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DISTRIBUTION FUNCTION INEQUALITIES
FOR THE DENSITY OF THE AREA INTEGRAL

by R. BANUELOS (*) & Ch.N. MOORE (**)

0. Introduction.

Let Xf be a continuous martingale starting at zero and define X* =
sup^>o ?1 8Ln^ ^(^O == (^0^ where {X} is the quadratic variation process
at time oo. The Burkholder-Gundy inequalities state that for 0 < p < oo,

c,\\X^\,<\\S{X)\\,<C,\\X-\\^

where Cp and Cp are constants depending only on p. In [4], M. Barlow
and M. Yor proved that the maximal local time of Xf also has Lp norm
equivalent to the L9 norm of S(X). More precisely, let L(t;a) be the local
time at a and let L* = sup{L(oo;a) : a € R}. The occupation of time
formula [16] gives

(0.1) f f(X,)d(X),= [ f(a)L(^a)da
J o JR

for all Borel functions / in R. If we take / •= 1, it follows from this that

a \2 ( r x - \ ^
S(X)= L(oo;a)da = { L(oo;a)da

( / \J-x- )
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and therefore
(0.2) S(X)<V2(X^)^(L^k.
This, the Cauchy Schwarz inequality and the Burkholder-Gundy inequal-
ities above give that ||5(A)||p < Cp||L*||p for all 0 < p < oo. Thus, it is
natural to ask if the opposite inequality holds. The result of Barlow and
Yor [4] is precisely this. Let 0 < p < oo. Then
(0.3) ||L*||p<CV5(A)||p.

The original proof of (0.3) given in [4] made use of the Ray-Knight
theorem on the Markov structure of the Brownian local time. In [5], the
same authors gave a different proof based on Tanaka's formula and a real
variable lemma of Garsia, Rodemich and Rumsey. However, more recently,
R. Bass [6], and independently, B. Davis [12], have shown that the good-A
inequalities between X* and S(X) used by Burkholder and Gundy in their
proof of their inequalities continue to hold for L* and 5'(.Y).

In the setting of harmonic functions, the nontangential maximal
function is the analogue of A"* and the Lusin area function is the analogue of
S(X). In [14], R. Gundy introduced a new operator on harmonic functions
which he called the maximal density of the area integral; it is a harmonic
function analogue of L . The purpose of this paper is to prove good-
A inequalities between the maximal density of the area integral and the
nontangential maximal and Lusin area functions. Besides answering the
question posed in Gundy [15], page 9, our good-A inequalities and the
methods of Burkholder and Gundy [9] can be used to give a different proof
of the recent results of J. Brossard [7] on the local properties of the maximal
density. We also prove a Kesten type law of the iterated logarithm for
harmonic functions. Our Theorems 1 and 3 below are for Lipschitz domains.
However, all our results are new even in the case of IR^_.

Let u be a harmonic function in the upper half space R^.4"1 ==
{ ( x . y ) C R ' ) J r [ : ,</ > 0}. For a > 0,.r e H" and i) > 0, we set
r\(:r,^) -= { { ' ^ . t ) '. l.s' — .r < (\(t — y ) } which is a cone having a vertical
axis and vertex ( . / ' , < / ) . When y = 0 we simply write r^(.r). We define the
nontangential maximal function and the Lusin area function of u by

A^(.r,Y/) = s u p { | / / ( 5 , Q | : ( s . t ) C Fo ( .? • ,< / )} ,

((u) / /• , •> \ 'A^(.r, .<7)= / ( t - y ^ - ^ V u ^ . ^ d s d t } .
\-f\ . ( . . . ) /

respectively. When /y = 0 we will simply write N^u(.r) and A^u(x). As is
well known. N^u and A,,ti have equivalent L1' norms for all 0 < p < oc.
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Let a € R and note that since u is harmonic on R7^'1, the function
(u — a)~^ is subharmonic and its distributional Laplacian, A('u — a)"^, is a
positive measure in R^1. We then define (a^ in Gundy [15])

A^((^);a)= / (<-2/) l-nA(^(^)-a)+(^^)
^r.,(:r^)

and

(0.5) Dau(x, y ) = sup{£^((a;, ̂ ); a) : a C R}

and refer to Dau(x, y ) as the maximal density at (x, y). Again, when y == 0,
we write these as Dau(x\a} and Dau(x) respectively.

In [16], Gundy and Silverstein proved a change of variables formula
for Dau((x,y)-,a) similar to (0.1) :

/ ^(5, t)f(u(s, t))\^u(s, t)^ds dt
(0.6) 7

= I ^(^VMA^.s.^-r)^^)^

whenever ^, / are Borel functions on R^1 and R. With ^(s,t) = (t -
^)l-n^^,(:..,)('s^) and / = 1 in (0.6), and the fact that /^(u - a)^ = 0 on
F a ^ x ^ y ) whenever |a| > Nau(x,y), we obtain

^N.,u{x,y)
(0.7) A2,u(x,y)= Dau((x,y);a}da

J - N . , u ( x , y )

and it is for this reason that Dau((x,y)-,a) and Dau(x,y) are called
the density of the area integral and the maximal density. Formula (0.7)
immediately gives an inequality similar to (0.2) and, as in the martingale
case, it follows that ||A^(;r)||p < C p\\D au{x)\\p for all 0 < p < oo. In [14],
Gundy showed that if n = 1 then for 0 < p < oo we also have

(0.8) \\Dau(x)\\p < Cp\\A,u(x)\\p

which provides a harmonic function analogue of (0.3). In Gundy's proof
he shows that Dau(x) < C'aEX'(L*(u)), where Ex represents expectation
with respect to Brownian motion conditioned to exit the upper half-space
at x, Ca is a constant depending on a, and L*(u) is the maximal local time
of the martingale u(Bt), where Bf is Brownian motion in R7^1. Then for
1 <, p < oo the inequality (0.8) follows from this and the Lp equivalence of
the Brownian maximal function and the nontangential maximal function.
The case 0 < p < 1 is obtained from this and what Gundy calls a "good-
enough A" inequality. In [16], Gundy and Silverstein give a proof of (0.8)
for all dimensions using real variable techniques. They adopt the second
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proof of Barlow and Yor of (0.3) to the harmonic function setting and
obtain "good enough A" inequalities for D^u and Nc,u. These lead to L^
inequalities such as (0.8) but are weaker than the results we will obtain; for
example, they are not sufficient to obtain the local results of Brossard [7]
or Corollary 2 and certainly not sufficient to prove Corollary 1. Our first
result is :

THEOREM 1.— Let ^ : R71 —> R be a Lipschitz function with
Lipschitz constant M. Let D = {{x,y) : x € R71,!/ > ^{x)} be the
Lipschitz domain above the graph of$. Suppose u is harmonic in D and
0 < a < 13 < 1/M. There exist constants K\,K^, C\,C^,C^, and C\ all
depending only on a, 0, n, and M, such that if X > 0 and 0 < e < 1, then
(a)
\{x € R71 : N^u{x^(x)) > K^D0u(x^(x)) < e\}\

< Ciexp f-^) \{x € R" : Nau(x^(x)) >\}[

and

(b)
\{x € R71 : Aau(x^(x)) > K^\D^u{x^{x)) < e\}\

< C^exp (-^ \{x € R" : A^u(x^(x)) > \}\.

One reason for proving subgaussian inequalities on Lipschitz domains
such as-(b), is that they immediately imply (using the Lipschitz domains
as stopping times) laws of the iterated logarithm for harmonic functions in
R^1. The following corollary of Theorem l(b) gives two equivalent laws of
the interated logarithm; an analogue of the lower half ofKesten's [19] LIL
for local time and an analogue of the upper half of Kolmogorov's classical
LIL for independent random variables. Of course, for Brownian motion this
is the trivial part of Kesten's Theorem. However, for harmonic functions
even this part is nontrivial. To see how this LIL is related to other LI Us
for harmonic functions, see [1].

COROLLARY 1. — Let 0 < a < ft and suppose u is a harmonic
function in R^1 with the property that there exists a point {xo.yo) € R^1

andanal>asuchthatAQ'u(xo,yQ)<oo.Then ,

(a) liminff1^10^^^^^^ 2 D^u(x^) ^ C > 0 for almost every xy^o \ A^u(x,y) )
with Aau(x^O) =00. ' ;
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(b) lim sup AgU^^y) ___ < ^-i ^ ̂  ̂  ̂ ^ ̂ ^y ^
°̂ ^D^u(x,y)\og\ogD0u(x,y)

with Aau(x,0) = oo,

witA (7 depending only on a, /3, and n.

