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HARMONIC MORPHISMS
ONTO RIEMANN SURFACES

AND GENERALIZED ANALYTIC FUNCTIONS

by Paul BAIRD

Introduction.

Let P(w,z) be a polynomial in the complex variables w and
z with constant coefficients, having degree n in w. It is well
known from the theory of algebraic function that the equation

P(w,z) = 0 (1)

locally determines n function elements w^ ,w^ , . . . ,H^ which
vary analytically as functions of z . These n function elements
determine an algebraic function w together with its associated
Riemann surface. This is the starting point for the theory of
compact Riemann surfaces [19]. A generalization of these ideas to
higher dimensional domains was considered by Jacobi [18].

Let TT (x ,y ,z ,<p) be an analytic function in the real variables
x ,y ,z and the complex variable ^, such that TT satisfies the
equations

(2)

= 0. (3)

Suppose that the equation

TT {x , y , z , <^) = 0 , (4)

Key-words: Harmonic morphism — Horizontally conformal — Holomorphic —
Harmonic — Riemann surface — Conformal vector field - Generalized
analytic function — Hopf fibration.
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locally determines ^ as a complex valued function of x , y and
z . Then an easy calculation shows that <p must also satisfy
equations (2) and (3). This property was observed by Jacobi in [18].

We will regard equation (4) as the analogue of the algebraic
equation (1), and the function </? as a generalized analytic function.
In general ^ must be considered as a multiple-valued function.

Independantly of these ideas, harmonic morphisms were
introduced in 1965 by Constantinescu and Cornea [5] as a natural
generalization of the holomorphic mappings between Riemann surfaces.
These mappings were defined in terms of harmonic spaces as defined
byBrelot [3].

Harmonic morphisms between Riemannian manifolds were
first studied in some detail by Fuglede [14] and Ishihara [17]. They
are characterized by the property that they pull back germs of
harmonic functions to germs of harmonic functions. Thus if
{ p : M —> N is a continuous mapping between Riemannian
manifolds, then ^p is a harmonic morphism if /o ^ is a harmonic
function on ^^(V) for every function / which is harmonic on an
open set V C N . If dim M < dim N then every harmonic morphism
^p is necessarily constant, and by choosing smooth local harmonic
coordinates on N it follows that any harmonic morphism must in
fact be smooth [14].

In [14] many of the basic properties of harmonic morphisms
are established. In particular they can be characterized as mappings
which are both harmonic and horizontally conformal (this result is
also obtained in [17]), where we say that ^ is horizontally conformal
if for each x ^ M where cl^p(x) ^= 0, the restriction of d^p(x) to
the orthogonal complement of kerc^(x) in T^ M is conformal and
surjective. In the case when (p is a complex valued function, the
condition that <p be horizontally conformal is equivalent to
equation (3) above. Thus in this case harmonic morphisms are
precisely the generalized analytic functions considered by Jacobi
in 1847.

More recently harmonic morphisms have been seen to play an
important role in stochastic processes. In the paper of Bernard,
Campbell and Davie [2], it is shown that a mapping between open
subsets of Euclidean space is Brownian path preserving (see [2] for
definitions) if and only if it is a harmonic morphism. They study in



HARMONIC MORPHISMS ONTO RIEMANN SURFACES 137

detail the case when M is an open subset of R3 and N a domain in
the complex plane C. One of the problems they pose is to classify
all such harmonic morphisms. That classification at least locally is
obtained here in Theorem (3.5).

In their paper, Bernard, Campbell and Davie observe that in the
case when M is open in R'" and N is a domain in C, then the
fibres of (p are minimal sub manifolds of M. The geometric properties
of the fibres of a harmonic morphism have been further studied in
[1 ]. It turns out that the case when N is a Riemann surface is special.
For if ^ : M ——> N is a submersion from an oriented Riemannian
manifold M onto a Riemann surface N , then

1) If ^ is horizontally conformal, then ^ is harmonic and hence
a harmonic morphism if and only if the fibres of ^ are minimal in
M [ l ] .

2) The horizontal distribution, which is a distribution in the
tangent bundle TM, is 2-dimensional, and hence has associated with it
a natural almost complex structure determined by rotation through
7T/2 in the horizontal space. In the case when ^p is a harmonic mor-
phism this induces a natural complex structure on the space of fibres.

In the case when M is open in R 3 and N is a Riemann surface,
then for <^ : M ——> N to be a non-constant harmonic morphism,
the fibres of ^ must be parts of straight lines in R3 . Such a fibre can
be expressed as the set of points sy + c ( y ) for suitable values of
s ̂  R , where y G S2 determines the direction of the fibre and c (y)
its position in R 3 . The vector c ( y ) can be chosen perpendicular to
y in R 3 and can thus be regarded as a vector in the tangent space
T^ S2 . For <^ to be a harmonic morphism it is necessary and sufficient
that c be a conformal vector field on S2 (Lemma (3.3)). This
results in delightful geometric configurations for the structure of the
domain M. This is described in Sections 3 and 4.

In Section 5, we return to Jacobi's original theme. We explore
the idea of generalizing the concepts of analytic function theory to
higher dimensional domains, showing how it is possible to regard some
of the examples of Section 4 as multiple valued maps. Indeed it turns
out that these maps are solutions of an algebraic equation of the form
(4). In such cases we can take copies of the domain and glue them
together in such a way that we obtain a harmonic morphism from a
3-dimensional C°-manifold onto the whole Riemann sphere S2 .
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This is similar to the way in which the Riemann surfaces of multiple
valued analytic functions are constructed.

In Section 6 we study the case when M is an open subset of S3.
The classification of such maps is obtained in Theorem (6.1) in terms
of holomorphic curves in the Grassmannian of oriented 2-planes in
R 4 .

The problem of finding harmonic morphisms defined globally
on S3 is considered in Section 7. By exploiting the fact that the
Grassmannian of oriented 2-planes in R4 is biholomorphically
equivalent to the product S2 x S2 , we obtain one of our main
theorems:

// ^ : S3 ——> N is a harmonic morphism onto a Riemann
surface N, which is also a submersion, then ^ is the composition
^ = r o TT , where

TT : S3 —> S2 is the Hopfftbration
and

v '• S —> N is a conformed mapping.

In particular if ^ is non-constant, this shows that N must
be conformally equivalent to S2 .

Our approach throughout is to reduce the classification problem
to a problem in holomorphic mappings. The methods used here are
inspired by the striking analogy that seems to exist between horizon-
tally conformal submersions onto a Riemann surface and conformal
immersions from a Riemann surface. Indeed much of the motivation
for this article are the results of Calabi [4] and the more recent results
of Din-Zakrzewski [6,7], Glaser-Stora [15] and Eells-Wood [12],
where the classification of certain harmonic immersions of a Riemann
surface is reduced to a problem in holomorphic mappings.

I would like to thank J. Eells and J.C. Wood, who both read
through my original manuscript and suggested several improvements.
I would also like to thank the referees for many helpful comments
and suggestions. The historical observation that Jacobi was the first
person to consider harmonic morphisms is due to B. Fuglede.

I am especially indebted to the Centre for Mathematical
Analysis, Canberra, for their support during the preparation of this
paper.
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1. The composition properties of harmonic morphisms.

Let <^: M ——> N be a smooth mapping between smooth
Riemannian manifolds and let T^ denote the tension field of
< ^ [ 1 1 ] . Thus ^ is harmonic if and only if it has vanishing tension
field. Henceforth assume all manifolds and maps are smooth unless
otherwise stated.

