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HOMOGENIZATION OF CODIMENSION 1 ACTIONS
OF R™ NEAR A COMPACT ORBIT

by Marcos CRAIZER

1. Introduction.

A C? locally free R™ action on a (n + 1)- manifold M is a C* map
®:R™ x M — M satisfying :

(1) ®(0,p) =p, Vpe M,
(2) ®(u+v,p) = ®(u,®(v,p)), Vp € M,u,v € R™ and
(3) D19(0,p) : R* — T, M is an injection, Vp € M.

It is easy to see that each ®-orbit is diffeomorphic to T* x R*~¥,
for some 0 < k < n, and a compact orbit T of ® is diffeomorphic to T™.
Here T" is the standard torus R™/Z". Taking M orientable, T’ divides its
tubular neighborhood in M into 2 sides. We shall call each side a one-
sided neighborhood of T. It is well-known ([2]) that if V is a one-sided
neighborhood of an isolated compact orbit T', then there exists 0 < k < n—1
such that the orbits of ® intersecting V are all diffeomorphic to T* x R™~*.

A locally free action of R™ determines a collection of vector fields in
M, given by

Xu(p) = D19(0,p).u,

u € R™. Our interest is to describe the dynamics of these vector fields in a
one-sided neighborhood V' of a compact orbit T' of ®.

We begin with a simple example. A locally free action of R™ on
T™ x [0,00) is homogeneous if it is invariant by transformations of the
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type (z,2) — (z + a, 2), with a € R, where z € T", z € [0,00). This is
equivalent to say that the components of the vector fields X,,, 1 <7 < n,
depend only on 2, and not on z, where e;, 1 < i < n, are the generators of
the isotropy group of T™ x {0}. It is also easy to show, and we shall do it
in section 3, that the generators of any homogeneous locally free action of
R™ can be written in the form

- 8 d
(1.1) Xe, = Z(a,-aj(z)+5,~j);9?j + aie(2) 5,

Jj=1

where a; : [0,¢] > R, 1 < ¢ <nandc:[0,¢] — R are functions satisfying
a;(0) =0, ¢(0) =0, c(z) >0, if z > 0; and a;, 1 < i < n, are real numbers.
We shall denote this action by ¥(as, a;,c)i<i<n-

The dynamics of an homogeneous action is very well understood. Let
E be the (n—1)-dimensional subspace of R™ orthogonal to & = (a1, - - -, ).
If u=(uy, - ,un) € E, then

- 0
Jj=1

Thus, for u € E, X, is a linear vector field tangent to the tori z = constant.
Also, the subspace E divides R" into 2 half-spaces E_ and E defined by

E_(+) = {u eR™ | Zuiai > (<) 0}
=1
such that if u € E_(4y, the a(w)-limit of X, is contained in T" x {0} and
the w(a)-limit is the empty set.

Let us see what remains valid for a general action, not necessarily
homogeneous. It can be shown that there still exists a (n — 1)-dimensional
subspace E C R"™ dividing R™ into 2 half-spaces E_ and E, such that if
u € E_(E;), the a(w)-limit of any point p € V is contained in T, while
its w(a)-limit is contained in V. This is not difficult to show, and in fact
a proof of it is given in [1] for the case n = 2.

A more difficult question is : What happens if v € E? If the ®-
orbits intersecting V' are diffeomorphic to T"~! x R, then ®|r determines
a locally free action on T™~!. Therefore the flow of X, is conjugated to a
linear flow on T"~1. On the other hand, if the orbits of ® intersecting V'
are diffeomorphic to T* x R**, for some 0 < k < n— 2, the answer cannot
be given immediately.
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Let W be the smallest ®-invariant set containing V. We prove here
in this paper that, for u € E, the flow of X, is conjugated to a linear
flow of T™, if we admit conjugations in the class C§° of homeomorphisms
between W and T" X [0, 00), that are C* diffeomorphisms when restricted
to int(W). For this result, the smoothness of the action at the compact
orbit T is crucial, as the counter-example of section 5 shows us.