Our second theorem is similar to Theorem 1 (a) but with the roles
of Nu and Du reversed. However, we have not been able to obtain this
result for Lipschitz domains. For this theorem it will be necessary to work
with a slightly smoother version of Du. We fix a function ^ which has the
following properties : ̂  > 0 on R^supp^ C 2?(0,a) (here a > 0 is fixed),
Jp^ ^)dx = 1, and ^ is radial. We define ^i(x} = —^ip(x/t) and set

£

Dau(x;a) = 7 t^t(x - s)/^(u(s,t) - a)^dsdt,
(0.9) Jr^(x)

Dau(x) = S}ip{Dau(x'^a) : a € R}.
In practice, the versions (0.9) and (0.5) behave similarly, since given a > 0
and any 7 < a < 7' we can always find a C°° function -0 with ^ = 1 on
B(0,7), supp^ C B(O,Q;), so that Dau(x'^a) defined by (0.9) using this ^
is bounded below by D^u(x-,a) defined using (0.5) and dominated above
by Dyu(x; a) defined using (0.5).

THEOREM 2. — Let u be a harmonic function on R!̂ "1 and let
0 < a < f3 and define Dau(x) using (0.9). Then there exists constants
J<3,C'5,C6, depending only on a^^n and ^ and such that if \ > 0 and
0 < e < 1,
\{x € R71 : Dau(x) >K3\,N^u(x) < e\}\

<C,exp (zc6) \{x e R": Dau(x) > \}\ .

If we replace N^^u) by A^(u) we are able to prove this result in
Lipschitz domains. More precisely we have

THEOREM 3. — Let $ : R71 —> R be a Lipschitz function with
Lipschitz constant M. Let D = {(x,y) : x € R^y > ^(x)} be the
Lipschitz domain above the graph of$. Suppose u is harmonic in D and
0 < a < /? < 1/M. There are constants K^, €7 and Cg, depending only on
o;,/?,n, and M such that if\ > 0 and 0 < e < 1, then

\{x € R71 : Dau(x^(x)) > K^\ Aftu{x^{x)) < e\}\

< Crexp (zcs} \{x e R71 : Dau(x, W) > X}\ .
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The proof of this result is a combination of probabilistic and analytical
methods using the Barlow-Yor result together with estimates on Green
functions and harmonic measure in Lipschitz domains. If D = Wy'1 we
can give a purely analytical proof of this result but with e replaced by 62/3

which is not as sharp. Such a proof is presented in §5.

The following corollary answers a question of Gundy [15], p. 9; it
follows from Theorems 1, 2, and 3 by well known methods (see Burkholder
and Gundy [9]).

COROLLARY 2. — Let u be harmonic in R7^1. Let $ be a non-
decreasing function with ^(0) = 0 and such that for some constant
Go,^(2A) < (7o^(A) for all X > 0. Then

Ci ( ^(Dau(x))dx < ( ^{Aau(x))dx <C2 f <^(Dau(x))dx
JR" JR" Jn"

where C\ and C^ depend only on a,n, and Co-

A word about the proofs. In the case of the area function one has
a free local ^-estimate which comes essentially from Green's Theorem.
The global ^-estimate for the area integral also comes free from Green's
Theorem or the Fourier transform. In the case of the D-functional there are
no L^-estimates, local or global, which are as easy as in the area integral
case. This makes the proofs of the above results much more difficult in
comparison. To obtain a local ^-estimate needed for Theorem 2 we use
the theory of vector valued singular integrals together with the Garsia-
Rodemich-Rumsey lemma and for Theorem 3 we use the Barlow-Yor
result. It is interesting to note that in the martingale case, one does have a
free Z^-estimate which comes from the scaling properties of the local time.

The paper is organized as follows. In §1 we prove two lemmas which
are needed for the proof of Theorem 1 and Corollary 1 in §2. In §3, we prove
Theorem 2. In §4, we prove Theorem 3 and in §5 we present an alternative
analytic approach to Theorem 3 for the upper half space. In §6, we make
some comments as to the sharpness of our results.

Throughout the paper, the notation C, C\, Cs, Ca,(3^,n - • ' will be used
to denote constants depending only on Q;,/3,7 and n and whose value may
not be the same from line to line. For all our results below in Lipschitz
domains the apertures of the cones, a, /?,7, etc., are always assumed to be
smaller than the inverse of the Lipschitz constants of the domains even if
this is not mentioned.
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1. Two Lemmas.

Our first lemma is a P-functional analogue of an estimate for Au
and Nu found in [20], p. 207. Our second lemma is also a D-functional
analogue of a lemma for Au found in [2]. Unfortunately the proofs of these
lemmas are somewhat longer and more technical than their corresponding
results for Au.

LEMMA 1. — Suppose /3 > 7. There exists an absolute constant
C == G(/3,7,n) such that ifu is harmonic on H7^ and if (s,t) C I\(;r),
then t\\^u(s,t)\ < CD^u(x).

In the proof of Theorem 1 and its corollary we will need to compare
Df3u(x^yi} and D^u{x,y^) for ^2 > ^ / i . I f n = l i t i s clear that D^u(x,y^) >
D^u{x,y^}, but for n > 2 this is no longer clear. The next lemma allows
us to make the necessary comparisons.

LEMMA 2. — There exists a constant L depending only on f3 and n
such that if y\ < yo then D^u(x,yo) <^ LD^u(x^y\) for any x e IR".

Proof of Lemma 1. — Fix (s,t) = ZQ e F ^ ( x ) . We may assume that
u(zo) = 0, otherwise we consider the function u — u(zo). We first note that
there exists an 7-0 such that B(zo,4ro) C F ^ ( x ) with ro ~ Ct, where C
depends only on f3 and 7. For i = 1,2,3,4 w^e set Bz •==- B(zo,iro) and set
Mz = sup{|^(z,^/) | : ( z , y ) C Bi}. By the subharmonicity of |Vn| and the
change of variables formula (0.6) we have :

^|V^o)|2 < C f ^(z^y^y^dzdy
J B 2

=C f " / ^(u(z^}-a)+yl-^f " / ^{u{^,y)-a)J'yv~ndzdyda
J-M2 J B^

< CM^Dou(x).
J - M . J B

Thus we have :

(1.1) t\^7u(zo}\ <C^/M^

Using similar reasoning we can conclude that if { z , y ) C B^ then
y\Vu(z,y)\ < C^/M3 ^D^u(x). Since u(zo) = 0, and for ( z , y ) C B^
we have y ~ C ' 2ro, we then have the estimate

(1.2) M-2 < C^
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Now consider B^ and apply Green's theorem to \u(w) — a|, a e IR and
G(W,ZQ) = .—————^j- — ——x^f. (Technically, we must approximate

\u(w) — a\ by smooth functions of u(w) — a, and then take limits. See [15]
for such applications of Green's theorem.) We then obtain :

{ ^\u(w)-a\G(w,zo)dw=c^ { \u - a\da - C\a\.
JB^ ^ JQB^

Therefore, since A|iA(w) — a| = 2A(-u(w) — a)"1", we have :

(1.3) 1 - [ \u\da < C\a\ +C f ^(u(w) - a)~^G(w,zo)dw.
fo JQB^ JB^

We need to analyze the integral on the right hand side of (1.3). For
w e R^1, write w = (w.w7), w C R71, w1 > 0. Then,

/ A('u(w) - a^G^w, ZQ)(IW
J B 4

f C C
< \ A(n(w) -a)+G{w,zo)dw + / ^(u(w) - a)^-^dw

JBi JB^\BI TQ

< f ^(u(w)-a)^G(w,zo)dw+C [ A(^(w) - a)4-^')1-71^
JBI JB4\Bi

<, I A(-a(w) -a)^G(w,zo)dw+CDou(x).
JBi

Combine (1.3) with this last inequality to obtain

(1.4) — / \u\da < C\a\ + / A(^(w) - a)^~G(w,zo)dw + CD^u(x)\U _
r'Q JOB4 ' ' ' JB

Choosing a == M^ yields :

^ JQB^ J B i

(1.5) -^ f \u\da < C(M2 + D0u{x)).
^ J B ^

However, elementary estimates on the Poisson kernel for B^ show that for
z € -BS, \u{z)\ < Ur Jao MAT. Therefore, using this and (1.5) we conclude

(1.6) Ms <C(M2+D0u(x)).