If x G M is such that rf^(x) =^= 0, let V^ M denote the
subspace of T ;̂ M determined by ker d ^ p ^ , and let H^ M denote
the orthogonal complement of V^ M in T^ M. Henceforth we
will denote by HM , VM the corresponding distributions in the tangent
bundle TM, which we call the horizontal, vertical distributions
respectively.

The map ^ is said to be horizontally conformal if, for each
x €: M at which d^py =^ 0 , the restriction

^JHM:H,M — — T ^ N
is conformal and surjective. That is, for all X, Y G H .̂ M, there
exists a positive number X (x) ̂  R , such that

X(x)2 g(X,Y) = /z(^(X),^(Y)),
where g, h denote the metrics of M, N respectively.

Let C ,̂ denote the critical set of the map <^. Thus C^,
consists of those points x ^ M where d^p^ = 0. Setting X equal
to zero on C^, we obtain a continuous function X : M —> R
called the dilation of ^p .

(1.1) THEOREM [14], [17]. - Let < ^ : M —> N be a smooth map
between Riemannian manifolds. Then <p is a harmonic morphism if
and only if ^p is both harmonic and horizontally conformal.

If </? is a harmonic morphism the critical set C^ forms
a polar set in M. An important consequence of this is that C ,̂
cannot disconnect any open connected subset of M [14].

In general the composition of two harmonic maps need not be
harmonic. However, the composition of two harmonic morphisms
does yield another harmonic morphism.

(1.2) LEMMA . -// (^: M —> N , V/ : N —> P are both horizontally
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conformal with dilations X : M —> R ,jn : N —^ R respectively,
then the composition ^ o ̂  : M —> P is horizontally conformal
with dilation u : M —> R given by v(x) = \(x) jn (^(x)) for
each x^-M. If in addition ^ p , \ p are both harmonic and hence
harmonic morphisms the composition \p° ^ is also a harmonic
morphism.

Proof. — Let g , h , k denote the metrics of M , N , P
respectively. For x G M, Let X, Y G H^ M, where H^ M denotes
the horizontal space with respect to ^ ° <^, then

(V/^)*^(X,Y) =^*^*^ (X,Y)

= ^(^(x))^h(X^)

^^^(^^(X.Y),

proving the first part of the Lemma.
The tension field r^^ satisfies [11]

^°^ = d ^ ( T ^ ) -+- trace v d ^ { d ^ p , d ^ )

=d^(r^) + X 2 ^ .

Thus V/ o ^ is harmonic if both ^ and ^ are, and by the first
part of the Lemma the composition is a harmonic morphism.

D

In particular, if ^ p : M —> N is a harmonic morphism onto
a surface N , and ^ : N —^ P is a weakly conformal map between
surfaces, then ^ is harmonic [9] and the composition V/ o ^ is a
harmonic morphism. Thus the notion of a harmonic morphism onto
an oriented surface does not depend on the conformal structure of
that surface and it makes sense to talk about a harmonic morphism
onto a Riemann surface N .

(1.3) LEMMA. — Let ( p : M —^ N be a horizontally conformal
map with dilation \: M —> R , such that <^ = ? ° TT where
TT : M —> P is a map onto a Riemann surface P , and ^ : P —> N
is a map between Riemann surfaces. Let k , h denote the metrics
of P , N respectively and let v^ v^ denote the (nan zero) eigenvalues
of TT* k with respect to g and ^ ,^ those of ^ * h with respect
to k . Then, either
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(i) 1:1 JLI^ = I^JL^ , or
(ii) u^2 =1^1.

Consequently if ? ^ vmaA/y conformal, then TT ^ horizontally
conformal.

Proof. -Let U , V be open sets on M , P respectively, such
that 7r(U) C V and such that ^ is non-zero on U and ^ is non-zero
on V, for i= 1,2.

By simultaneous diagonalization of the symmetric 2-tensors
TT* k and g , we can choose a horizontal orthonormal basis (^ ,e^)
at each point x ^ V , such that dn(e^) ,dTr(e^) are orthogonal and
of lengths i^2,^2 respectively. Then d^(d^(e^)) ,d^(d^(e^)
are orthogonal and of equal lengths (^ j n ^ ) 1 7 2 , (v^^)112 or
(i^ fji^)112, (u^i)172 respectively, and hence either equation (i) or (ii)
holds at points of U.

By continuity one of equations (i) or (ii) holds at points x
where d^p{x) = 0 . At such points either v^ = i^ = 0 or
^ i = ^ 2 = 0.

(1.4) Example. - Let TT: R^ {z — axis} —> S1 x R be the
map TT(X , ̂ , z) = (xl^(x2 + y2) , .y/s/Oc2 + .y 2 ) , z) onto the
cylinder. Then no map ?: S1 x R —> N between Riemann surfaces
can produce a horizontally conformal map

(^ = ? o TT : R^A [z — axis} —> N.

For the eigenvalues v ^ , v ^ of 7 r * f e , where A; denotes the metric
of S1 x R , are given by v^ = \ / ( x 2 4-^ 2 ) ,^ = 1 . Thus clearly
1^2 / v ^ is non-constant along the fibres of TT .

Let <^: M —^ N be a harmonic morphism from an open subset
M of R'" onto a Riemann surface N. In order to develop our
study further, we will put a number of restrictions on </?.

1) Suppose that d^ i=- 0 for each x G M, and that
2) The fibres of ^ are totally geodesic. Thus each connected

component of a fibre of ^ is part of an (m — 2)-plane in
R'" .

We note that we can associate an orientation to each connected
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component of a fibre of ^p as follows. For each x e= M give H^ M
a natural orientation by requiring that d^ \^ : H^ M —> T ^ N
be orientation preserving. Then we require the orientation on V^ M
together with that on H^ M gives the standard orientation on R'" .

3) Let F be a component of a fibre of <p together with its
induced orientation. We require that no other oriented fibre component
is part of the oriented plane determined by F. (Thus if G is a
component of a fibre of ^p distinct from F contained in the plane
determined by F, the orientation of G must differ from the one
induced by F).

We will clarify these conditions with a number of remarks.
a) In general the Gauss map 7 defined in Section 2 will not

extend over the critical set of a harmonic morphism (c.f. Remark
(2.1)).

b) The fibres of a harmonic morphism onto a Riemann surface
are always minimal [ 1 ]. Thus in the case when m = 3, the
components of the fibres are parts of straight lines in R3 , and are
therefore totally geodesic. Thus 2) is always satisfied in this case.

c) The restriction of a harmonic morphism to any open subset
is also a harmonic morphism. This allows arbitrary closed sets to be
removed from the domain M. We wish to consider, in some sense,
the maximal domain associated to a given harmonic morphism.
Furthermore, as we will show, Lemma (1.5) which follows will not
hold unless condition 3) is satisfied.

Let N denote the space of connected components of the fibres
of ^. Thus N is the quotient space obtained from M under the
equivalence relation "^", where x ^ y if and only if x and y
lie in the same connected component of a fibre of </?. Give N the
quotient topology induced from M. Then ^ factors, ^ == ? ° ^,
where f is the natural projection and ^(e) = ^p(x), for each e ̂  N ,
where x is a representative of e.

(1.5) LEMMA. — The topological space N is Hausdorff.

Remark. — In general N will not be Hausdorff if condition 3)
is not satisfied. For example, let ^ p : R^W —> R2 be the
projection mapping ^p(x ,y , z ) = (x , y ) .
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Then the fibre over the origin in R2 consists of two disconnected
components which correspond to two distinct points of N . No two
neighbourhoods of these points in N can be disjoint.

Proof (of Lemma).—Let ^ , j ^ E N be distinct points. We
will show that y ^ , y ^ have disjoint neighbourhoods.

