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METRIC PROPERTIES OF EIGENFUNCTIONS
OF THE LAPLACE OPERATOR ON MANIFOLDS

by Nikolai S. NADIRASHVILI

In this note, we prove two theorems which express a quasi-symmetry
relation between the positive and the negative part of the distribution
function of an eigenfunction of the Laplace operator on a Riemannian
manifold.

1. An estimate of the volume of a domain on which

an eigenfunction of the Laplace operator on a Riemannian surface

has constant sign.

Let M be a two-dimensional compact real analytic Riemannian
manifold, ^1,^25 • • .-eigenfunctions of the Laplace operator on M, Ai^ =
\iUi.

THEOREM. — There exists a positive constant C which depends on
M such that, for every i = 1,2,...,

vol{rc e M,Ui(x) > 0} > C .

The proof is based on the two following lemmas.

Let / be a bounded function, continuous on [0,1]. Let us denote by
N(f) the number of changes in the sign of the function / on [0,1].
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A.M.S. Classification : 58G25.
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LEMMA 1. — Let fn be a sequence of non-zero continuous functions,
defined on R, with values in R, with support in [0,1] and assume that
N{fn) is bounded by some fixed number N.

Then there exists a subsequence ni of N (n^ —> oo), real numbers
0m, such that: On, .fm converges as i —^ oo, for the (weak-)topology of the
space of distributions V to a non-zero distribution of order less than N.

Remark. — First, we recall that a distribution is said of order less
than N if it is a sum of derivatives of order less than N of Radon measures.
Moreover, if P is a polynomial of degree N and p, a Radon measure, the
set of all T 6 V satisfying PT = /A is an TV-dimensionnal affine subspace
of the space of all distributions of order less than N.

Proof of Lemma 1 (suggested by Y. Colin de Verdiere). — Let
N

Pn = TT (^ —Xk) be a sequence of polynomials of degree N such that Pn-fn
k=l

is > 0. By renormalisation and taking a subsequence, we may assume that
L Pn-fn = I? ^na^ Pn-fn converges to a probability measure fi and that
Pn converges to a polynomial P of degree exactly N.

Let To e V be such that : PTo = /A.

Let Tn = fn - To, then we get :
l imPn.Tn=0.

We introduce now the following decomposition of the space of distri-
butions :

P' = Zp C W ,

where Zp = {r € T>'\PT = 0}, and W is a topological complement of Z p .

W is a complement to Zp^ if n is big enough. Now we can write
uniquely :

Tn= Zn+Wn ,

where Zn e Zp^ and Wn € W. Now Pn-^n —> 0 and we deduce that Wn —^ 0,
because the multiplication by Pn is uniformly invertible in W.

Now Zn C Zp^ and Zp^ converges to Z p .

Two cases are possible :

First case : Zn is bounded and we can extract a convergent subse-
quence converging to 7i in Z p . Then TQ -{- Ti is not zero and we get the
conclusion.
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Second case : Zn is unbounded; then there exists a sequence /3m —> 0
such that f3n, .Zn, converges to a non-zero distribution Ti and then :

/Wn.

converges to Ji.

Let us denote by B the unit disk in R2, S == QB, if / is a continuous
function on S then N(f) is the number of changes of sign of the function
/on S.

LEMMA 2. — Let u be a harmonic function in B which is continuous
in B, u \s= f, u(0) = 0. Let N(f) =k<oo. Define

Gy, = {x e B , u(x) > 0} .

Then mes Gu > C, where constant C > 0 is dependent on k .

Proof. — Let us assume the contrary. This means that there exists a
sequence of harmonic functions Un in B, Un\s = /n, Un(0) = 0, N(fn) < k,
mes Gu^ —> 0, n —> oo. According to lemma 1 there exists a real valued
sequence a^n and a subsequence fn^ such that, Omfn^ -^ f 1=- 0 in the
sense of distributions. From the convergence of the distributions Omfn^ on
S it follows that in an arbitrary compact subdomain of B the convergence
of functions Q-^Un^ is uniform. Let OmUn^ -> U in B. From [1] it follows
that U ^ 0 in B if / ^ 0 on S. We have (7(0) = 0. From the assumption
mes Gu^ —^ 0, n -^ oo, it follows that U < 0 in B. Equality (7(0) = 0 and
inequality U < 0 in B contradicts the maximum principle for harmonic
functions.

Proof of the theorem.

1. Let us denote by Bf, x e M, r, the geodesic circle on M with
centre x and radius r.

There is a constant Co > 0, such that for every e > 0 there exists
points xi ...XN € M, N > Co/e2, such that the circles B^2...B^N

mutually have no intersections.

2. There exists a constant ro, such that for every x € M, 0 < r < ro,
Bf is diffeomorphic to a disk.

3. There is a constant C\ > 0, such that for all x € M, A > 0 in the
circle B^ r. there exists a positive solution of the equation AZA -h Xu = 0.

