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FINE TOPOLOGY
AND QUASILINEAR ELLIPTIC EQUATIONS

by J. HEINONEN, T. KILPELAINEN and 0. MARTIO

1. Introduction.

The fine topology, introduced by H. Cartan, is the coarsest topology
which makes all superharmonic functions in U^ continuous. It turns
out that a set U in 1R" is a fine neighborhood of a point XQ e U if
and only if the complement of U is thin at XQ , i.e. the Wiener integral
of the complement of U converges at XQ. In the nonlinear potential
theory this latter condition has been taken as a starting point: a set
U in IR" is called an (a,p)-fine neighborhood of a point XQ e U if the
(a,p)-Wiener integral of the complement of U converges at Xo. Here
a > 0, p > 1 and ap < n. The (a,p)-fine topologies associated with
Bessel potentials were introduced by N. G. Meyers [M] and later studied
for example by D. R. Adams and L. I. Hedberg [AH] ; see also [AL],
[AM] and [Fl]. The classical fine topology of Cartan is included in the
case a = 1 and p ^ 1.

In this paper we show that the case a =c 1 and 1 < p ^ n, which
is related to second order elliptic equations and to the Sobolev space
W\^ admits an approach similar to that of Cartan; the (l,p)-fine
topology is the coarsest topology making all supersolutions of the
p-Laplace equation

divdVMi^VM) == 0

in 1R" continuous. In fact, there is a wide class of degenerate elliptic
equations, other than the p-Laplacc equation, with the same property.
In particular, there are nonlinear equations whose supersolutions induce
the same (l,2)-fine topology as superharmonic functions do.

Key-words : Fine topology - Nonlinear potential theory - A-superharmonic functions -
Quasiregular mappings.

AMS Classification : 31 C 39 - 35 J 70 - 30 C 60.
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To fix ideas, consider an operator ^ : V x IR" -^ R", n ^ 2,
^{x,h)'h w l / i^ , 1 < p ^ n, and the equation

(1.1) div^(x,VM) = 0.

The precise assumptions on ^ are given in Section 2. Continuous weak
solutions of (1.1) are called ^-harmonic. A lower semicontinuous
function u in an open set Q in (R71, — oo < u ^ oo, is called
^-superharmonic if it satisfies the comparison principle : for each domain
D <=. c: Q and each j^-harmonic function h in Z>, h e C (2)), the
condition fc ^ u in 5Z> implies /i ^ u in Z). This definition was
apparently first used in a nonlinear situation when S. Granlund,
P. Lindqvist and 0. Martio studied superextremals of certain variational
integrals with applications to function theory [GLM1-2]. The general
j^-superharmonic functions and their (nonlinear) potential theory were
investigated in the papers [HK1-3], [K] and [L]. It was shown in [HK1]
that all supersolutions of (1.1) are e^-superharmonic when properly
pointwise redefined; ther converse is not true.

We define the s^-fine topology to be the coarsest topology in W
making all j2/-superharmonic functions in W1 continuous. Our main
result. Theorem 3.2, characterizes the j^-fine topology by means of
the Wiener criterion, whence it coincides with the above mentioned
(l,p)-fine topology. It follows in particular that the j^-fine topology is
independent from the operator ^ once the number p is fixed. Actually,
we obtain the whole spectrum of fine topologies Tp such that T^ ^ T?
for 1 < p < q ^ n. If p > n, the ja^-fine topology can be similarly
defined, but then it always equals the euclidean topology.

Quasiregular mappings and BLD mappings (mappings of bounded
length distortion) are harmonic morphisms in this nonlinear potential
theory, see [GLM1], [MV] and Section 5 below. We study the j^-fine
limits of quasiregular and BLD mappings; for example we show that
i f / i s a quasiregular mapping in an open set 0 c= R" omitting a set
of positive n-capacity and if the complement of Q is n-thin at XQ e 3Q,
then / has an n-fine limit at XQ . This result was recently proved for
plane analytic functions by B. Fuglede in [F4]. It remains an open
problem whether a similar result is true for general lower bounded
j^-superharmonic functions, cf. [D, pp. 190].

The paper is organized as follows. The ja^-fine topology is introduced
in Section 2 where we consider some of its basic properties; it is
Hausdorff, completely regular and Baire but fails to have countable
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neighborhood bases. Also, only finite sets are j^-finely compact. In
Section 3 we prove the Wiener criterion characterization of the ja^-fine
topology. In Section 4 we discuss the theorem of D. R. Adams and
J. L. Lewis about local quasiconvexity of the ja^-fine topology, and in
Section 5 we study the c^-fine limits of quasiregular and BLD mappings.

Our notation is standard. Throughout, Q, is an open set in R",
n ^ 2. For a set E <= W1 we let ( E denote the complement of E,
^E = R"\£' and E c: <= Q. means that the closure of E is compact in Q.
If B = B(x,r) = {y e [R": |x - y| < r} is an open n-ball and a > 0,
then aB = B(x,ar). The Lebesgue n-measure of a measurable set £' is
written as | E \. The letter c denotes a positive generic constant whose
value is not necessarily the same at each occurrence.

Acknowledgements. — The first author gratefully acknowledges the
hospitality of the Mathematics Department in Bonn where part of this
research was carried out.

2. Fine topology and ^-superharmonic functions.

We assume throughout this paper that ^ : HT x (R" -> (FT, n ^ 2,
is an operator which satisfies the following assumptions for some
numbers 1 < p ^ n and 0 < a ^ (3 < oo :

the function x ^-> ^/(x,h) is measurable for all h e R", and
' the function h \—> ^/(x,h) is continuous for a.e. xeR",

for all h e R" and a.e. x e R"

(2.2) ^(x,h)'h ̂  a|^,

(2.3) l^(x,/i)| < W\

(2.4) WxA) - ^(xA)H^-^) > 0

whenever h^ ^ hz, and

(2.5) ^(x.^i) = ^I^-^OC.A)

for all ) ie lR, X, 9^ 0.

