Annales de l'institut Fourier

Juan Elias
 A note on the one-dimensional systems of formal equations

Annales de l'institut Fourier, tome 39, n ${ }^{\circ} 3$ (1989), p. 633-640
http://www.numdam.org/item?id=AIF_1989_39_3_633_0
© Annales de l'institut Fourier, 1989, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A NOTE ON THE ONE-DIMENSIONAL SYSTEMS OF FORMAL EQUATIONS

by Juan ELIAS

\qquad
To Joan

0. Introduction.

Let $(X, 0)$ be an algebroid singularity defined by the ideal $I \subset$ $\mathbf{k}\left[\left[X_{1}, \ldots, X_{N}\right]\right]$. J. Nash in [N$]$ proposed to study $(X, 0)$ using the set of $\operatorname{arcs} A_{X}$, i.e. the set of $\alpha . \in \mathbf{k}[[T]]^{N}$ such that α. $(0)=0$, and $f(\alpha)=$. for all $f \in I$. Let A_{X}^{n} be the set of n-th truncations of $A_{X}: \gamma . \in \mathbf{k}[[T]]^{N}$ belongs to A_{X}^{n} if and only if $\operatorname{deg}\left(\gamma_{i}\right) \leq n$ for all $i=1, \ldots, N$ and there exists $\alpha \in A_{X}$ such that α. $-\gamma . \in(T)^{n+1} \mathbf{k}[[T]]^{N}$. Denote by $\pi_{n}: A_{X}^{n} \rightarrow A_{X}^{n-1}$ the truncation map $\pi_{n}\left(\left(\sum_{j=0}^{n} \gamma_{j}^{i} T^{j}\right)_{i=1, \ldots, N}\right)=\left(\sum_{j=0}^{n-1} \gamma_{j}^{i} T^{j}\right)_{i=1, \ldots, N}$, so we have a projective system of sets $\left\{A_{X}^{n}, \pi_{n}\right\}_{n \geq 0}$ and a isomorphism of sets $A_{X} \cong \lim \leftarrow A_{X}^{n}$. Hence a way to study A_{X} is look into A_{X}^{n}. In the complex case from the existence of a non-singular model of ($X, 0$) J. Nash deduces that A_{X}^{n} is constructible for all n (see [N$],[\mathrm{Le}]$), on the other hand J.C. Tougeron (see [Le]) proves that A_{X}^{n} is constructible from the formal version of the approximation theorem of M. Artin ([A]) due to J. Wavrik ([W1]). In particular from this result one can deduce that there exists a numerical function $\beta: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ such that: $\gamma . \in A_{X}^{n}$ if and only if there exists $\tilde{\gamma} . \in \mathbf{k}[[T]]^{N}$ such that $f(\tilde{\gamma}.) \in(T)^{\beta(n)} \mathbf{k}[[T]]^{N}$ for all $f \in I$ and $\gamma .-\tilde{\gamma} . \in(T)^{n+1}$.

[^0]As far as we know only in a few cases we have an explicit determination of β : first case is due to J . Wavrik for X reduced plane curve taking non-singular arcs ([W2]), the second one is due to M. Lejeune for hypersurface singularities taking general arcs ([Le]).

In this paper we determine the function β in the case of onedimensional singularities X, taking non-singular arcs, in terms of the Milnor number associated to $X_{\text {red }}$. See [La] for other results on β.

The paper is divided in two sections, in the first we give some preliminaires results about contact between curves. In the second one we define the numerical function β and we prove the main result of this paper (Theorem 2.1).

Throughout this paper R will be the power series ring $\mathbf{k}\left[\left[X_{1}, \ldots, X_{N}\right]\right]$, where \mathbf{k} is an infinite field. We denote by M the maximal ideal of R.

A curve of $\left(\mathbf{k}^{N}, 0\right)=\operatorname{Spec}(R)$ is a one-dimensional, Cohen-Macaulay closed subcheme X of $\left(\mathbf{k}^{N}, 0\right)$, i.e. $X=\operatorname{Spec}(R / I)$ where $I=I(X)$ is a perfect height $\mathrm{N}-1$ ideal of R; we put $\mathcal{O}_{\mathcal{X}}=R / I$. A branch is an integral curve.