Let 0 ( 7 ^ — 2 , ? ^ ) denote the Grassmannian of oriented
(m — 2)-planes in R^ , and define 7 : M —> G(m — 2 , R'") by
assigning to each ; y € E M , the oriented (m — 2)-plane 7(x)
determined by the connected component of the fibre of ^ which
passes through x .

Define F : M —> G(m - 2, fQ x FT1 by
r(x)=(70c),c0c)) ,

where c{x) is the orthogonal projection of the origin in R'" onto
the plane determined by the fibre through x .

Then F is smooth and is constant along each fibre component.
Let F ^ , F^ denote the fibre components corresponding to y ^ . Y z
respectively. Then by condition 3), r (F^) , r (F^) are distinct points
in G(m — 2^^) x R'" . Let V^ ,V^ be disjoint neighbourhoods
of r (F^) , r (F2) in G^-^R^) x R^ . Then F~1 (V^) ,r~1 (V^)
are disjoint neighbourhoods of F^ ,F^ in M which project to disjoint
neighbourhoods of ^1,^2 in N . n

(1.6) LEMMA. - The space N can be given
Riemann surface with respect to which ?: N —
Hence, with respect to this structure, ^: M —^
morphism with connected fibres.

the structure of a
•^ N is conformai1^'

N is a harmonic
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Proof. - If x is a point of M, let W C M be a slice about
x . That is W is part of a 2-dimensional plane in M containing x ,
which is everywhere bounded away from the vertical.

Consider the restriction V/ = ^ |̂  : W —> N . Then
r f ^ : T , W — — T^N

is an isomorphism, and by the inverse function theorem, ^ is a
local diffeomorphism at x . Let U C W be a neighbourhood of
x in W over which ^: U —> V/ (U) is a diffeomorphism. Then
U is homeomorphic to a neighbourhood U in N about the
equivalence class e determined by x, and U inherits its
differentiable structure from U. In fact identifying U with an open
subset of Ft2 gives a local chart about e in N . In this way N can be
given a differentiable structure with respect to which both ^ and ?
are smooth maps.

The conformal structure on N is induced by pulling back the
conformal structure on N under ?. Thus if J is the complex struc-
ture on N, we define a complex structure J on N by

Ji;=W)-1 lW(v))

at each point . e < S N and for each i ;£T^N. Clearly ? is holomor-
phic with respect to the complex structure T.

The last part of the Lemma follows immediately from Lemma
(1.3). D

2. Harmonic morphisms and associated holomorphic
immersions into Grassmannians.

Let (^: M ——> N be a harmonic morphism from an open
subset M of R^ onto a Riemann surface N, satisfying conditions
1), 2) and 3) of Section 1.

To the map <p we associate the Gauss map
7 :M ——> G(m-2,FT) ,

into the Grassmannian of oriented (m — 2)-planes in R^ , where
for each x e M, the point 7 (x) G G (m - 2 , R^ ) is determined
by the oriented (m - 2)-plane V^ M translated to the origin in R'" .
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(2.1) Remark. -In general the Gauss map will not extend over
the critical set of a harmonic morphism. For example,

<p: C x C ——> C

given by <^(z, w) = zw is a harmonic morphism with critical set the
origin z = w = 0. The Gauss map does not extend over C^ '

However, Bernard, Campbell and Davie have shown that in the case
when w = 3 , 7 extends continuously over C [2].

For ^ C N , let F^, =^-1^) denote the fibre of </T over y .
Since Py is planar, 7 is locally constant along F Since F is
connected, it is contained in a fibre of 7 and hence 7 factors,
7 = ^ o ^,

G(m -2,^)

for some map \p : N —^ G(w - 2 , R'" ). In fact, for each y G N ,
^ 00 determines the fibre over y as follows.

Locally about y we can lift V/ to a map
^ : N ——^ S^m-l,^)

into the Stiefel manifold of orthonormal (m - 2)-planes in R'" .
Thus if TT : S(m - 2 , R'" ) ——. G(m - 2 , R^) is the canonical
projection given by 7^3,. . ̂ , e^) = (the (m - 2)-plane spanned
by ^3, . . . , ̂  ), then ^ = TT o ^. Writing

^ ( y ) = ( e ^ ( y ) , . . . , e ^ ( y ) ) ,
the fibre over ^ E N has an expression of the form

(^•- -^m) i ̂ (j0+c00,
r =3

where c ( y ) E R'" satisfies (e, ( y ) , c ( y ) ) = 0 for each r = 3, . . . , m,
where < , > denotes the Euclidean inner product and s ^ , . . . , s
range over suitable values.
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The Grassmannian G (m — 2 , R^ ) has a natural almost complex
structure J defined as follows. For each p E 0 ( ^ — 2 , ^ ) , the
tangent space Tp G(m — 2,^) can be identified with V^ ® Hp ,
where V is the subspace of W1 determined by p , and Hp is the
orthogonal complement of Vp in R^ . Since Hp is 2-dimensional,
it has a natural almost complex structure .̂  associated with it,
given by rotation through Tr/2 in H (the direction of rotation is well
defined in terms of the orientation induced on Hp). If

^ G T p G ( m - 2 , F r 1 ) ,
we define Sa by (Ja) (v) = ^ (av) for each v G Vp .

The complex structure J is the standard one induced from the
canonical identification of G(m - 2 , R^ ) with the complex quadric
hypersurface Q ^ _ 2 of complex projective space CP^ -1 [8]. With
respect to this structure G (m — 2 , ̂ m) is a Kahler manifold.

Let 96 , V denote the projections onto HM, VM respectively.
For simplicity assume that <^ has connected fibres and replace N
by N. We may do this on account of Lemma (1.6).

(2.2) LEMMA. — Let <p : M ——> N be a harmonic morphism
with connected fibres satisfying conditions 1 ) , 2) and 3 ) and let
( e ^ , . . . , e ^ ) denote an orthonormal frame field spanning VM about
a point x £ M , and (Y^ , Y^) an orthonormal frame field about
^p(x) on N. Then

i) (d^ (Y^) e,, d^ (Y,) e,) + (d^ (Y,) e, , d ̂  (Y,) e,) = 0
ii) (d^(Y,) e, , rfc(Y,)> + (d^ (Y,) e, , rfc(Y^)) = 0

i i i )<ger fc (Y, ) ,ger fc (Y2)>= o,
for all r , t = 3, . . . ,m.

Proo/. — Taking a representation
w

(53,. . . ,5^) ——> 1, ^e, +c
r=3

of the fibres as before. The vector field Y .̂ (; = 1 ,2) lifts to
m

X , = ^ s,de,(\) +rfc(^.).
r=3
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Since ^(S^^(^) + c(y)) = y , we see that the horizontal
projection 9€ X, is the horizontal lift of Y^.. The condition that
^ be horizontally conformal is therefore equivalent to

OCX, ,9€ X ^ > = = 0 (2.3)

for all choices oforthonormal frame fields (Y^ , Y^) . Now

sex, =^s, se^(Y,.) 4-ge^c(Y,.), ( z = = i , 2 )
thus (2.3) becomes

1/2 1. ^[<ae^,(Yi),ge^(Y,)>
r, t

+<9e^(Y,),ae^(Y^)>]

4- $^[<9e^(Yi), gerfc(Y,)>

+oe^(Y,),9e^(Y,)>]
4-<^e^c(Y^), ge^c(Y2)>= o. (2.4)

Equation (2.4) is a polynomial in ^3 , . . . , s^ whose coefficients
are independant of s ^ , . . . , s^ and valid for all (^3, . . . , s^) in a
certain neighbourhood. Thus each coefficient must vanish.