A function u in the local Sobolev space loc W^Q) is a weak
solution (supersolution) to the equation (1.1) in Q if

(2.6) | ^(x,VM)-V(prfx = 0 (^0)
Jo
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for all (peCo°°(^) ((p e Co°(Q),(p^O). It is well known that seach weak
solution of (1.1) has a continuous representative; we call continuous
weak solutions of (1.1) ^/-harmonic, cf. [HK1]. A function u in Q is
called ^/-superharmonic if

(i) u is lower semicontinuous (Isc),
(ii) — oo < u ^ oo,

and
(in) for each domain D c: c= Q and each h e C(D), j^-harmonic in

D, h ^ u in 8D implies A ^ u inZ).
A typical example of the operators satisfying (2.1)-(2.5) is the

p-harmonic operator, j^(x,/i) = W^h, which is conformally invariant
if p == n. The fundamental p-superharmonic function in IR" is

(2.7) u{x)
|xr1, 1 < p < n,

- log [ x | , p = n.

The sum of two j^-superharmonic functions is not j^-superharmonic
in general, but clearly Ku + p, is e^-superharmonic whenever u is
^-superharmonic, ^ ^ 0, and ^ e R. Also, if u and u are ^~
superharmonic, then so is min (u,v).

We recall some fundamental properties of ja^-superharmonic functions ;
for the proofs we refer to [HK1]. First, each supersolution u of (1.1)
has a unique j^-superharmonic representative given by

(2.8) u(x) == ess lim inf u{y)
y->x

or, if u is locally bounded, equivalently by

1 f
i^(x)=lim u ( y ) d y .

r^Q \t5(X,r)\ ^^)

Conversely, if u is j^-superharmonic in Q, then it satisfies (2.8) at each
point x in 0; if, in addition, u is in loc ^(Q), then u is a supersolution
of (1.1). Locally bounded ja^-superharmonic functions are always in
loc Wp, whence each ^-superharmonic function u is the limit of an
increasing sequence of supersolutions, namely u == limmin(M,fe). On the

A--00

other hand, an j^-superharmonic function need not be locally in the
Sobolev space W^ as displayed by the examples in (2.7).
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2.9. Comparison principle [HK1, 3.7]. Suppose that u and — v are
j^-superharmonic in a bounded open set Q,. If

limsupi;(y) < liminfu(y)
y->x y->x

for all x e 8fl and if the left and the right hand sides are not
simultaneously + oo or — oo, then v < u in ft.

We are ready to define the fine topology generated by
^-superharmonic functions.

2.10. DEFINITION. — The ^/-fine topology T^ is the coarsest topology
in R" making all ^'superharmonic functions u in (R" continuous.

Since mm(u,'k), ^ e I R , is j^-superharmonic whenever u is, T^ is the
coarsest topology in IR" making all upper bounded j^-superharmonic
functions in IR" continuous. In particular, all super&olutions of (1.1)
which are redefined via (2.8) produce the same fine topology T^ .

The ^/-fine topology is strictly finer than the euclidean topology : It
follows from [K, 3.2] that for any euclidean ball B there is an
ja^-superharmonic function u in tR" such that the nonempty set
{x € R": u(x)>0} is contained in B whence T^ is finer than the euclidean
topology. On the other hand, T^ does not coincide with the euclidean
topology since there are discontinuous j^-superharmonic functions in
H\ see [HK2], [K].

In Section 3 we shall show that the j^-fine topology actually depends
only on p , and therefore we could write T^ ='= Tp. Moreover, it will be
proved that i f l < p < q ^ n , then Tp is strictly finer than Tg. At this
point it is convenient to note that if an operator ^ satisfies (2.1)-(2.5)
with p > n, then the fine topology T^ can be defined similarly, but
then it coincides with the euclidean topology; indeed, it was noted in
[HK1, 3.20] that all ^-superharmonic functions are continuous if p > n.

A natural subbase of T^ consists of sets of the form {u > 'k} or
{u < K}, where u is jaf-superharmonic and ^ e IR ; the family of the
finite intersections of the sets of this form is a base of T^ . A convenient
neighborhood base of a point XQ consists of the sets

k

(^{xeE:Ui(x)^c},
i=l
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where k is an integer, each Ui is an upper bounded e^-superharmonic
function with u,(xo) = 0, c > 0, and B is an euclidean ball centered
at Xo, cf. [D, pp. 167]; these sets are euclidean compact and ^-finely
closed. Now it is easy to show that the e^-fine topology T^ is Hausdorff,
completely regular, and Baire; see also 3.14 below. All this is standard
in the linear case, cf. [B], [D], [LMZ].

Jan Maly has pointed out that T^ is also locally connected and
quasi-Lindelof, cf. [D], [F2].

We close this section with two remarks. First, the topology which
T^ induces to an open set Q c= W1 is the coarsest topology making all
^-superharmonic functions u in Q continuous. This follows easily from
the fact that an j^-superharmonic function u in Q can be extended
from each ball B c= c Q, to an j^-superharmonic function in IR" [K, 3.1].

Finally, let ®(^) stand for the smallest convex cone closed under
the min-operation and containing all j^-superharmonic functions u in
V. It is an elementary fact that T^ is the coarsest topology in R"
making all functions in 8-(^0 continuous, see [LMZ].

3. Fine topology and the Wiener criterion.

In this section we show that the j^-fine topology can be defined in
terms of a Wiener criterion : a set U is ^/-finely open if and only if
((7, the complement of U, is p-thin at each point x e U. It follows, in
particular, that the ^-fine topology which is induced intrinsically by
j^-superharmonic functions depends only on p, the type of the operator
j?/, and coincides with the (l,p)-topology studied earlier by N. G. Meyers,
D. R. Adams, and L. I. Hedberg [M], [AH], [AM].