The result of the last paragraph will be obtained as a consequence
of a theorem that asserts that any action is conjugated to a homogeneous
one. For ¢ = 1,2, consider locally free R" actions ®;, with compact orbits
T; and invariant one-sided neighborhoods W; as above. For simplicity,
consider coordinates on W; and W5 such that T3 = T, = T. We say that
(®1,W1) and (P2, Ws) are C5° conjugated if there exists a homeomorphism
H : W, — W5, homotopic to the identity at T, whose restriction to int(W7)
is a C*°-diffeomorphism such that H,®; = ®,. The main result of the paper
is the following :

1.1. THEOREM. — Let ® be a C* locally free action of R™ on M
with an isolated compact orbit T. Fix a one-sided neighborhood V of T,
and let W be the smallest ®-invariant set containing V. There exists a
homogeneous action ¥(a;,a;,¢), 1 < i < m, of class C* such that (®, W)
and (¥, T" x [0,00)) are C§° conjugated.

This result shows that the homogeneous actions are the models for
any locally free action of R™ near a compact orbit. The method of proof
of this theorem that we give here is very simple. The basic idea is to find
a homogeneous action whose holonomies and return times are the same as
those of the given action. The details of this proof are given in sections 2,3
and 4.

The behaviour of the flows of X, u € E, is a corollary of Theorem 1.1.

1.2. CoroLLARY. — For u € E, the flow of Xy|ingw) is C°°-
conjugated to a linear flow on T™ x (0, 00).

By Theorem 1.1, every action is conjugated to a homogeneous one.
A natural question that arises is when two given homogeneous actions are
conjugated near the compact orbit. We can answer it when the open orbits
of them are not diffeomorphic to T*~! x R.

Let ¥(ay,a;,¢)1<i<n be a homogeneous action whose open orbits are
not diffeomorphic to T"~! x R. In this case, we can assume that a; = 1
and o; Q,2<i<n.
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1.4. THEOREM. — Let Q(f;, b;, d)1<i<n be a homogeneous action. As-
sume, by making a linear reparametrization if necessary, that the generators
of the isotropy group of Q at T™ x {0} are also e;, 1 < i < n. Then Q is
C§°- conjugated to ¥ if and only if B; = a;, 1 <1 < n, and the following
limits exist :

K; = lim 1 Mds
=0/, C(S)

and

Ko = lim /1 g%ds.

2—0

The proof of this theorem is simple and will be given in section 6.

Acknowledgements : 1 want to thank J.L. Arraut for helpful conver-
sations and suggestions during the preparation of this paper.

2. Holonomy and return times.

Let @ be a locally free R™ action on M with an isolated compact orbit
T. We consider coordinates in a one-sided neighborhood V' of T" such that
V = T" x [0,¢) and T = T" x {0}. Assume, w.l.o.g., that {z} x [0,¢)
is transversal to the foliation F subjacent to ®, for any z € T". Fix
S = {0} x [0, €] and, for each g € 7;(T"), denote by Hy : S; C S — S the
holonomy map associated to g.

For g € m1(T™) and z € Sy, let X, , be a curve beginning in (0, 2)
and tangent to F which is a lifting of a curve representing g in T". Clearly,
X,,~ ends at the point (0, Hy(2)). The curve X, can be lifted to R™ by the
covering map ®(—, (0, z)), and the vector difference between the final point
and the initial point of this lifting does not depend on the choice of the
initial point. We denote this difference by Uy (2). The function Uy : S; — R™
will be called the return time associated with g. Clearly, H; and U, are
related by the formula

®(Uy(2),(0,2)) = Hy(2).

2.1. ProposITION. — Take g1,92 € m(T") and z € Sy, N Sy, N
H,'(Sg,) N H,'(Sy,)- Then

(2.1) Ug(2) + Ug,(Hg, (2)) = Ug,(2) + Uy, (Hg,(2))
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Proof. — The curve X, , followed by Xy, g, () is a lifting of a curve
representing g;.g2 € 71 (T"). Hence

Ug, .2 (2) = Uy, (2) + U, (Hgl (z))
Since g1.92 = g2.91, formula (2.1) is proved.

