspace of®2.

PROPOSITION 4.2. — Given m, n € IN there is a r € 6A such that the
map C 1-̂  ((C + I)771? (C + T)71) ls one-to-one on 6A.

Proof. — Let r C 6A, T ̂  1, and suppose that (Ci +1)771 = (€2 +1)7'1,
(Ci+T)71 = ̂ Tr where Ci,C2 € 6A, Ci + €2. Then (Ci+l)/(C2+l) = a,
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(Ci + ̂ /^ + r) == /3 where a is a m'th root of 1, a ̂  1, and /? is a y^th
root of 1, /3 ̂  1. Since r ^ 1 and since (j ^ €2 it follows that a ̂  f3 and
that €2 = (1 - T + f3r - a)/(a - /?). Since |C2| = 1 it follows that

<4-2' h^ |a-/?l
I - / ? '

For each a, /3, a ̂  1, f3 ̂  1, a 7^ /?, (4.2) is the equation of the circle which
is not centered at the origin and which, consequently, intersects 6A in at
most two points. Let S be the set of all these intersections for all pairs a, f3
where a is a m'th root of 1, a ̂  1, f3 is a n'th root of 1, f3 ̂  1, a ̂  /?. Then
r € S,r ^ 1, has all the required properties. This completes the proof.

Proof of Proposition 4.1. — Denote the real span of the columns
of (4.1) by T(C). Now, ^/'(C) € r(C) (C € A) holds if and only if
(C-^/^C/KC), C'^^C/^O) is real for each < € &A which happens if and
only if

(4.3) VKO=^(C)C'1-2 (CebA)

(4.4) V2(C)=^(OC'2-2 (Ce6A).

Define/(C)=(/i(C),/2(C))by

/i^r^i-ir^c+i)'1-1

/2(C) == i~\^ - l)-1^-"2/2^ 4- r)"2-1

where r € 6A, r ^ 1. Then (4.3), (4.4) are satisfied so ^/'(C) € T(C) (C €
bA). Since /ti ^ 2, ^2 ^ 2 and r ̂  1 it follows that /|6A is an immersion.
Finally, by Proposition 4.2 we can choose r in such a way that /|&A is
one-to-one. This completes the proof.

Remark. — By the reasoning in Section 2 this completes the proof of
Theorem 1.1 in the case when at least two partial indices satisfy KJ ^ 2.

5. The case when K^ ^ 2 is even and K^ ^ 1.

PROPOSITION 5.1. — Let ^i ^ 2 be even and let ^2 ^ 1- There
are smooth functions A, JS, (7, D on A, holomorphic on A, satisfying (2.1),
and a smooth map /:A —^ (C2, holomorphic on A, sucA that /|&A is an
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embedding and such that for each C € 6A, ^/'(C) is contained in the real
span of the columns of the matrix

(5D (A^ B^} ( ^ ' 2 ° }^ {CW D^))\ 0 ^ 2 )

which is a Lagrangian subspace of®2.

Proof. — Denote the first factor in (5.1) by 6(C) and denote by r(C)
the real span of the columns of (5.1). Now, i^f^z) € T(C) (C € &A) if and
only if

(5.2) M^MOC^2 (CebA)

(5.3) A2(C)=MOC'2"2 (Ce&A)
where

^l(C)^_Q^-lWC)\

IMOJ-9^ [if^))-
Since K^ < 1 and since h^ is holomorphic, (5.3) implies that h^ = 0. Thus,
^/'(C) ^ T(C) if and only if

(5.4) VKO=A(C)fai(C), z/2(C)=C'(C)/M(C) (C€&A)

where h\ satisfies (5.2). Observe that K\ — 2 = 2m ^ 0 is even and put
A(C) ^1, G(C) = C and g((:) == ^((m + l)-^1,^ + 2)-lCm+2)
(C € A). Then (5.4) is satisfied with pi, g^ replacing /i,/2 and with
fai(^) = ^m which satisfies (5.2) and consequently

^(^A^C^2, ^2(C)=C7(C)CK1/2 (C€bA).