We point out that in the case the equation (1.1) is linear our proof
for Theorem 3.2 yields the well known characterization of regular
boundary points to the Dirichlet problem in terms of the Wiener
criterion without any reference to Green functions, cf. [LSW].

First we recall the definition for the variational p-capacity of a pair
(£',Q) where if E is a subset of an open set Q c= W1. We set

cap^,Q) = inf cap,, (G',0)
EcGcQ
Gopen
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where, for any set F cz Q,

capp (F,0) = sup inf [ V M ^ A C
* A-cF ueIV(^;Q)jQ

JCcompact

and W(K,Q) = {u e Co°(^): u=l mK}.

A set £' c IR" is said to be p-(Wiener-) thin at a point Xo if

„ . f1 (^p,(E^B(x^t)^(x^2t))\p^ ch ^
Jo V cap^(xo,r),2?(xo,2Q) y r

A set E is p-thin at XQ in the sense of (3.1) if and only if E is
(l,p)-thin in the sense of Meyers [M]; the required comparison between
the two different capacities has been made e.g. in [R].

In what follows a set U is called an j^-fine neighborhood of a
point XQ if there is a set V in T^ such that XQ e V c= U.

The main result of this paper is

3.2. THEOREM. — A set U is an s/-fine neighborhood of a point XQ
if and only if XQ is in U and the complement of U is p-thin at XQ .

The following two corollaries are immediate.

3.3. COROLLARY. — The fine topology T^ depends only on p , not on
the operator ^ .

3.4. COROLLARY. — A point XQ is an ^-fine limit point of a set E if
and only if E is not p-thin at XQ .

Recall that a set E in IR" is s^-polar if there is an j^-superharmonic
function u in R", u ^ oo, such that u = oo in E. It was shown in
[HK2] (see also [K]) that E is j^-polar if and only if E is of p-capacity
zero, i.e. capp(£nQ,Q) = 0 for each open set 0. By the Kellogg property
[HW, Theorem 2] the set {x e E:E is p-thin atx} is of p-capacity zero.
Thus we obtain

3.5. COROLLARY. — A set E in V is ^/-polar if and only if E is
^/-finely isolated.

At this point it is convenient to recall that if E is j^-polar and
X Q ^ E , then there is an j^-superharmonic function u in IR" such that
u = oo in E and u(xo) < oo [K].
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/

3.6. COROLLARY. - A set E in W1 is j^-finely compact if and only
if E is finite.

For tfie proof of Theorem 3.2 we require two lemmas.

3.7. LEMMA. - Let E c: ffT and Xo e IR". If there is an ^/-super-
harmonic function u defined in a neighborhood of XQ such that

(3 •8) liminfuOc) > u(xo),
X-^XQ

X 6 E\{X.Q}

then ^(E\{xo}) 15 an ^-fine neighborhood of XQ and E is p-thin atXo.

Proof. - We may assume that u is defined in all of IR", see [K],
and that XoeE\E. Then there is a neighborhood U of XQ such that
u(x) ^ Y > M(xo) for each x e £' n £7. Since the c^-fine neighborhood
V = {x e £/:M(x)<y} of Xo is contained in [£', the first assertion is
proved.

The second assertion follows from [HK3, 4.1 and 4.3].

For the next lemma recall that if E is a subset of an open set Q,
then the ^/-potential of E in Q is the function R^x) = J^(Q;j^)
defined as

^(x) = liminf^GO,
where ^x

^ = î(ft;^)
== inf { u : M ^ 0 and j^-superharmonic in Q, and u > 1 in £'}.

The function ^ is e^-superharmonic in ^ and ^^(xo) = 1 if E is not
p-thin at XQ e Q; for these results see [HK2] and [HK3].

3.9. LEMMA. - Let B = B(xo,r) be a ball and 0 < y < 1, Suppose

that E a ^ B is an open set and let u = R^B,^) be the j^-potential

of E in B. There is a constant c = c(n,p,a,P) > 0 such that if

cap,(^2?)
^ ^ cj ,

cap,(^,2?j

then infQB^^u < y for each pe(-^)'
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Proof. - Let E, = [x € B:u(x)^} and suppose that SB(x^p) c E,

for some P^^)- Then it follows from [HK3, 3.2] that

Y^cap^CE,^) ^ ccap^(^,^)
^ ccap^(^(xo,p),5)

^ ^cap^Q^^,

where c = c(n,p,a,P) > 0; the last inequality holds since if 8 > 1, then

cap^(^(xo,5), B(xo,Ss)) = cs"-^

where c depends only on 8, n, and;?.

The lemma follows.

Proof of Theorem 3.2. - Suppose first that U is an j^-fine
neighborhood of Xo. Then there are ^-superharmonic functions u,, . . . , ̂
defined in a ball ^ = ^(xo,r) and constants c, > u,(x,), i = 1 , . . . , ' fe ,
such that

Xo e F| {x e ̂  : ̂ (x)<cj c U.

Therefore

^U r ^ B c U {x6^:u, . (x)^cj ,
1=1

and by Lemma 3.7 the set {x e B: ^.(x)^c,} u (^ is p-thin at x, for
each i = 1, . . . , k. Consequently, [U is p-thin at XQ as required.

To prove the converse statement, we use a separation argument
which was introduced in [LM] and further exploited in [HK3]. Thus,
denote E = ^U and suppose that E is ^-thin a txo. We may suppose

that E c= B^x^-\ and that E is open [HK3]. Let

D = Q fon^(xo,2-0)\5(xo,42-^-l)y
7=1 \ J /

We shall show that there exists an ^-superharmonic function v^ in a
neighborhood of x, and r > 0 such that v, | ̂ (.0,.)) = 1 while v,(x,) < 1.
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This means by Lemma 3.7 that [Z) is an j^-fine neighborhood ofxo.
A similar construction shows that the complement of the set

, D' = Q (^B^l-^E^-l^-1))
7=1 \ ° ° /

is an ja^-fine neighborhood of Xo as well. Since E <= D u D ' , this will
establish the desired conclusion.