4. Let x ^ M, A > 0, r ^ l / C ^ y / X < ro, u is a solution of the
equation AIA -h \u == 0 in JSjf. Then there exists a diffeomorphism h of the
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unit disk B on Bf, /i(0) = x, and a function s in B, 0 < s < oo, such
that s.u(h) is a harmonic function in B (by a representation theorem in
quasiconformal mapping theory, [2]). From the compactness of M it follows
that the Jacobian of the mapping h is uniformly bounded.

5. There is a constant C^ > 0, such that for all x € M, A > 0 in the
circle ^x /- every solution u ̂  0 of the equation AZA + \u = 0 changes
its sign [3].

6. Let Ui be an eigenfunction, Az^ = A^ on M, 7 is a nodal line of
the function Ui. For a two-dimensional real analytic manifold the following
estimate is true, [4],

length 7 < CsV^z

where constant 63 > 0 is dependent on M.

7. Let Ui be an eigenfunction, Ai^ == A^ on M. According to 1 we
can choose circles Bf1 ... B^ with £ = 2/62 \/Az. We have TV > CoCj\i/4.

According to 5 there exist points yn G B^, n = 1 . . . N , such that
Ui(yn) = 0.

According to 6 at least N / 2 points y k ^ - ' - V k j , J > N / 2 , from the set
{yn} have the following property : for all j = 1... J there exist r^,

1 1
< r, < ——=- ,

2CiV\i J C^V\^v-/l v ^% ^1 V ^z

such that restriction of the function uj on QB^3 has no more than

8CiC3
C^Co

zeros.

According to 4 and lemma 2 for all j = 1... J

mes{a; € B?^ , ui(x) > 0} > C^2 .

We have J > Co/2e2 and so the theorem is proved.

2. An estimate of the relation between the positive

and the negative extrema of an eigenfunction.

Let M be a n-dimensional compact smooth Riemannian manifold,
^1,^2,.. .-eigenfunctions of the Laplace operator on M, Az^ = \iUi.
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THEOREM 2. — There exists a positive constant C which depends
only on n and a positive constant N which depends on M such that, for
every i > N,

supUi(x)
— < M < r
C" |inf^)| ' •

M

by

We denote by Br C R71 the ball centered at 0 of radius r.

In Br we consider a uniformly elliptic second order operator L defined

^=E^(^)' (2J)
zj J

where Ozj is a symmetric positive definite matrix in Br. If the eigenvalues
of the matrix ||a^(^)|| lie on the segment [e'^e], e > 1 we say that the
operator L has an ellipticity constant e.

LEMMA 3. — Let u be a solution of the equation

a(x)Ly + \u == 0

in the ball B\, I/A < a(x) < A, A > 0, L is an elliptic operator with the
ellipticity constant e, A is a constant such that \\\ < C. Let us assume that
u(xo) > 0 and that there exists XQ € ^1/2 with u{xo) = 0. Then

\miu\ > Su(0) ,
B\

where the constant 6 > 0, 6 = 6{n, A, e, C).

Proof.

1. We shall prove Lemma 2 under the assumption that \ = 0. Denote

<^i =sup{0,n |aBi}
</?2 =inf{0,n \QBi} -

Let ui, ^2 be the solutions of the following Dirichlet problems :

Lu\ =0 in B\, u\ \QB^.= ^i?
L^2 =0 in f?2 , Z&2 |^Bi= ^2-

Then, ̂  = ^i +112, lAi > 0 in f?i, 14 (0) > u(Q). From the Harnack inequality
[5] it follows that there exists a constant 8 > 0, 8 = 6(n, e) such that

Ul \B1/2> ^l(O) .
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Since u{xo} = 0, XQ € Bi/2, then

infy?2 < -^i(O) < -6u(0) .

2. Let A ^ 0. Let us make a cylindric extension of the functions
u(x),a(x) and the operator L in the new coordinate Xn^-i- After this
extension we shall keep the notations u, a, L. Denote

v =uevxxn+l

clearly the function v is a solution of the elliptic equation
Q^v

aLv + -^-.— = 0 .
^n+l

Now the statement of Lemma 3 follows from the assertion 1 to the function
v in the unit ball in IR71"^1.

Proof of Theorem 2.

1. There are constant d = Ci(M) > 0,C2 = C^M) > 0 such that
for all x 6 M, A > 62 any solution of the equation Ait + \u = 0 in the ball
B^^ change its sign.

2. There exists a constant N > C^, N = N(M), such that for all
x 6 M there exists a diffeomorphism

^c^^^i^
such that the equation A'u -h \u = 0 in B^ , r- viewed in the ball Bi has

2Gi / v A
the form

a(a:)Ln + \'u = 0 (2.2)

where L is an elliptic operator of the type (2.1), e = 2, A = 2, |A| < C =
C(n) > 0. We can obtain such a diffeomorphism d if we introduce in the ball
B3. r. a normal coordinate system. Applying Lemma 3 to the solution
u of the equation (2.2) we obtain the statement of Theorem 2.
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