From the identification of TG^-^,^) with V * ® H ,
we see that rfi//(Y^.): VM —> HM is given by

^(Y,)^=9e ^(Y,),

for each ; = 1 , 2 ; r = 3 , . . . , m . Hence we obtain equations (i),
(ii) and (iii).

D

Let 1^ denote the complex structure of N . Then ^ is ±
holomorphic if and only if J r f i^(Y) = t r f ^ / ^ Y ) for each vector
field Y over N.

(2.5) PROPOSITION. - // ^: M —> N is a harmonic morphism
with connected fibres satisfying conditions 1), 2) and 3), then the
induced mapping ^ : N —> G(m — 2 , R^) is ± holomorphic.
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Proof. — Consider equation (i) of Lemma (2.2). If we write
Y^ = Y and Y^ =3 JN Y we obtain

(i) < r fV / (Y)^ , r fV / (J N Y)^>+<r fy / (Y )^ ,d^ (J N Y)^>=0 ,

for all vector fields Y , and for all choices (^3, . . . , e^). Hence,
for each r = 3 , . . . , m

( d ^ ( \ ) e ^ d ^ ( ^ ^ ) e , ) = 0 , (2.6)

that is rf^^Y)^. is proportional to J^i^Y)^.. If we now let
Y —MY + JN Y)V7, JN Y —> (- Y + ̂  Y)/^7, then (2.6)
becomes

|dV/(Y)^|2 = j r fV /^Y)^ ! 2 . (2.7)

Hence
rf^Y^^iJ^^Y)^,

and V/ is ± holomorphic.
D

Henceforth we will assume that \p is holomorphic. Similar
considerations apply to the case when V/ is-holomorphic.

(2.8) COROLLARY . - The Gauss map 7: M —> G(m - 2, R"")
is harmonic.

Proof. — This follows since ^ is ± holomorphic and
(G (m — 2 , R'"), J) is Kahler, hence V/ is harmonic [9]. Furthermore
^p is a harmonic morphism, so the composition 7 = ^ / 0 ^ is
harmonic.

D

Conversely, suppose we are given a map
V / : N —> G^m-l^)

and a map c: N —> Rw , where N is a Riemann surface. Then
for each y E N, the plane

(53,... ,^)-^^ s , e , ( y ) + c ( y ) (2.9)
r

is determined, where (^3 ( y ) , . . . , e^ (y)) is a local lift of ^ . We
may attempt to form the union of these planes, by removing points
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where fibres intersect. More precisely, suppose
^ : M —> N , M C R ^ ,

is a smooth mapping such that the fibre of ^ over y is given by (2.9),
where s ^ , . . . , s^ range over suitable values.

(2.10) PROPOSITION. - // V / : N —> G(m - 2 , FT) ^ non-
constant holomorphic and c : N —> ̂  satisfies (c(y) , e ^ ( y ) ) = 0
for each r = 3, . . . , m as well as equation (in), for all choices of
frame fields ^3, . . . , e^) representing V/ . Then ^p is horizontally
conformal, and hence a harmonic morphism.

Proof. — If V/ is holomorphic, then for each r = 3 , . . . , m
and for each frame field ( Y ^ , Y^) where Y^ = J14 Y ^ ,

<dV/(Y^,^(Y,)^> =(d^(\,)e^d^^\,)e,)

=<dV/(Y^,J"dV/(Y^>

= 0.

Now letting ^ ——> (^ + ^)/\/"Z we obtain

(d^(^,)e^d^(\^e,)^-(d^(y,)e,\d^(y^)e,}=Q,

that is equation (i) is satisfied.
Assume r is chosen such that d ^ ( Y ^ ) e ^ O . Choose a

horizontal frame (e^,e^) such that e^ is proportional to
rf^(Y^)^ and e^ is proportional to d V / ( Y ^ ) ^ . Then

9e rfc(Y,) = <^ ,dc(Y,)> e^ + (^ ,rfc(Y,)>^ .

From equation (iii)

(e, ,dc(V,))(e,,dc(V^)) + <^ ,dc(Y^)> <^ ,rfc(Y,)> = 0 .

Also

<^,dc(Y^)> = o^.j" ge dc(Yi)>
= (^^^^(^"Yi)) (again using (iii))

=<e^dc(V^),

and (ii) is also satisfied. Thus ^ is horizontally conformal and since
the fibres are minimal, ^ is a harmonic morphism.
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3. The classification of harmonic morphisms from an open
subset of R3 onto a Riemann surface.

Let <^: M —> N be a harmonic morphism from a connected
open subset of R3 onto a Riemann surface N , satisfying conditions
1), 2) and 3) of Section 1.

From Lemma (1.6) we have the commutative diagram

^

N———————^ Gd.R 3 )^ 2 , (3 .1)
^

where N is the space of connected components of the fibres of ^.
Suppose first that ^ is constant, then the fibres of ^ consist

of parallel straight lines. Assume these lines are extended maximally
throughout R 3 , and let E denote a plane orthogonal to these lines.
Then the fibres of <p intersect E in an open set U, and </? factors,
^ = ^ ° TT, where TT: M —^ U is the projection map, and
^: U —> N is conformal. Otherwise said, <p is simply the
composition of the projection mapping onto the plane, followed by
a conformal mapping. Henceforth we will assume that V/ is non-
constant.

By Proposition (2.5) V/ is holomorphic with respect to the
natural complex structure on S2 . Since V/ is non-constant, it has
rank 2, except possibly at isolated points. The composition
7 = ^ / 0 ^ is horizontally conformal and harmonic and hence a
harmonic morphism onto its image P C S 2 . If y G P, then V/~ ^{y)
consists of discrete points x^ , x ^ , . . . , in N, and the fibre of 7
over y is given by the components

Sf —^ s^y + c(x,),

for i = 1 , 2 , . . . , where < c(x^ , y ) = 0 and .̂ range over suitable
values. Thus, for each ;, the vector c(x^ can be considered as
lying in Ty S2 . Otherwise said c is a section of the bundle
V/-1 TS2.
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We wish to reduce the problem of classifying ^ to studying the
harmonic morphism 7. To this end we regard c as a multiple valued
vector field over P, where, for each y ^ P , c(y) can take on any
one of the values c(^.), for x ^ ^ " 1 ^ ) .

Suppose for the moment that on a neighbourhood W C P, we
have made a smooth choice of one of the possible values of c.

We now have the situation where <^ is replaced by 7 in (3.1),
and the problem is to determine c : P ——^ R3 satisfying equations
(ii) and (hi) of Lemma (2.2). In fact, since y = e ^ , equation ii) takes
the form

ii) <YI , dc (Y^ )> 4- <Y^ , dc (Y^)) = 0.
Letting Y, ——> (Y, + Y,)A/7, Y, ——> (Y^ - Y^/^/2,

this becomes
i i ) ' < Y ^ , r f c ( Y ^ ) > = < Y , , r f c ( Y 2 ) > .
Now ge dc (Y,) == < Y ^ , dc (Y^.)) Y, + {Y^ , dc (Y^)> Y^ , for

i = 1,2. Thus equation (iii) can be written as
<Y^ , dc(\,)) <YI , rfcCY^)) + <Y^ , rfc(Y^)) <Y, , dc(Y,)> = 0.

But this is implied by (ii) and (ii)\ We therefore wish to solve (ii)
and (ii)' for c.

We recall that a vector field X over a Riemannian manifold M
with metric g , is con formal if and only if

l / 2 [ g ( V v X , W ) + g ( V w X , V ) ] = f l g ( V , W ) , (3.2)

for all vector fields V, W over M, and for some function
a : M ——> R.