If we substitute (1.6) into (1.2) we obtain

M2 ^ C^M^ + D^x) ^Dou(x)

so that M2 < CD^x). Then by (1.1), t\\/u(zo)\ < CD^u{x), which
completes the proof of Lemma 1.
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Proof of Lemma 2. — Without loss of generality, we may assume
that z/i = 0 and x = 0. For convenience we write r^(0,^/o) = r(yo). We
note that there exists a constant C^ depending only on f3 such that the
ball B((0,2/o),2C^/o) C F^(0,0). Set 5, = B((0,i/o),zC^/o) for z = 1,2. If
(x, t) C r(z/o)Bi, then t - yo w t and thus, if a € R,

/ A (^(5, <) - a)^ (t - yo^ds dt
... ^ •^(yoABi

< C / A (2A(5, ^) - a)4" t^ds dt < CDffu(0).
• /^(^)\Bl -

Let G(w,z) be the Green's function for B^. Let w = (s,t) € F^/o) n Bi.
Then we have the estimates :

(t - z/o)1-71 ̂  |w- (O.^/o)!1-71 ̂  G(w, (0,2/o)).

Therefore, using this and Green's theorem, we have :

/ A {u(s, t)- a)4- (t - yo^ds dt
Jr(yo)DBi

(L8) < C ( A (ZA(W) - ̂ + G (w, (0, yo)) ^w
JB-2

= -n I ((^W - ̂  - (^(0, yo) - a)^ da(w).
1/0 JQB-i v /

However, B^ C 1^(0,0) and so by Lemma 1, t\Vu(s,t)\ < CD^O) for all
(5, t) e ^2. Then '(l.S) implies : -

(L9) / ^(u(s,t)-a)+(t-yQ)l-ndsdt<CDgu(0).
Jr(y^nBi ~ p' /

The lemma follows from (1.7) and (1.9).

2. The proof of Theorem 1 and Corollary 1.

With lemmas 1 and 2 proved, the proof of Theorem 1 follows the same
strategy used in [2} for the corresponding result for N^u and A^u. We first
construct a "sawtooth" region over {D^x, f>(x)) < e\} and then estimate
the nontangential maximal function or the area function on the boundary
of this region. Since the proofs of part (a) and part (b) are essentially the
same, we will only do part (b). The following proposition will allow us to
make the necessary estimates on the boundary of this sawtooth region.
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PROPOSITION 1. Suppose 0 : R" —> H is a Lipschitz function
and set W = { (x , t ) : x C H " ; t > ^(x)}. Suppose that p > a >
{},Dpu{x^)(x)) <, 1 for every x € IR", and that there exists a z^ C R"
for which A^u(zo,^(z^) < oo. Then ||A2^l(.^•,V;(.T))||^A/o < C where C is
a constant which depends on p.a^n and the Lipschitz constant of^.

Proof. Fix a cube Q C R", let Q' = {(x,^(x)) : x C Q} denote
the graph of Q^ and let .TO denote the center of Q. We now borrow a
construction from [2] page 646. Pick 7' and 7 so that p > 7' > 7 > a and
set W = (J F p ( x ^ ( x ) ) . Then trivially If C W. There exists an R > 0

.r€Q
with the following properties :

(i) Set P* = (.To,'0(:To) + W(Q)), where ^(^) denotes the^side length
of Q. Then for every P C (7, {^P + (1 - t ) P ' : { ) < t < l } CW.

(ii) For every P E Q' the cone r^(P) with aperture 7, vertical axis PP*,
vertex at P, and height /// = |P — P*| is completely contained in W.

(iii) For every P = (^(.T)) 6 Q', the cone I^(P) with vertex at P,
vertical axis {(x, ̂ (x) -h .s) : s > 0}, and height /// == ^(^o) + RC(Q) - ̂ (x)
is completely contained in the cone T^(P) given by ii).

We assume that R is the smallest such constant for which i), ii) and
iii) holds for all cubes Q C R^. Then the constant R depends only on p
and a and the Lipschitz constant of </;.

We now set Q = |j r^/(P) H { ( x , y ) : y < ^(xo) + 2R£{Q)}.
reQ'

The domain fl is Lipschitz and starlike with respect to the point P*.
Furthermore, Q has the property that there exists an 60 > 0 (eo depends
only on p and the Lipschitz constant of ^) such that for every point P € 9fl
there exists an e with 7 > e > Co so that the cone F^(P) with vertex at P,
height |P — P*|, aperture e and vertical axis PP* is completely contained
in n. In fact, for P € Q' C <9n, we may take F^(P) to be the cone given
by ii) above.

For P C Q' set Fi(P) = I^(P) where the latter is the cone given by
iii) above and set r2(P) = r,,(P)\ri(P). For j = 1,2, and x C Q, we set

i f YA^(rc,^(.r))= / \\7u{s,t)\2(t-^(x))}~ndsdt}
\ J r , { j : ^ { . r } ) j

so that A^u(x,^(x)) == A'fn(j;,^(.r)) + AJiA(j;,^(.r)). We need estimates
for A\u and A^u. We first estimate A^u.
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LEMMA . — Under the hypothesis of the proposition we have

\A^x^(x))-Ai(xo^(xo)\<C

for every x e Q. Here C is a constant which depends only on a, p , and the
Lipschitz constant of^.

The proof of this lemma is essentially the same as Lemma 6 of [2]. All
that is necessary is an estimate on (t-^-^(s))\^u(s^t-^^(s))\^s G R" , ^ > 0
and this is provided by Lemma 1. Note that this estimate and the fact
that A^u(zo^(zo)) < oo for some ZQ implies that A^u{x^(x)) < oo for
all x € Q. We now estimate A\u.

LEMMA 4. — Under the hypothesis of the theorem,

— ( Aiu(x^(x))dx<C
\V\ JQ

where C is a constant which depends only on p and the Lipschitz constant
of^.

Proof. — We may assume that u{P*) = 0 since both Du and
An remain unchanged if we add a constant to u. Recall that for every
P € ofl we have a cone r^(P) with vertical axis PP* and such that for
P e Q',ri(P) C ̂ (P) = r?(P). For P € <9n we set

Du{P'^a)= { .\(u(z,y)-a)+d((z,y),P)l-ndzdy^
J V ^ P }

Du(P) = sup{Du(P, a) : a (E R},

( ( YAu(P)= / \^u(z^)\2d((z^)^P)l-ndzdy,
\ J r " ( P ) )

and
Nu(P) = sup{[u(z^y)\: ( z ^ y ) e F^P)}.

Since Dpu(x,^(x)) < 1 for all x € R" then a slight variation of the proof
of Lemma 2 shows that Du(P) < C for all P C <9Q. Then by (0.7),
A^(P) < CNu(P) for all P e <9^. Therefore,

-7—— / A2u(P)da(P) < C——— ( Nu(P)da(P)
^{Q^) h^i ^(9^) Jm

^( 1<c(~(^ I Nu^d^P)}2
\a(9fl) J^ )

^(-T^/ Au{P)2da{P}V
\(T{d\l) Jofl )



148 R. BANUELOS & Ch.N. MOORE

where the last inequality follows from Dahlberg [11]. The above inequality,
combined with the fact that ri(P) C r^(P) for P C Q' and the fact that
^ is Lipschitz allow us to conclude the Lemma.

We can now complete the proof of the proposition; Set CLQ =
Aj(.ro,^o)). Then

^ j \A^u(x^(x)) - aQ\dx

< ml / ^u(x^(x))dx+-.- / \A^u(x^{x))-aQ\dxw\ JQ iyi JQ
<c

by Lemmas 3 and 4. The proposition follows from this.