2. Contact of curves.

If X is a reduced curve of $\left(\mathbf{k}^{N}, 0\right)$ then we denote by $\delta(X)$ the dimension over \mathbf{k} of the quotient $\tilde{\mathcal{O}_{\mathcal{X}}} / \mathcal{O}_{\mathcal{X}}$ where $\tilde{\mathcal{O}_{\mathcal{X}}}$ is the integral closure of $\mathcal{O}_{\mathcal{X}}$. If r is the number of branches of X then we define the Milnor number of X by $\mu(X)=2 \delta-r+1$.

Let X be a reduced curve and let Q be an infinitely near point of X, see [ECh], [VdW]. It is known that there exists a unique sequence $\{Q\}_{i=0, \ldots, s}$ of infinitely near points of X such that $Q_{0}=0, \ldots, Q_{s}=Q$, and that Q_{i+1} belongs to the first neighbourhood of Q_{i} for $i=0, \ldots, s-1$. We denote by (X, Q) the union of the irreducible components through Q of the proper transform of X by the composition of the blowing-up centered at Q_{i} for $i=0, \ldots, s-1$. We denote by $p_{(X, Q)}(T)=e(X, Q) T-\rho(X, Q)$ the Hilbert polynomial of the local ring $\mathcal{O}_{(X, Q)}$.

For the readers convenience we will summarize some properties of $e(X, Q)$ and $\rho(X, Q)$ that we will use in the paper:
(1) $e(X, Q)-1 \leq \rho(X, Q)$, ([M] Proposition 12.14),
(2) $e(X, Q)=1$ if and only if $\rho(X, Q)=0,([\mathrm{M}]$ Proposition 12.16),
(3) $e(X, Q)=2$ if and only if $\rho(X, Q)=1$, ([M] Proposition 12.17),
(4) $\operatorname{dim}_{\mathbf{k}}\left(R / I+M^{n}\right)=p_{(X, Q)}(n)$ for all $n \geq e(X, Q)-1$, ([K] Theorem 6, or [M] Proposition 12.11).

Let $T(X)$ be the set of infinitely near point Q of X such that its multiplicity $e(X, Q)$ is greater than one. From [Ca] we obtain that

$$
\delta(X)=\sum_{Q \in T(X)} \rho(X, Q)
$$

Let X, Y be curves of $\left(\mathbf{k}^{N}, 0\right)$, without components in common, we denote by $(X . Y)$ the number $\operatorname{dim}_{\mathbf{k}}(R / I(X)+I(Y))([\mathrm{H}])$.

Let Z_{1} be a branch, for every reduced curve Z_{2}, such that Z_{1} is not a component of Z_{2}, we define $f\left(Z_{1}, Z_{2}\right)$ as the number of non-singular points shared by Z_{1} and Z_{2}.

Proposition 1.1. - If Z_{1} is a non-singular branch then

$$
\left(Z_{1} . Z_{2}\right) \leq \mu\left(Z_{2}\right)+f\left(Z_{1}, Z_{2}\right)+1 .
$$

Proof. - From [C] and [M], Proposition 12.16, we deduce

$$
\left(Z_{1} . Z_{2}\right) \leq \sum_{Q \in K}\left(\rho\left(Z_{1} \cup Z_{2}, Q\right)-\rho\left(Z_{2}, Q\right)\right)
$$

where K is the set of infinitely near points shared by Z_{1} and Z_{2}.
Since $\left(Z_{i}, Q\right)$ is a curve of $\left(\mathbf{k}^{N}, Q\right) \cong\left(\mathbf{k}^{N}, 0\right)$, we put $\left(Z_{i}, Q\right)=$ $\operatorname{Spec}\left(R / I_{i, Q}\right)$ for $i=1,2$. Consider the projection

$$
\frac{R}{\left(I_{1, Q} \cap I_{2, Q}\right)+M^{n}} \rightarrow \frac{R}{I_{2, Q}+M^{n}}
$$

for all $n \geq e\left(Z_{2}, Q\right)$; from this and [K], Corollary 6, we get

$$
\left(e\left(Z_{2}, Q\right)+1\right) n-\rho\left(Z_{1} \cup Z_{2}, Q\right) \geq e\left(Z_{2}, Q\right) n-\rho\left(Z_{2}, Q\right)
$$

Therefore $\rho\left(Z_{1} \cup Z_{2}, Q\right)-\rho\left(Z_{2}, Q\right) \leq e\left(Z_{2}, Q\right)$, and hence

$$
\begin{equation*}
\left(Z_{1} \cdot Z_{2}\right) \leq \sum_{Q \in K} e\left(Z_{2}, Q\right) \tag{1}
\end{equation*}
$$