To start the construction, let s > 0; we shall specify c later. Choose
JQ such that

(3.10) Z a ^ < 8 ,
j=i

where
a - ̂ P^^^-i)

7 cap^(^,^,_0

^ = l"^-^, and Bj = ^(xo,r,); note that the Wiener sum (3.10) and
the Wiener integral (3.1) converge simultaneously. Next, let Dj = D n Bj
and let Uj = R^(Bj.^^) be the ^-potential of Dj in ^-i. If Sj is

the boundary of the ball .^j+i, then 5', c= Bj\Bj+^ and

(3,1) ^W^>o.
dist(^,Xo)

By Lemma 3.9 there is x on 5'; such that

(3.12) u,(x) ^ ca/41.

Since Uj is j^-harmonic in Bj\Dj, see [HK2], then (3.11), (3.12), and
Harnack's inequality yield

i
Uj < ca/~1 = bj on Sj,

where c is independent of 7.
co ^

To this end, choose s > 0 in such a way that Y, bj < - ' We show
j= i ^

that Uo = ^i is the desired e^-superharmonic function. Indeed, since Z>i
is open, u^ = 1 in Z>i [HK2], and it remains to show that ^i(xo) < 1.
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Let

Vi = 1 - b,
and

min(i?i,M2) in -^26
w, =

in B,\-B,.
b

Since i;i < 0 on 5'i, Wi is Isc, and it follows from the comparison
principle that Wi is j^-superharmonic in BQ. Since v^ is the mini-
mal ja^-superharmonic function in BQ lying above the function

Y — b\|/i = —)1——^ where 5^ is the characteristic function of Z>i, we obtain
' 7

Wi > Vi in ^o- In particular, u^ > ^i in -^2, and hence6

Mi — &i < ^2 < ^2 on 5'2.

We continue in this way; write

Vl - ^2
V2 = 1 -

and observe that v^ is the minimal j^-superharmonic function lying

above v|/2 = ———• Therefore the function
1 - b.

min (1:2,^3) in -^3,b
w, =

in Bo\,B3,
b

satisfies \v^ ^ v^. Thus

1:1 - &2 < MS < ^3 on Ss
oror

Mi < fci + ^2 + ^3 on 5'3.

Repeating this argument, we arrive at the estimate

"i < Z bj on S k ,
j= i
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and therefore
co ^

Mi(Xo) ^ Z fc, <-
J-l z

as desired.

This completes the construction for VQ and Theorem 3.2 is thereby
proved.

From now on we shall write Tp instead of T^ and call Tp the p-/ine
topology. Similarly we use the expressions p-fine neighborhood, p-fine
limit, etc. As mentioned earlier, it follows from Theorem 3.2 that the
fine topology Tp coincides with the (l,p)-fine topology introduced in [M].

It was proved in [HK3, Section 4] that if p > n — 1, then a set E
is p-thin at XQ if and only if there is an j^-superharmonic function u
defined in a neighborhood of XQ satisfying (3.8). Thus we obtain Cartan's
theorem at least for p > n — 1, cf. [D, p. 168].

3.13. THEOREM. - Let E be a set in V, XQ e E\E, and p > n - 1.
Then XQ is not a p-fine limit point of E if and only if there is an
^-superharmonic function u in a neighborhood of \o such that

lim inf^x) > u(xo).
X-^XQ
X€ E

It was conjectured in [HK3] that the above mentioned characterization
of p-thin points via ja^-superharmonic functions is valid for all p e (l,n].

3.14. Remarks. — (a) It follows from Theorem 3.2 that no non-
empty p-finely open set has zero p-capacity; what is more, each non-
empty p-finely open set has positive (outer) n-measure. In particular,
no countable set is p-finely open and each countable set is p-finely
closed. Therefore

(i) (IR^Tp) is not separable;
(ii) a sequence Xj converges to x in the p-fine topology if and only

if Xj = x but finitely many 7 ;
(iii) no point x in (R" has a countable neighborhood base in T?

whence (IR",Tp) is not metrizable.

(b) Another consequence of Theorem 3.2 is that the p-fine topology
Tp is strictly contained in the density topology of R ^ ; it follows, in
particular, that each euclidean domain is p-finely connected, cf. [AL].
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(c) If p = 2, then j^-superharmonic functions generate the classical
fine topology of Cartan regardless of the operator ̂  ; note that the
equation (1.1) may still be nonlinear. For a proof in the classical linear
case see [LSW].

Theorem 3.2 and the Kellogg property imply the inclusion relations
among p-fine topologies. The following result also follows from Theorem A
in [AH].

3.15. THEOREM. — If p < q, then Tp strictly includes Tg.

Proof. — We first show that Tp\Tg is not empty. Let K be a compact
set such that capp K = 0 and capg K > 0. By the Kellogg property, see
[HW], there is a point XQ e K such that A^Xo} is not ^-thin at Xy. Thus
((A^V^o}) is not a ^-fine neighborhood of XQ although it is trivially a
p-fine neighborhood ofxo.

That Tp includes Xg is an immediate consequence of Theorem 3.2
and the following elementary lemma.