We are now ready to complete the proof of theorem Ib). Let E = {x :
Df3u{x,^(x)) < e\} and set T] = °—— and W = I ) r^x^(x)). Then

x^E
TV is a subdomain of D and 9W is the graph of a Lipschitz function, call
it ^(x). Thus, for x € E^(x) = ^(x). Now set p = —^—. By a slight

o
variation of the proof of Lemma 2 it follows that Dpu(x^(x)) < Le\ for
every x (E R71. Then by the proposition, ||A^iA(:r,^(:z'))|[5MO <: C(Le\)2.
(Note we may assume Aau(zo,^(zo)) < oo for some ZQ, for if not, then
the result is trivial). By Lemma 4 of [2], we then have the distributional
inequality,

{{x^R"'.A2,u(x^(x))>2X}\

< Cexp (-^(LeX)2} \{z € R71 : A^u{x^(x)) > A}|
\-cA /

for every A > 0. Here (7,c are constants which depend only on a,/3,n.
Substitute A = A2 into this inequality to obtain :

\{x € R71 : Aau(x^(x)) > V2\}\

< Cexp (^\ \{x e R71 : Aau(x^(x)) > A}|

for all A > 0. It is shown in [2], Lemma 11 that Aau(x,^(x)) <
L\Aau(x^(x)) where L\ is a constant depending only on a and n. Now
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set K = \/2Li. Then for every A > 0,

|{a; 6 R" :A^u(x, $(a-)) > K\, Dffu(x, $(a;)) < e\}
=\{x € E : Aau(a-, $(a;)) > jQ}|
=|{a; € £ : A<,u(a;,^(a;)) > KX}\

^ Cexp (—} \{x € R" : A^u(x^(x)) > -^-A}]

< Cexp (^ \{x € R" : A^u(x^(x)) > ———>}\

= Cexp (^\ \{x € R" : Aau(x,^(x)) > A}|

which completes the proof of Theorem Ib).

We now prove Corollary 1. The proof of a) is similar to the proof
of Theorem 2 in [3], however, there are some added complications in this
setting. Part b) follows from a) by noting that if a) holds at a point x, then

limsup Aau{x^ < 1.
v^° ^D^u(x,y)log\ogAaU(x,y} c

But if also Ac,u(x,y) —> oo as y —> 0, then this implies that

limsupf10^^^^!
y-^o \\ogDou(x,y)J

and thus, that

limsup (loglogA^^/i)<l
y-^o \\og\ogD(3u(x,y)) -

and b) follows.

Proof of Corollary la,).— Fix M; it suffices to consider those x
with \x\ < M. We first note that the hypothesis of the corollary imply
that Aau(x,y) < oo for all a- C R71 and y > 0. Then we may assume
that Df3u{x^,y^) < oo for some (.1*1,2/1) with |:ri| < M, otherwise the
result is trivial. Then for k = 1,2,... and |.r| < M, we may define

/ ^k \ ^
pk(x) = m{{y : D^u(x,y) < ——- }, where Co is a constant to beVologfc /

chosen later. Let 7 = 0—' and set Wk = |j r^(x,pk(x)). Then
{x:\x\<M}}

Wk is a Lipschitz domain, say QWk is the graph of rjk(x). Note that for
every x with \x\ < M we have rfk(x) < pk(x). Then we have :
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a) Set 7' = —^— so that a < 7' < 7 < /?. Then D^u(x,rjk(x)) <
/ 2^ \ ?

^ —i—. for all x e R71.\ Co log A; /

Proof : Let e > 0. Then (x,rfk(x) + e) e Wk so there exists ^ with
\x\ < M such that (x^k(x) +e) e r^^^(^)) C W,pfc(£)). Then
by a slight variation of Lemma 2, we conclude that Dyu(x,rjk(x)

( 2^ V
+ ^) < ̂  —,—, j . Fatou's lemma then implies a).

b) IfxE R71, then rf^x) < rfk(x).

Proof : Let (x,t) € W^ Then (5,^) e r^p^)) for some £ with
1^1 < M. But since pk+i(x) < pk(x) then (5,^) e I\(^+i(£)),
hence (5,^) e WA;+I. Thus, ̂  C TV^i and b) follows.

c) If \x\ < M and y < r)k(x) then Dffu(x,y) > (-2——} ?

VcologA;/

Proof : This follows from the fact that rfk(x) < pk(x) and the
definition of pk(x).

_S'mce Wk was defined using cones of aperture 7 < /?, then there exists
an M independent of k such that if \x\ > M then (x,r}k(x)) e I\// (3:1,2/1)

where 7" = and (a;i,?/i) is the point at which we have assumed

^(•^i^i) < co. Consider an x with \x\ > M. Then since (x,rik(x)) e
^'(^i^i) c r^i.^/i), Lemma 1 implies that (t - yi)\\7u{s,t - y^)\ <
CDftu(x^y^) for all (s,t) C r^((x,rfk(x)). Also, the hypothesis of the

corollary implies that if we take a" = a—a-^ then A^.u(x^y^ < oo.
We may assume a ' 1 < 7. Then we can conclude that

Aau(x,rjk(x)) <CA^u(x^y^+CD0u(x^y^)=C^

by splitting the integral defining Aa-u(x,rfk(x)) into an integral over a top
part of ra(x,rjk(x)) and estimating this by A^u(x^y^) and an integral
over the remainder of Ta(x,r]k(x)) and estimating this by the gradient
estimate above. (The proof is similar to that of Lemma 2 and so we omit it).
Hence, if we take A;o large enough, \{x € R71 : Aau(x,r]k(x)) > v^}] < C
for every k > ko, where C is a finite constant. Let k > fco, and apply
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Theorem Ib) to D^iu and A^u to obtain:

\x e ffT : A^(^(rr)) > ̂ i^^^^(rr)) < L ( - 2 k } ? }I \ co log A; y j
/- ^^ ^ ^ Co log ̂ \ (7< CCsexp -C4——— = -77

/ co log k\
\-C4-^-)=L2 7 A;2

if we take Co = ^. Since for all x C R71, we have Dyu(x,rjk(x)) <
r>fc \ 52- \ 2

L I —.——- ) by a), then it follows thatYcologA;/
00

^ \{x C R71 : |a;| < M and A^^(a-,^(.z-)) > K^V2k}\< oo.
fc==fco

The Borel-Cantelli lemma implies that for almost all x with \x\ < M
we have Aau(x,r]k(x)) < K^V¥ eventually. Pick such an a; for which
Aau(x,0) = oo, say Aau(x,rik(x)) < K^ V^ for all k > N.Thenrfk(x) > 0
for every k and since rfk(x) decreases by b) then either rjk (x) \ to > 0 or
T1k(x) \ 0. In the first case, D^u(x,y) = oo for all y < to by c) and the
result holds trivially for this x. In the second case, let y < rf^^x), say
^+i(^) < V < rfk(x) for some k > N. Then by c), Lemma 11 of [2] and the

/ y. \ ^
fact that the function f(r) = { —-—-—— ] is increasing we obtain :

Vcologlogr/

/ 9^ \ ^ / 9^+1 \ ^
Df3u(x,y)> ———) >C[——————}

\co\ogkJ \co\og(k+l)j

^ ^ / A^x^k+ijx)) y
\\og\ogAau(x,rfk+i(x))}

^ ^ / A^y) V
\\og\ogAau(x,y)j

which gives the result.

In the case when the Lipschitz function <!> of Theorem 1 is identically
zero, that is, when D = R^, it is possible to give a quick proof based on
the inequality A^u(x) < 2Nau(x)Dau(x) and a result from [3]. We will do
this since this is very short. Let us recall the following Theorem from [3].

THEOREM A . — Let f3 > 7. There exists constants K,C^,C^
depending only on f3, 7, and n such that ifu is harmonic on R^'1 and
0 < e < 1, then
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\{x € R» : N^u(x) > K\,Aftu(x) < e\\\

^ ̂ l̂ P (^22) 1^ e Rn : N^U(X) > \}\ .

a
Now set 7 = ^ where a is as in the statement of Theorem 1. By

Lemma 1, N^u(x) > N^u(x) - CD^x) where C is a constant depending
only on Q, (3, and n. We then set K = 2^ + C so that for j = 1,2,... and
0 < e < 1 we have 2•>-1K -Co VK. Then we have
\{NaU>K\,Df)u^£\}\

00

= ̂  |{2^A > N^u > V^K^D^u < e\}\
j=i
00

= ̂  |{2^A > N^u > V-^K\D^u < e^A^u < V2^Ke \}\
j=l J I

00

^ E [{^t( > (y-l^ - ̂ )^ A<,u < V2^K£\}\
1=1 •/ IJ=l

00

^==1
<^N7V^>^(2^A),A^<

<^f;exp(^F)|{^>2.A}|
j=i \ CZY /

<^ff;exp(^^))l{^>A}|v=i v E ) )
< Cexp (z(^-} \{N^u > \}\

and this gives Theorem l(a) when D == R^^

The reason why this proof does not work in Lipschitz domains is that
we do not know Theorem A in a Lipschitz domain other than when the
Lipschitz domain is in R2.