Take now 2 locally free actions ®; and ®; as above, choosing co-
ordinates such that Ty = T, = T and S; = Sz = S. Denote by
Higy:84yCS— SandU;y: S;g CS — R" the holonomy maps
and the return times of ®;, ¢ € {1,2}, respectively. Also, let W; be the
smallest ®;-invariant set containing V;.

2.2. PROPOSITION. — Suppose that Hy g = Hz 4 and Uy g = Usg,
for any g € m(T). Then (®,,W;) and (®2, W) are conjugated and this
conjugation is homotopic to the identity at T.

Proof. — For p € S, define H(p) = p. If p = ®;1(u,q), for some
g € S, u € R", define H(p) = P2(u,q). It is not difficult to verify
that H : W7 — W, is well defined and conjugates ®; with ®,. Also,
Ui,4(0) = Usz,4(0) implies that the isotropy group at the compact orbit are
the same for both actions. Therefore H is homotopic to the identity at T'.

3. Homogeneous actions.

Let ¥ be a locally free R™ action on T™ x [0, 00), whose only compact
orbit is T™ x {0}. Assume that ¥ is generated by vector fields of the form

n
0 0
Xe; = ;(aij(z)+6ij)a—% + cl2)g,
(z1,Z2,-+,2n) € T", 2z € [0,00), where a;; and ¢;, 1 < i,j < n, are
functions on [0, 00). Since T™ x {0} is the unique compact orbit, ¢;(z) = 0,
for any 1 < ¢ < n, if and only if 2 = 0. We shall assume, w.l.o.g., that
a;;(0) =0, for any 1 < i,5 < n.

Write a1; = a; and ¢; = c¢. The relation [X,,, X,;] = 0 gives then

(3.1) cc; = ¢;d
and
(3.2) caj; = ciay.
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Let [r,s] C (0,00) be such that c(z) # 0, for any z € (r,s), but
¢(r) = ¢(s) = 0. Then Equation (3.1) implies that % = constant,

for any z € (r,s). Therefore ¢;(r) = ¢;(s) = 0, 1 < i < n, which is not
possible. We conclude that either ¢(z) = 0, for any z € [0, ), or ¢(z) # 0,
for any z € (0,00) and ¢;(2) = a;c(z), for some a; € R, 1 < i < n. We shall
assume, w.l.o.g., that the second hypothesis holds. Equation (3.2) implies
now that a;; = o4a5, 1 < 4,5 < n. Therefore ¥ = ¥(a;,a;,¢)1<i<n, the
homogeneous action defined by (1.1).

We shall now show how one can compute the holonomy map and the
return times of ¥ = ¥(a, a;, ¢)1<i<n. We need first some preliminaires.

Given p = (z1,-+*,Zn,2) € T" x [0,00) and v = (uy,---,u,) € R",
we shall compute ¥(u, p). For this, let u; = (0,---,u;,---,0) and consider
the points p?, 0 < i < n, defined by p° = p and p* = ¥(u!,p*"!), 1 <i < n.
Observe that

Xuy = ;(“iaiaa‘(z) +5ij)87j + wic(2) 5.

Writing p* = (2, - -, 7%, 2¢), we have

i

Z 1
QiU = /zi_l ) s,

i _ il ' d a;(s)
T; — T = A uio;a;(2(t))dt + biju; = e (9 ds + 6;5u;,

and also

1 <4,j < n. Summing these equations from ¢ = 1 to ¢ = n we obtain

Zaiui———/ —l—ds
i=1 20 C(S)

and

T

zn
0 _ a;(s) _
;-‘—:cj—/z o) ds + u;,

0

1< j < n.Fixnow g = (my,---,my) € Z" = w1 (T™). The above equations
imply that

Hg(2) n
(3.3) / c—(lgds - ;aiUg,i(z)
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and

H (z) s
(3.4) [ (( ))d — my — Uyy(2),
z€(0,00),1<j<n.