Assume that Z_{2} is singular. Since $e\left(Z_{2}, 0\right) \leq \rho\left(Z_{2}, 0\right)+1,[\mathrm{M}]$ Proposition 12.14, and $r \leq e\left(Z_{2}, 0\right)$ we deduce

$$
\begin{equation*}
e\left(Z_{2}, 0\right) \leq\left(2 \rho\left(Z_{2}, 0\right)+1-r\right)+1 \tag{2}
\end{equation*}
$$

Let K^{*} be the set of points belonging to K such that $e\left(Z_{2}, 0\right) \geq 2$. From [M], Proposition 12.17, we obtain that for all $Q \in K^{*}$

$$
\begin{equation*}
e\left(Z_{2}, Q\right) \leq 2 \rho\left(Z_{2}, Q\right) \tag{3}
\end{equation*}
$$

By (2) and (3) we get

$$
\sum_{Q \in K^{*}} e\left(Z_{2}, Q\right) \leq\left(2 \sum_{Q \in K^{*}} \rho\left(Z_{2}, Q\right)+1-r\right)+1
$$

since $\rho\left(Z_{2}, Q\right)=0$ if and only if $e\left(Z_{2}, Q\right)=1$ we have

$$
\sum_{Q \in K^{*}} e\left(Z_{2}, Q\right) \leq \mu\left(Z_{2}\right)+1
$$

Recall that $e\left(Z_{2}, Q\right)=1$ for $Q \in K-K^{*}$, from (1) we obtain the claim.

Proposition 1.2. - Let $Z_{i}=\operatorname{Spec}\left(R / I_{i}\right)$ be curves, $i=1,2$. Assume that Z_{1} is non-singular and $I_{2}+M^{\mu\left(Z_{2}\right)+n+1} \subset I_{1}+M^{\mu\left(Z_{2}\right)+n+1}$. Then we have

$$
n \leq f\left(Z_{1}, Z_{2}\right)
$$

Proof. - From the hypothesis we deduce that

$$
I_{1}+I_{2} \subset I_{1}+I_{2}+M^{\mu\left(Z_{2}\right)+n+1}=I_{1}+M^{\mu\left(Z_{2}\right)+n+1}
$$

so that

$$
\mu\left(Z_{2}\right)+n+1 \leq \operatorname{dim}_{\mathbf{k}}\left(R / I_{1}+M^{\mu\left(Z_{2}\right)+n+1}\right) \leq\left(Z_{1} \cdot Z_{2}\right)
$$

The claim follows from Proposition 1.1.
Corollary 1.3. - If $n \geq 2$ then there exists a non-singular branch Y of Z_{2} such that $n \leq f\left(Z_{1}, Y\right)$.

Proof. - By Proposition 1.2 we get $f\left(Z_{1}, Z_{2}\right) \geq n \geq 2$, so there exists a branch Y of Z_{2} such that Z_{1} and Y share n non-singular infinitely near points. Since a non-singular branch and a singular branch cannot share two non-singular near points, we get that Y is non-singular.

The following result is well known :
Proposition 1.4. - Let Z_{1}, Z_{2} be non-singular branches, for all n the following inequalities are equivalent :
(1) $\left(Z_{1} . Z_{2}\right) \geq n$,
(2) Z_{1} and Z_{2} share n infinitely near points,
(3) for all parametrization of Z_{1} :

$$
Z_{1}:\left\{\begin{array}{l}
X_{1}=t \\
X_{i}=X_{i}(t) \text { for all } i=2, \ldots, N
\end{array}\right.
$$

there exists a parametrization of Z_{2} :

$$
Z_{2}:\left\{\begin{array}{l}
X_{1}=t \\
X_{i}=\tilde{X}_{i}(t) \text { for all } i=2, \ldots, N
\end{array}\right.
$$

such that

$$
X_{i}(t)-\tilde{X}_{i}(t) \equiv 0 \operatorname{modulo}(t)^{n}
$$

for all $i=2, \ldots, N$.

2. The function β.

Definition. - We say that a system of formal equations $\{F=$ $0\}=\left\{F_{1}=0, \ldots, F_{s}=0\right\}, F_{i} \in R$, is one-dimensional if and only if $(F)=\left(F_{1}, \ldots, F_{s}\right)$ is a height $N-1$ ideal of R. We denote by \mathcal{F} the set of one-dimensional systems of formal equations.