3.16. LEMMA. - Let 1 < p < q ^ n , r > 0 , a n d E ^ B = = B(x,r).
Then there is a constant c == c(n,p,q) > 0 such that

(^p,(E,2B)\p^ ^ /capJ l̂S)^
Vcap, (B,2£)) ^ c ̂ cap, (£,2B))

Proof. — We may clearly assume that E is compact. Let
ue C^(1B) such that u ^ 1 on E. Then Holder's inequality yields

/» / /• \ r
1 n(q-p) I [ \q

IVul^Ac ^ cr~T\ |VM|^X .
J2B \j2B /

SSince caps (B,2B) = cr71"5, 1 < s ^ n, we obtain

f^p,(E,2B)\p^ ^ /cap,(^22?)\
Ycap,(^25); ^''^(^25);

^(p-i)
^^,25);

^ /cap,^^)^
^ YcapJ5,2^V

as desired.
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We close this section by giving an alternative characterization for
p-finely continuous functions, cf. [D, p. 179]. Let Ef = E{ be the set
of p-fine limit points of a set E in R". Then, by Corollary 3.4,

Ef = [x e 1R": E is not p-thin at x} c= E

and for any \o e IR",
Ef = (^{xo}/.

3.17. THEOREM. - Suppose that E c= IR", XQ^E^E, and g :
E -^ R = [-00,+00]. TTien

Tp - lim g(x) = ^

if and only if there is a p-fine neighborhood V of XQ such that

lim g(x) = ' k .
X-^XQ

xe Er^V

Proof. - For convenience we assume that ^ e R. If

Tp — lim g(x) = ^,
X-^XQ

xe E

it follows from Theorem 3.2 that the set

E, = ^xeE:\g(x)-^\ ^ 1 L

j = 1, 2, . . . , is p-thin at Xo. It is easily seen that there is a sequence
of positive numbers rj such that

00

E^ = U(^n2?(xo,r,))
7-1

is p-thin at Xo, cf. [M, Proposition 3.1]. The set V = (2^ is the desired
p-fine neighborhood of XQ since

lim g(x) = ^-.
X-.XQ

xeEr^V

To prove the converse, fix e > 0. Then there is 8 > 0 such that
|g(;>c)-X| < e whenever x e E n V n 5(xo,8). Since V r\ B(xo,S) is a
p-fine neighborhood of Xo, the assertion follows.
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A function g is called p-continuous at a point XQ e R" if there is a
set E c= IR^Xo} such that E is p-thin at Xo and g\^ is continuous
a tXo . Now Theorem 3.17 implies

3.18. COROLLARY. — A function g\ W1 ->R is p-finely continuous at
XQ e iR" if and only if g is p-continuous at Xo.

4. Arcwise connectedness of p'fine topology.

The following important result is due to D. R. Adams and J. L. Lewis
[AL] : If U is p-finely open and XQ e U, then there is a p-finely open
neighborhood V of XQ such that any t\vo points x,y e V can be joined by
a coordinate path y in U of length at most c\x—y\, c = c(n,p) > 0.
In particular, each p-finely open and p-finely connected set is arcwise
connected.

By a coordinate path we mean a countable union of (possibly
degenerated) line segments parallel to the coordinate axes.

Adams and Lewis, in their proof, worked with Bessel capacities, but
their ingenious proof could be written in terms of p-capacities and
e^-potentials. Unfortunately, the proof in [AL] leaves it open whether
the path y can omit the central point XQ . This property is required in
Section 5.

4.1. LEMMA. — Suppose that U is p-finely open and that Xo e U.
Then there is a p-finely open neighborhood V of XQ such that any t^o
points x,y e V\{xo} can be joined by a coordinate path 7 in U\{xo} of
length at most c\x—y\, c == c(n,p) > 0.

Proof. — Let V be a p-finely open neighborhood of XQ in U with
the aforementioned coordinate path property of [AL]. Pick
x, y e V n B(xo,ro) where y-o > 0 will be determined later. We may
suppose that XQ = 0 and \x\ ^ \y\. Let L^ be the line segment from
y to 0 and let z be the point on Li with | z \ = | x |. Let L^ be the
shortest arc from z to x on the sphere 52?(0,|x|); then Lz is in the
two dimensional plane spanned by x, y and 0. Note that we may have
z=y or z=x. Choose points Zo==y ; Zi , . . . , Zk=z ; z^+ i , . . . , z^+i=x
on Li u La and positive numbers po, pi, . . . , p^+i inductively as follows :

Let ZQ = y and always set pj = — where c is the constant of [AL].
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If Zo, . . . , Zj Sire chosen then either z e B(zj, pj) or z ^ B(zj, pj); in the
first case set z;+i = z and in the latter case let z,+i be the point in Z/i
with [Zj-nl = \Zj\ — p j . We eventually obtain z = Zk for some integer
k > 0. If x e B(Zk, p k ) , then set Zk+i= x and stop; in this case <f = k .
If x ^ 2?(z^,pfc), then for j = 1, 2,... let Zk+j be the point on Lg with
Iz^-z^-il = pk+j-r Let z^ be the first point with x e B ( z ^ p ^ ) ; then
set z^+i = x and stop.

We shall next show that if y-o is originally chosen small enough,
depending only on XQ and ¥ , then each ball Bj == B ( z j , p j ) ,
7 = 0 , . . . , ^ + 1 , contains points from V. Indeed, if 2?j; cz (F, then

lC^(0,2|z,|)| 1^,1
v • / l^(0,2|z,|)| ^ l^(0,2|z,|)| ^

where c depends only oil n and p. On the other hand, since (F is
p^thin at 0, the n-density bf"^V is zero at 0; hence choosing y-o ^ \Zj\
small enough contradicts (4.2). Thus Bj n V ^ 0 for each
j = 0, . . . , ^ + 1.

To this end, pick Wy e 2?j, n )^, 7 = 0, . . . , / + 1, Wo = ^, vv^+i = x
and let Y^ be a coordinate path joining w, and w^+i in £/ such that

length (y^c w^.-w^il. Since |w,-w,+i| < 2p^.+p,+i <-( |w^[+ |w^i | ) ,
^

we see that jj does not go through 0. Thus y = (J y^ is a coordinate
7=0

path which joins y and x in U\{xo} with
<f

fen^r/i (y) ^ c ^ [w^.-w^il ^ cILiuLgl ^ c x-^|.
7=0

This completes the proof of the lemma.