Put Z^(C) = 1- By Lemma 3.1 there are a smooth function B on A,
holomorphic on A, and rf > 0 such that (3.5) holds and such that if
y(^) = (<7i(C)?W2(C)) then for each ^ € &A, tC/^C) ls contained in the
real span of the columns of the matrix (3.6), a Lagrangian subspace of (C2.
Clearly /|&A is an embedding. Replacing C(C,) by rjC(() in (5.1) the map
/ and the matrix (5.1) have all the required properties. This completes the
proof.

Remark. — By the reasoning in Section 2 this completes the proof of
Theorem 1.1 in the case when one partial index is even and at least 2 and
another partial index satifies ^j < 1.
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6. Nonimmersion in the case when î > 2
is odd and KJ ^ 1 for all other j.

PROPOSITION 6.1. — Let f be an analytic disc attached to a maximal
real submanifold M of (C^ and let /^i, • • • , KN be the partial indices of the
loop ^ i—^ Tf^M. Suppose that there is some ^, 1 ̂  £ < N^ such that KJ ^ 1
for all j, j ̂  ^, and such that ̂  ^ 2 is odd. Then /' has at least one zero
on &A.

Proof. — By the assumption there is a smooth map Q:A —>
GL{N^(E ), holomorphic on A such that for each ^ € &A, the space
T(^) = Tf^M is the real span of the columns of the matrix

(^1/2 o • • • 0
n ^2/2 ... n

(6J) Q^- .. ... ... .
o • • • o c"^2

Since zC/'(C) € T(C) (C € 6A) it follows that

(6.2) W=h^)CKj~2 ( C e & A , l ^ j < A T )

where

MC)\ /^(C)
^(C) ^ Q^-l ^2(0

<^(c)7 \v,/(0<
Since /ij are holomorphic and since KJ < 1 (2 < j < AT), (6.2) implies that
/ij = 0 (2 < j < N) and that /ii satisfies

(6.3) /n^MOC2"1-1^^)

where m > 1. If // ^ 0 then /ii ^ 0 and (6.3) implies that there is some
A , 0 < f c < m — 1, such that /ii(C) = 0^(0 where p is of the form

p(C) = po + piC + • • • + pTC2"-2 + M2"-2 + M2"-1

with n = m — fc ^ 1, and po 7^ 0. If w is a zero of p then w 7^ 0 and

(1/w)2"-1 (po + plw + • • • + piu72"-2 + pow2"-1) = 0

so

po + pi (1/w) + • . • +pT(l/w)2"-2 +po(l/w)2"-1 = 0
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which implies that 1/w is also a zero of p. Note that if w ^ &A then one
of w, 1/w is in A and the other in (D \ A. Since the degree of p is odd it
follows that at least one zero ofp lies on 6A. Thus

v{«)\ /c^cr
<fiK) pfo.°.

<VN«)/ I 0 .

has at least one zero on &A. This completes the proof.

Thus, in the situation described above, /|&A cannot be an embedding.
We shall see that in this case we can always realize the TV-tuple of partial
indices by an / attached to a maximal real submanifold M in such a way
that // has only one zero ZQ 6 &A, and that /|&A is one-to-one. The curve
/(6A) will have a cusp at ZQ and to put such a curve into a submanifold
is more delicate than before. Let us describe briefly how to do this in (C2.
We shall see that we can get an /as above together with a smooth loop
< ̂  r(C) of Lagrangian subspaces of ®2 such that ^/'(C) C T(C) « € 6A)
and such that, in addition, there is an open arc A C &A centered at ZQ such
that

/(C) € R2 (C e A) and T(C) = R2 (C € A).

For each C G &A \ {zo} let L«) = T(C) H {ti^f^'.t € R}-1- and
Z(C, e) = {w G L(C): H < £}. Then for some £ > 0, |j _[/(€) + J(C, 0]

_C6bA\A

is a submanifold of (C2. This is a strip along /(&A \ A) attached to R2 at
Ji = /(Ci) + J(Ci, ̂ ), ^2 = /(C2) + ̂ (€2, €') where Ci, €2 are the endpoints of
A. Adding to it Ji U 1^ U (7 where £/ c M2 is an appropriate neighbourhood
of /(A) we get the desired manifold M. We shall use a bit more complicated
construction to get a Lagrangian submanifold M.