Let $\{F=0\}$ be a one-dimensional system of formal equations, we define the curve $Z_{F}=\operatorname{Spec}(R / \operatorname{rad}(F))$, and the numbers $\mu(\{F=0\})=$ $\mu\left(Z_{F}\right)$ and $m(\{F=0\})=\operatorname{Min}\left\{n \in \mathbf{N} \mid \operatorname{rad}((F))^{n} \subset(F)\right\}$.

Definition. - Let $\beta: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ be the numerical function:

$$
\beta(n,\{F=0\})=m(\{F=0\})(2 \mu(\{F=0\})+n+1) .
$$

Theorem 2.1. - Given a one-dimensional system of formal equations $\{F=0\}$, and a non-negative integer $n \geq 0$ if Z_{F} is singular and $n \geq 1$ if Z_{F} is non-singular. Let $X_{i}\left(X_{1}, \ldots, X_{r}\right) \in \mathbf{k}\left[\left[X_{1}, \ldots, X_{r}\right]\right]$, $1 \leq r \leq N, i=r+1, \ldots, N$ be a set of formal power series such that for every $G \in(F)$:

$$
\begin{aligned}
G\left(X_{1}, \ldots, X_{r}, X_{r+1}\left(X_{1}, \ldots, X_{r}\right), \ldots,\right. & \left.X_{N}\left(X_{1}, \ldots, X_{r}\right)\right) \equiv 0 \\
& \text { modulo }\left(X_{1}, \ldots, X_{r}\right)^{\beta(n,\{F=0\})}
\end{aligned}
$$

Then there exist $\tilde{X}_{i}\left(X_{1}, \ldots, X_{r}\right) \in \mathbf{k}\left[\left[X_{1}, \ldots, X_{r}\right]\right], i=r+1, \ldots, N$, such that:
(1) $G\left(X_{1}, \ldots, X_{r}, \tilde{X}_{r+1}, \ldots, \tilde{X}_{N}\right)=0$ for all $G \in(F)$,
(2) $X_{i}\left(X_{1}, \ldots, X_{r}\right)-\tilde{X}_{i}\left(X_{1}, \ldots, X_{r}\right) \equiv 0$ modulo $\left(X_{1}, \ldots, X_{r}\right)^{n}$ for all $i=$ $r+1, \ldots, N$.

Proof. - First of all we will prove that $r=1$. From now on we put $\mu(\{F=0\})=\mu\left(Z_{F}\right)=\mu, \rho\left(Z_{F}, 0\right)=\rho$ and $e\left(Z_{F}, 0\right)=e$.

Let J be the ideal of R generated by $X_{i}-X_{i}\left(X_{1}, \ldots, X_{r}\right)$ for $i=$ $r+1, \ldots, N$. Notice that J is the kernel of the $\operatorname{map} \varphi: R \rightarrow \mathbf{k}\left[\left[X_{1}, \ldots, X_{r}\right]\right]$ defined by

$$
\varphi(G)=G\left(X_{1}, \ldots, X_{r}, X_{r+1}\left(X_{1}, \ldots, X_{r}\right), \ldots, X_{N}\left(X_{1}, \ldots, X_{r}\right)\right)
$$

From the hypothesis we deduce that

$$
(F) \subset J \text { modulo }\left(X_{1}, \ldots, X_{r}\right)^{\beta(n,\{F=0\})}
$$

so

$$
\begin{equation*}
\operatorname{rad}((F)) \subset J \text { modulo }\left(X_{1}, \ldots, X_{r}\right)^{2 \mu+1+n} \tag{1}
\end{equation*}
$$

Recall [C] that

$$
\delta\left(Z_{F}\right)=\sum_{Q \in T\left(Z_{F}\right)} \rho\left(Z_{F}, Q\right)
$$

by [M], Proposition 12.14, we obtain that $\delta\left(Z_{F}\right)+1 \geq e$; from this we deduce $\mu \geq \delta\left(Z_{F}\right)$, so $\mu \geq \rho$.

From [M], Proposition 12.11, we get

$$
\operatorname{dim}_{\mathbf{k}}\left(\frac{R}{\operatorname{rad}((F))+M^{2 \mu+n+1}}\right)=e(2 \mu+n+1)-\rho
$$

Since $\operatorname{Spec}(R / J)$ is non-singular, from (1) we have

$$
e(2 \mu+n+1)-\rho \geq\binom{ 2 \mu+n+r}{r}
$$

Assume that $r \geq 2$, then $(2 \mu+n+1)(e-(\mu+1)-n / 2) \geq \rho$. Since $\mu \geq \rho \geq e-1$ ([M], Proposition 12.14) we obtain: $\rho \leq(2 \mu+n+1)(-n / 2)$. If Z_{F} is singular then we get $\rho \leq 0$, but from [M], Propositions 12.14 and 12.17 , we have that $\rho \geq 1$, so $\mathrm{r}=1$. If Z_{F} is non-singular we get that $\rho<0$, since ρ is a non-negative integer ($[\mathrm{M}]$, Propositions 12.14) we deduce $r=1$.