4.3. Remarks. - (a) If j? ^ n - 1, it is not true that each arcwise
connected p-finely open set is p-finely connected; the example of
B. Fuglede [F3] can be easily modified to cover all values 1 < p < n — 1.
It can be shown that an arcwise connected p-finely open set is p-finely
connected for n - 1 < p ^ n; for p = n = 2 see [F3].

(bj Let U be a p-fine neighborhood of XQ and suppose that Q = U\{xo}
is open in the usual topology. Then the p-finely open neighborhood V
of XQ in Lemma 4.1 can be chosen so that V\{xo} is, in addition, open.
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To see this let V first be a p-finely open neighborhood of XQ given by
Lemma 4.1. Put

V = (J ^(x,d(x,3Q)/2).
:ce7\{;co}

Then V c= Q is open and V u {Xo} => ^; hence F7 u {Xo} is a p-fine
neighborhood ofxo . To prove the coordinate path property of V let
Zi^e V . Pick X y e V\{xo} such that z^ e B(Xj,dj/2), dj = d(Xj,8Q),
j = 1,2. Let y' be a coordinate path joining Xi to ^2 in Q with
length (y') ^ c l X i — X g l where c is the constant of Lemma 4.1. Suppose
first that max(rfi,^2) ^ ^ [ Z i - Z z I - Let y be a coordinate path from Zi
to Zg consisting of y' and of two coordinate paths y, from Xj to Zj in
B(Zj,dj/2) with lengthy ^ ^/n\x,-z^ j = 1,2. Then

(4.4) lengthy ^ c(\x,-z,\ + Izi-^l + 1^2-^1) + ^n(d^d^l
^ (3c+2^/n)|zi-Z2|.

Hence y has the desired property in this case. If max (^1,^2) > 2 |zi-Z2| ,
then we may assume that rfi = max^i,^)- Now Z i , Z 2 e B(x^,d^) and
hence Zi and Z2 can be joined in Q by a coordinate path y with
length (y) ^ ^ / ^ [ z i — Z a l . Thus in both cases Zi and Za can be joined in
Q so that (4.4) holds.

(c) Let 17 (J {xo} be a p-finely open neighborhood of XQ. Then there
exists a unique euclidean component Uo of £/ such that Uo u {^0} is a
p-finely open neigborhood of Xo. To prove the existence of Uo let V be
a p-finely open neighborhood of XQ in £7 with the coordinate path
property. Choose Xi e V\{xo} and let £/o be the Xi-component of U.
Since £/o u {xo} =» V, UQ u {Xo} is a p-finely open neighborhood ofxo .
The uniqueness is due to the fact that {Xo} is not p-finely open.

Note that if p > n — 1, then {Xo} is component of ((£/o\{xo})
because there is a sequence of radii r, -> 0 such that SB (Xo,ri) c: Uo,
cf. [HK, 3.4]. For p ^ n — 1, this is not true.

5. Fine limits of QR and BLD maps.

In this section we study the behavior of maps of bounded length
distortion and quasiregular maps at thin boundary points.

5.1. BLD and QR maps. - Let Q be an open set in IR\ A
continuous map /:Q -> IR" is quasiregular, abbreviated QR, if / is in
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loc ̂ (0) and \f'{x)\n ^ KJ(x,f) a.e. in Q for some K ^ 1; / is of
bounded length distortion, abbreviated BLD, i f / i s in loc W\(p), for
some L ^ 1 and a.e. x e Q , |h|/L ^ \f'(x)h\ ^ L|/i| for all h e R"
and J(x,f) ^ 0. Here J(x,f) is the Jacobian determinant and /'(x) is
the (formal) derivative of / at x. A homeomorphic QR map of Q onto
/(Q) is called quasiconformal. Note that a 2?LZ) map is QR but the
converse is not true.

The classes of QR and BLD maps are closely connected to the
quasilinear operators ^ of Section 2. Let Up, 1 < p ^ n, be the class
of operators ^ satisfying (2.1)-(2.5) for some 0 < a < P < oo . If
j^ellp, then a BLD map /: Q-^ R" induces an operator /W in
0 x IR"; this operator can be extended to R" x [R" and the extended
operator, denoted again by /W, belongs to Up. V f'.^l->W1 is QR
and if e^ e U^, then /W e Un' In both cases u of is /W-harmonic or
/W-superharmonic whenever u is ja^-harmonic or j^-superharmonic,
respectively. For these and other properties of BLD and QR maps see
[GLM1] and [MV].

5.2. Fine limits of BLD maps. — A function u of Q into [R7", m > 1,
is said to be locally L-lipschitzian if

(5.3) \u(x)-u(y)\ ^ L x-y\

whenever the line segment from x to y lies in 0..

5.4. LEMMA. — Suppose that u: Q -> [R7" is locally L-lipschitzian. If
(Q is p-thin at XQ e 3Q, th^n M has a p-fine limit at XQ .

Proof. — Let U = Q, u {xo}. Then U is a p-fine neighborhood of
XQ and by Lemma 4.1 there is a p-finely open neighborhood V c= U of
Xo such that any two points x, ^ e ^\{xo} can be joined by a coordinate
path y c: Q. of length at most c \ x — y \. Let s > 0 and let

/ g \
x, y e B( XQ,,— ) n (V\{xo}). Choose such a coordinate path y joining

\ 2CL/
x to y inQ. Then y = u y; where each y; = [x,,^] is a line segment
from x, to yi inO. Thus (5.3) yields

\u(x)-u(y)\ ^ ^\u(x;)-u(y;)\
^L^\x,-y,\ ^ cL\x-y\

and since x, y e 5(xo,£/2cL), we obtain |M(x)-u(^)| < 8. Hence u(x)
has a limit as x approaches Xo in V. The lemma follows.
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By [MV, Lemma 2.3] a BLD map is locally lipschitzian. Hence
Lemma 5.4 yields.