(3.3) LEMMA. — A vector field c over PCS 2 satisfies ( i i ) and
( i i ) ' if and only if c is a conformal vector field on P.

Proof. - Let g denote the metric of S2 , and let ( Y ^ , Y ^ )
be an orthonormal frame field defined on some neighbourhood con-
tained in P.

From equation (3.2), c is conformal if and only if

l /2 [^c(Y, ) ,Y, )+^( r fc (Y, ) ,Y2) ]=0
,g(dcW,V,) =a
^ ( r f c ( Y , ) , Y , ) = ^ ,
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for some function a : P ——> R. But these equations are equivalent
to(ii)and(ii/. o

If c is a conformal vector field over a region P C S 2 , then
under stereographic projection from S2 \ {North pole} —> C, c
is identified with a conformal vector field s on a region Q of C.
At each point z € E Q , 5 ( z ) G T ^ C ^ C . Thus 5 can equivalently
be regarded as a function s : Q ——^ C. It is easy to see that s is a
conformal vector field if and only if the corresponding function is
analytic or conjugate analytic. Indeed multiple valued analytic func-
tions can be considered as multiple valued conformal vector fields.
We therefore have a correspondence between conformal vector fields
c on regions of S2 and analytic or conjugate analytic functions s
on regions of C. Provided s has suitable behaviour at infinity, the
corresponding conformal vector field on S2 will extend over the North
pole.

We propose to simplify our discussion by modifying condition 3)
of Section 1 to the following condition :

3^) that no two components of fibres are parallel in an oriented
sense.

An immediate consequence of this condition is that V/ is injective
and c must be single valued over P C S 2 .

Remark. — This will not be true in general if condition 3') is not
satisfied. In Example (4.5) we will consider the 2-valued analytic
function s(z) ==^/z. On a small disc about the origin in C, s corres-
ponds to a 2-valued conformal vector field c in a neighbourhood
U of the South pole on S2 . This yields a harmonic morphism

<p : M ——> U
with corresponding fibre map V/ : U ——^ S2 having the form

V / ( z ) = z 2

with respect to a suitable local chart.

(3.4) LEMMA. - Under the assumption 31), the map V/ is a
biholomorphic equivalence between N and P.

Proof. — Since ^ is injective, its inverse V/"1 : P ——> N is
defined and holomorphic.
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Relaxing the condition that the fibres of (^ be connected, we can
summarize the above results in the following:

(3.5) THEOREM. - If ^:U —> N is a harmonic morphism
from an open subset M of R 3 onto a Riemann surface N, which
is a submersion everywhere and satisfies condition 3 ' ) , then ^ is the
composition </? = ? o ̂  where 7 : M —> P is a harmonic morphism
onto P C S 2 and ? : P ——> N is a con formal map between Riemann
surfaces. Furthermore the fibres of 7 have the form

s ——> sy +c(^)

for each y G P, where s ranges over suitable values and c is a con-
formal vector field over P.

Conversely, every conformal vector field c over an open subset
P of S2 yields a (not necessarily unique) harmonic morphism 7 as
above.

4. Examples of harmonic morphisms from domains in R3.

In order to determine the structure of the sets M C R3 and
P C S 2 , we must consider points of R3 where various fibres intersect.
The boundary of such regions is the envelope of a family of lines in
R 3 . For the moment we consider the more general situation of(w-2)-
planes in R^ .

Let (^ : M —> N be a harmonic morphism from an open subset
of R'" onto a Riemann surface N, satisfying conditions 1), 2) and
3'). Let 7 : M —> G(m - 2, R^ ) denote the Gauss map and write
P = 7(M) C G (m — 2, Rw ). Since ^ is a harmonic morphism and
^ is holomorphic, the composition 7 = ^ 0 ^ is horizontally con-
formal onto its image P, and we can associate a dilation

JLI : M —> R with 7.

(4.1) LEMMA. - If we extend the fibres of 7 throughout W1,
then points which lie on the envelope of fibres of 7 are points where
the dilation ^ takes on the value infinity.
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Proof. — Let u ——> y (u) be a curve in P such that the tangent
vector Y = y ' (u) has unit length. In a suitably small neighbourhood
express points y of P in the form e^ (y) A . . . A e^ ( y ) . Then the
fibre of 7 over y is given by

(53,. . . ,5^) ——^ 1, ^(jO +c(jQ,
r

and the vector Y lifts to

X= 1.5,^,(Y)-hrfc(Y).
r

The horizontal projection 3€X is given by

geX = S ̂  d^ (Y) + rfc(Y) - S s, (de, (Y), ^> ̂
r r,a

- i<rfc(Y).^)e,,
a

and the dilation JLI : M —^ R of 7 is determined by
jLi2 = i / i g ^ e x i 2 .

We claim that 9CX = 0 along the envelope of the planes

( 5 3 , . . . , ^ ) ——^ S ^^(^(^)) +c(^(^)) ,
r

fora curve y ( u ) in P.

The envelope is given as the curve determined by the points of
intersection of infinitesimally nearby planes.

Consider a nearby point u^ io u, and write
V = y ( u ) , y ^ = y (u^).

The two corresponding fibres intersect when

S ^,(^)+c(>0= l^,^(^)4-c(.Vi).
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Then

IA^)- lA^l)4- l^O^l)- l^r(^l)

M — ̂
4-^)_^Zi.)=o.

M — U^

Now ^ =<t^(^)+c(^J,U^)>

=<1^00 +c(^) ,^(^)>

and

^=<1,^^(^) ^c(y) ,e,(y)),

hence

^ (e, (y) - e, (y,)) + ̂ /1>, ̂  (^) + c(^), ̂  (^) - ̂  (y)\e,(y,)
_r_____________ r \ a /

U — U^

^_ c ( y ) - c ( y ^
u — u^

Now let u ——> u^ , and we see that

^ 5, ̂  (Y) + ^< ̂ 5, ̂  OQ + c(^) , d^ (Y)> ̂  ( y ) + dc(Y) = 0

along the envelope.

Recall that
<e, ( y ) , c(^)> = 0, so that (de, (Y), c(y)> + (e, ( y ) , rfc(Y)> = 0.

Also <^ ( y ) , ̂  (^)> = 6^ implies that
<rf^ (Y), ̂  (3;)) + <^ (y) , ̂  (Y)> = 0.
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Hence

^(Y)+rfc(Y)-^ /^s,de,m,e,(y)\e^y)s
r \ a /

- S <e,(y),dcWe,(y)= 0

along the envelope. But this is precisely the horizontal projection
9€X.

D

The Lie algebra of conformal vector fields over S2 forms a
vector space K over C with dim^ R = 3. They arise from
conformal vector fields on the complex plane C under the inverse
of stereographic projection. A basis for K in terms of vector fields
on C is given by

V ^ ( z ) = z

V^(z)= 1

V 3 ( Z ) = Z 2 ,

for each z ^ C .
Express each point y ^ S2 in the form y = (cost, sin t e16)

and consider the orthonormal frame field ( Y ^ , Y ^ ) , where
Y ^ = ( 0 , ; 6 ? 1 0 ) and Y^ = (— smt ^ c o s t e 1 6 ) , defined at all points
of S2 where t ^= 0, TT . Regard K as a vector space over R with
dim? G = 6. Then a basis for /? is determined from
V ^ , V^ , ¥3 and is given explicitly by the vector fields

V, = s i n r Y ^

U^ = sin t Y^

U3 = l/2(cosr- l ) (s in0 Y^ 4- cos0 Y^)

U^ = l/2(cosr- l)(-cos0 Y^ + sin0 Y^)

Ug = 1/2 (1 + cosQ (- sin 9 Y^ + cos 0 Y^)

U^ = 1/2(1 +cosr)(cos0 Y^ +s in0 Y^).