3. The proof of Theorem 2.

The proof of Theorem 2 involves using roughly the same strategy as
was used in the proof of Theorem 1. We will consider a sawtooth region
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W on which u is bounded and will define a version D*u(x) of Dau(x) by
using the definition (0.9) but restricting the integration to Ta(x) D W. We
then show that D*u € BMO. To do this, we will consider a typical cube
Q and break the integral defining D*u into a "top" part and a "bottom"
part.

The difficult part to control will be the "bottom" part; in the course
of the proof we shall apply Green's theorem several times. The following
lemma allows us to control the boundary terms which arise from these and
it is more convenient to state and prove it first.

LEMMA 5. — Suppose a < 7,E C R71 and W = (J T^(x).
x€E

Suppose also that p is a function supported on B(0,a). Let h > 0 and
set F(x) = {(s,t) : \x — s\ < at^t < h} H W. Then there exists a constant
C depending on a, 7 and n such that for every XQ e R71

/ r^f^—'Vd^^) <qh||oo.
J9Y{xo} \ L /

Here a denotes surface measure on 9r(xo).

Proof. — Clearly, QT^Xo) C {(s,h) : \XQ - s\ < ah} U (Ta(xo) 0
9W) U {(5, t) : \XQ - s\ = at}. Since p is supported on B(0, a), the integral
of pt(xQ — s) vanishes on the third set. The first set has measure C'A71 and
so the integral of pt(xo — s) over this set is then bounded by <7||p||oo. To
control the integral over the second set we first claim :
(3.1) (r(ra(xo) n 9W) < C(mf{t: (5, t) c Ta{xo) n 9W})71.
To see this, we note that 9W is the graph of a Lipschitz function with
Lipschitz constant at most -. Set to = mt{t: (s,t) € ra(xo)n9W}. Then

there exists an SQ € R71 such that (^o, to) e 9W and (^o, to) C Fa(xo). Then,
in particular, |^o-5o| < Otto. Let (s,t) € Fa(xo)^9W, then |5-a;o| < at <
a(t—to)-^-ato < —\s—so\+ato < —\s—xo\-^-—\so—xo\+ato < —\s—xo\-^

7 7 7 7

f a— + a} to. Since — < 1, we conclude that \s - XQ\ < Ca ' y to . Therefore,
\ 7 / 7
we have shown that if (s,t) € 9W H Fa(xo), then s € B(xo,Ca^to). Since
9W is Lipschitz this gives a{9W 0 Faixo)) < C\B(xo,Ca^to)\ < Cfo,
which is (3.1). Then we have :

t-np(xo^}da^t)
/r^xo)n9W \ </ / |

< ||/?||oo(7(r,(.co) n W) (mf{t: (5, t) e r^(rco) n w})-71 < C||p||oo
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which completes the proof of Lemma 5.

We now begin the proof of Theorem 2. We consider e > 0, A > 0 fixed
for the rest of this section. We set 7 = ——— and let E = {x : N^u(x) <

e\} and define W = M I\(;r). Then we have :
x€E

\u\ < e\ on W
(3.2) ' 1 - _

t\Vu{s, t)\ < Ce\ for (5, t) € W.

The first of these statements is obvious, and the second follows from
the Lemma on page 207 of [20].

For x C R71 and a € R we now set

D*u(x',a)= \ t^t(x - s)^(u(s,t) - a)^dsdt
Jr^(x)nw

and
D*u(x) = sup{D*H(:r;a);a € R}.

Before proceeding further, it will be convenient to state and prove a
lemma which will allow us to estimate the contribution to D*u(x) from a
"top" part of the region of integration Ta(x)C\W. This lemma is analogous
to Lemma 3 in which a similar result held for Au(x).

LEMMA 6. — Let k > 0 and suppose Ct C W is a subdomain
of W. Define D^u(x-,a) = S^n\t>k} ̂ t(x — s)^{u(s,t) — a)^~dsdt and
D^u(x) == sup{D^u(x', a) : a C R}. There exists a constant C = (7(a,/?,n)
such that if x, y € R71 then

i) \D^u^o) - Dj,u(y;a)\ < Ce^-3^-

ii) \D^u{x)-D^u(y)\<Ce\^^

Proof. — Fix x,y C R71 and set U = (Ta(x) U Ta(y)) H 0 H {t > k}.
Then

\D^u(x',a)-D^u(y',a)\=\ f t^x - s) - ̂ (y - s))Ws,t) - a)^dsdt\
Jn

<C\x-y\ { t^^u^s^-a^dsdt.
Jn

Now set 7' = '-^7 and form W == ^zEE^^(z)' Then W D W D ^ and^
again by the Lemma on page 207 of [20], t\Vu(s,t)\ < Ce\ for (s,t) e W.
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We note that there exists a C = G(a,/?,n) such that if (v,w) e R^1 and
disi((v,w),W) < Cw then (-y,w) € W.

We may assume C < 1/2. Therefore, we can find a C°° function
(t>(s,t) such that 0 < ^(s,^) < 1 for all (s,t) e R^1,^,^) = 1 on
n,supp(f>(s,t) = {(v,w) : dist((v,w),7Z) < Cw} C W and \^7(/>(s,t)\ < c.
Note that for t < (1 - C)k, t

\{s\ (s,t) esupp<^}| =0

and for t > (1 - C)k,

\{s : (s,t) € supp^)}| < \{s : dist((5,^),r^(rc)) < GQ|
+ \{s : dist((s,t)^(y)) < Ct}\ < C^.

Therefore,

f ^AQ^, t) - a)^ds dt< [ t^^s, t)^(u(s, t) - a)^ds dt
" ^ Jsuppcf)

^ C f r"|V^(s, *)| + t-^^s, Wu(s, t)\ds dt
«^SUpp0

^ CeX f t-^ds dt
«^SUpp0

= Ce\ r f t-^ds dt<Ce\ F dt = c£x .
J(l-C)k Jsuppcf) J{l-C}k t ^

This combined with the previous computation gives i); ii) follows by taking
supremums.

We now state a proposition, and show how to deduce Theorem 2 from
it.

PROPOSITION 2. — With D^u as above we have

\\D"U\\BMO < Ce\ where C = C(a, /?, n).

To see how Theorem 2 follows from Proposition 2 we first note that
by Lemma 4 of [2], \\D"U\\BMO < CeX implies that for every rj > 0,

\{x C R71 : D"u(x) > 2rf}\ < C.exp f^^) \{x € R" : D"u(x) > r}}\\ ex )

where C^,C^ depend only on a,n and the constant C of Proposition 2.
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Then,

\{X C R71 : DaU(x) > 2X,NftU(x) < €\}\

=\{x € E : Dau(x) > 2\}\ = \{x € E : D'u{x) > 2A}|
<\{x € R71 : D"u(x) > 2\}\

<Ciexp t1-02} \{x € R71 : D^(o;) > \}\

<dexp (::c2) |{^ € R71 : Do^) > A}|.

Thus, it remains to prove the proposition; the remainder of this section is
devoted to this.

Fix a cube Q C R71; we will show that there exists a constant CLQ such
that

— f \D-u(x)^aQ\dx<Ce\

with C independent of Q. Set h = £(Q) and F^(x) = {{s,t) : \x - s\ <
at,t < h], and put Fi{x) =r^(x)r[W, F^x) = (Ta(x) - F^x)) r\W. For
j = 1,2 we set

Dju(x; a) = t^t(x — s)^(u(s, t) — d)^ds dt
Jr,(x)

and
Dju(x) = sup{Dju{x;a) : a e R}.

Thus, we have :

(i) Dj(x\d) =0 i f | a | > e\
(3.3) (ii) D*u(x; a) = D^u(x\ a) + D^u(x\ a)

(iii) D"u{x) < D^u{x) + D^u(x).

We now need a local estimate for D\u(x\a)\ this is provided by
Lemma 7.