5.5. THEOREM. — Suppose that f: Q -> R" is a BLD map and that
XQ e 80,. If (Q ;5 p-thin at XQ, then f has a p-fine limit at XQ.

5.6. Remarks. — (a) Let u: Q -> R"1 be a locally lipschitzian function
and suppose that (0 is p-thin at XQ e 3Q. By Lemma 5.4 and
Theorem 3.17 there is a p-fine neighborhood V of Xo such that

lim u(x) = a e IR"
x-^xo
:ce y

exists. By Remark 4.3., ^\{xo} can be chosen to be a domain inQ.

(b) Let (Q be p-thin at XQ e 30. A ALD map/: Q ̂  R71, and hence
a locally lipschitzian map, need not have a limit at XQ . Simple examples
exist due to the fact that Q can have a sequence of components Q(
converging to XQ . Here we show that the limit need not exist even if
f2 is a domain. We produce an example for n = 2 ; there are similar
examples in all dimensions, see also Remark 5.11. Let a: [0,oo) -> Q be
a half open C^arc of infinite length in the closure of the cube
Q = {xeR2:\Xj\ < 1,7=1,2}. Assume, furthermore, that a is para-
metrized by arc length and that a(0) = — ^i, a^O) = ^i, a(^) e Q for
t e (0,oo) and a(() -> 0 as t -> oo . For x e a let N(x) be the line
through x, orthogonal to a. Then it is not difficult to see that there
is a neighborhood U of a such that if N(x) is the x-component of
N(x) n U, then

(i) Q n U = U ̂ (a(r))
00

and
(ii) N(x) n N(y) = 0 for x + y .

Write G = U u (IR2^) and define a continuous map g : G -> R2 as
follows : g(x) = x for x € R^Q and for x e a, g\N(x) ls an isometry
into the line orthogonal to Xi-axis at the point (t-l)^i; here t ^ 0 is
such that x = a(Q. Then g is a 2?LZ> map which is unbounded in U.
To complete the construction choose points xJ on the positive real axis
and numbers r; > 0 such that

(a) Xs -^ 0, ^ -^ 0,
(b) the cubes ^ centered at xj and of side length Irj are disjoint
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and
(c) the set u Qj is p-thin at 0.

Fix j and let (p,(x) = r,(x+x7). Write U, = (p,(£7). Then

Q = R\({0} u U (QW)}
\ J /

is a domain and R^Q is p-thin at OeSQ. The map /: Q -> R 2 ,

^^ = f-^ x e R ^ u Q ,
J v / [^o^o^"1^), xea .n £/,,

is ALD, has a p-fine limit 0 at 0 but does not have a limit 0 since /
is unbounded at every neighborhood of 0 in Q.

If/ is a BLD homeomorphism in a domain and if p > n - 1, then
Theorem 5.5 can be strengthened. We first prove a lemma.

5.7. LEMMA. - Suppose that G is a domain in R" such that (G 15
p-thin at XQ e 8G and that f is a homeomorphism of G into R" having a
p-fine limit at XQ . If p > n — 1, then f has a limit at XQ .

Proof. - By Theorem 3.17 there is a p-fine neighborhood V of XQ
such that

(5.8) lim /(x) = a.
X^XQ

X 6 V\{XQ}

We may assume that a e R". Since p > n - 1, [HK3, 3.4] implies that
there is a sequence of radii y\ \ 0 such that 8B(xo,ri) c= V. Write
Ei = f8B(xo,ri) and let Fi be the unbounded component of (£';. If
F^+i => ¥j for some 7, then

(5.9) ^i=^, i ^ j .

To see this note that since / is a homeomorphism in the domain G,
Ej+i separates Ej and Ej+z inIR". Thus Ej+z c [Fj+^; this implies
7^+2 =) F,+i and we can proceed by induction to obtain (5.9) for all
i > 7 .

Next we show that for some 7, F,+i =» F^. Note first that F,+i c= F;
for all i is impossible because by (5.8), diam (£',) -> 0. Pick fe such
that F^+i is not included in F^. If F^+i^ ̂  we may take j = k.
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Suppose that F^+i 43 FA. Now £^+1 <= F^ and ^ c ^k+i and hence
£^+2 must lie in [F^+i because £^+1 separates E^ and £^+2 in W1.
Thus Ffc+2 => Fk+t and we may choose j = k + 1.

The inclusion (5.9) means that /(G'n5(xo,r,)) c: (F, for f ^ j and
hence diam (/(G'n2?(xo,^))) = diam(£',). Since diam (£\)->-0, this
implies that f(x) -> a as x tends to XQ inG.

Now Theorem 5.5 and Lemma 5.7 yield.

5.10. THEOREM. — Suppose that f is a BLD homeomorphism of a
domain G into 1R" and that [G is p-thin at XQ e 8G. If p > n - 1, then
f has a limit at XQ .

5.11. Remark. - If p ^ n - 1 and if (G is p-thin at Xy e 8G, then
(G can contain a set similar to the well known Lebesgue spine. Now
a slightly modified construction of Remark 5.6. (b) can be used to
produce a BLD homeomorphism of a domain G into R" without limit
a t^o - Thus the assumption p > n — 1 is necessary in Theorem 5.10.

5.12. Fine limits of QR maps. - A QR map /: Q -> IR" need not
have an n-fine limit at a point XQ e 5Q where |[Q is n-thin. A
counterexample is the plane analytic function f(z) = ^inQ = i?(0,l)\{0}
with XQ = 0. Similar examples exist in all dimensions. However, if /
omits a set of positive n-capacity, then the situation is different. The
following theorem was recently proved by B. Fuglede for plane analytic
functions [F4].