Three of these vector fields are of course obtained from the other
three by rotation through 7T/2 in the tangent space. Since Y^ ,Y^
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are not defined at t = 0, TT , we define LL^, L^ at t = 0 to be
given by \J^ = (0 ,1 ,0) ,U^ = (0 ,0 , 1) and U^U, at t = TT
to be given by Ug = (0 ,1 ,0) ,U^ = (0 ,0 ,1 ) .

There are several cases to consider in determining the structure
k^r - — -i it n r ...of M and P. We will consider each case c == _ .U , , r =

separately. We will use Lemma (4.1) to determine the boundary of
regions where fibres intersect.
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(4.2) Example c = U ^ . Express each ^ G S2 in the form
y == (cos ^ , sin t e10).

Then the fibre over y is given by

5 —> s(cost ^smte16) + sin r (0 , z<?10).

The vector Y^ = (— sin t , cos t e10) lifts to

X^ =^¥2 +cosr(0,^ '0) ,

hence SCX^ = X^ and

igex^ i2 =s2 ^cos2^
Thus the dilation X : M —> R is given by

X2 = l/(s2 +cos20.

Now s2 + cos2 t is zero when 5 = 0 and cos^ = 0, that is
when t = 7T/2. These are the points (0, — sin 6 , cos 6 ) , 6 € [0 ,2 TT) ,
that is the unit circle in the plane x = 0.

The domain M is given by M = R^K, where
K = { ( x , ^ , z ) E R 3 \x= 0 , y 2 + z2 > 1} .

The image P of 7 : M —^ S2 is the upper hemisphere (or lower
one) x2 + y2 -hz 2 = 1, jc>0. This is to avoid multiple valuedness
of 7, which we will discuss again in Section 5. The fibres of 7 are
lines which twist through the disc x = 0, y2 + z 2 <1 and fill out M.

The harmonic morphism 7 has a functional expression as follows.
Consider the family of ellipsoids given by the equations

x2 y 2 - ^ z 2

7^-T^T'1'
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where s> 0 denotes a variable parameter. Note that in the limit as s
tends to 0, the ellipsoid tends to the disc of radius 1 in the plane
x = 0. Let <K be the upper half space of R3 determined by x > 0.
Then for each point ( x , y , z ) ^ . (K, there is a unique s>0 such
that (x, y , z) lies on the ellipsoid. Define TT : c% ——> P by

/ x s y - ^ z - y ^ - s z \.y 5y + z — y + 5Z
7 ? 52 + 1 5 s2 + 17T(^,Z)= ^-,-7——, ^ . . ) .v <• c - 4 - 1 o- + 1 '

Then TT is a harmonic morphism with dilation fi given by

^ (x^ ,z )=^W + x 2 ) ,

and TT extends to the harmonic morphism 7 determined above.

(4.3) Example c =V^.
The fibre over y €= S2 has the form

s ——> s (cos t , sin ^ ^'0) 4- sin r (— sin t , cos r e16),

and the vector Y^ lifts to

X^ = ̂  + cos t Y^ — sin r ̂  .

Thus

SeX^ =5Y^ -hcosrY^ ,

and
X2 = l/Q?4-cosr)2 .

This becomes infinite when s = —cost, that is the point ( — 1 , 0 , 0 ) .
The set M is given by M = R^U- 1,0,0)}, and P = S2 . The
fibres are half-line segments to the point ( — 1 , 0 , 0 ) . In fact 7 has a
functional expression

7 0 c , ^ , z ) = ( x + l , ^ , z ) / [ ( x + I)2 +^ 2 + Z 2 ] 1 7 2 .

(4.4) Example c = L^ .
The fibre over y €E S2 has the form

5' ——> s (cost,sin t e 1 6 ) + 1/2 (cost- l ) ( s i n 0 Y^ 4- cos 6 Y^) .

As before we compute the dilation X, and

1/X2 = 0 ? - ( l / 2 ) s m r c o s 0 ) 2 + (l/4)sin2 t sin2 6 .
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This is zero when sint = 0 and ^ = 0 , giving the point (0 ,0 ,0)
and (0, — 1 ,0). It is also zero when sin 6 = 0 and
s = (1/2) sin t cos 6 .

If 0 = 0 , then s = (1/2) sin t , giving the curve
1/2 (sin t , 1 - cos r .O) .

This is the circle of radius 1/2 in the (x^)-plane, centre (0 ,1 /2 ,0 ) .
If 0 = 7 T , then s= — (1/2) sin t , and we obtain the same curve traversed
in the opposite direction. The set K to be removed is the exterior
to this circle, K = { ( x , y , z ) € R3 |z = 0, x2 4- (y - 1/2)2 > 1/4} .
The image P of 7 is a hemisphere on one side of the great circle
9 = 0 , TT. The fibres twist through the interior of the circle.

The cases c = V^, Ug and U^ are obtained from c=V^ by
performing an isometry of S2 . The associated harmonic morphisms
are identical up to an isometry of R3 .

(4.5) Example. - Let s . C —> C be the 2-valued analytic
function given by s ( z ) = ^ / z . Under the inverse of stereographic
projection this corresponds to the 2-valued conformal vector field
on S2 given by

c=-2r 1 / 2 sin2 ( t /2 ) [sin (0/2) Y^ 4- cos (0/2) YJ,

where r == cot(r/2), Q E [0 , 47r).

The vector field Y. has horizontal lift

^ex^ = s^ —.77 -1- 2 r1/2 sin — cos —,.1/2 ^ ^ s in—Y^ + cos— Y^
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The coefficient of Y^ is zero when sin (0/2) = 0, i.e. 0 = 0 , 2?r,
or when 1 - r sin t= 0. That is t = 7T/2. If 6 = 0, 2 TT the coefficient
of Y^ is

^[-^^^sin^-cos^],

which must be zero along envelope points. When 0 = 0 this gives the
curve in R 3

( l / r ^ . O . O ) , r e [ 0 , 7 r ] .

This is the positive x-axis. When Q = 27T, we obtain the negative
x-axis

( -1 / r 1 / 2 , 0 , 0 ) , r e [ 0 , 7 r ] .

If r = 7T/2, then the coefficient of Y^ is zero provided s = 0.
This corresponds to the closed curve in R 3 given by

(cos(0/2),sin(0/2)sin0,-sin(0/2)cos0), 0 E [0 , 4?r),

which can equally be described as one of the components of the
intersection of the unit sphere

x2 ^ y 2 4-z2 = 1 ,

and the surface

(1 - x 2 ) ( / 2 x l - I)2 = z 2 .

It is a question of some interest as to what a maximal domain
M C R 3 is for this harmonic morphism. The image P will be one of
the two connected regions of S2 separated by the equator t = 7T/2
with the half-circle 0 = 0 removed.

We can compute the fibre map ^ described in Section 2. So

M

\L
p ————Y————^ §2
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With respect to coordinate charts given by stereographic projec-
tion, locally about the South pole ^ is the mapping \p : C ——^ C
given by i / / ( z ) = z 2 . Thus, referring back to Lemma (3.4) we see
that in general we cannot expect ^ to be injective.

5. Generalized analytic functions.

In this section we show how it is possible to regard some of the
examples of the last section as multiple valued maps. In such a case
we can take copies of the domain and glue them together in such a
way that we obtain a harmonic morphism from a 3-dimensional
manifold (possibly with singularities) onto the whole Riemann sphere
S2 . This is similar to the way in which the Riemann surfaces of mul-
tiple valued analytic functions are constructed [19].