LEMMA 7. — Let 1 < p < oo. Let 0 = 1 ) ri(.r). Then if\a\ < e\,
x^Q

U \ p

I t^t(so'-s)xfl(s,t)^(u(s,t}-a)+dsdt} dso < C{e\Y\Q\.
JR- ^+1 /

HereC = G(j),a,^,n).
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Proof. — Let Q be the cube in R71 which is concentric with Q and
with side length (1 4- 4a)<(Q). Then |Q| < C\Q\ and if (s,t) € Q,SO i Q
then ^(SQ - s) = 0. Let J be any subcube of Q and form

v = fij r^)) n"n{(^) :^ < ̂ J)}.
V^eJ /

Then by Green's theorem,

/ / tipt(so - s)xn(s, ()A(u(s, () - a)^ds dt dso
J j ^Rn+ln{(5,t):t«(J)}

(3.4) [ .
< \ t^u^-a^dsdKC I t —(u-a)+\+(u-a)+\—\da

Jv JQV an I }orf}

<C(e\)\J\
where we have used (3.2) and the fact that a(9V) < C\J\. (Technically,
to apply Green's theorem we first need to smooth 9V and the function
(u - a)^ and then pass to the limit. The details of this are as in [14] or
[15]). Also, if we let s\ denote the center of J, and set

D^u(so',a) = / t^t(so - s)^(s,t)^(u(s,t) - a^dsdt
./R^n-tt^./)}

for «o € «/, then Lemma 6 i) implies that
(3.5) \D^u(so',a) - D^u(s^a)\ < CeX for every SQ e J.
Combining (3.4) and (3.5) with the triangle inequality yields :

T- / / t^t{so - 5)xo(5, ̂ )A(u(5, t) - a^ds dt - D^u(si; a) dso
\J\ J j JR^1

<Ce\.
Therefore, JRU+I t^t(sQ - s)^(s,t)^(u(s,t) - a)~^dsdt is in BMO

on Q with BMO norm less than CeX. Since (3.4) holds for J = Q, and
101 < C\Q\, the conclusion of the Lemma follows.

We now need to turn this local estimate into an estimate for D^u(x).
We first need to create a slightly different version of D^u{x) which approx-
imates Diu(x) but is easier to estimate. Let x e R71 and |a| < e\ be fixed.
Then,

Diu(x',a)= / t^t(x - s)^(u(s,t) -a^dsdt
J r i ( x )

=- I V(^(a: - s)) ' V(iA(s, () - a^ds dt
J r i { x )

r f^
+ \ t^t(x - s)—(u(s, t) - a)+d<r

J9ri(x) o"J9ri(x)
= 1 + 1 1 .
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However, by (3.2) and Lemma 5, |JJ| < Ce\. Also,

1 = - I Vst^t(x - s) • Vs(u(s,t) - a^dsdt
J r i { x )

-/^,(.)^(a;-s)^(u(5'()-a)+dsdt

/* /^

- / ^t(x-s)-^(u(s,t)-a)+dsdt=Ia+If,+Ic.
«/ri(;r) ul/

Now set ki(s) = s^(s) for i = l,...,n. Then elementary computations
show that

^t(x-s)=J^^[(k,Ux-s)].

Then by the divergence theorem we have :
/* r\

J < • = - / 1pt(x-s)-.(u(s,t)-a)+dsdt
•Ti{x) Ot

t n f)
=- Y,(WX - s)—(u(s,t) - a)+dsdt

•'ri(x) ,̂  OSi

+ j g [(u^t)-a)+]((kl)t(x-s),...,(kn)t(x-s),-^(x-s))-nda(s,t)

=Ic,+I^.

By (3.2), the fact that |a| < eA, and Lemma 5, we conclude that |JcJ <:
Ce\. Now we set

Diu(x;a)=Ia+Ib+Ic,

= -V^((a;-s)•V,(u(s,()-a)+-(^^(a;-s)^(u(s,f)-a)+
^ r i { x ) ot dt

n ^

-^(ki)t(x-s)—(u(s,t)-a)+dsdt.
i=i 08i

The above computations show that for |a| < e\,

(3-6) \Diu(x', a) - D^u(x', a)| < Ce\.

For z = 1,... ,n, let -0, denote the partial derivative of ^ with respect to
the Ith coordinate. Then elementary computations with the chain rule show
that if we set

n
<Sf(x) = (Vi(a0 - ki(x),.. .,ipn(x) - kn(x),n^(x) +^^(x)x,)

i=l
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then we may write D^u(x^a) more succinctly as :

D\u(x\ a) == I ^t(x — s) ' V(n(5, t) — a)^ds dt.
Jr^x)

Also, we note that since '0 is radially symmetric, then each of the coordinate
functions of $(rc) has mean value 0 on R71.

We now prove a smoothness lemma for D^u(x'^a) which is similar to
Lemma 2 in [15] or Lemma 3 in [16].

LEMMA 8. — For 2 < p < oo, |a| < e\, \b\ < e\,

( \D^u{x', a) - D^u(x', b^dx < C\Q\ \a - b\ ̂  (e\)^.
JQ

Proof. — Let (p be a function supported on Q with \\^p\\q = 1 where
- + - = 1. Then, setting Q = [ j ri(.r), we have
V Q ^^^F ' x€Q

L(Diu(x; a) - D^u(x; b))(p(x)dx
Q

= 1 1 ^(a;-s)•V((n(s,t)-a)+-(u(s,t)-6)+)d5d^(a;)da;
JQ Jri(x)

= [ I xn(s,t)[^t(x-s)^((u(s,t)-a)+-(u(s,t)-b)+)]dsdty(x)dx
JQJRy1

= f [^t^^sYV^s^-a^-^tyh^x^s^dsdtJny-1

= [ [ ^(so-s^t^^-^Ws^^-a^-i^s.^-b^^s.^dsdtdso
Jpr.J^+1

\ 5

^(^0-5)|^*^)|2^

v
t^t(so-s)x^t)\^((u(s,t)-a)+-(u(s,t)-b)+)\<2dsdt^ dso

V v
ipt(so - s)\<^t * ̂ (s)|2 -s— 1 dso \

' ) )
\ S \ i

^(so - s)xo(s,t)\V((u(s,t) - a)4-- (u(s,t) - b^^dsdt} dso }

=J • I I .
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1^1 < CglMlg <. Cq by well-known results in Littlewood-Paley theory
Also, by (0.6),

^n+i ̂ Mso ~ ̂ W^IVa^) - a)+ - (u(s,t) - b)+)\2dsdt

= / , t^t(sQ - s)xa(s,t)A(u(s,t) - c)+dsdtdc.
Jo, t/R"'"/a JRy-1

Then by Jensen's inequality and Lemma 7,

(/ ^ - ' r ( [
\JR- Ja \JR^

I I < \ 1 \^-^ 1 / ( / ^(5o-s)^(5,()A(n(5,()-c)+d5d() dcdso1

/R» Ja \JRr^l

=\a-b^~^\ I I { I ^(so-s^s^t^^^-c^dsdt} dso dc \
\ J a JR" \./R^+1

< |a - 6|?~?|a - b\^C(e\)^\Q\^

=C\a-b\^(e\)^Q^

and this gives Lemma 8.

For x € Q, we now set

/ yeA r£> I rS ../^.. ^\ 7^ - / , i\ 1^
Bfrr)- f / / W^-W^b) ,, ..V ^ ,v 7 - I / / ———————Z7^———— darfft for 2 < p < oo.\J-e\J-e\ \a-b\^ j '

Then Lemma 8 and Fubini's theorem imply that

(3-7) — / B^^dx < C(e\)^.
1 ^ 1 JQ

Lemma 8 and Kolmogorov's continuity theorem imply that for almost
every x e Q,D^u(x\a) is a continuous function of a on the interval
[~e\,£\]. Therefore, for such an x, we can apply a lemma of Garsia,
Rodemich andjiumsey exactly as in [15] or [16] and combine this with
the fact that D^u{x\a) = 0 for a > e\ to conclude that \D^u(x\a]\ <
CpB^eX)2'^ whenever |a| < e\ and p > 4. But then by (3.6),
\D^u(x)\ < CpB(x)(e\)^~^ + Ce\. Integrating this last inequality and

using (3.7) gives -. f {D^x^dx < CpW for p > 4. Fix p = 5, say,
then by Jensen's inequality

(3-8) — / D^u(x)dx<Ce\.
IVI JQ
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where C = C'(a,/?,n).

Finally, we can now finish the proof of Proposition 2. Let XQ be the
center of Q. Then

^ I \D^u(x) - D^u(xo)\dx <— t \D^u(x) - D^u(x)\dx
M JQ IVI JQ

^T^l / ̂ (x) - D^u(xo)\dxivi ./o
< T7.T / .DinOr)Ar + GeA

IVI ./Q
< Ce\

where we have obtained the second to the last inequality by using (3.3) hi)
and Lemma 6 ii) and the last inequality by using (3.8).

4. The proof of Theorem 3.

We start with a proposition which is similar to Proposition 1.