7. Construction of / and T when /^i ^ 2
is odd and KJ < 1 for all other j.

PROPOSITION 7.1. — Let n\ ^ 2 be odd and let KJ s$ 1 (2 ^ j ^ N),
There are a smooth map 9: A —> (C^, holomorphic on A, and a smooth
map /:A-> (C^, holomorphic on A, such that /'«) ^ 0 (C € &A \ {-!},
such that /|&A is one-to-one and such that for each ^ € &A, ^/'(C) is
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contained in T(0, the real span of the columns of
/^i/2 o ... Q

(7.1) 6(C) ... ... ... ...
\ 0 • • • 0 C^72,

which is a Lagrangian subspace ord!^, and such that

/(OCR" ( C € A ) and T«) = RN (C € A)

for an open arc A c &A centered at —1.

Proof. — We first prove the proposition for N = 2. We show how to
get

/A(C) 5(0 \
0(0-^(0 Z?(OJ-

Let KI = 2m+l where m ̂  1. By the discussion in Section 6, ̂ /'(C) € 7(0
if and only if

if(C\- A^)11^
^-^(O/^

where h\ is holomorphic on A and satisfies

^-^(oMcn
^^-^^^(oj

(7.2) fti^MOC2771-1 (CeftA).

Let -D be a smoothly bounded domain, symmetric with respect to R
such that &A consists of a vertical segment on the imaginary axis together
with a curve t of the form (, = {p(|0|)e^: -7T/2 < 6 < Tr/2} where p
is a strictly decreasing function on [0,7r/2], p(0) = 1, p(7r/2) = ^ > 0.
Let $ be a the conformal map from A to D, <^(-1) = 0, <1>(1) = 1,
<I>(0) = 1/2. The map <I> extends smoothly to A and ^(C) 7^ 0 on
A [Po], p. 48. Let A = ^-i({^:-/3 < ^ < /?}). Let P(C) = ^(C)27^
If frA"^ = {< € &A: Im< > 0} then Pl^A^ is an embedding. We have
P(7) = P^) whenever 7 € A. Moreover, since p is strictly decreasing there
are m - 1 pairs of points 7,7 where 7 e &A \ A such that P(7) = P(70.

Let M be an automorphism of A mapping -1 to -1, 1 to 1 and 0 to
r < 0. Then ^ = <l>oM has properties analogous to <I>. Define Q = ̂ 2m+l.
Then 0[A is one-to-one. Also, there are m pairs of points 7,7 G &A \ A such
that 0(7) = Q(7). By choosing r in a right way we achieve that for each
such pair, P(7) ̂  P(7). Define

/(C)=(^(C)2m,^(C)2m+l) (CeA).
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Then /|&A is one-to-one. Recall that <t>, ̂  are smooth on A and that <!>', ̂ /

have no zero on A. Thus, / is smooth on A and the only zero of /' on &A
is -1.

By reflection, <1> and ^ extend holomorphically to a neighbourhood
of -1. We have <S>(Q_ = (C + l)G(C), ^(C) = (C + l)^(C) _where
G, H are smooth on A, holomorphic on A, and have no zero on A. We
have /{(C) = 2m^(C)2m-l^/(C) = 2m(C + l)2^^^)27'1"1^^). Define
A(C) = 2m^G(C)2m-l^/(C). Then A«) ^ 0 (C e A) and

(7.3) ^f[W=A(Q(^l)2m-l (CC6A) .

Similarly

(7.4) ^(O^CKC+l)2771-1 (Ce&A)