Consider Example (4.2) of the last section. Here the fibre over
y e S2 has an expression

s —> s y - ^ - c ( y ) ,

where c == U ^ . The envelope of intersecting fibres is the circle x = 0,
y 2 + z 2 = 1 .

c- Ui.
y 2 + z 2 = 1 .

The set K to be removed is given by
K= { ( x , y , z ) ^ V \ 3 \ x = Q , y ^ +z2 >!} .

Then M == R^K, and M is filled out by the fibres over the upper
hemisphere. In fact each point of M lies on two fibres, one being the
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fibre over a point of the upper hemisphere and the other being the
fibre over a point of the lower hemisphere. In this sense we can regard
7 : M —> S2 as a multiple valued function.

Suppose we now take R 3 , and cut it along the set K. The
diagram below is a cross section in the (x , ^)-plane representing
this procedure.

//////////////////

The points (0 , y , z ) , y2 4- z2 > 1 can now be regarded as
lying on one of two sheets.

Consider the fibres which lie over points of the equatorial circle
C = {(x , y , z) ̂  S2 \x = 0} C S2 . In the original construction these
fibres intersect in points exterior to the envelope and are all tangent to
the envelope, the point of tangency being given by s = 0.

Suppose now, in our cut manifold, we say the fibres lie on the
lower sheet for s<0, and on the upper sheet for 5->0. Thus the
fibres pass from one sheet to the other. Notice now that distinct
fibres never intersect.

Now take two copies of the cut manifold and glue these together
along the edges created by the cuts. We do this in such a way as to
identify fibres over points of the circle C.

This is best pictured by opening the cut manifold out into an
infinite solid cylinder.
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Take two copies and identify

It is clear that after identification we obtain a manifold M which
is homeomorphic to S2 x R. The map 7 : M ——> P can now be
extended in a continuous way to a map 7: M ——> S2 . This is
defined by mapping points x of the boundary of each solid cylinder
(both boundaries are of course identified) onto the appropriate point
of the equatorial circle C in S2 determined by the fibre x lies on.
Points in the interior of one cylinder are then mapped onto the upper
hemisphere, while points in the interior of the other cylinder are
mapped onto the lower hemisphere.

The space M is a C°-manifold, and both M and 7^ are smooth
apart from points corresponding to the circle x = 0 , y2 + z2 = \
in R 3 .

Returning to Jacobi's original theme, consider the functional
expression for the harmonic morphism of Example (4.2); we see that
the harmonic morphism TT is related to the coordinates (x , y , z)
by an "algebraic equation" as follows.

Compose TT with stereographic projection from S2^! , 0 , 0 ) }
onto the complex plane. We obtain the map a, given by
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sy + z - y + sz
a ( x , y . z ) = - . . . — — — - + ;•

( s 2 + l ) ( \ - x / s ) (s2 + 1)(1 - x / s ) '

where we recall x , y , z. and s are related by the equation

x2 y 2 + z 2 _
^T^T"1-

If we now perform the following change of coordinates:

x = x / s , w = (y 4- i z ) / s + f),

we see that a , x and w are related by the equation

a^u) - 2a + w = 0.

The fact that there is no dependance on x " reflects the fact that ^ is
constant along the fibres of a.

This equation is a polynomial in a of degree 2, and hence its
solution a = ( 7 ( w ) is to be considered as a two valued mapping.

6. Harmonic morphisms from an open subset of S3

onto a Riemann surface.

Let v : Q ——> N be a harmonic morphism from an open
subset Q of S3 onto a Riemann surface N. Then v determines
a harmonic morphism ^ : M ——»-N with totally geodesic fibres,
where M is open in R 4 , as follows.

Regarding Q as a subset of R4 lying in the unit 3-sphere, let
M be the set R"^ Q = [\x e R 4 . ]^ C Q , X G R , X > 0} , and let
TT : M ——> Q be defined by 7 r ( x ) = x / \ x \ for all x ^ M . Define
^ : M ——^ N to be the composition ^ = v o jr.

Since the fibres of u are minimal, they form parts of geodesies
in S3 . Thus the fibres of ^ form parts of 2-planes in R4 which all
extend through the origin in R 4 . From Lemma (1.1) the composition
^ = v o TT is horizontally conformal. Hence ^ is a harmonic morphism
with totally geodesic fibres. In the notation of Section 2, the vector
field c which determines the positions of the fibres is identically zero.
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Conversely, suppose we are given a harmonic morphism
^ : M —> N , where M is open in R 4 , and ^ has totally geodesic
fibres such that the associated vector field c is identically zero.
Then define v to be the restriction ^ | 3 : Q —> N , where
Q = M n S3 is open in S3 .

Since the fibres of ^ are parts of 2-planes passing through the
origin in R4 , the fibres of v are parts of geodesies in S3 and hence
are minimal. Furthermore, for each x G Q, the horizontal space
H^ M of ^ satisfies H^ M C T^ S3, so that v is horizontally
conformal and hence a harmonic morphism.

We therefore have a correspondence between harmonic
morphisms v: Q —> N , Q open in S3 , and harmonic morphisms
^: M N where M is open in R and (p has fibres which are
parts of 2-planes passing through the origin in R 4 . Assuming that
^ (and hence v) satisfies conditions 1), 2) and 3) of Section 1, we
have a commutative diagram.

^ P C G ( 2 , R 4 )

Since c = 0, condition 3') of Section 3 is also satisfied and
V/ is injective. Otherwise said, ^ is a holomorphic curve in the
Grassmannian G (2 , R 4 ) .

Conversely, given a holomorphic curve i / / : N — > G ( 2 , R 4 ) ,
we can construct a (not necessarily unique) open set M C R4

and a harmonic morphism ^ : M —> N as in Section 2. Thus M
is the union of the planes ^ / ( . x ) , x £ N , with intersection points
removed. We summarize this in the following:
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(6.1) THEOREM. —/ / u : Q —> N is a harmonic morphism
from an open subset Q of S3 onto a Riemann surface N , with
empty critical set and subject to condition 3 ) , then v is the
composition, v= T] o p, where p : Q —> P is a harmonic morphism
onto a holomorphic curve P C G(2 , R4) and 17: P —^ N is a
weakly conformal map between Riemann surfaces. Furthermore,
a holomorphic curve P in the Grassmannian G (2 , R 4 ) determines
a harmonic morphism p : Q —> P for some (not necessarily unique)
open subset Q of S3 .

(6.2) Remark. — I t has been pointed out to me by J. Jost that
there are holomorphic curves of arbitrary high genus in the
Grassmannian G ( 2 , R 4 ) . This follows from [16, Chapter 5,
Corollary 2.18 and Chapter 2, Theorem 8.18]. For the Grassmannian
G (2 , R4) can be regarded as a ruled complex surface in CP3 .

The Grassmannian G ( 2 , R 4 ) of oriented 2-planes in R4 can
be described as the set {a ̂  A2 R4 | | a |2 == 1 and a A a == 0}.
The de Rham-Hodge star operator acts on A2 R4 as an involution
with eigenspaces A+ corresponding to the eigenvalues ± 1 . Thus
A2 R4 decomposes, A2 R4 = A^. (D A_ as the direct sum of
3-dimensional Euclidean subspaces. Each a € E G ( 2 , R 4 ) therefore
has a decomposition a = o^ 4- a_ , where a+ G S+ , the spheres
of radius 1/\/7 in A+ . We therefore have a diffeomorphism
/ z : G ( 2 , R 4 ) - — > S+ x S_ given by h(a) = (04 ,a_). In fact
h is an isometric biholomorphic equivalence with respect to the natural
Kahler structure on each space (see, for example [10]).