PROPOSITION 3. — Suppose ̂  : R71 -^ R is a Lipschitz function and
set W = {(x,t) :xeRn,t> ^(x)}. Suppose p > a > 0,A^u(x^(x)) < 1
for every x € R71, and that there exists a point ZQ € R71 such that
Dau(zQ,^(zo)) < oo. Then \\Dau(x^(x))\\BMO < C where C is a constant
depending only on a,p,n and the Lipschitz constant of^.

Assume the Proposition.-Let E = {x : Af3u(x,^(x)) < e\} and
let p,W and ^ be as in the proof of Theorem Ib. Then by Lemma 11
in [2], Apu(x,^(x)) < L^e\ for every x C R71. Thus, by Proposition 3,
\\Dau(x,^(x))\\BMO < C(Li£\). Therefore by Lemma 4 in [2],

\{xeRn:Dau{x^(x))>2\}\

f-C\\
< Cicxp [^j \{x C R71 : D^u(x^(x)) > A}|,

for all A > 0. By Lemma 2, Dau(x^{x)) < LDau(x,^{x)). Now take
K^ = 2L and proceed as in the proof of Theorem Ib to obtain the conclusion
of Theorem 3.

For the proof of the proposition, fix a cube Q C R71 with center at
XQ. Construct Q ' , 0, Fi and T^ exactly as in the proof of Proposition 1 and
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define for j =1,2,

Dju((x, ̂ (.r)); a) = /' (^ - ̂ Cr))1-7^^, t) - a)^{ds dt)
JTj{x^{x)}

and
Dju(x, ̂ (x)) = sup Dju((x, ̂ (rr)); a).

aeR
We have

LEMMA 9. — Under the hypothesis of Proposition 2,
\D^u(x, ̂ (x)) - D^u(xo^(xo))\ <C

for every x C Q. The constant C depends only on p and the Lipschitz
constant of^.

The proof of this lemma is essentially the same as the proof of Lemma
6 and we leave it to the reader. (All that is really needed in the proof of
Lemma 6 is the estimate on t\^7u\ and in the case of Lemma 9 we also have
this by the lemma on page 207 of [20]).

Now let ijp^ be the harmonic measure of Q at the point P*, (recall
that n is starlike with respect to P*).

LEMMA 10. — There exist a constant C depending on n and the
Lipschitz constant for fl, (hence only on n, a, and p ) , such that

{ (D^u(P))2clwp.(P)<C.
J Q '

Letting ?o = (xo^(xo)) and P = (x,^(x)), Lemmas 9 and 10 give
that

/ \D^u(P) - D^P^dwp^P) < 2 / |D^(P) - D^P^d^p^P)
J Q' J Q'

+ 2 / \D^u(P) - D^Po^cLjp^P)
J Q '

<C.

By an estimate of Hunt and Wheeden, (see Jerison and Kenig [18]),
and the way our Lipschitz domain ^ was constructed, ujp. (Q1) > C, for
some constant (7. It follows from this, Chebychev's inequality and the Aoo
property ofo;p. with respect to surface measure ([18]), that there exists a
constant b > 0 depending on the Lipschitz constant of 0 such that

\{x € Q : \Dau(x^(x)) - D^u(xo^(xo))\ > \}\ < -^JQI .
A
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C 1
Choosing Ao such that -, = -, it follows from Stromberg [21] that

Ao 4
\\DaU{x^(x))\\BMO<C\Q

and the Proposition is proved.

We now turn to the proof of Lemma 10. Let G(z, w), z, w € 0, be the
Green's function for 0 and let K ( z ^ P ) , P € 90, be its Poisson kernel. We
recall three facts about Lipschitz domains; the first is trivial and the other
two are due to Dahlberg, a proof can be found in [18]. These state that
there exist two positive constants 7*0 and CQ such that

(1) If r < TO and P € 90, then there exists a point Ay.(P) C 0 such
that C^r < \Ar(P) - P\ < Cor and C^r < dist(A^(P),<90);

(2) if r < TQ,P C 30 and z € 0\B(A^(P), jCo"1^), where

B(Ar(P), -C^r) is the ball in R^1 with Ar(P) and radius -C^r, then
z z

i G(^,A,(P))r»-1

co ^ ^(A(P,r)) <co

where A(P, r) == B(P, r) D 90; the surface ball centered at P and radius r;

(3)foral l^€0\B(P,Cor) ,

^(z,P) ̂  ̂ (A,(P),P)^(A(P,r)).

Now let Bt be Brownian motion starting at P* e 0 and let r^ be its
exit time from 0. Since -u is harmonic in 0,^(5^^) is a martingale. Let
Lu(t\ a) denote its local time. It follows from (0.1) and the Ito formula that
for all Borel functions / in R,

(4.1) P /^(B^IV^)!2^ = / f(a)Lu(r^a)da.
JQ JR

Let Ep* be the expectation for Brownian motion starting at P*
and let £JjL,P € 90, be the expectation for this motion conditioned to
exit 0 at P; the Doob A-prbcess corresponding to the harmonic function
h(z) = K{ZyP). Let Gp(z^u) be the Green's function for the conditional
process. Taking E^ of both sides of (4.1) and using Fubini's theorem we
get

(4.2)
[ Gp(P\z)f(u(z))Wz)\2dz

Jfl

= { f(r)E^(Lu(r^r))dr.
JR
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Applying (0.6) to the left hand side of (4.2) we get

/ / Gp(P*, z)f(r)^(u - r^{dz)dr
JnJfl

= f f(r)E^(Lu(r^r)}dr.
JR

It follows from this formula, (we refer the reader to Brossard [7] for the
proof), that

(4.3) E^(Lu(r^a)) = _ f G(P\z)K^P)^(u - a)^{dz) .
^ ̂  » ^ ) Jo

Next, let r^(P), P € 30, be as in the proof of Proposition 1. Define

Pn(P; a) = / d(z, P^WZ) - a)^(dz),
Jr^ip}

;aj= / d(z^)- "'^{u^z)-a)^az),
Jr^P)
Du(P)=snp(Du(P',a),

a€R

and
( r \^Au(P}=[ d^P)1-"!^)!2^ .
\h^p) )

It follows from facts (2), (3) above and (4.3) that there exists a
constant C depending only on the Lipschitz constant of Q such that
(4.4) Du(P) < C sup JE .̂ (£u(Tn; a)) ^ CE^,. (L*u(Tn)

aeR

where L*u(r^} is the maximal local time of u(Bt), t <r^. Integrating gives

/ {Du{P}^p.{P) <C I (^.(L^rJ))2^?^?)
JQQ, JQQ.

=CEp.((E^(L'u(Tj})2)

^ <CEp.E^u{rJ)2

=CEp.(Ltu(TJ)2

^CEp.\u(B^)\2

where for the last inequality we have used the Barlow-Yor [4] result applied
to the martingale u(Bf); (we are assuming, as we may, that u(P*) = 0).
Rewriting the right hand side of (4.5) in terms of harmonic measure and
using the result of Dahlberg [10] we find that

(4.6)
/ (Du(P}Y(L}p.(P)^C f W^dwp^P}

JQH JQSl

<C I (A^P^d^p^P).
JQH
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Since A?u(x^(x)) < 1 for all x e 9SI by a slight variation of the proof of
Lemma 11 of [2] we have Au(P) < C for all P e 9ft. Thus

/ (Du(P))2d^p.(P)<C.
Jofl

Since ri(P) C r?(P) for P € Q', we have that

/ (Di^P))2^?^?) < / (Du(P))2^p.(P)<C
•̂  ^n

and Lemma 10 is proved.

5. An alternative proof of Theorem 3 for the upper half space.

It is highly desirable, in order to get a better understanding of the
analytic structure of the D-functional and as Gundy and Silverstein [16]
put it, to better understand "its possible status in the catalogue of artifacts
under the label Littlewood-Paley, singular integral theory," to have a
"classical" proof of the good-A inequalities. For this reason we provide an
analytical proof of Theorem 3. However, we have not been able to provide
such proof in the Lipschitz domains setting and, in addition we only obtain
the result with exp(G/€2/3) on the right hand side. More precisely, we have

THEOREM 3'. — Let u be a harmonic function on R^1 and let
0 < a < 13 and define Dau(x) using (0.9). There are constants K^, CQ and
Gio depending only on a, /?, n and ^ and such that if \ > 0 and 0 < c < 1,

\{x e R71 : Dau(x) > Ks\, A^u(x) < e\}\

< Cgexp f^} \{x e R71 : D^u(x) > \}\.