where C(C) = -(2m + 1)(C + l^C)27^^). Since /n(C) = (C + I)2771-1

satisfies (7.2) it follows that for ^ € A, ^/'(C) ls a rea! multiple of
(A^)^1/2,^)^1/2); in particular, (A^)^1/2,^^)^272) € R2 (C € A)
and ^/'(C) e ^(0 (2; € ^) ^or B^y -S?^- Choose a smooth function
<^:&A -^ &A such that (^(C) = ( ~ K ' 2 / 2 (C € A) and such that the winding
number of (p around 0 is 0. By the one dimensional version of (1.1) there is
a smooth function D on A, holomorphic on A, such that D(Q 7^ 0 (^ € A)
and such that for each ^ € &A, D((^) is a real multiple of y?(C)« By Lemma
3.1 there are a smooth function B on A, holomorphic on A, and an 77 > 0
such that if we change / to /«) = (^(O^y^C)2^1) and replace C
in (7.1) by rjC, then /|bA is one-to- one, /'(C) ^ 0 (C C &A,C ^ -1),
/(^) € R2 (C e A), and ^ »—^ T(^) is a smooth loop of Lagrangian
subspaces of (D 2 such that ^/'(C) ^ ^XC) (C ^ ^A) and such that
T(C) C ® x M (C € A). It remains to show that T(C) = IR2 « G A).
It is easy to see that a two dimensional subspace of (D x R is Lagrangian
if and only if it is of the form L x IR where L is a (real) one dimensional
subspace of (D. Thus, if a two dimensional subspace E of (D x R is Lagrangian
and contains a vector in R2 that is not parallel to {0} x R then E = R2.
Note that there are an open segment I in R and a smooth real function -0
on I such that /(A \ {-!}) = {(t, ̂ (t)): t C 1} U {(t, ~^(t)): t € 1} which
implies that for < € A\{-1}, the vector ^/'(C) € T(C) HM2 is not parallel
to {0} x R. Since T(Q C (D x R (^ G A) the preceding discussion implies
that r«) = R2 « € A), This completes the proof in the case N = 2.

As in the case of D above, for each j, 3 ^ j ^ TV, we get a smooth
function Dj on A, holomorphic on A, such that Dj(() -^ 0 (^ € A) and
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such that for each < e A, i9j(C) is a real multiple of <-^/2. Denote
by /i,/2 the components of / obtained above and define / in (C^ by
/ = (A, /2,0, • • • , 0) (C G A). Further, define

/A(C) B(C) 0 0 ... 0 \
C'(C) D(C) 0 0 ... 0

6(0= 0 0 D3(C) 0... 0

\ 0 0 ... ... 0 2MO/

It is easy to see that / and 6 have all the required properties. This
completes the proof.

8. Putting curves into Lagrangian submanifolds.

LEMMA 8.1. — Let X C R be a neighbourhood of 0, let ^, 2 ^
j ^ N, hj, 1 ^ j ^ TV, be smooth real functions on X such that
9jW = W = 0 (2 ^ j < 7v) and /i,(0) = ^.(0) = 0 (1 ^ j ^ AT).
Write

^) = (^ + ih^t),g^(t) + ̂ M, • • • ,^M + zM^)) (t ^ A)

and Jet L: X -^ T(7V) be a smooth map such that L(0) = IR^ such that
L(t) is Lagrangian for each t e A, and such that ^(t) G -L(^) (t e A).

There are 6 > 0 and smooth functions y?i, • • • , y?^ on £/ = {(a;i, • • • , x^)
el^:\x^\ < 6} such that

(8.1) M = {(rci + z^i(a:), • • • , XN + z^N^x)): x e U }

is a Lagrangian submanifold of®^ such that

(8.2) {^): |^| <<?} c M

and

(8.3) T^M=L(t) (\t\<6).

Proof, — Note that M of the form (8.1) is Lagrangian if and only if the form
N
^ ipj(x)dxj is closed on U ; U being simply connected this is equivalent to
j=i
the existence of a smooth function u on U such that ^v- = ̂  (1 < j ^ JV).
We shall say that M is defined by u.
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It is easy to see that there is a neighbourhood W C T(N) of R1^ such
that each E G W contains a unique AT-tuple of vectors of the form

(l+z/3ii , i /3i2, '-- ,z/?ijv)
(Z/?21,1+^22,---^/?2N)

(Z/?N1^/?N2, • • • , 1 + Z / ^ N N )

with /^A; real. These vectors depend smoothly on E. Obviously they are
linearly independent over M and so they form a basis of E.

Thus there are 6 > 0 and smooth real functions /3jk on (—6,6),
1 ̂  j,k ^ N, such that for each a:i, |a;i[ < 6,

(1 -H/?n0ri),%/3i2(^i,- • • ,^iN(^i))

(%/^vi(a:i), • • • ,zAv,N-i(^i), 1 + ^Aw(^i))

is a basis of L(a:i). Since L(a;i) is Lagrangian for each a:i, |a:i| < 6, we have

(8.4) /^i) = /?^i) (\xz\ < 6, 1 ̂  j,k < AT).