If (^/)/= i ... 4 is an orthonormal basis for R4 and we set
e^ = e^ A ^., then (e^ ± e^)l^/l,(e^ ^ e^)ly/2 ,(e^ ± e^)l^/I is
an orthonormal basis for A+ .

We consider some examples illustrating the correspondence
between the holomorphic immersion V/ and the harmonic
morphism v .

(6.3) Example. - Let V/ ; S2 ——> S2 x S2 be given by
\l^{x) = (;c,(l , 0 ,0 ) ) , for x C S 2 . Then writing

x =(x^x^x^)^ R 3 , V/(x)

V/ (x ) decomposes as

V/(x) = x 1 ( ^ 1 2 + e^}l^/l + x^(e^ - ^24 )V7

+ x,(c^ + e^W + (^ - ̂ )A/2.
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Express points of S2 in the form x = (cos It ,sin 2t e 1 6 ) ,
where t C [0,7r/2] ,0 G [0 ,27r). Then V/ has an expression

W =/3A/4/^/2 --

where /3 = (cos r e^, sin r ̂ ), f^ = (cos r ie1^, - sin r ̂ ) and ^ , T?
satisfy S + T? = 0 4- Tr/2.

The Hopf map u : S3 ——>- S2 is given by

v (coste1^ ,smt e1^) = (cos 2t, sin 2^e l a+11)).

The fibres are given by { + T? = constant, and the vector field
tangent to these fibres is given by (cost ie1^ , — sinr/e^). Thus the
2-plane in R4 determined by the fibres of the induced map
(p: R^ {0} —> S2 is none other than f^ ^f^ . Hence, up to an
isometry of S3 , the immersion V/ corresponds to the Hopf map
v: S3 ——> S 2 .

(6.4) Example. - Let ^ : S2 —> S2 x S2 be given by
^(x) = ( x , x ) ,

for x e S2 . Then, writing x == (j^ .x^ ,^3)

V^M = ^1 ( ^12 + ^34) + ^2^13 - ^24) + X3^^ + ^3)

+ ^l(6-^ - ^34) + ^2^13 + ^24) + ^3^14 + ^23)

= 2^ A (.v^ ̂  + x^e^ + ^3^4).

These planes all intersect along the e^ -axis. The corresponding
harmonic morphism v: S3 \ {(± 1 ,0 ,0 ,0)} —> S2 is given by

v (cost,smt x) = x ,

where x E S2 and t e (0 , TT) .

7. Harmonic morphisms defined globally on S3.

Let v: S3 —> N be a harmonic morphism onto a Riemann
surface N which is a submersion everywhere. As before we let
<^ : M —> N denote the corresponding harmonic morphism from
M = R^ {0}. Then ^ will also be a submersion at each point of
M. We first of all show that .condition 3) of Section 1 is satisfied.
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(7.1) LEMMA. — Let F be a component of a fibre of v together
with its induced orientation, and let n denote the corresponding
oriented great circle in S3 determined by F. Then n = F as oriented
submani'folds.

Proof. — Each fibre is closed in S3, hence each connected
component F is closed in S3 and hence F is closed in the great
circle II containing it. Since v is a submersion, F is a manifold
and must also be open in II and so must equal II.

We can therefore form the Riemann surface N of the
connected components of the fibres of <^, and we have the diagram

^
G(2,R4)

where V/ is an injective mapping. Note that N is compact by the
compactness of S3 .

Conversely, given a holomorphic curve V / : N —^ G ( 2 , R 4 ) ,
we have associated a harmonic morphism ^ p : M —> N as
described in Section 2. Let 7: Q —^ N denote the restriction of
^ to S3 . The fibre of 7 over each y E N , is given as the
intersection of the plane \p(y) with S3 , with intersection points
(with other fibres) removed. If the domain Q is to be the whole of
S3 , then a necessary condition is that distinct fibres do not intersect
in S3. Thus if x , y €: N ,x ^ y , then the corresponding planes
^ ( x ) , ^ (y) must intersect only in the origin of R 4 . This is
satisfied if and only if V/(x) A \l/(y) ̂  0.

Identifying G ( 2 , R 4 ) with S2 x S2 , let TT,: S2 x S2 —> S2
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denote projection onto the Fth factor (i = 1 , 2 ) , and write
\l^f = TT .̂ o ^/ . Thus ^ = ( V / j , i^). Define the function

/!: N x N —> R
by

^,^)=<^i(x),^^)>-<^,(^),^,(^)>,

for each x , y €-N .

(7.2) LEMMA . - For each x, y G N , y7^ exterior product
\p(x) A ^(^) is equal to P ( x , y ) .

Proof.-Since V/i 00,^00 are both self-dual 2-forms and
^/^(^) ,V/^(^) are both anti self-dual 2-forms, the result follows.

D

(7.3) COROLLARY . - For each pair of distinct points x , y ^ N ,
suppose that j5(x, y ) is non-zero. Then it is either always negative
or always positive.

Proof. — This follows from the connectedness of N and the
continuity of ^/i and V / ^ .

D

Henceforth we will assume that j3(;c, y) <0 for each pair of
distinct points x , y € N.

(7.4) LEMMA. - The maps V / i , ̂  : N —^ s2 are both h010-
morphic.

Proof. — By Proposition (2.5), V^ , ̂  are the composition
of holomorphic mappings and hence holomorphic. D

(7.5) LEMMA. — The map ^^ is constant, whereas i^ is a
con formal diffeomorphism. In particular N is con formally equivalent
to S2 .

Proof. — First note that y^ is non-constant. For otherwise

P ( x , y ) = 1 -<^ (^ ) , ^2 ^)»0.
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Suppose i^ is also non-constant, then by the compactness of
N and since ^ ls holomorphic, ^ covers S2 . Thus there exists
x , ^ e N , x = ^ ^ , with i//2 Oc)= ( 1 , 0 , 0 ) and V/^ ( y ) = ( - 1 , 0 , 0 )
and then

/30c ,^ )=<^0c) ,^0 . ) )+ 1>0,

a contradiction. Thus V^ is constant.
Suppose V^ has a branch point at XQ e: N. Then locally about

XQ , there exist x , y , x ̂  y , such that ^ (x) = y^ (^), and

P ( x , y ) = 0 ,

again a contradiction. Thus ^ has no branch points and is a covering
map. But then N is conformally equivalent to S2 and V / ^ is a
conformal diffeomorphism. n

(7.6) THEOREM. - If v: S3 —^ N is a submersive harmonic
morphism from the Euclidean 3-sphere onto a Riemann surface N,
then v is the composition ' v = 17 o p where p : S3 ——> S2 is the
Hopffibration, and 17: S2 ——> N is a conformal mapping.

Proof. — We have seen from Example (6.3) that the Hopf fibration
arises from the holomorphic curve ^ : S2 —^ S2 x S2 given by
^ (x ) = (x, (1 ,0 , 0)) for each x e S2 . It therefore suffices to show
that if v : S3 ——^ S2 is a harmonic morphism with connected
fibres, then the corresponding holomorphic curve

V / : s2 —> s2 x s2

is given by ^/.
By choosing suitable coordinates on N = S2 , we may assume

from Lemma (7.5) that ^^ is the identity map V^ ( x ) = x . Also
by an appropriate isometry of S3 we may assume from the same
Lemma that \1^^ ( x ) = (\ ,0 ,0), hence proving the theorem. a
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