5.13. THEOREM. — Suppose that f: Q -^ R" is a QR map and that
(Q is n-thin at X o e < 9 Q . If the set (/(Q) has positive n-capacity, i.e. it
is not n-polar, then f has an n-fine limit at XQ .

Contrary to the BLD cases studied in Theorem 5.5 and 5.10, the
n-fine limit o f / a t Xo in Theorem 5.13 may be oo . Hence we shall use
the compactified space R" = 1R" u {00} endowed with the spherical
metric

q(a,b) = l a - f c K l + l a l T ^ l + l & l 2 ) " 2

for a + oo T^ b and q(a,co) = (l+|a|2) 2 .
We recall that a closed proper subset F of 1R" has positive

n-capacity, abbreviated cap^F> 0, if cap^(£',(F) > 0 for some non-
degenerate continuum E in ^F, cf. [MRV2, p. 6]. We need the following
lemma.
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5.14. LEMMA [MRV2, 3.11]. - Suppose that E is a closed proper
subset of R" with cap^E > 0. Then for every 8 > 0 there is 8 > 0 such
that cap^(F,[£') < 8 implies q{F) > c whenever F is a continuum in [ E .

For Theorem 5.13 we still need a lemma.

5.15. LEMMA. - Suppose that (Q 15 n-thin at X o G ^ Q . Then there
is a domain D in 0 and a sequence of positive numbers r, -> 0 such that

(i) D u {xo} is an n-fine neighborhood of XQ ,
(ii) DI = B(xo,rt) n D is connected, and

(ill) for each i = 1, 2,... and every continuum F c Z),,

cap,(F,Q)< 1/f.

Proof. - We first choose a domain Qo c: ^ such that Qo ^ {^0} is
an n-fine neighborhood of Xo, cf. Remark 4.3. (c). By enlarging E = (Oo
slightly we may assume that E is not n-thin at any x e E\{xo}, see
[LM, 3.5]. It follows from Theorem 3.13 that there are 0 < y-i < y-o such
that

u(x,) < 1

where u is the n-potential (i.e. the j^-potential for the n-harmonic
operator, ^(x,h) = l/il""2^) of B(xo,ri) n E in ^ = 5(xo,ro). Fur-
thermore, we may assume that SB c: Qo- Choose y such that
u(.xo) < y < 1 and let

D = {xe Br\0.o: u(x)<j}.

Then D c= Qg is open and D u {xo} is n-finely open. We show that D
is connected: let D ' be the component of D which touches SB. If D w

is another component of D, then D" c: c= 2?. Define

,̂  = J^OO, x e B ^ a , \ D "
\. ) \ r\ ll[y, x e D " ,

it follows from the comparison principle that u is n-subharmonic in
B n OQ since M is n-harmonic there. Moreover, since M = 1 in
B(xo,ro) n £'\{xo}, u - u e W^{Br\^o) whence [HK1, 2.7] implies that
u = M in 5 n Oo • In particular, D " = 0 and Z> is therefore connected.

To complete the proof choose a sequence of radii r, -> 0 such that
35, c= D where 5, = B(xo,r,), cf. [LM, 3.16] or [HK3, 3.4]. Fix e > 0.
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Since

IV^r dm < oo,

there is an integer i = f(e) such that 2?, c= B and

(5.16) IV^r dm < 2-7l- l(l-Y)ne.

Next choose k = fe(e) > i so large that

(5.17) cap,(^,^,) < 2-^- le.

Define
. ( \ - u \v = mm -——? w

V - Y /

where w is the n-potential of ^ in B^ i.e.

w(x) =

^-^oPlog ^ .
x e Bi\Bk

•oe^

\ 1, x e Bk.

Let F be a continuum in D n ̂ . Then u e ^,o(^) is continuous in
Bi\{xo} and u ^ 1 in F. Thus it follows from (5.16) and (5.17) that

cap^(F,Q) ^ cap^(F,^nQo)

^ Wdm
JB,^QB^Q

<(l-y)-"2" | Wdm + 2" | IVwI^m
JB( JB,

< £.

Choosing inductively an increasing sequence of integers k, corres-
ponding to fe(s) for s = l / i and putting D, = B^ n Oo completes the
proof since SB),, c: D.

Proof for Theorem 5.13. - Let D and r, -^ 0 be as in Lemma 5.15.
We may assume that / is nonconstant in D. Since the sets D, are
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connected the cluster set o f /a t XQ along D,

c(/,xo,p)= n/w),
i

is a compact and connected set of R"; here the closures of /(A) are
taken in R". Let £ > 0. Since E = IR^VCD) is a proper closed subset
of W with c a p ^ £ ' > 0 , Lemma 5.14 gives 8 > 0 such that
cap^(FV(Z))) < 8 implies q{F') < e whenever F ' is a continuum in
f(D).

Let J^(/) denote the inner dilatation of /, see [MRV1, p. 14], and
fix i such that Ki(f)/i < 8. Let F be a continuum in D,. Then F ' = f(F)
is a continuum in/(Z)) and the fundamental capacity inequality [MRV1,
7.1] and Lemma 5.15 yield

cap,(FV(D)) ^ W)cap,(F,2)) < w) < 8.

Hence q ( F ' ) < e and since this holds for all continua F <= 2), and D,
is connected, we obtain

q(f(D!)) ^ e.

This shows that C(f,Xo,D) is a single point a e R" and thus /(x) -^ a
as x ^ Xo in D. The theorem follows.

5.18. Remark. — If / is a quasiconformal map of a domain G into
1R\ i.e. a QR homeomorphism, and if (G is n-thin at Xo e SG, then/
has a (not necessarily finite) limit a tXo . This was proved in [MS, 4.1];
it follows also easily from Theorem 5.13 and Lemma 5.7.
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