3.1. ProposiTION. — The functions Hy and Uy can be computed as
follows :

1. Hy(0) =0 and U, ;(0) =m;, 1 <j <n.
2. For z € (0,00), Hy(2) and Uy(z) are the unique solutions of the
equations (3.3) and (3.4).

Proof. — We have to show only that the equations (3.3) and (3.4)
admit a unique common solution, for any z € (0,00). But (3.3) and (3.4)
imply that

Hy(z) 1 +Zazaz( )

/z c(s) —_———ds = Zazm,

Clearly, Hy(z) is the unique solution of this equation. And then Uy(z) is
the unique solution of (3.4).

4. Another view of Equations (3.3)
and (3.4) - Proof of Theorem 1.1.

In this section, we shall look at Equations (3.3) and (3.4) with
another point of view. Assume that we are given Hy and Uy, for each
g = (my,---,my,) € m(T"). We want now to find a;, 1 < ¢ < n and ¢
satisfying (3.3) and (3.4).

We shall assume, w.l.o.g., that &; = 1 and that H,, : S — S is a

0
contraction. Hence, by [6], there exists a C-vector field /\(z)-a—z on S, C*®
on S\ {0} whose time 1 is equal to He,. This is equivalent to say that

He, (2)
(4.1) /z A(l)ds =1,

for any z € S.
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We shall follow here the notation of [5], with f = H,,. Let A(2) =
z— f(2), z0 = z and z; = f(2i—1), ¢ > 0. It follows from Equation (4.3)

dz _ )\(zl)
that Fraliy @) and therefore
dzi _ AMzi)
(4.2) = N2

In order to simplify the notations, we shall write Equations (3.3) and (3.4)
in the form

Hg(2) (s
(4.3) /z jf(—(s—)zds = Qg,(2),

n

0 < j <mn, where Qg; =m; — Uy ; and Qg0 = Y a;Ug ;. Our task is to
T

find v; : § — R, 0 < j < n, satisfying (4.3).

4.1. LEMMA. — For any continuous function v : S — R,
Hg(z) n
. W) o _
) w® T (Zl ‘”") "o

Proof. — By the lemma of N. Koppel ([3]), Hy is equal to the time
> a;m; of )\(z)%, what is equivalent to say that
1

Hy(2) 1 d n
(44) L W s = ;aimi.

Given p > 0, choose § > 0 such that |y(s) —v(0)| < p, if 0 < s < 4. Then

(s) —(0)
A(s)

Hy(2)
</

if 0 < z < 6. This proves the lemma.

ds<p (2": ai””i) )
1

This lemma and Equation (4.3) shows that necessarily

(4.5) (Z aimi) 7;5(0) = Qg,;(0).
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Therefore, by Proposition 3.1, 40(0) = 1 and v;(0) =0, if 1 < j < n.

4.2. LEMMA. — The series
oo
(4.6) > QL i (z)A (=)
0

defines a continuous function o : S — R, C* on S\ {0}, for any 0 < j < n.

Proof. — By Lemma 2.9 of [5], there exist a constant C; > 0 such
that

(4.7) IA(z))] < C1A(2:),
for any z € S, i > 0. Hence

Q. ;(2:)A(2:)] < C1C2A(2:),

o0
where Cz = sup |Q%, ;(2)|- Since ) A(z;) = =, this shows that the series
z€S ’ 0

(4.6) is uniformly convergent in S. Therefore its sum o; is a continuous
function.

We prove now that o; is C* in S'\ {0}, by induction. Assume that
o; is of class C* in S\ {0} and that we can write A*(2)o(¥)(2) in the form

(4.8) > 9(z)A (@),
0

where g : S\ {0} — R is C*°. The term by term derivation of series (4.8)
gives the series
(e o)
Az
3 (6 (A1) + (=X () 3,
4 AG)
where we have used (4.2). Using again estimate (4.7), one concludes that
this last series is uniformly convergent in any compact subset of S\ {0}.
This shows that o; is of class C*¥*! and that o(*+1) can also be written in
the form (4.8). This completes the induction step and therefore proves the
lemma.