Write p(t) = (t,^2W, • • • ,^v%). We want M of the form (8.1). Now (8.2)
implies that

(8.5) ^(P(^i)) = ̂ i) (l^il < ^ 1 ̂  3 ^ N).

Moreover, if |rci| < 6 then Ty^^M is spanned by the vectors

.9y?i, , . .^2,, ^ .^N.(^•^ '̂••^(''(-".-.•s^")
(•^("(-"^•^^•".-••S^0')(8.6)

'.9(pi .9^2 .9(pN ,(^l)),'--,l+^(p(^)))
l^^^1^5^^'^1775 ^ 1 ^^N

so by (8.3) this must be a basis of L(x\). Expressing these vectors as real
linear combinations of the basis vectors above we get

Q^
Qxk

(8.7) (p(:Ti)) = (3kj(x^) ( |a;i |<<5, l ^ k J ^ N ) .

Recall that by our assumption z/(^) e L(t) (t G A). By (8.5), v'(x^ €
r^(a^)M (|a;i| < ^) and the form of y'(x\) shows that y'{x\)^ and the last
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N - 1 vectors in (8.6), form a basis of T^)M. Thus, to get (8.3) it is
enough to assume only that the last N - 1 vectors in (8.6) are contained in
L(a;i), that is, that (8.7) holds only for k ̂  2. The first equation in (8.7)
will then be automatically satisfied. Note that (8.5) and (8.7) imply that

(8.8) ^(^i)=/3i,(^i)+^(^i)/32,(^i)+---

+^(^l)/Wa;l) (M < ^ 2 ^ j ̂  N).

For x e U let
N

^i(x) = /iiCn) 4- ̂ f3ki(x^)(xk - 9k(xz))
k=2

+! E [E î)̂  ~ ̂ i))] (^ - ̂ i))
^ N r N

i =9 Li.—o Jj=2 4;=2

N

^•(^) = ftj(^i) + E/?^(^i)(^fc - ̂ fc(^i)) (2 < j ̂  N).
fc=2

Using (8.4) and (8.8) it is easy to see that <^, 1 ̂  k ^ N, satisfy (8.5) and
N

(8.7) for 2 < k ^ N, 1 < j ^ N, and that the form ^ (pj{x)dxj is closed
fc==i

on (7. This completes the proof.

9. Completion of the proof of Theorem 1.1.

We keep the notation from Section 8. For r > 0 let Ur =
{(a : i , - - - ,a? jv) e ̂  :\Xj -9j(x^\ < r (2 ^ j ^ AT),|a-i| < 6} and as-
sume that Mi, Ma are two Lagrangian submanifolds, both graphs of the
form (8.1) with U replaced by Ur, given by functions u\ and u^ respec-
tively, both satisfying (8.2) and (8.3). The discussion in Section 8 shows
that ^ = HI — ^2 must satisfy

QS)
(9fl) ^"(p(a;l)) = ° (1 ^ j ^ ̂  l^l < 6)

92^
(9.2) ^-^~(p^l))==o ( l<^^^^kll<^)•

By (9.1) $ is constant on {p(xi): |a?i| < S}. Since by Mi, M^ the functions
ui, U2 are determined only up to additive constants we may with no loss of
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generality assume that

(9.3) Wx,))=0 (\x,\<6).

Converse is obviously true so we get

PROPOSITION 9.1. — Let Mi be given by u\ on Ur and assume that
Mi satisfies (8.2) and (8.3). Then a Lagrangian submanifold Ms, a graph
of the form (8.1) over Ur, satisfies (8.2) and (8.3) if and only if it is given
by U2 = ui + ̂  where ̂  satisfies (9.1), (9.2) and (9.3).

Suppose that ^ satisfies (9.1), (9.2) and (9.3). If ^ is any real smooth
function on Ur then ^$ also satisfies (9.1), (9.2) and (9.3). This implies
the following patching lemma.

LEMMA 9.2. — Let Mi and Ms, given by u\ and u^ on Ur, satisfy
(8.2) and (8.3). Let 0 < 6' < 6. Then there is a Lagrangian submanifold
M, a graph over Ur, satisfying (8.2) and (8.3) such that M is given by u\
on Ur H {-6 < x\ < -<?'} and by u^ on Ur H {<5' < x\ < 6}.