The proof of Theorem 3' is short; we merely have to combine what
was done in section 3 with a lemma from [3]. An elementary argument
shows that {x : Dau(x) > \} is open and so we let {Qj} be a Whitney
decomposition of this set. Then it suffices to show :

(5.1) \{x € Q, : D^u(x) > K\,A0u(x) < e\}\ ̂  C.exp (zcl\ \Qj\

for every Qj.

We now fix such a Qj, call it Q, and let XQ be the center of Q and
set h = t(Q). Let p > 0 be a constant to be fixed momentarily, and for
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/x > 0 set r^(.r) = {(5, t) : \x - s\ < /^, t < ph}. Now set 7 = a—' andz^
define D^u^x) and N^u^x) by taking the same definitions as before but
by using the cones Y^^x) and ^^h(x) respectively.

Since Q is a cube in a Whitney decomposition of {Dau(x) > A}, there
exists a constant C(n) such that if Q represents the cube in R71 having
center XQ^ sides parallel to those of Q and with t(Q) = C(n}i(Q)^ then
Q H {Dau(x) < X} •^- (j). Now note that since a < 7, then we may choose
p large enough (and depending only on a,/3,n) such that if x ^ y € Q, then
ra(a0\r^(:r) C I\(y). Let 2/0 be a point of Q for which A^yo) < e\.

Q _L ^

(We may assume yo exists, else (5.1) is trivial for Q). Set 7' = ———, then
^

by the Lemma on page 207 of [20] we have

(5.2) t\Vu(s,t)\ < Ce\

for all (s,t) eFy^o).

Now define D^u(x) as in (0.9) but with the integration taken only
over r^(a:)\r^(.z:). Pick ZQ C Q H {Da^(^) < A}. Then ^n(^o) < A and
we claim that then \D^u(x)\ < A -h Ce\ for every x 6 Q. To see this, we
recall that rc,(a:)\r^(:r) C T^(yo) C ry(^o) tor all x e Q and reasoning
as in Lemma 6, we conclude that \D^u(x) — D^U{ZQ)\ <_ Ce\ for all x € Q.
(All that is required in the proof of Lemma 6 is an estimate such as (5.2)).
Since Dau(x) < D^u(x) -h D^u(x) then by setting L = K - (1 + Ce),
(5.1) follows if we show :

(5.3) \{x e Q : D^u(x) > L\,A^u(x) < e\}\ < dexp f^) 101 .

Since both D^u^x) and Afiu(x) remain unchanged when we add
a constant to u we may assume that u(xy,Ch) = 0 where C will be
determined momentarily. We break apart the set on the left hand side
of (5.3) using N^u^x) to obtain :

|{a; € Q : D^u(x) > LX, A^u(a-) < eA}|
< [{a; 6 Q : D^u(x) > L\,A0u(x) < eX,N^u(x) > Le^\}\

+ |{€ Q : D^u{x) > L\,A/ju(x) < e\,N^u{x) < Le^\}\

< \{x € Q : N^u(x) ̂  Le^\,A0u(x) < e\}\

+ | {a- € Q : D^u(x) > L\,N^u(x) <Le^\}\
=J + II.
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To estimate J, we use Lemma 4.1 of [3].This lemma states that there exists
constants L and C depending only on 7,/?,n such that if h = Ch and
u(xo, h) = 0 then for every A > 0 , 0 < £ < l , w e have

(5.4) \{x e Q : N^u(x) > L\,A^u(x) < e\}\ < dexp (r^2) 101.

We now assume that u(xo, h) = 0. Note that if ph > h then for an x with
A^u(x) < e\ we have N^u{x) < N^u(x) + Ce\ by the estimate (5.2). If
ph < h then this estimate is still true. At any rate, by choosing L large
enough we have :

{x C Q :N^u(x) > L\,A0u(x) < e\}

C {x e Q : N^u(x) > L\,Aou(x) < e\}.

Then by this fact, and (5.4) with A replaced by £3 A and £ replaced by/ _^i \
e' 5 we obtain I < (7iexp ( —3— ) \Q\. To control I I , we proceed as before.

\ £ 2 /

We form E = {x € Q : N^u(x) < L^A}, set 7" = ^-a and form

W = [j ̂ (x). There exists a cube Q C Q1 such that t(Q') < C£(Q)
x^E

and if x ^ Q ' , then r^{x) H W =- (f). For x € Q' we then define D"u{x) as
before but this time by restricting the integration to W D r^(.r). Then as
in section 3, we can show \\D*u{x)\\BMO{Q'} < CLe^X. Also, we then have
the analogue of (3.8) :

—— / D"u(x)dx<CL£^\.
\Q \ JQ1

These facts and the John-Nirenberg theorem imply that

\{x € Q : D-u(x) > rf}\ < Cicxp f-^) |Q'|
\L£3A/

for every rj > 0. Since D*u(x) = D^u^x) when N^u^x) < Le^\, we have :

I I < \{x C Q : D'u(x) > LA}| < (7iexp (~ZC1\\Q\,

which proves (5.3) and completes the proof.

6. Concluding Remarks.

As mentioned in the introduction, the good-A inequalities for the
maximal local time were proved by Bass [6] and independently by Davis
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[12]. Even though these authors did not obtain sharp estimates, these
proofs can easily be adapted to give the following sharp good-A inequalities
between L*,X* and S(X) :

(6 .1) P{X* > 2A,L* < e\} < dexp (-c2) P{X* > A},

(6.2) P{S(X) > 2A, L* ^ e\} < dexp (zc^\ P{S(X) > A},

(6.3) P{L* > 2A,X* < e\} < dexp f^) P{I/* > A},

and

(6.4) P{L* > 2A, S(X) < e\} < Ciexp ( z c l ) P{^ > A}.

In the setting of harmonic functions, using (0.7), the inequality
HAc^Hp < Cp\\NaU\\p with Cp = 0(^/p) as p -> oo proved in [2], and
integrating out the good-A inequality in Theorem 2(a), it follows that
Theorem 2(a) is also sharp in terms of the decay in e as e —> 0. It seems
by analogy with the martingale case that Theorem 1 is also sharp in this
respect but we have not been able to prove this. In the case of the area
function in place of the -D-functional, the sharpness of such results is proved
by explicitly computing the area integral of a lacunary series. It seems to
be very nontrivial to compute the D-functional explicitly for any function.
With regards to Theorem 3, we believe that the sharp estimate should be

exp ^ —Y- j as in the martingale case. However, before one can prove this,

one will have to prove the following more basic conjecture :

Suppose u is a harmonic function in R^1 with the property that
Aou(x) < 1 for almost every x e R71. Let 0 < a < f3 and suppose there
exist an XQ e R71 such that Dau{xo} < oo. Then D^u has a subgaussian
estimate on every cube. That is, given a cube Q C R71 there exist a constant
CQ such that for all A > 0,

(6.5) \{x € Q : \D^u(x) - CQ\ > A}| ^ Ciexp (-^A2) \Q\

where C\ and Cs depend only on a, /?, and n.

If we replace D^u by N^u, (6.5) follows from a result of Chang, Wilson
and WolfF [10], (see [2] for full details). Also we believe, (although we have
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not written all the details down), that if we replace Dau(x) by Dau{x'^a)
we can prove (6.5) and with C\ and C^ independent of a.

In [19], Kesten proves two LII/s for local time :

(6.6) lim sup , , L? = 1
<-oo ^/2S?(X)loglogS^(X)

a.s. on {S(X) = 00} and

^ r noglogS^X)\^(6.7) h m s u p — — O I V L,*=7
t-^oo \ ^t\^) /

a.s. on {S(X) = oo}, where 7 is a constant such that qo/2 < 7 < ^/\/2,
and where qo is the smallest positive zero of the Bessel function Jo(x).

The Kesten LIL (6.7) is perhaps the deepest and most difficult of all
the LIL's for Brownian motion. We believe that the corresponding result for
harmonic functions is a very challenging and interesting problem. Corollary
l(a) gives an analogue for the lower bound. The upper bound is open. Also,
we have been unable to obtain an analogue of either half of (6.6). The
upper half analogue of (6.6) would follow if we could prove Theorem 3 with
exp(—c/e2). This, however, requires proving (6.5) not only in flat space
but in Lipschitz domains. Finally we mention that since its discovery by P.
Levy, the local time has been of fundamental importance in the study and
applications of Brownian motion. We believe that when the J9-functional
is as well understood as the local time, it will play a correspondingly useful
role in the study of harmonic functions. J. Brossard and L. Chevalier [8]
have already made interesting progress in this direction with their new
characterization ofLlogL.
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