Define v;(2) = v;(0) — 0(2), 0 < j < n. It is not hard to show that
v; satisfies Equation (4.3) with g = e;. We must show that (4.3) holds, for
any g € m(T™).
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Observe first that, using (2.1), one can easily prove that
(49)  Qeyj(2) + Qgi(He,(2)) = Qq(2) + Qey,j(Hg(2)),

for any g € m (T"), z € 8., NSy N H,,(Sg) NH,;(Se,), 0 < j <m.
Take 29 € S and let g; € R be such that

Hg(20) .
/z 7;((;))(13 = Qqj(20) + ;.

0

Using now Equation (4.3), with g = ey, for z = 2 and also for z = Hy(z),
one concludes that

/Hg(Hel(Zo)) ~;(s)
H., (70) A(s)

since H,, o Hy = Hy 0 H,,. Now, by (4.9),

/Hg(Hel (ZO)) ny (3)
H., (20) A(s)

ds = Qe,,j(Hg(20)) — Qe,,5(20) + Qg,5(20) + g5,

ds = Qq,j(He,(20)) + g;-

By the same argument, we can prove that

/HQ(H,’J1 (20)) . (s)
HE (20) A(s)

ds = Qq;(H; (20)) + g5,

for any k£ > 1. Making now k — oo, we conclude from Lemma 4.1 that

7;(0) (Z aimi) = Qy,;(0) +g;.
1

Therefore, from (4.5), g¢; = 0. This shows that (4.3) holds for g.

We can now complete the proof of Theorem 1.1. Given the action ®,
and a one-sided neighborhood of the isolated compact orbit T', consider the
holonomy map H, and return times Uy, g € 71(T"). The holonomy map
H, determine unique real numbers a;, 1 < ¢ < n, satisfying Equation (4.4).
And H, together with U, determine solutions «; : S — R to the equation

)‘ .
(4.3). Define then ¢ = 'y_ and a; = % The functions a;, 1 < i < n, and
0
c are continuous, C* outside 0. Therefore ¥ = ¥(oy, a;, ¢)1<i<n is of class
Cge.
By Proposition 3.1, the holonomy map of ¥ is Hy, and its return times

are given by U,. Therefore, by Proposition 2.2, (®, W) and (¥, T™ x [0, c0)
are C§° conjugated. This proves Theorem 1.1.
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5. A Counter example.

Let h : T? — R be a C* function with [i, h(z1,z2)dz1dz2 = 0, and
consider the locally free C* action of R? on T? x R generated by

{X1= 3—2; + 013%2 + h(z1,22) 2

5.1
(5. b

Using Birkhoff’s theorem, one can show that

t(r\ _ Tt
lim X1 = L) _
t—oo t

0
— ——. Thi
£ + o 92, is
implies that if the above action could be homogeneizable by a homotopic

to the identity conjugation, X; would be conjugated with L.

for any p € T? x R, where L is the linear vector field

In what follows, we shall find a real number « and a function h such
that this latter fact cannot occur. Assume then that we compactify the
example by adding a compact orbit at T2 x {—oc}. If the action so obtained
were smooth, this would contradict Theorem 1.1. We conclude that the
smoothness at T is essential for this result.

5.1. LEMMA. — There exists o € R\ Q and a sequence of integers
(k1)ien such that

‘ 1
2mikia
(5.2) 1= < o
leN.
For a proof of this lemma, see [4,p.178]. For each [ € N, let j, € Z be
such that —% <n+ka< % Then clearly

; 2
(53) tEe < I
leN.
Define now
H(z,y)= Y bjme 0o+,
(4.k)€z?
where

—27mi(Ji+kia)ky . . —(x
b(j,k) — {W&T , iof (4,k) = (]lakl)

, otherwise.
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By (5.3),

w2 k
'b(,],k)l < _2—57377
which implies that H is of class C°.