Consider the non-singular branch Z_{1} which admits the parametrization:

$$
Z_{1}:\left\{\begin{array}{l}
X_{1}=t \\
X_{i}=X_{i}(t) \text { for all } i=2, \ldots, N
\end{array}\right.
$$

Notice that the series $\left.H_{i}=X_{i}-X_{i} X_{1}\right), i=2, \ldots, N$, form a system of generators of the ideal I_{1} defining the curve Z_{1}. If $G \in \operatorname{rad}(F)$ then

$$
G\left(X_{1}, X_{2}\left(X_{1}\right), \ldots, X_{N}\left(X_{1}\right)\right) \equiv 0 \operatorname{modulo}\left(X_{1}\right)^{\mu+1+n}
$$

thus

$$
\operatorname{rad}((F)) \subset I_{1} \text { modulo }\left(X_{1}\right)^{\mu+1+n}
$$

From Propositions 1.2,1.3 and 1.4 we deduce the claim.
Remark. - (1) From the proof of the theorem it is easy to prove that for the systems of formal equations with $r=1$ one can take

$$
\beta(n,\{F=0\})=m(\{F=0\})(\mu(\{F=0\})+n+1) .
$$

(2) If we consider reduced systems of formal equations, i.e. $\operatorname{rad}((F))=(F)$, then we have

$$
\beta(n,\{F=0\})=2 \mu(\{F=0\})+n+1
$$

Notice that the number $2 \mu(\{F=0\})+1$ has the following property ($[\mathrm{E}])$: the analytic type of Z_{F} is determined by any of its truncations: $\left(Z_{F}\right)_{n}=\operatorname{Spec}\left(R /(F)+M^{n}\right)$ for all $n \geq 2 \mu(\{F=0\})+1$.

BIBLIOGRAPHY

[A] M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. IHES, 36 (1969), 23-58.
[Ca] E. CASAS, Sobre el cálculo efectivo del género de las curvas algebraicas, Collect. Math., 25 (1974), 3-11.
[E] J. Elias, On the analytic equivalence of curves, Proc. Camb. Phil. Soc., 100, 1(1986), 57-64.
[ECh] F. Enriques and O. Chisini, Teoria geometrica delle equazione e delle funzione algebriche. Nicola Zanichelli, Bologna 1918.
[H] H. Hironaka, On the arithmetic genera and the effective genera of algebraic curves. Memoirs of the College of Sciences, Univ.Tokyo, Ser.A, Vol.XXX, Math., $\mathrm{n}^{\circ} 2$ (1957).
[K] D. Kirby, The reduction number of a one-dimensional local ring, J. London Math. Soc., (2) 10 (1975), 471-481.
[La] D. LASCAR, Caractère effectif des théroèmes d' approximation d' Artin, CRAS, 287 (1978), 907-910.
[Le] M. Lejeune-jalabert, Courbes tracées sur un germe d' hypersurface. Preprint.
[M] E. Matlis, E.1-Dimensional Cohen-Macaulay Rings, Lecture Notes in Math. $n^{\circ} 327$, Springer Verlag, 1977.
[N] J. NASH, Arc structure of singularities. Preprint.
[VdW]B. Van der Waerden, Infinitely near points, Indagationes Math.,12(1950), 401410.
[W1] J.J. Wavrik, A theorem on solutions of Analytic equations with applications to deformations of complex structures, Math. Ann., 216(1975), 127-142.
[W2] J.J. Wavrik, Analytic equations and singularities of plane curves, Trans. A.M.S., 245(1978), 409-417.

Manuscrit reçu le 23 janvier 1989.

Juan ELIAS,
Universitat de Barcelona
Facultat de Matematiques
Departament d'Algebra i Geometria
Gran Via 585
08007 BARCELONA
(Espagne).

[^0]: Key-words : Artin approximation - Singularity - Near point - Multiplicity - Reduction number.
 A.M.S. Classification : 14B05-14B12.