Proof. — Let ^ be a real smooth function on (—6,6), ^ = 0 on
(-6, -<?'), ^ = E l on (y,6). Define u(x) =u^x)^(x^)(u2(x)-u^(x)) (x €
Ur). By the preceding discussion u has all the required properties. This
completes the proof.

It is now easy to get a Lagrangian "strip" M along /(bA), similar to
the one described at the end of Section 6. We use Proposition 7.1. Observe
that L e T(N) is Lagrangian if and only if L = [/(E^) for some unitary
map on (C^. Lemma 8.1 gives a candidate for a piece of M locally, near every
point of /(&A\ {-!}) since /|(&A\ {-!}) is an embedding. By Proposition
7.1 we may assume that near each point of f(\) the candidate for M is R3^.
Now we use Lemma 9.1 to patch these pieces together into a Lagrangian
submanifold in such a way that near the cusp /(-I), M remains a piece of
R^. This completes the proof of Theorem 1.1.

It is clear that one can apply the above patching procedure in the
place of the proposition of Oh in Sections 4 and 5.

10. Realizability of loops of maximally real subspaces.

PROPOSITION 10.1. — Let (^i, • • - , /tjv) be a realizable N-tuple such
that KJ ^,2 (1 ̂  j ̂  N). There is a smooth loop C ̂  T(f) of Lagrangian
subspaces with partial indices /ci, • • • , K N , which is not realizable.
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Proof. — Let 2-1/2 < p < 1 and let ^«) = 4ip(l +pC)3 « C A). For
each ^ e &A let T(^) be the real span of the columns of the matrix

^(0
<^i/2 ... ... 0

o ... o <^/2

Since (/<i, • • . , ^jv) is realizable at least one of KJ satisfies ̂  ^ 2. Thus, by
our assumption we may, with no loss of generality, assume that for some
£, 1 < i ̂  N we have KJ = 2 (1 ^ j ̂  £) and KJ < 1 (^ + 1 ̂  j < AQ.

Assume now that there is an analytic disc / attached to a maximally
real submanifold M of (C^ such that T(C) = Tf^M for each < C &A. Then
^/'(C) ^ ^(C) (C ^ &A) which implies that for each C e frA, all entries of
the column

/C-"172 o ... o \ /zC/{(C)\
.«)- ... ... ... ... -

\ o ... o c-^2/ \zW^)
are real which, as in the proof of Proposition 6.1, implies that

^(0=^(0^(0 (i^j^)
where

/^(C) = C^W (C e &A, i ^ ̂  ^v).
This implies that hj =. 0 (1 ^ j ^ TV) and that ftj is a real constant 7̂ - if
1 ̂  j ^ ^. Since / is not a constant at least one of 7̂ - is different from 0. It
follows that there are aj G (D such that

W = 7,(1 + PC)4 + a, (C € &A, 1 ̂  j^ £)
/ j(C)=^- (Ce&A, C ^ - l ^ j ^ N ) .

Observe that the circle {1 + pe^'.O ^ 6 < 27r} intersects each of
the rays {te^'.t > 0} in two points. Thus there are points p^q € &A,
P 7^ ^5 P = 5, such that the curve {(1 + pC)4^ ^ ^A} intersects itself
at the point w = (1 + ppY = (1 + pg)4 transversely, that is, there is
a number T] e (C , rj ^ 1R, such that ?p4p(l + pp)3 = r]iq4:p(l + pg)3.
It follows that the immersed curve {/(C)^C ^ ^^} intersects itself at
f(p) = f(q) = (7i^ + ai, • • • , 7^w + c^, a^+i, • • • , a^v) = u and that
^/'(p) = rjiqf(q) which implies that the real span of ipf{p), iqf'(q)
is a complex line that we denote by L. Since / is attached to M it follows
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that i p f ' ( p ) and iqf'{q) belong to TuM which implies that Ty.M contains
L. This contradicts the fact that M is totally real. The proof is complete.

It remains an open problem to show that for each realizable N- tuple
(/<i, • • • , Kpf) there is a nonrealizable smooth loop T:&A —> T(N) with
partial indices ^i, • • • , ^N-
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