Take h = Re H. Then the z-component z, of X™(0,0,0) is given by

n
2 = Re/ H(s,sa)ds
0

e21ri(j+ka)n -1
= R [P
2 6N 5T Ra)

(4,k)eZ?
Therefore
kl Re (1 _ ezm’k;an)
Zn = 2k |1 — e2rikia|
leN
Fix | and take n such that Re(1 — e?™%:2") > 1. Then
ki 1

#n = ok |1 = e2mikial 2 ki,

by (5.2). This shows that limsup z, = oo, which implies that the flows of
X; and L are not conjugatgd.c>c>

6. Conjugation between homogeneous actions.

Let ¥(aj,a;,c)1<j<n be a homogeneous action and ej, 1 < j < n,
the generators of the isotropy group of T™ x {0}. For simplicity, write
Xj = X¢;, 1 < j < n. Assume that the orbits of ¥ on T" x (0, 00) are not
diffeomorphic to T"~! x R. In this case, we can assume that a; = 1 and
o ¢ Q, 2 < j < n. We now prove Theorem 1.4.

Let Q(B;,b;,d)1<j<n be another homogeneous action and assume,
w.l.o.g., that e; are also the generators of the isotropy group of T" x {0}.
We denote its generators vector fields by Y}, 1 < j < n. It is clear that

a a
(6.1) Xj —an1 = 51?7 —ajéz
and

0 7]
(6.2) Y; - Biv1 = oz, —ﬁj'azlﬂ
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Let H : T" x [0,00) — T™ x [0,00) be a conjugation of class C§°
between ¥ and Q. It is easy to see from (6.1), (6.2) and the fact that H is
homotopic to the identity that 8; = o; and

0 0 0 0

foreach 2 < j < n.

We write z = (21, %2, -, Z,) and
(6.4) H(z,z2) = (z,0) + (H1(z, 2), Ha(z, 2), - -+, Hpy1(z, 2)),

with H; : T™ x [0,00) — R functions, 1 < ¢ < n+ 1. The formula (6.3) can
be written as

OH; a‘aHi _
Oz; T0x;

(6.5) 0,

1<i<n+1,2<j<n.

6.2. LEMMA. — Foreach1 <i<n+1,2<j<n,

o,

8:1;]~ =0.

Proof. — By taking the Fourier series of H; we write
Hi(m,z) — Z hi'v(z)e21ri<v,z>,
vEL™

where < .,. > denotes the usual inner product in R"™. Equation (6.5) implies
that

Z hi,v(z)(vj - ajvl)ez’”<”’“’> =0,
vEZ™

1<i<n+12<j < n Nowa; ¢ Q implies that h;,(z) = 0,
unless v; = v; = 0. Since this holds for any 2 < j < n, we conclude
that h; ,(z) = 0, unless v = 0. Therefore H;(z,z) = h;o(2), thus proving
the lemma.

If we apply dH to X; we obtain Y;. This fact leads to the equations
ai(2) + Hi(2)c(z) = bi(2),
for any 1 <i <m, and

H, 11(2)c(z) = d(2).
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Therefore H must be given by

L bi(s) — ai(s)
(6.6) H;(z) = —L ——c(rds'f' G,
where C; is some constant, 1 < ¢ < n; and
' d(s)
(6.7) H,q(2) = —L @d«s + Cy,

where Cj is another constant.

If we want H to be continuous in T” x (0), then clearly the limits Kj,

1 < i < n, and Ky must exist. Reciprocally, suppose that these limits exist.
Take then C; = K;, 1 < i < n, and Cy = Ky, so that the equations (6.6)
and (6.7) define continuous functions H; : [0, 00) — R satisfying H;(0) = 0,
1 <i < n+1. The formula (6.4) define then H € C§° satisfying H,(¥) = Q
on T™ x (0,00). But since H = id on T™ x {0}, this relation remains true
in T™ x {0}. This completes the proof of Theorem 1.4.

2l

3]

(4]
(5]

(6]
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